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ABSTRACT 

 

 

 

Inlet as part of aircraft engine plays important role in controlling the rate of airflow 

entering to the engine. The shape of inlet has to be designed in such away to make the 

rate of airflow does not change too much with angle of attack and also not much 

pressure losses at the time, the  airflow entering to the compressor section. It is therefore 

understanding on the flow pattern inside the inlet is important. The present work 

presents on the use of the Fourth Order Runge Kutta – Harten Yee TVD scheme
 [1, 2]

 for 

the flow analysis inside inlet. The flow is assumed as an inviscid quasi two dimensional 

compressible flow. As an initial stage of computer code development, here uses three 

generic inlet models. The first inlet model to allow the problem in hand solved as the 

case of inlet with expansion wave case. The second inlet model will relate to the case of 

expansion compression wave. The last inlet model concerns with the inlet which 

produce series of weak shock wave and end up with a normal shock wave. The 

comparison result for the same test case with Fluent Software
 [3]

 indicates that the 

developed computer code based on the Fourth Order Runge Kutta – Harten – Yee TVD 

scheme are very close to each other. However for complex inlet geometry, the problem 

is in the way how to provide an appropriate mesh model.   
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ABSTRAK 

 

 

 

Masukan merupakan sebahagian kompenan pada enjin pesawat yang memainkan 

peranan penting dalam mengawal kadar  aliran laju udara yang masuk ke dalam enjin. 

Rekabentuk masukan yang digunakan sebagai aliran masuk udara ke bahagian 

 pemampat  harus direka sedemikian untuk memastikan kadar  aliran laju udara tidak 

 berubah terlalu banyak terhadap sudut yang bertindak dan juga kehilangan tekana pada 

 masa tersebut dapat dikurangkan. Oleh kerana itu pemahaman yang lebih mendalam 

tentang pola aliran di dalam masukan harus difahami dengan lebih lanjut. Dalam kajian 

ini, analisis yang digunakan untuk mengkaji aliran dalam masukan  menggunakan  

analisis skima Fourth Order Runge Kutta – Harten Yee TVD. Aliran diandaikan sebagai 

aliran kebolehmampat dua demensi kuasi  tidak likat.  Pada peringkat awal dalam 

pembanguanan kod komputer, tiga jenis model generik masukan digunakan. Bagi 

model inlet jenis pertama, ianya digunakan untuk menganalisis bahagian masukan yang 

menggunakan  gelombang pengembangan manakala modul jenis yang kedua pula 

menggunakan gelombang mampatan pengembangan dan akhir sekali iaitu  modul jenis 

ketiga yang akan menghasilkan siri gelombang kejut lemah dan ianya akan berakhir 

dengan gelombang kejut normal. Setelah kajian ini selesai dijalankan, keputusan analisis  

yang diperolehi akan dibandingkan dengan keputusan analisis yang menggunakan Fluent 

Software
 
dan didapati bahawa kedua-dua keputusan ini mempunyai keputusan yang 

hampir sama.  Walaubagaimanapun,  masalah yang wujud dalam menggunakan analisis 

skima Fourth Order Runge Kutta – Harten Yee TVD
 
ialah kaedah untuk menghasilkan  

model mesh yang sesuai. 
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CHAPTER 1 

 

 

 

INTTRODUCTION 

 

 

 

The intake is important part in the aircraft engine because it will give the engine a 

proper supersonic air flow, the air intake is that part of an aircraft structure by means 

of which the aircraft engine is supplied with air taken from the outside atmosphere. 

The air flow enters the intake and is required to reach the engine face with optimum 

levels of total pressure and flow uniformity. These properties are vital to the 

performance and stability of engine operation. Depending on the type of installation, 

this stream of air may pass over the aircraft body before entering the intake properly. 

 During flight, there is various flight manoeuvres had to be done such as take 

off, landing stage or flight turning for flight change directions. Such flight 

conditions had made the aircraft are operated at different angle of attack. As result, 

the airflow which entering to the engine may make a certain angle of attack with 

respect to the main engine axis system. In appropriate inlet design may bring to the 

situation the rate of mass flow entering to the engine is not sufficient and the engine 

loss the thrust. Dropping rate of mass flow may due to a strong flow separation 

occurred in the inlet or may due to the presence of strong shock wave  (Jack D. 

Mattingly). 

 The presence work aim the aerodynamics analysis in the presence of shock 

phenomena. . To capture shock phenomena for the case of flow past through a 

complex geometry one has to use at least two dimensional Euler equations as its 

governing equation of fluid motion for the flow problem in hand. Then the question 

is what the Euler equations are? The Euler equations first appeared in published 
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form in Eulers article “Principes generaux du mouvement des fluides,” published 

in Mémoires de l'Academie des Sciences de Berlin in 1757(Batchelor, G. K.). They 

were among the first partial differential equations to be written down. At the time 

Euler published his work, the system of equations consisted of the momentum and 

continuity equations, thus it was underdetermined except in the case of an 

incompressible fluid. An additional equation, which was later to be called 

the adiabatic condition, was supplied by Pierre-Simon Laplace in 1816. 

 During the second half of the 19
th
 century, it was found that the equation related to 

the conservation of energy must at all times be kept, while the adiabatic condition is a 

consequence of the fundamental laws in the case of smooth solutions. With the discovery of 

the special theory of relativity, the concepts of energy density, momentum density, and 

stress were unified into the concept of the stress-energy tensor, and energy and momentum 

were likewise unified into a single concept, the energy-momentum vector. 

  In fluid dynamics, the Euler equations govern inviscid flow. They correspond to 

the Navier–Stokes equations with zero viscosity and heat conduction terms. They are 

usually written in the conservation form
 
(Batchelor, G. K.). 

 

𝜕𝜌

𝜕𝑡
+ ∇.  𝜌u = 0  

𝜕𝜌u

𝜕𝑡
+ ∇.  𝑢 ×  𝜌u  + ∇𝑝 = 0  

𝜕𝐸

𝜕𝑡
+ ∇.  u 𝐸 + 𝑝  = 0 

 

to emphasize that they directly represent conservation of mass, momentum 

and energy.  The equations are named after Leonhard Euler. The Euler equations can 

be applied to compressible as well as to incompressible flow using either an 

appropriate equation of state or assuming that the divergence of the flow velocity 

field is zero There are various numerical method had been developed for solving 

such kind equation such as Beam Warming Scheme, Mac Cormack Scheme, Steger 

Warming Scheme. The present work will use a Total Variation Diminishing - Runge 

Kutta scheme as suggested by Yee-Harten (C.HIRSCH). 

  This method treats the steady flow problem as unsteady flow problem in 

order to make the Euler Equation to behave as a hyperbolic partial differential 

equation with respect to time.  Their result will be compared to the result from the 
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Fluent software. Fluent is the CFD solver which able to solve complex flows 

ranging from incompressible (low subsonic) to mildly compressible (transonic) to 

highly compressible (supersonic and hypersonic) flows. This software also provides 

various options in term of type of solver [explicit/implicit temporal discretization, 

upwind], will in term of grid generation this software also offer the use of multi grid 

method to enhance the convergence level. Beside that the FLUENT software also is 

to deliver an optimum solution efficiency and accuracy for a wide range of speed 

regimes. The wealth of physical models in FLUENT allows to accurately predict 

laminar and turbulent flows, various modes of heat transfer, chemical reactions, 

multiphase flows, and other phenomena with complete mesh flexibility and solution-

based mesh adaption. 

 

 

 

1.1 Objective: 

 

To develop a computer code for aerodynamics analysis related to shock phenomena 

inside of the engine inlet. 

 

 

 

1.2 Scope of Study: 

 

(i) Developing computer code for grid generation of flow domain by using an 

Algebraic grid generator approach. 

(ii) Develop computer code Euler solver based on Total variation Diminishing – 

Runge-Kutta scheme.  

(iii) Generate Mesh Flow Domain for Fluent Software by using Gambit Mesh 

Generator Software. 

(iv)  Comparative study between the result of developed computer code result 

and Fluent for several test case related to the inlet flow problems. 



CHAPTER 2 

 

 

 

THE GOVERNING EQUATION OF FLUID MOTION 

 

 

 

2.1 Physical Flow Phenomena of Flow Inside Inlet Aircraft Engine. 

 

An engine's air inlet duct is generally considered as an airframe part. During flight 

operation, it is very important to the engine performance. Engine thrust can be high only 

if the inlet duct supplies the engine with the required airflow at the highest possible 

pressure. (Figure 2.1) Show a physical configuration of the turbojet engine of aircraft, 

where from the position 0 to 2 represent the inlet part of engine will be placed. 

 

 

. Figure 2.1: 2D engine of air craft. 

  

 Figure (2.2) show rather detail of   inlet in two dimensional drawing 
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Figure 2.2: Technical drawing of the inlet in two dimensional drawing 

 

 As part of aircraft engine, the inlet duct has two engine functions and one aircraft 

function, namely: 

(i) It must be able recover as much of the total pressure of the free air stream as 

possible and deliver this pressure to the front of the engine compressor. 

(ii) The duct must deliver air to the compressor under all flight conditions with a little 

turbulence. 

(iii) The aircraft is concerned, the duct must hold to a minimum of the drag. 

The duct also usually has a diffusion section just ahead of the compressor to 

change the ram air velocity into higher static pressure at the face of the engine. This is 

called ram recovery. The inlet duct is built generally in the divergent shape (subsonic 

diffuser). However when the aircraft begins to fly at or near the speed of sound.,  the  

shock waves are developed in  which, if it is not controlled, it  will give a high pressure 

loss   and decreasing of   mass flow rate, and beside that it will also  set up vibrating 

conditions in the inlet duct called inlet “buzz “. Buzz is an airflow instability caused by 

the shock wave rapidly being alternately swallowed and expelled at the inlet of the duct. 

Air enters the compressor section of engine must be slow down to subsonic velocity. 

 At supersonic speeds the inlet does the job by slowing the air with minimize energy 

loss and the temperature rise. At transonic speeds the inlet duct is designed to keep 

shock waves out of the duct (Jack D. Mattingly).  
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This is done by locating the inlet duct behind a spike or probe which creates the 

shock wave in front of inlet duct. This normal shock wave will produce a pressure rise 

and velocity decrease to subsonic speeds.  At higher Mach numbers, the single very 

strong normal shock wave may create and causes a great reduction in the total pressure 

in the duct inlet can be recovered and excessive air temperature rise inside the duct can 

be avoided.  To avoid the presence of   single strong normal shock wave, the inlet may 

be designed to generate a series of oblique shock waves. Hence the reduction of flow 

speed can be carried out gradually without loss to much in the stagnation pressure drop. 

To keep that the flow at the moment entering to the compressor section is a subsonic, a 

normal shock is created just in front of the compressor.  

 

 

 

2.2 Governing Equation of Fluid Motion of Two dimensional Unsteady Inviscid 

Compressible Flows. 

  

To ovoid the excessive pressure drop, inlet duct is normally designed to have a 

streamline surface, as result the flow pass through inlet can be considered as inviscid 

flow.  However considering that the most airplanes are operated at relatively high speed 

the compressible effect have to be taken account.  The real physical flow phenomena 

around the inlet engine of the aircraft are actually three dimensional flow phenomena. 

However this flow problem can be considered as the flow problem of a simple flow 

over a complex geometry. To reduce the complexity of the flow problem, especially, in 

the stage of computer code development, the flow problem around the inlet may be 

considered as the case of two dimensional planar flows. 

The governing equation of motion for the two-dimensional inviscid flow is: 

 

𝜕𝑄

𝜕𝑡
+

𝜕𝐸

𝜕𝑥
+

𝜕𝐹

𝜕𝑦
= 0                 2.1  
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Where: 

𝑄 =  

𝜌
𝜌𝑢
𝜌𝑣
𝜌𝑒𝑡

                         2.2          

 

    𝐸 =  

𝜌𝑢

𝜌𝑢2 + 𝑝
𝜌𝑢𝑣

 𝜌𝑒𝑡 + 𝑝 𝑢

                            (2.3) 

 

 

𝐹 =  

𝜌𝑣
𝜌𝑣𝑢

𝜌𝑣2 + 𝑝
(𝜌𝑒𝑡 + 𝑝)𝑣

                          2.4        

 

 

 

 

The equations of motion were transformed from physical space(𝑥, 𝑦) to 

computational space(𝜉, 𝜂)by the following relations. With the generalized coordinate 

transformation: 

 

𝜏 = 𝑡                                       (2.5) 

𝜉 = 𝜉 𝑡, 𝑥, 𝑦                           (2.6) 

𝜂 = 𝜂 𝑡, 𝑥, 𝑦                             2.7  

 

The chain rule of partial differentiation provides the following expressions for the 

Cartesian derivative: 

 

𝜕

𝜕𝑡
=

𝜕

𝜕𝜏
+ 𝜉𝑡

𝜕

𝜕𝜉
+ 𝜂𝑡

𝜕

𝜕𝜂
                    2.8  
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𝜕

𝜕𝑥
= 𝜉𝑥

𝜕

𝜕𝜉
+ 𝜂𝑥

𝜕

𝜕𝜂
                        2.9  

 

𝜕

𝜕𝑦
= 𝜉𝑦

𝜕

𝜕𝜉
+ 𝜂𝑦

𝜕

𝜕𝜂
                     (2.10) 

Where: 

 

𝜉𝑡 =
𝜕𝜉

𝜕𝑡
 , 𝜂𝑡 =

𝜕𝜂

𝜕𝑡
 

𝜉𝑥 =
𝜕𝜉

𝜕𝑥
 , 𝜂𝑥 =

𝜕𝜂

𝜕𝑥
 

𝜉𝑦 =
𝜕𝜉

𝜕𝑦
 , 𝜂𝑦 =

𝜕𝜂

𝜕𝑦
 

 

 

The Euler equation in the transformed coordinate, Eq. (2.1) can be written as:  

 

𝜕𝑄 

𝜕𝜏
+

𝜕𝐸 

𝜕𝜉
+

𝜕𝐹 

𝜕𝜂
= 0                       (2.11) 

 

Where: 

𝑄 =
𝑄

𝐽
                                                          (2.12) 

𝐸 =
1

𝐽
 𝜉𝑡𝑄 + 𝜉𝑥𝐸 + 𝜉𝑦𝐹                       (2.13) 

 

𝐹 =
1

𝐽
 𝜂𝑡𝑄 + 𝜂𝑥𝐸 + 𝜂𝑦𝐹                     (2.14) 
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2.3 Overview Various Methods For Solving The Euler Equations. 

 

The Governing equation in the form of unsteady Compressible Euler equation can be 

classified as a hyperbolic partial differential system equation. There are various method 

had been developed for solving such type equation. They are namely:  Mac Cormack 

Scheme, Beam Warming Scheme and lax Wendroff scheme. 

 Mac Cormack's (K_A.Hoffmann) technique is a variant of the Lax-Wendroff 

approach but is much simpler in its application. Like the Lax-Wendroff method, the 

Mac Cormack method is also an explicit finite-difference technique which is second-

order-accurate in both space and time. First introduced in 1969, it became the most 

popular explicit finite-difference method for solving fluid flows for the next 15 years. 

Today, the Mac Cormack method has been mostly supplanted by more sophisticated 

approaches. However, the Mac Cormack method is very "student friendly;" it is among 

the easiest to understand and program. Moreover, the results obtained by using 

MacCormack's method are perfectly satisfactory for many fluid flow applications.  It is 

an excellent method for introducing the fresh learner to the joys of CFD. For various 

study of solving Euler Equation the study will cover some of it as: 

 T. H. Pulliam “Solution Methods in Computational Fluid Dynamics” for Implicit 

finite difference schemes for solving two dimensional and three dimensional Euler and 

Navier-Stokes equations. In this study they concentrated on the Beam and Warming 

implicit approximate factorization algorithm in generalized coordinates. And they had 

some examples for 2-D inviscid and viscous calculations (e.g. airfoils with a deflected 

spoiler, circulation control airfoils and unsteady buffeting) and also 3-D viscous flow 

are included.  When they used the Beam and Warming implicit approximate 

factorization scheme or variants of that scheme such as the diagonalization. The codes 

employ improvements to enhance accuracy, (grid refinement, better boundary 

conditions, more versatile artificial dissipation model) and efficiency (diagonal 

algorithm, implicit treatment of artificial dissipation terms, variable time steps). Results 

for a wide variety of cases substantiate the accuracy and efficiency claims. 

 H.C.Yee and P.Kutler ”Application of Second-Order-Accurate Total Variation 

Diminishing (TVD) Scheme to the Euler Equations in General Geometries” they fined 
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the TVD schemes have the property of not generating spurious oscillations for one 

dimensional nonlinear scalar hyperbolic conservation laws and constant coefficient 

hyperbolic system, so the applications of these methods to one and two-dimensional 

fluid flows containing shocks (in Cartesian coordinates) yields highly accurate non 

oscillatory  numerical solutions, so the goal of this study was to extend these methods to 

the multidimensional Euler Equations in generalized coordinate systems then they got 

from numerical experiments the scheme is stable in a strong nonlinear sense the 

calculation with an incident shock Mach number of 10 and the report is the first attempt 

to apply the TVD scheme to non-Cartesian coordinates. It is preliminary in nature. 

 J.Shi and E.F.Toro(1993)”Fully Discrete High-Order TVD schemes for A scalar 

Hyperbolic Conservation Low” The investigated fully discrete high-order TVD 

schemes for a scalar hyperbolic conservation law and they used flux limiters, then they 

fined the courant-number dependent TVD region for second and third-order scheme 

have been theoretically established. Flux limited have been proposed and tested via 

numerical experiments. For methods of m-th order accuracy (m≥4) they proposed a 

semi-empirical limiting procedure that appears to work well. Test on the case of m=4 

give very satisfactory results. 

 Dongfang Liang, Roger A. Falconer and Binliang Lin “Comparison between 

TVD-MacCormack and ADI-type solvers of the shallow water equations” in this study 

they comparison between the TVD-MacCormack model and an alternating direction 

implicit (ADI) model for cases involving steep-fronted shallow flows. It is 

demonstrated that the ADI model is unable to predict trans-critical flows correctly, and 

artificial viscosity has to be introduced to remove spurious oscillations. The TVD-

MacCormack model reproduces all flow regimes accurately. 

 Finally, the TVD-MacCormack model is used to predict a laboratory-scale dyke 

break undertaken at Delft University of Technology. The predictions agree closely with 

the experimental data, and are in excellent agreement with results from an alternative 

Godunov-type model. Thin they got the difference between the two formulations can be 

significant in the numerical solutions for flows over uneven bottom topographies. The 

conventional formulation was found to be less accurate than the deviatoric formulation. 

However, local disturbances in the discharge could not be totally eradicated using the 
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present TVD-MacCormack model for steady flows with abrupt changes. And the 

performance of the TVD-MacCormack model was also compared with a typical 2-D 

ADI model. The results showed that the 2-D ADI model did not have the 

shockcapturing capability, which is particularly necessary for modeling dam-break, 

levee-breach and steep riverine flows. Spurious oscillations arose in the solutions near 

sharp variations, and the steady hydraulic jump could not be predicted using the 2-D 

ADI model. 

 These numerical difficulties could not be overcome by simply increasing the 

artificial viscosity. Through comparisons between different formulations of SWEs and 

with the ADI model, the present TVD-MacCormack model has been validated for a 

range of flow conditions, including 1-D and 2-D, steady and unsteady, hypothetical and 

realistic, sub-, super- and trans-critical flows. Besides, a further validation was 

undertaken against a complicated dyke-break experiment. The predicted hydrographs 

compared well with the measured data. It should also be noted that the computational 

grids used in this paper were relatively coarse. Since the computational results were 

encouraging, no finer grid resolutions were considered. The simulations were all 

completed within 1 minute on a Pentium 4 personal computer (3.2 GHz CPU, 2G 

RAM) even for the dyke-break case with 315 · 81 grid cells. The high efficiency and 

robustness of the present model make it a powerful tool for real-time flood predictions. 

 

 

 

2.4 Solution of simple inlet problem by the use of  Fluent Software 

 

Present work will study three cases of geometries which related to the inlet problem, 

they namely (1) a simple compression wave inlet model , (2) simple 

compression/expansion inlet model and (3) simple inlet configuration with wedge nose 

model.  To allow this problem can be analyzed by use of Fluent software, firstly one has 

to create a mesh flow domain.  The mesh generation can be made by using Gambit 

software.  The combination of Gambit and Fluent had made the flow analysis for this 

inlet problem can be divided into six steps.  Those steps can be explained as follows:  
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2.4.1 Simple inlet model compression wave. 

 

2.4.1.1    Create geometry in Gambit: 

 

Creating geometry for channel as shown in figure (2.3)  

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Geometry of simple inlet of airplane engine. 

 

Open Gambit software first to create this simple geometry, so define the 

coordinates needed first from the table (2.1) as shown in figure (2.4), 

 

Table 2.1: Coordinates of the geometry. 

Label X Y Z 

A 0 0 0 

B 0 5 0 

C 1 5 0 

D 3 5 0 

E 7 5 0 

F 7 0.353 0 

G 3 0.353 0 

H 1 0 0 

7Units 

5Units 

1Units 

4Units 

2Units 

10
o 
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Fig 2.4 coordinates of the geometry.  

 

  This coordinates need to be as wedge so link up those coordinates to make the 

edges as shown in figure (2.5)  

 

 

 

Fig 2.5: Link up the coordinates of the geometry. 
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Now while creating the edges, those edges need to define as faces. So define the 

(ABCH) as face1, (CDGH) as face2 and (DEFG) as face3 now after created the faces as 

in fig (2.6) the geometry ready to mesh. 

 

 

 

 

Fig 2.6: Creating the faces of the geometry of the geometry. 

 

 

 

2.4.1.2    Mesh geometry in Gambit: 

 

Now the geometry needs to mesh each of the 3 faces separately to get the final mesh. 

Before meshing the faces, need to define the point of distribution for each of the edges 

that form the face. firstly select the first wedge from the first face and define the point 

of distribution on the wedge then select the second wedge from the face one and define 

the points distribution as the first wedge and for all faces as the face one as shown in 

figure (2.7) .then mesh the three faces as shown in figure (2.8). 
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Fig 2.7: Start to mesh the geometry in Gambit. 

 

 

 

 

 

  

 

 

 

 

 

 

 

Fig 2.8: Creating the mesh in Gambit. 
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2.4.1.3    Specify Boundary Types in GAMBIT: 

 

To specify the boundary type the boundary need to label (ABCDEF) as far-field, (HG) 

as wedge and (FG, HA) as symmetry. Recall that these will be the names that show up 

under boundary zones when the mesh is read into FLUENT. At the first create groups of 

edges and then create boundary entities from these groups. First, so the group it will be 

as AB, BC, CD and DE together and define it as far afield group, and then group the 

other edges as shown in the table (2.2), now the defined of all wedges as groups the 

geometry can define the boundary type in Gambit as shown in table (2.3), then save the 

geometry in Gambit and save it as mesh file. 

 

Table 2.2: Defining the wedges as group. 

Group name Edges in group 

Far-field AB, BC, CD, DE, EF 

Wedge  GF 

Symmetry  FG, HA 

 

 

 

Table 2.3: Defining the groups to the boundaries. 

 

Group name Boundary entities 

Far-field Pressure far-field 

Wedge  Wall  

Symmetry  Symmetry  
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2.4.1.4    Set Up Problem in FLUENT: 

 

 In this case firstly open the Fluent software then read the case which have done in the 

previous steps then make check on this case to make sure there are no problems in the 

case then define the properties of the problem, for define the solver turn on a density 

based and an explicit because the problem expect an oblique shock then for define the 

viscous turn on an inviscid flow This means the solver will neglect the viscous terms in 

the governing equations. 

 In compressible flow, the energy equation is coupled to the continuity and 

momentum equations. So the problem need to solve the energy equation for our 

problem, so turn on the energy equation from defining the energy, and then make sure 

the material is air from defining material and we will set the density to ideal gas, CP is 

constant and equal to 1006.43 j/kg-k and also the Molecular Weight is constant and 

equal to 28.966 kg/kgmol. For selecting the ideal gas option means that FLUENT will 

use the ideal gas equation of state to relate density to the static pressure and 

temperature. And then will go to define the boundary conditions as far afield to pressure 

far-field and set the (Gauge Pressure to 101325, the Mach number to 2, X-Component 

of Flow Direction to 1 and the temperature to 300K. We are assuming ambient 

temperature.) , Set wedge to wall boundary type and symmetry to symmetry type. 

 

 

 

2.4.1.5   Solve: 

 

To solve the problem use a second-order discretization scheme. Then set the initial 

guess values for the iterative solution. Use the far-field values (M=3, p=1 atm, T=300 

K) as the initial guess for the entire flow field. Then set all the equations to 1e-6 and set 

the iteration number to 5000 then solve the problem, after finish the iterations save the 

data and analysis the results which we get from the Fluent software. 
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2.4.1.6  The Analytic Solution of Compression and Expansion Wave: 

 

The flow problem as described in the previous sub chapter actually can be solved 

analytically. Refer to the Figure 2.6,  For a given supersonic flow condition at entry 

station, let say, for example, the Mach number M, pressure P and temperature T are 

given as 2, 101.325Kpa, and  300K
o
   respectively.  The bottom surface deflected at 

point A and B.  At point A such positive deflection with respect to the flow direction 

create an oblique shock wave, while at the point B, the surface deflection sees with 

respect to the flow direction is a negative angle as result an expansion wave occurred at 

that point. For simplify the explanation, let the flow domain in before point A is Region 

(1), in between region A and B as Region (2) and after B as flow region (3).  For a 

given flow condition in region (1), one can determine the flow condition region (2) by 

solving as oblique shock wave and for the flow in region (3) as expansion wave. This 

problem can be described schematically as shown in the Figure 2.9 bellows 

                                                                                                        

                                                                                                       Expansion wave 

Oblique wave 

 

M1=2 

P1=101.325Kpa 

T1=300K 

       

                                                       10
o 

Fig 2.9: Simple geometry for inlet of airplane engine.
 

 

 Flow solution for region (2) as an oblique shock wave problem for a given Mach 

number M1, deflection angle δ1, and then the oblique shock angle β can be obtained 

through solving the M-δ-β equation defined as:  

𝑀 =
𝑉

𝑎
                     2.17  

  Where (V) is velocity on one − dimensional flow, and (a) is Local speed of sound  

2 

3 

1 
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δ is deflection angle  

 

Where: 

𝑡𝑎𝑛𝛿 =
2𝑐𝑜𝑡𝛽(𝑀1

2𝑠𝑖𝑛2𝛽 − 1)

2 + 𝑀1
2(𝛾 + 𝑐𝑜𝑠2𝛽)

                           2.18  

β is oblique shock angle 

 

 Above equation is non linear algebraic equation, hence an iteration process is 

required. However one can use another method called as Graphical method. Equations 

the M-δ-β equations have already available in graphical form, so for given Mach and 

deflection angle δ, by use those graph which the solution for oblique shock β=39
o
: 

Knowing this oblique shock, then other flow properties at the flow region (2) can be 

obtained sequentially as:  

𝑀𝑁1 = 𝑀1𝑠𝑖𝑛𝛽 

= 2 × 𝑠𝑖𝑛39 = 1.258 

To find the properties at MN1=1.258, there is table called (Normal Shock Wave) can 

find those properties. So now can get: 

 

𝑀𝑁2 = 0.808,
𝑃2

𝑃1
= 1.6793,   

𝑇2

𝑇1
= 1.16433 

From Eq: 

𝑀2 =  
𝑀𝑁2

sin 𝛽 − 𝛿 
 = 1.666 

And from:        

𝑃2

𝑃1
= 1.6793 → 𝑃2 = 170.124𝐾𝑝𝑎 

𝑇2

𝑇1
= 1.16433 → 𝑇2 = 300.16433𝐾𝑜  

 The previous steps showed the properties at the regain 1 and the regain 2, and 

before regain 3 there is expansion wave occurred, so to find the properties in regain 3 
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there is table called (Prandtl-Meyer Flow Table) 
 
from this table can find the 2 at 

M=1.666 which fined as: 

2 = 16.8088°     

From this value can find V3 from the Equation: 

3 = 2 + 𝛿 = 16.8088 + 10 = 26.8088° 

Now from the same table can find M3 which equal (2.016) and to find the properties at 

regain 3 can find it from table called (Isentropic flow tables for γ=1.4) at M3=2.016 can 

find: 

𝑇𝑜
𝑇

= 1.81286 → 𝑇3 = 165.5𝐾,
𝑃𝑜
𝑃

= 8.2697 → 𝑃3 = 12.253𝐾𝑝𝑎  

 



 

 

CHAPTER 3 

 

 

 

3.0 TOTAL VARIATION DIMINSHING SCHEME 

 

 

 

3.1. Basic Idea TVD – Runge-Kutta Scheme 

 

Numerical TVD schemes have been developed by various investigators over the 

last several years and more are being introduced at present
 
(K.A.Hoffmann). The 

various TVD schemes can be broadly categorized and subcategorized. First, TVD 

schemes may be classified as first-order TVD schemes, second-order TVD schemes 

which are usually referred to as high resolution schemes, and predictor-corrector 

type TVD schemes. Furthermore, in each category, the formulation may be explicit 

or implicit. In terms of finite difference approximation, the resulting formulation 

may be classified as symmetric or upwind. Furthermore, for each formulation, 

different functions may be available for flux limiters. Thus, within each category, 

numerous formulations can be written. To familiarize with the TVD scheme, it can 

be done by a prototype of Euler Equation in the form of scalar hyperbolic partial 

differential equation which can be written as: 

 

𝜕𝑢

𝜕𝑡
+
𝜕𝐸

𝜕𝑥
= 0                      (3.1) 

  

 In above equation, (u) is dependent variable, (E) is flux function and (x) and 

(t) are independent variable in spatial and temporal. There are various approaches 

can be used to convert from a continue differential equation into a discrete 
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equation. The approximate solution u  will not increase as the computational time 

in progress if fulfill the condition:  

 

𝑇𝑉 𝑢𝑛+1 ≤ 𝑇𝑉 𝑢𝑛                                       3.2  

 

Where:  

𝑇𝑉 𝑢𝑛 ≡  𝑢𝑖+1
𝑛 − 𝑢𝑖

𝑛  

+∞

−∞

                            (3.3) 

 

 

In implementing the Runge-Kutta fourth order time integration scheme combined 

with the spatial discretization which satisfies the TVD condition (Eq. 3.2) can be 

done through the normal use of Runge-Kutta scheme and then apply TVD 

formulation the last step. For a given a scalar partial differential Eq (3-1) the Fourth 

Order Runge-Kutta scheme can be implemented in the form: 

 

 

𝑢𝑖
 1 = 𝑢𝑖

𝑛                                         3.4  

 

𝑢𝑖
 2 = 𝑢𝑖

𝑛 −
∆𝑡

4
 
𝜕𝐸

𝜕𝑥
 
𝑖

 1 

                  3.5  

 

𝑢𝑖
 3 = 𝑢𝑖

𝑛 −
∆𝑡

3
 
𝜕𝐸

𝜕𝑥
 
𝑖

 2 

                  3.6  

 

𝑢𝑖
 4 

= 𝑢𝑖
𝑛 −

∆𝑡

2
 
𝜕𝐸

𝜕𝑥
 
𝑖

 3 

                       3.7  

 

(𝑢𝑖
𝑛+1)𝑅𝐾 = 𝑢𝑖

𝑛 − ∆𝑡  
𝜕𝐸

𝜕𝑥
 
𝑖

 4 

                  3.8  
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 Where: 

 

 
𝜕𝐸

𝜕𝑥
 
𝑖

 𝑚 

     =   
𝐸𝑖+1

(𝑚)
− 𝐸𝑖−1

(𝑚)

2∆𝑥
 , 𝑤ℎ𝑒𝑟𝑒     𝑚 = 1,2,3,4           3.9  

 

  In combining with the TVD scheme, so the method called as the Fourth 

Order Runge-Kutta – TVD scheme, the dependent variable which at the last stage 

time integration completed by  (Eq.3.8),is  added  with  one additional stage for  

calculating u at the time level t=t 
n+1

 as: 

 

 

𝑢𝑖
𝑛+1 = (𝑛𝑖

𝑛+1)𝑅𝐾 −
𝛥𝑡

2𝛥𝑥
 ɸ

𝑖+
1
2

𝑛 − ɸ
𝑖−

1
2

𝑛                                                             (3.10) 

Where: 

 

ɸ
𝑖+

1
2

𝑛 = 𝜎  𝛼
𝑖+

1
2
  𝐺𝑖+1 + 𝐺𝑖 − 𝜓  𝛼

𝑖+
1
2

+ 𝛽
𝑖+

1
2
 ∆𝑢

𝑖+
1
2

𝑛            3.11  

 

 

 

ɸ
𝑖−

1
2

𝑛 = 𝜎  𝛼
𝑖−

1
2
  𝐺𝑖 + 𝐺𝑖−1 − 𝜓  𝛼

𝑖−
1
2

+ 𝛽
𝑖−

1
2
 ∆𝑢

𝑖−
1
2

𝑛             3.12    

 

With: 

𝜓 𝑦 =  

 𝑦      for  𝑦 ≥ 𝜀

 𝑦 2 + 𝜀2

2𝜀
     for      𝑦 < 𝜀

                3.13   

Where: 

 

0 ≤ 𝜀 ≤ 0.125,           and 

 

 

 

𝜎  𝛼
𝑖+

1
2
 =

1

2
𝜓  𝛼

𝑖+
1
2
 +

∆𝑡

∆𝑥
 𝛼

𝑖+
1
2
 

2
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And 

𝛽
𝑖+

1
2

= 𝜎  𝛼
𝑖+

1
2
 

 
 

 
𝐺𝑖+1 − 𝐺𝑖
∆𝑢

𝑖+
1
2

 , ∆𝑢
𝑖+

1
2
≠ 0

0 , ∆𝑢
𝑖+

1
2

= 0

      

 

           

 

And 

𝐺𝑖 = 𝑚𝑖𝑛𝑚𝑜𝑑  ∆𝑢
𝑖−

1
2

, ∆𝑢
𝑖+

1
2
                            3.14  

 

𝐺𝑖 =

∆𝑢
𝑖+

1
2
∆𝑢

𝑖−
1
2

+  ∆𝑢
𝑖+

1
2

+ ∆𝑢
𝑖−

1
2
 

∆𝑢
𝑖+

1
2

+ ∆𝑢
𝑖−

1
2

 

 

 

If       ∆𝑢𝑖+1/2 + ∆𝑢𝑖−1/2 = 0, 𝑡ℎ𝑒𝑛 𝐺𝑖 = 0 

 

 

𝐺𝑖 =

∆𝑢
𝑖−

1
2
  ∆𝑢

𝑖+
1
2
 

2

+ 𝜔 + ∆𝑢
𝑖+

1
2
  ∆𝑢

𝑖−
1
2
 

2

+ 𝜔 

 ∆𝑢
𝑖+

1
2
 

2

+  ∆𝑢
𝑖−

1
2
 

2

+ 2𝜔

, 10−7 ≤ 𝜔 ≤ 10−5      3.15  

 

𝐺𝑖 = minmod  2∆𝑢
𝑖−

1
2

, 2∆𝑢
𝑖+

1
2

,
1

2
 ∆𝑢

𝑖+
1
2

+ ∆𝑢
𝑖−

1
2
                           3.16  

𝐺𝑖 = 𝑆 ∗ max  0, min  2  ∆𝑢
𝑖+

1
2
 , 𝑆

∗ ∆𝑢
𝑖−

1
2
 , min   ∆𝑢

𝑖+
1
2
 , 2𝑆 ∗ ∆∆𝑢

𝑖−
1
2
     (3.17)  

 

 

Recall that  

 

𝑚𝑖𝑛𝑚𝑜𝑑  𝑎, 𝑏, 𝑐, … , 𝑛 = 𝑆 ∗ max 0,𝑚𝑖𝑛  𝑎 , 𝑆 ∗ 𝑏, 𝑆 ∗ 𝑐, … , 𝑆 ∗ 𝑛    
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