
 

  
Abstract--Permanent magnet flux switching machine 

(PMFSM) with additional field excitation coil (FEC) has several 
attractive features compared to conventional permanent magnet 
(PM) machines because of its variable flux control capability and 
robust rotor structure suitable to apply for high speed 
applications. However, the original machine has a limitation of 
operating in high current condition due to nonessential magnetic 
saturation that prevents the machine from extracting the 
maximum performances. To overcome this problem, some design 
refinements are conducted by using deterministic optimization 
method to gain a better performance in the maximum torque and 
power production. The results simulated by finite element 
analysis (FEA) show that the machine with the improved design 
increases by 11.6% of the maximum torque and 16.3% of the 
maximum power compared to the original design. 

 
Index Terms--Permanent magnet flux switching machine 

(PMFSM), field excitation coil (FEC), permanent magnet (PM), 
finite element analysis (FEA) 

I.  INTRODUCTION 
ERMANENT magnet flux switching machines 

(PMFSMs) have been a popular research topic recently, 
due to their high power density and robust rotor structure 

[1]-[2]. With both permanent magnets and armature windings 
located on the stator and robust single piece rotor similar to 
that of the switched reluctance machine (SRM), PMFSM have 
the following advantages compared to conventional PM 
machines; (1) easy cooling of all active parts in the stator such 
as armature coil and permanent magnets, and (2) better 
suitability for high speed applications [3]-[5]. To provide 
further attractive characteristics, a new structure of 12Slot-
10Pole PMFSM with additional field excitation coil has been 
proposed as shown in Fig. 1 [6]-[8]. Generally, the machine is 
composed of 12 PMs and 12 FECs distributed uniformly in the 
midst of each armature coil. The term, “flux switching”, is 
created to describe machines in which the stator tooth flux 
switches its polarity by following the motion of a salient pole 
rotor. In this 12Slot-10Pole machine, the PMs and FECs 
produce six north poles interspersed between six south poles. 
The three-phase armature coils are accommodated in the 12 
slots for each 1/4 stator body periodically. As the rotor rotates, 
the fluxes generated by PMs and mmf of FECs link with the 
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armature coil alternately. For the rotor rotation through 1/10 of 
a revolution, the flux linkage of the armature has one periodic 
cycle and thus, the frequency of back-emf induced in the 
armature coil becomes ten times of the mechanical rotational 
frequency. The relation between the mechanical rotation 
frequency and the electrical frequency for this machine can be 
expressed as; 

 
me fNrf .=

 

(1) 
 
where fe is the electrical frequency, fm is the mechanical 
rotation frequency and Nr is the number of rotor poles 
respectively.  

The cross-sectional view of flux paths caused by both PM 
and mmf of FEC of the original design is depicted in Fig. 2. 
Indeed, the presence of FEC makes these types of machines 
more attractive in terms of modulating the PM flux. The 
additional FEC gives extra advantage to the machine as the 
secondary flux source to improve maximum torque and power 
capabilities due to its variable flux control capability. The 
proof of principle and some design refinements of this type of 
machines have also been conducted as in [9]-[10]. This type of 
machine is classified into hybrid excitation machines which 
are also getting more popular in recent years [11]-[13].  

However, based on initial analysis using FEA, the original 
PMFSM with FEC designed in Fig. 1 has some drawbacks that 
prevent the machine from extracting the maximum 
performances mainly in high current condition. Firstly, this 
paper provides the design investigations into the original 
PMFSM with FEC using FEA. The comparison of the torque 
density characteristics and back-emf waveforms between 
experimentally obtained in [3] and calculated by FEA is made. 
Then, the design drawbacks of the original PMFSM with field 
excitation are discussed. To improve the design drawbacks, 
some design refinements are conducted using deterministic 
design approach, resulting in better torque and power 
performances as well as torque-speed characteristics. In 
addition, the permanent magnet demagnetization, the rotor 
mechanical strength, the loss and the efficiency are predicted. 

The FEA-based performance predictions of the original 
PMFSM with FEC are discussed in Section II. The drawbacks 
of the original machine design are discussed in Section III. 
Based on finite element analysis (FEA), the method of getting 
the maximum performances is explained in Section IV. In 
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addition, the improved design, the PM demagnetization at 
high temperature, the rotor mechanical strength at high speed, 
the torque and power versus speed characteristics, the loss and 
the efficiency are also predicted and discussed in Section V. 
Finally some conclusions are drawn in Section VI. 

II.  FEA-BASED PERFORMANCE PREDICTION OF THE ORIGINAL 
PMFSM WITH FIELD EXCITATION  

A.  Finite Element Analysis (FEA) Design 
FEA design of the original PMFSM with field excitation 

using commercial package JMAG 10.0 is illustrated in Fig. 3. 
The number of turns for armature windings (Na) and excitation 
winding (Ne) can be calculated as:  
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where, αa is the filling factor, Ra is the resistance (Ω), Sa is the 

area (mm2), and La-ave is the average coil length including coil 

end (mm) of armature windings. Similarly, αe is the filling 
factor, Re is the resistance (Ω), Se is the area (mm2), and Le-ave 
is the average coil length including coil end (mm) of 
excitation winding respectively. In addition, current density of 
this machine can be calculated using: 
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where, Ja is the current density of armature coil and Je is the 
current density of excitation coil respectively. Table I shows 
the specifications, rated conditions, and the calculated value of 
Na, Ne, Ja and Je.  

B.  No-Load Analysis 
The back-emf during no-load condition at 3000r/min in which 
the current density of the field excitation is varying from 0 to 
15A/mm2 is shown in Fig. 4. The back-emf shows good 
agreement between experiment as in [Fig. 6, Ref 3] and FEA 
but have 8% different at maximum voltage. On the other hand, 
the torque density versus current density from experimental 
and FEA at Je=13A/mm2 is depicted in Fig. 5. The graph also 
shows good agreement between experimental and FEA with 
6.5% different of torque density at 70A/mm2. This difference 
is due to different material used for rotor and stator iron, 
different permanent magnet, and the analysis using FEA is not 
considering the iron loss.  

 
 

 
Fig. 3.  FEA design of original PMFSM with field excitation (1/2 model) 
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TABLE I 
SPECIFICATIONS, RATED CONDITIONS AND THE CALCULATED VALUE OF 

PMFSM WITH FIELD EXCITATION 
 

Armature Excitation 
αa 0.5 αe 0.5 
Ra 0.5 Ω Re 1.3 Ω 
Sa 50.23 mm2 Se 77.98 mm2 
ρ 1.69E-08 Ωm ρ 1.69E-08 Ωm 
La-ave 112.059 mm  Le-ave 123.924 mm 
Na 41 turns Ne 45 turns 
Ia (Rated) 8.5 A Ie (Rated) 10 A 
Ja 13.78 A/mm2 Je 11.52 A/mm2 

 
 

 
 

Fig. 1.  12Slot-10Pole PMFSM with additional field excitation 
 
 

 
 
 

Fig. 2.  Flux paths of permanent magnet and mmf of excitation coil in 12Slot-
10Pole PMFSM with field excitation 
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C.  Capability of Original PMFSM with Field Excitation 

Design 
Since FEA proved the same characteristics as experimental 

results, current density for each coil can be optimized by 
estimating maximum torque while increasing excitation 
current density and minimum power factor while increasing 
armature current. Fig. 6 shows torque and power factor versus 
excitation current density at Ja=15A/mm2. Increased the 
excitation current will increase the torque and power factor, 
but the torque is limited to its maximum point before 
gradually decreasing. From the graph, the maximum excitation 
current density that provide maximum torque is Je=21A/mm2. 
Excitation current higher than this value will reduce the torque 
production but keeping the high power factor. Using the 
maximum excitation current density noted from Fig. 6, the 
maximum armature current density that produced maximum 
torque at minimum power factor can be determined as shown 
in Fig. 7. It is clear that increasing the armature current density 
will increased the torque but reduced the power factor. 
Therefore, maximum armature current density of 27A/mm2 is 
selected at minimum power factor of 0.6. From the maximum 
current density for armature and field excitation discussed 
above, the torque density versus armature current density at 
Je=21A/mm2 is plotted as shown in Fig. 8. Therefore, the 
maximum performance of this design can be achieved at the 
maximum Ja=27 A/mm2 and Je=21 A/mm2 for minimum 
power factor of 0.6. 

III.  DRAWBACKS OF ORIGINAL MACHINE DESIGN 
According to Fig. 6, the torque reaches its maximum at 

Je=21A/mm2 but starts to decrease if Je is higher than this 

value. This phenomenon happens due to the magnetic 
saturation at stator yoke between armature winding and 

excitation coil slots marked as A1 in Fig. 9(b). Compared to 
the flux path in Fig. 9(a) under less excitation current density 
with 15A/mm2, it is obvious that the magnetic saturation 
prevents the permanent magnet flux from flowing to the path 
producing positive torque. As a result, some of permanent 
magnet fluxes are forced to flow to the rotor side as shown in 
Fig. 9(b), resulting in negative torque. In other words, higher 
excitation flux will flow in opposite direction and the 
permanent magnet fluxes cancel each other at A2. The 
remaining permanent magnet flux will flow towards the rotor 
that produced negative torque hence reducing the total torque. 
From a design viewpoint, an expansion of the stator yoke 
width A1 and A2 contributes to the conquest of this drawback. 

 

 
Fig. 4.  Back-emf with increasing excitation current density 
 

 
Fig. 5.  Torque density comparison between experimental and FEA at 
Je=13A/mm2 
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Fig. 6.  Torque and power factor at Ja=15A/mm2 
 

 
Fig. 7.  Torque and power factor at Je=21 A/mm2 
 

 
Fig. 8.  Torque density versus armature current density 
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C.  Rotor Mechanical Strength at High Speed 
The mechanical stress prediction of rotor structure at high 

speed 20,000r/min is calculated by centrifugal force analysis 
based on 2D-FEA. Fig. 14 illustrates the principal stress 
distributions of the rotor core for the finally designed machine. 
The highest stress can be found at a point highlighted in circle. 
It shows that the maximum principal stress at 20,000r/min 
reaches 19.7MPa which is much smaller than 300MPa being 
allowable as the maximum principal stress in conventional 
electromagnetic steel. This is a great advantage of the 
designed machine that makes it applicable for high-speed 
application such as hybrid electric vehicles. 

D.  Torque and Power versus Speed Characteristics 
The torque and power versus speed curves of the finally 

designed machine is plotted in Fig. 15 where the current 
density is limited to the maximum of 30A/mm2 for each coils. 

 

                 (a) original design                 (b) improved design 
Fig. 11.  Original and improved design 
 
 

  
                (a) Je = 20 A/mm2                             (b) Je=30 A/mm2 
Fig. 12.  Comparison between flux vector diagram at low and high excitation 
current density for the final designed machine 
 

Figure 13.  Torque and power factor at Ja=15A/mm2 
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Fig. 14.  Principal stress distribution of rotor at 20,000r/min 

 

 
Fig. 15.  Torque and power versus speed characteristics 

 

 
Fig. 16.  Loss analysis and motor efficiency at frequent operating points 

 
TABLE III 

PERFORMANCE OF PMFSM WITH FIELD EXCITATION  
 Original 

Design 
Improved 

Design 
Ja(A/mm2) 15 15 30 
Je-max(A/mm2) 21 27 30 
T (Nm)  9.96 11.12 16.03 
T (Nm/kg)  3.74 4.16 6.00 
PF  0.92 0.98 0.63 
P (kW)  2.83 3.29 5.41 
Rotor Mechanical Strength (MPa)  19.72 
PM Demagnetization (180°C)  0.0% 
Motor Efficiency > 90% 
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In the figure, the solid black line depicts the maximum torque 
curve for operating speed of the final designed machine. At 
base speed 2,274r/min, the torque obtained is 16.03Nm as the 
maximum and the corresponding power reaches 4.25kW with 
the power factor of 0.63. The maximum power 5.41kW is 
achieved at high speed 10,000r/min. In addition, the average 
power of 4.92kW is achieved between 4,000 - 6,000r/min. 
Finally, the maximum torque density and maximum power 
density obtained are 5.99Nm/kg and 2.03kW/kg, respectively.  

E.  Motor Loss and Efficiency 
The motor loss and efficiency are calculated by finite 

element analysis considering copper losses in armature coil 
and field excitation coil, and iron losses in all laminated cores. 
Fig. 15 also demonstrates specific operating points at 
maximum torque, maximum power, and frequent operating 
point under light load noted as No. 1 to No. 8. Meanwhile, the 
detailed loss analysis and motor efficiency of the designed 
machine are summarized in Fig. 16. At high torque operating 
points No.1, the motor efficiency is 94.1% although it has high 
copper loss. At high speed operating point No. 5, the 
efficiency is 90.4%, degraded due to increase in iron loss. 
Furthermore, at operating point No. 2 to No. 4 and No. 6 to 
No. 8 under low load conditions, the proposed machine 
achieves relatively high efficiency approximately more than 
92%. As a result, it is concluded that the proposed machine 
can work for specific operating points with high efficiency as 
much as 90% to 97%. The overall performances of the 
proposed machine based on finite element analysis are 
summarized in Table III. 

VI.  CONCLUSION 
This paper has presented the design improvement and 

performance analysis of permanent magnet flux switching 
machine with field excitation. The research goal to get the 
maximum performance has been achieved by improving the 
flux path to avoid flux saturation and by increasing torque and 
output power. This machine can also be employed for motor 
with robust condition due to its high mechanical strength, zero 
magnet demagnetization at high thermal environment as well 
as high revolution speed such as hybrid electric vehicle. 
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