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Abstract 

 

 

This paper presents a methodic approach, suggestions and information to design 

400 kV transmission line in Libya and investigate which type of towers, conductors 

and insulators suitable to use in that particular country. The work also calculate the 

affect of wind on L12 tower top geometrics and keep the probability of flashover very 

low. In this project, the weather and climate are considered to design overhead line. 

The purpose of this work is to determine the clearances necessary to withstand the 

400 kV line at normal and abnormal weather conditions. In addition, it is also 

important to make sure that conductors have to maintain the clearances under 

lightning, switching and TOV (temporary over voltage). The work in this project have 

used Excel and Visio to analyze the results and plot them to determine the swing 

angle of movement of the insulator and conductor, and the minimum clearances 

produced under certain wind speed. Finally, the return period per year and the 

probability of conductor infringes the clearances per year are calculated. 
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Abstrak 

 

 

 

Tesis ini menerangkan metodologi , cadangan, dan maklumat untuk 

merekabentuk 400kV talian penghantaran (transmission line) di Libya serta mengkaji 

jenis pencawang, konduktor, serta penebat yang sesuai di gunakan di negara tersebut. 

Sebagai tambahan, kajian ini juga  focus kepada menganalisa dan mengira kesan 

angin kepada geometri pencawang L12 dan megekalkan percikan (flashover) pada 

tahap yang rendah. Selain daripada itu, kesan cuaca dan iklim di ambil kira di dalam 

kajian ini. Tujuan utama kajian ini adalah untuk menentukan  400kV penghantaran 

talian (transmission line) akan tetap bertahan tidak kira di dalam keadaan cuaca buruk 

atau pun normal. Konduktor yang di gunakan mestilah bertahan di bawah keadaan 

kritikal seperti kilat, perubahan mendadak dari voltan rendah ke tinggi (switching), 

dan beban sementara yang berlebihan (TOV). Di dalam projek ini, perisian Excel, dan 

Visio digunakan untuk menganalisa dan menentukan kesan pergerakan dan peralihan 

angin pada penebat dan konduktor serta menentukan pergerakan minima yang terjadi 

akibat daripada kelajuan angin. Sebagai pengukuhan kajian, kesan angin tersebut dan 

kebarangkalian keadaan kritikal konduktor di kira dengan kaedah matematik berulang 

kali selama setahun.  
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                                                       CHAPTER I 

 

 

 

INTRODUCTION  

 
 

 

1.1 Background Of The Project 

 

The power transmission line is one of the major components of electrical 

power system. It is the major function to transport electric energy, with minimal 

losses, from the power source to the load centres, usually separated by long distance. 

Therefore, this long distance exposed to some natural phenomena such as wind, 

temperature and humidity, which affects the tower top geometry and clearances. 

 

The tower top geometry and the structure must assure the adequate electrical 

clearances necessary between live parts and supporting structures under various 

conditions. The available clearances themselves depend on the conductor position 

which varies due to action of wind. Therefore, wind action plays an important role 

when defining tower top geometries. 

 

The clearances between conductors and earth structures under the action of 

wind will be studied in this project. High wind speed could cause the  insulators and 

conductor swing closer to tower body, thus reduces the clearances. In the same way, 

could also affect the clearances between the conductors in mid span. Therefore, a 

wind velocity consider as the basis for structural design representing an ultimate 

load which may stress the structure to its maximum strength capacity. Plus the wind 

velocity there are some other parameters should take into consideration, for instance 

wind direction, time distribution of wind velocities, return period and maximum 

wind velocity.  
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The weather and wind velocity in north Libya selected as reference in this 

case of study. According to General Electricity Company of Libya (GECOL) the 

wind velocity in that area is 35m.s-1, and the tower type is L12 for 400 kV 

transmission line. In these conditions the probability of flashover has to be in 

acceptable low limit. 

 

Finally, the aim of this project is not to establish a new approach to 

determine clearances, but to demonstrate how to apply well-known methods for 

design tower top geometry in Libya. 

 

1.2 Problem Statement  

 

Underground cable is the alternative for overhead transmission lines. But  

The cost to build, install and operate underground cables is greater than overhead 

lines. This is due to the higher cost of materials (more underground cables are 

required to carry the same amount of power as one overhead line), the more labour 

and time intensive construction process and the higher cost of maintaining 

underground facilities and higher line losses associated with underground cables 

operated at certain load levels. Furthermore capacitance problem will reside if the 

underground cables used.  

 

Most of the overhead transmission lines expose to some natural phenomena 

such as wind, temperature and humidity, which affects the tower top geometry and 

clearances. Overhead line tower is a tall structure, and it may be subjected to strong 

winds. Besides causing vibrations in the conductor system itself, high wind speeds 

can also cause it to move closer to or away from the tower body. 

 

When design overhead transmission line, electricity consumption in load 

side should be taken in to consideration. Currently a 275 kV used in Libya to supply 

all the cities. Due to the increase of population and the manufacturing in Libya, a 

400 kV transmission line will be replacing a 275 kV. Also there is another project to 

connect North Africa with South Europe with 400 kV lines. In this project, the study 
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of wind affects on the tower top geometrics is significant to determine whether L12 

tower is suitable in that area under some weather condition.  

 

This project gives suggestions and information to design 400 kV 

transmission line in Libya and check the suitable types of towers, conductors and 

insulators. Work also calculates the affect of wind on tower top geometrics in order 

to keep the probability of flashover very low. For this, the weather and climate 

considered to design overhead line.  

 

According to various investigations of swing angles on the line, it was 

indicated that the measured swing angles are smaller that those theoretically 

expected from the recorded instantaneous peak wind speeds [4].  One of ideas to 

overcome this problem is to adapt the relation between wind velocity and swing 

angle. 

   

 

1.3 Objectives Of The Project 

 

The objective of this project is as described below 

• To determine the clearances necessary to withstand The 400 kV line at 

normal and abnormal conditions. The conductors have to maintain the clearances 

under lightning, switching and TOV (temporary over voltage). 

 

• To find the swing angle of movement of the insulator and conductor, and the 

minimum clearances produced under certain wind speed.  

 

• To find the minimum clearances, swing angle and the probability of 

conductor infringement per year. 

 

• To determine if the L12 tower suitable to be used in significant place (north 

Libya) or not. If not another tower should be used. 
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1.4  Project Scopes 

 

The purpose of this report is to propose relationships between loads imposed 

on transmission lines and the strengths of transmission line components   in order to 

obtain safe and economical designs. This report also provides a framework for the 

preparation of national standards dealing with design of overhead transmission lines 

based on probabilistic or semi-probabilistic methods.
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CHAPTER II 

 

 

 

LITERATURE REVIEW 

 

 
2.1 Introduction 

 
Probabilistic methods are recommended for the design of transmission lines 

as opposed to deterministic methods because they openly acknowledge that in 

practice there is always some risk that design loads can be exceeded and as a result 

complete reliability cannot be achieved. The proposed methods also provide for 

designing according to different levels of reliability depending on either the 

importance of lines in the system, or on varying requirements for public safety. The 

techniques described enable the designer to assess the reliabilities of existing lines or 

to design new lines for target reliabilities provided that the data required for such 

analysis are available [6]. 

 

However, it is recognized that for many locations and situations much of the 

data may not be available to the extent necessary for confidence in the calculation of 

absolute reliability. In such cases the recommended methods will be effective for 

estimating the relative reliabilities of different designs. It will be noted that the 

alternative to designing to target reliabilities ends up as one of designing for varying 

return periods of climatic events, specifically 50, 150 and 500 years [4]. It is 

considered that these represent reasonable differences between reliability levels, 

although different return periods may be selected if desired. 

 

The actual reliability of lines is sensitive to the accuracy of many design 

parameters. Some of the typical parameters which may affect reliability are discussed 

hereafter. Although the basic formula for calculating wind loads from measured 

velocities is well known, it requires the use of a number of coefficients that may be 

not accurate enough. For instance drag coefficients for conductors and bundles 
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depend on conductor stranding and bundle configuration. It is not possible to give an 

absolute recommendation covering all conductors in all situations in a research such 

as this, and the best that can be achieved represents some sort of compromise. 

Similarly, the effects of varying terrain are not exact and inaccuracies in selecting the 

appropriate coefficient may lead to differences as large as that separating reliability 

levels. The estimation of wind speeds between widely-spaced measuring situations is 

likely to be in accurate and can lead to unpredictable errors in load calculations [3]. 

 

Comments may be made with respect to the strength of line components, 

although in general they are more precisely known than climatic loads with the 

exception of foundations. The use factors of these components (the percentage of 

their rated strength that is used to carry loads) may not be known and can affect 

reliability. 

 

Although our project does propose a method for estimating use factor, there is 

room for error which in general should be on the side of safety. The above discussion 

does not represent a complete catalogue of all grounds for uncertainties but does 

indicate the type of analysis that the designer shall go through in order to design for 

target reliabilities with confidence. Having done this and if the designer is satisfied 

with the completeness and accuracy of the data for the particular situation, the report 

may be used as originally intended, (i.e. providing for reliability based design of 

transmission lines). 

 

Notwithstanding the uncertainties of the existing probabilistic methods, it 

shall be pointed out the deterministic methods have many of the same pitfalls that are 

generally not acknowledged. The approach recommended in this report provides a 

consistent and logical way of relating loads and strengths, and will result in 

economic and safe transmission lines whenever the required data is available. 

 

Finally, it is important to compare the results obtained by the proposed 

methods with existing ones which have proved to be satisfactory. This comparison 

should allow further adjustment of some of the proposed factors according to local 

experience. 
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2.2 Transmission Line Components 

 
Over head power line mainly consists of three parts tower, conductor and 

insulator. Structure (tower) for overhead lines take a variety of shapes depending on 

the type of line [6]. Conductor is a material which contains movable electric charges 

in metallic conductors, such as copper or aluminium. Insulators are non-conducting 

materials with fewer mobile charges, which resist the flow of electric current. 

Insulator is a material contains unmovable electric charge and it use for hold and 

support the conductors and maintain sufficient distance between conductor and tower 

structure.  

 

2.3 Conductor 

 
It is a material which contains movable electric charges in metallic 

conductors, such as copper or aluminium. Overhead cable use for transmit power 

between two side. Aluminium is a good current conductor; low in cost and lighter 

weight compare to copper [18]. These advantages enhance the usage of aluminium 

conductor as overhead line of transmission system. Aluminium based for overhead 

lines like All Aluminium Conductor (AAC) is favourably used compared to copper 

because of several factors such as price, weight and availability. In fact, strength to 

weight ratio of AAC has to improve because this results in smaller sags, hence 

shorter towers. Some modifications have been done therefore, All Aluminium Alloy 

Conductor (AAAC) and Aluminium Conductor Steel Reinforced (ACSR) are 

produced. Continuous effort must be done to overcome the small conductivity value 

in both AAAC and ACSR conductor. 

 

Aluminium conductors reinforced with steel (known as ACSR) and all aluminium 

alloy conductor (AAAC) are primarily used for medium and high voltage lines. The 

aluminium conductors have the advantage of better resistivity/weight than copper, as 

well as being cheaper. Some copper cable is still being used, especially at lower 

voltages and for grounding. AAAC conductor has a better corrosion resistance and 

better strength to weight ratio and improved electrical conductivity than ACSR 

conductor on equal diameter basis [18, 19]. 

  

  

http://en.wikipedia.org/wiki/Electric_charge
http://en.wikipedia.org/wiki/Copper
http://en.wikipedia.org/wiki/Aluminum
http://en.wikipedia.org/wiki/Electric_charge
http://en.wikipedia.org/wiki/Copper
http://en.wikipedia.org/wiki/Aluminum
http://en.wikipedia.org/wiki/ACSR
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2.3.1 Type Of Conductors 

 

• ACSR - Aluminium conductor, steel reinforced. 

• ACAR - Aluminium conductor, alloy reinforced. 

• AAAC - All Aluminium alloy conductor. 

• AACSR- Aluminium alloy conductor, steel reinforced 

 

2.3.2 Advantages of AAAC  

• Excellent corrosion resistance, especially in coastal (saline) areas and in 

chemically polluted industrial area [19, 16]. 

• High strength/weight ratio. The span length can be increased between 2% and 

15% [16], resulting in saving of towers/supports and other accessories. 

• High durability. The life of the conductor is longer than ACSR and AAC. 

• High carrying capacity. It can carry 8% extra current on the line for an equal 

temperature rise of the equivalent size of ACSR conductor. 

• Lower power-losses. Due to the lower AC resistance, compared to that of 

equivalent ACSR, the power loss is less. Due to absence of steel core in the 

conductor, there are no magnetic losses due to electromagnetic effects[19]. 

• It is hard to cut and impossible to recycle. Due to the presence of alloy 

elements, the conductor cannot be subjected to melting and hence is not prone 

to theft. 

• Surface hardness: twice that of aluminium strands and hence less prone to 

damage and scratches during stringing. 

2.3.3 Bundle conductors. 

Bundle conductor is a number of conductors in parallel. Bundle conductors 

are used to increase the amount of current that may be carried in a line. Due to the 

skin effect, ampacity of conductors is not proportional to cross section, for the larger 

sizes. Therefore, bundle conductors may carry more current for a given weight [18, 

19] 

 

  

http://en.wikipedia.org/wiki/Conductor_(material)
http://en.wikipedia.org/wiki/Current_(electricity)
http://en.wikipedia.org/wiki/Skin_effect
http://en.wikipedia.org/wiki/Ampacity
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Using Bundle conductors result in lower reactance, compared to a single 

conductor. Also Reduces corona discharge loss at EHV (extra high voltage). The use 

of bundle conductors in high voltage system will reduce the voltage gradient and also 

reduce the interference with communication system. On the other hand, the bundle 

conductors have higher wind loading and it is difficult to install. 

The preferred conductor bundles for each of NGT’s tower designs are given 

in table 2-1 below. Conductor bundles that are likely to require significant structural 

modifications to the relevant tower design are indicated with an asterisk (*) and 

appear in italic type [17]. 

                                    Table 2-1 Definition of ground roughness [17] 

 

  

http://en.wikipedia.org/wiki/Reactance_(electronics)
http://en.wikipedia.org/wiki/Corona_discharge
http://en.wikipedia.org/wiki/EHV
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Conductor selection. 

 

In this case of L12 400 kV tower the suitable conductor from the table above 

is 2�700 mm² AAAC (Araucaria xl) as shown in appendix 1 [20]. 

 

 
          Figure 2-1: All Aluminium Alloy Conductors (AAAC). 

 

2.4 Insulators  

 
Insulators are broadly classified as either pin-type, which support the 

conductor above the structure, or suspension type, where the conductor hangs below 

the structure. At higher voltages only suspension-type insulators are common for 

overhead conductors. Insulators are usually made of wet-process porcelain or 

toughened glass, with increasing use of glass-reinforced polymer insulators. 

However, with increasing voltage levels and changing climatic conditions, polymer 

insulators (silicone rubber based) are seeing increasing usage. Suspension insulators 

are made of multiple units, with the number of unit insulator disks increasing at 

higher voltages.  

 

The number of disks is chosen based on line voltage, lightning withstand 

requirement, altitude, and environmental factors such as fog, pollution, or salt spray. 

Longer insulators, with longer creepage distance for leakage current, are required in 

  

http://en.wikipedia.org/wiki/Porcelain
http://en.wikipedia.org/wiki/Toughened_glass
http://en.wikipedia.org/wiki/Silicone_rubber
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these cases. Strain insulators must be strong enough mechanically to support the full 

weight of the span of conductor, as well as loads due to ice accumulation, and wind.  

Porcelain insulators may have a semi-conductive glaze finish, so that a small current 

(a few milliamperes) passes through the insulator. This warms the surface slightly 

and reduces the effect of fog and dirt accumulation. The semiconducting glaze also 

ensures a more even distribution of voltage along the length of the chain of insulator 

units [21, 22]. 

2.4.1 Pin Insulator 

Usually constructed of porcelain with a pin or stud that screws into a lead or 

cement insert. These insulator usually being used in 33kV or straight line poles and o 

angle poles to support the jumper as shown in figure 2-2 (a). 

2.4.2 Post Insulator 

This type of insulator mainly used in substation to support busbars etc, they 

are usually constructed as individual unit and socket one above the other for the 

higher voltage. Depending on voltage, there are stacked together to become 5 units 

for 132kV and 8 units for 275kV. Higher voltages usually incorporate multicone post 

insulator which perform a similar function to normal post type but consist of large 

number of sheds [21]. 

2.4.3 Long Rod Insulator. 

 
Suspension or tension insulator consisting of an approximately cylindrical 

insulating part provided it sheds and equipped at the ends with external metal fittings 

the insulator is designed in such a manner that the shortest puncture path through 

solid insulating material is at least equal to half the arcing distance. It is consider as  

class A insulator according to [21] as shown in figure 2-2 (b). 

2.4.4 Cap and Pin (ball and socket) Insulator. 

This is the type used for overhead transmission line insulation in UK. The 

string length required is obtained by connecting the individual units together. The 

insulators are prevented from becoming detached by the use of a phosphor bronze 
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security clip commonly called a ‘W’ pin [20]. The new 300kN insulator used on 

700mm² AAAC lines have the same 24 mm ball and socket as 190kN units. In order 

to distinguish these insulators the continental split pin type of security clip is used to 

prevent the ball from detaching socket. 

 

  Figure 2-2: Cap and pin insulators and Long rod insulator[21] 

 

2.4.5 Creepage Length and Insulator String Length 

The choice and performance of insulators for polluted environments is very 

often expressed solely in terms of the creepage distance necessary to withstand the 

polluted conditions under the system voltage. This may lead to the comparison of 

insulators in terms of necessary ceepage distance per unit voltage. 

 

The overall length of the insulator set shall be such that, after the conductor 

clamp is attached to it, no part of the insulator set that is at system voltage shall 

infringe the clearances from live parts to  the tower. 

 

The minimum creepage length and length of the insulator string will be as 

specified in Table 2-2. there is no tolerance permitted on minimum creepage length 
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of the insulator string. The overall length of the insulator string shall be measured 

from the bottom of the ball of the last insulator to the bottom of an imaginary ball 

fitted into the socket of the first insulator. In the case of a composite unit the length is 

measured from the bottom of the ball to the bottom of an imaginary ball fitted into 

the socket end fitting. 

 

                 Table 2-2 Overhead line 400 kV insulator string [21]. 

 Minimum creepage length(mm) Insulator string length(mm) ± 2% 

Tension 9000 4200 

Suspension 12500 4100 

 

 

2.5 Loadings Applied To Transmission Line Components 

  
Overhead transmission lines are subjected to various loads during their 

lifetime. Wind load is one of the important factors should take in consideration when 

design reliable overhead transmission line. The displacement of live conductors and 

insulators towards the tower body will shorten the clearances, increasing the risk of 

electrical flashover, while movement away from the tower body may cause an 

infringement of the shielding angle coverage and expose lines to direct lightning 

strike.  

 

 
Figure 2-3: Configuration of L2U tower for wind impact analysis[24] 
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2.5.1 General conditions. 

 

Although the wind load could apply to design any overhead transmission line, 

it is better limited to the following conditions [2]: 

 

• Span length between 200 m and 800 m as calculations of the various 

coefficients (in particular for gusty winds) have not been checked for span 

lengths beyond this range. However, for span lengths greater than 800 m, a 

gust coefficient corresponding to 800 m span could be chosen with safety. 

 

• Height of supports less than 60 m. Higher supports could be designed 

following the same principles, but the calculated wind actions would need to 

be checked. 

 

• Altitude of crossed areas not exceeding 1 300 m above the average level of 

the topographic environment, except where specific study results are 

available. 

 

• An adjustment may be made for lines in mountain areas because the 

roughness can vary according  to the vegetation (large trees), snow-covered 

slopes and rough topography. 

 

 

 

2.5.2 General Definitions and Parameters (Ground Roughness). 

 

     Wind action depends on the ground roughness. The greater this roughness, 

the more turbulent and slower is the wind. The ground roughness has an influence 

both on the determination of the wind velocity for the design and on the 

determination of the gust factor. Four categories of ground, of increasing roughness, 

are considered as indicated in Table 2-3 [6]. 
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                   Table 2-3 Definition of ground roughness [6] 

Roughness Characteristics of the ground crossed by a line 

A Large stretch of water up-wind, flat coastal area, flat deserts 

B Open country with very few obstacles, for instance, moorlands or 
cultivated fields with a few trees or buildings 

C Terrain with numerous small obstacles of low height (hedges, trees and 
buildings) 

D Suburban areas or terrains with many tall trees 

 

 

• Meteorological wind velocity (V). 

 

The meteorological wind velocity (V), is defined as an average velocity of the 

wind during a 10 min period at a level of 10 m above the ground: in relatively open 

country (roughness B) in Table 2-3. The wind velocity varies with time and space. 

With reference to the line the wind velocity varies along the span and with the height 

above the ground level (increase as height increase). To determine the conductor 

position depending on the wind it is necessary to consider the distribution of the 

wind velocity along the span and variation with the height above ground level. 

Additionally, the wind direction is important as well. The studies are concerned only 

with the wind impact at maximum swing angle, so the wind direction is taken to be 

perpendicular to the span, meaning that the wind incident angle (Ω) is taken to be 

equal to 90º. 

 

• Maximum Yearly Wind Velocity (Vm). 

 

This velocity Vm is the maximum of V measured over a year. This amount of 

wind cause the maximum swing angle, but the peak wind velocities of short duration 

will not affect either the swing angles or the forces acting on the tower. Only the 

mean values of wind velocities taken over a sufficient long period of time affect the 

swing angle [3]. 
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• High wind. 

 

Determination of the high wind velocity Vm the choice of the high wind 

velocity, it is depends upon the reliability level for which the line will be designed. 

The high wind velocity Vm is determined from the average velocity of the maximum 

yearly velocities Vm and the standard deviation of the statistical distribution of these 

velocities, according to Table 2-4. in this project the value of σvm=0.12 will be used 

as base.  

 

 

                    Table 2-4 Values of high wind velocity [6]. 

 

Vm / V¯m 

 

 

Reliability level 
 

σ vm =0.12 Vm

 

σ vm = 0.16 Vm 

 

σ vm = 0.20 Vm 

1 

2 

3 

1.30 

1.41 

1.51 

1.41 

1.55 

1.7 

1.52 

1.7 

1.87 

 

 

 

• Ground roughness coefficient KR. 

 

KR is a coefficient which takes into account the roughness of the ground at 

the location of the line and in the surrounding area. KR can be chosen in accordance 

with the value given in Table 2-3, according to the roughness of the ground crossed 

by the line [6]. For sites of intermediate roughness, KR can be interpolated. In 

estimating the value of the ground roughness, it is necessary to consider the 

foreseeable changes in the surroundings of the route of the line. In this project 

ground roughness class B selected as base of study.   
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    Table 2-5 Values of KR for different ground roughness [6] 

Ground 

roughness 

A B C D 

KR 1.08 1.00 0.85 0.67 

The values of KR correspond to an average 10 min wind velocity V 

 

 

• Coincident temperature. 

 

The wind velocities defined above for computation shall be considered as 

occurring at an air temperature equal to the average of the minimum daily 

temperatures, peculiar to the site. The average minimum daily temperature may be 

obtained by means of analysis of the recordings over a certain number of years in a 

meteorological station as close as possible to the location of the line. As an 

alternative, it would be possible to take as a coincident air temperature the minimum 

temperature defined hereinafter increased by 15 °C. the minimum daily temperature 

in north Libya is 14 °C which is the location of the case study used in this research.  

 

• Reduced wind velocity  

 

The reduced wind velocity will be equal to the reference wind velocity VR 

chosen for the high wind assumption multiplied by a coefficient chosen according to 

local meteorological conditions. Where there is no reliable knowledge of local 

conditions, a value of 0.6 for this coefficient is suggested. 

 

2.5.3 Unit-action of the wind on any element of the line. 

 

The characteristic value a of the unit-action, due to the wind blowing 

horizontally, perpendicularly to any element of the line (conductors, insulators, all or 

part of the support) is given by the following expression [4]. 

  

a = qz * CX G                                                                                            (2.1) 
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Where: qz = dynamic reference pressure. The dynamic reference pressure qz is given 

in terms of the average value of wind velocity occurring at a specified height above 

the site ground level Vz at the location of the line. 

CX = drag (or pressure) coefficient. 

G = Combined wind factor. 

 

ρ
= 2*

2Zq ZV             Pascals (Pa)                                                              (2.2) 

 
 

Where: Vz= the average value of wind velocity occurring at a specified height above 

the site ground level. And the air density, ρ, depends on the temperature and the 

altitude of the line above sea level. 
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CHAPTER III 

 

 

 

METHODOLOGY  

 
 
 
3.1  Introduction 

 
The available clearances between phase conductors or between phase 

conductors and earthed tower elements depend on the conductor and insulator 

position which vary under the action of wind. The wind load causes swinging of the 

conductors and insulators, thus reducing the still air clearances. The wind action 

varies with time and location and can be described as randomly distribution, the 

conductor position will be randomly as well. Additionally, the swing angles depend 

on line parameters, such as ratio of wind to weight span, conductor type etc 

 

Conductors possess a certain mass which has to be accelerated first and 

moved into a swung position before the wind force will be transmitted to the support. 

Therefore, peak wind velocities of short duration will not affect neither the swing 

angles nor the forces acting on the tower. Only the mean values of wind velocities 

averaged over a sufficiently long period of time affect the swing angle. In this 

chapter, particular equations will be used to calculate some interested parameters 

such as: VT, Vz ,  ect. Also swing angle calculation method and the approach will be 

demonstrated and showing in figure 3-1 to figure 3-3. 

 

 

3.2 Flow chart 
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            Figure 3-1 General flow chart for the project. 

Wind induced analysis Of Overhead 
Tower Clearances Infringement. Project.  

Calculation, design 
and methods. 

Select the location 

Collect information 
and data for weather 
and climate. 

Select type of insulator 
and conductor 

Select the method of 
design and calculation 
formulas.  

Obtain the clearances and 
distance between the 
conductors and tower body 
under the action of wind.

Tower, conductor and 
insulator can be used. 

NO 

YES 

Select tower type  

Under what wind condition 
this tower withstand against 
the flash over
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Calculation flow chart 

Selected Location Libya 
Reference: VR, h,  

Calculate max average 10 
min wind speed VT in 
significant return period 

Return period 
more than 2 
years?

Find VT by use 
Gumbels 
equation

NO 

YES 

Apply Weibull  
Shape β=2 find 
VT

Obtain Vz at 
specific high 

Dynamic wind 
pressure qz 

Swing angle 
(Φ) 

Select type of 
Tower, Conductor 
and Insulator. 

Wind load area of 
the conductor (Ac) 

The total load area 
of the insulator 
(Ai) 

Clearances 
under extreme 
wind H 

Determine of 
electrical clearances 
depending on 
lightning,  Switching 
and Temporary over 
voltage  impulses  

 
Figure 3-2 calculation flow chart part1 
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Tower 
clearances and 
dimensions 

Swing angle 
(Φ) 
 

LI, SI and 
TOV standard 
For 400 kV 

Position of 
conductor 

Clearance 
infringement  

Obtain Vz at 
specific high 

Find VT by use 
Gumbels 

Return period per 
years T 

The probability the conductor 
infringe the clearances per 
year 

 
Figure 3-3 calculation flow chart part 2. 
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3.3 Wind loads on conductors and insulators. 

 

 

 
Figure 3-4: Swing angle and related required clearances for 400 kV systems [24] 
 
 

Wind effect on conductors consists of loads due to wind pressure as well as 

the effect of the increase in the mechanical tension. Wind pressure loads, the load 

(Ac) due to the effect of the wind upon a span length L, applied at each attachment 

point of this span and perpendicularly to the span, is given by the following 

expression:  

 

21 2* * * * sin
2c c cr

L LA C d k +
= Ω                                     m2   [24]                (3.1). 

 
 

In equation 3.1 above, Cc is the drag coefficient factor, dcr is the conductor diameter 

in meters and k is the span correction factor. L1 and L2 are the span of a line erected 

on three towers, shown in Figure 3-5 below. Ω is the wind direction angle in degrees 

with respect to the span line (also shown in Figure 2-3).  
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Figure 3-5: Illustration method in determining the wind loading conductor [24]  

 

 

Wind effect on conductor tension, the mechanical tension of the conductor 

shall be the more critical of either the one at the corresponding coincident 

temperature with a wind of velocity VR for the high wind assumption or at the 

minimum temperature with a wind of coincident velocity for the low temperature 

assumption. 

 

Wind loads acting on insulator sets come from the load Ac transferred by the 

conductors and from the wind pressure acting directly on the insulators. The latter 

load is acting applied conventionally at the attachment point to the tower in the 

direction of the wind and its intensity is given by: 

 

 

*c iA a G= i                                             m2     [24]                    (3.2). 

 
 

The total wind loading area of the insulators is determined by multiplying the total 

area seen in side view, ai, by the drag factor, Gi, as shown in equation 3.2 

 

 

 

 

  



 53

 

 

 

 

 

 

                                         REFERENCES 

 

[1] IEC, "Insulation Coordination Part- 4: Computational guide to insulation co-
ordination and modelling of electrical networks," IEC 60071-4, 2004. 

 
[2] IEC, "Insulation Coordination Part -1 Definition, Principle and Rules," IEC 

Standard 60071-1, 7th edition, 1997. 
 
[3] IEEE-SA Standard Board, "IEEE Guide for the Application of Insulation 

Coordination," IEEE Standard 1213.2, 1999. 

[4] CIGRE, "Tower Top Geometry," CIGRE Working Group 22.06, June 1995. 

[5] BSI, "Overhead Electrical Lines Exceeding AC 45kV - Part 3: Set of National 
Normative Aspects," BS EN 50341-3-2001, October 2001. 

[6] BSI, "Loading and Strength of Overhead Transmission Lines," BS EN 
7733:1994, April 1994. 

[7] BSI, "Conductors for Overhead Lines - Round Wire Concentric Lay Stranded 
Conductors," BS EN 50182, August 2001. 

[8] A.R. Hileman, Insulation Coordination for Power Systems. Boca Raton, USA: 
Taylor and Francis Group, LLC, CRC Press, ISBN 0-8247-9957-7, 1999. 

[9] P. Nefzger, F. Kiessling, J.F. Nolasco, U. Kaintzyk, Overhead Power Lines - 
Planning, Design, Construction. Germany: Springer, ISBN 3-540-00297-9, 2003. 

[10] BSI, "Live Working - Minimum Approach Distances For A.C Systems In The 
Voltage Range 72.5kV to 800kV - A Method Of Calculation," BS EN 61472, 
2004. 

[11] CIGRE Working Group 07 - Study Committee 33, "Guidelines for Evaluation of 
The Switching Impulse Strength of External Insulation," CIGRE Technical 
Brochure 72, 1992. 

[12] R.S. Guror, E.A. Cherney, J.T. Burnham, Outdoor Insulator. Phoenix, Arizona               
USA: Ravi S. Guror Inc, ISBN 0967761107, May 1999. 

[13] J.S.T. Looms, Insulator for High Voltages: Peter Peregrinus Ltd. London, 
United     Kingdom, ISBN 0863411169, 1988. 

  



 54

[14] Central Electricity Generating Board (CEGB), Overhead Line Handbook, April 
1989. 

[15] GECOL, design standards  for Libya, 2003. 

[16] F. Kiessling. P. Nefzger. J. F. Nolasco. U. Kaintzyk, “Overhead power lines 
planning, Design, Construction,”  Springer. 

[17] Condudtor bundles for overhead lines, PS(T) 046 – issue 1-October 2004   
National Grid Transco. 

[18] S. R. Krishnamurthy and P. Selvan. “ use of AAAC in a distribution network-a 
strategy for energy and cost reduction”1995. 

[19] Analysis of All Aluminum Conductor (AAC) and All Aluminum Alloy 
Conductor (AAAC). Siti Norasmah Mohtar, IEEE, Md Noah Jamal and Marizan 
Sulaiman. 

[20] overhead line handbook 

[21] National Grid – internal and contract specific Technical Specification. Insulator         
sets for overhead lines TS 3.4.17- Issue 2- September 2006. 

 
[22] Insulation co-ordination. Computational guide to insulation co-ordination and 

modelling of electrical IEC60071-1 part 1. 
 
[23] Insulation co-ordination. Computational guide to insulation co-ordination and 

modelling of electrical IEC60071-4 part 4. 
 
[24] MD Nor Ramdon Bin Baharom, Composite cross-arm for overhead transmission 

lines. Doctor of philosophy (PHD), 2009. 
 
 
 

 

 

 

 

 

 

 

 

 

  


	1  
	2 ”I declare that this report is the result of my work except the ideas and references which I have clarified their sources.”  
	 
	3  
	4  
	5  
	6  
	7  
	8  
	9  
	10  
	11  
	12  
	13  
	14  
	15  
	16  
	17  
	18  
	19  
	20  
	21  



