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SENI BINA CINCANGAN BERPANDUKAN RANGKAIAN OMEGA

ABSTRAK

Fungsi cincangan kriptografi merupakan primitif kriptografi yang sangat umum dan

penting. Ia biasanya digunakan dalam proses pengesahan keaslian dan keutuhan data.

Seni binanya adalah berasaskan seni bina Merkle-Damgard yang menerima input

panjang berubah dan menghasilkan nilai cincangan panjang tetap. Seni bina Merkle-

Damgard yang asas beroperasi secara berjujukan terhadap input data, dan hal ini boleh

menimbulkan masalah apabila saiz input yang digunakan adalah besar kerana masa

pengiraan juga akan meningkat secara linear. Oleh yang demikian, satu seni bina

alternatif yang dapat mengurangkan masa pengiraan amat diperlukan terutama sekali

dalam dunia hari ini yang mana pemproses multiteras dan pengaturcaraan

multibebenang begitu lumrah. Seni bina Cincangan berpandukan Rangkaian Omega

yang mampu beroperasi secara selari pada pemproses multiteras telah dicadangkan

sebagai suatu alternatif kepada seni bina Merkle-Damgard. Seni bina Cincangan

berpandukan Rangkaian Omega ternyata menunjukkan prestasi yang lebih baik daripada

seni bina Merkle-Damgard, dan seni bina pilih aturnya menunjukkan bahawa tahap

keselamatannya dari segi penghasilan nilai digest sembarangan adalah lebih baik

daripada seni bina Merkle-Damgard.
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OMEGA NETWORK HASH CONSTRUCTION

ABSTRACT

Cryptographic hash functions are very common and important cryptographic primitives.

They are commonly used for data integrity checking and data authentication. Their

architecture is based on the Merkle-Damgard construction, which takes in a variable-

length input and produces a fixed-length hash value. The basic Merkle-Damgard

construction runs over the input sequentially, which can lead to problems when the input

size is large since the computation time increases linearly. Therefore, an alternative

architecture which can reduce the computation time is needed, especially in today's

world where multi-core processors and multithreaded programming are common. An

Omega Network Hash Construction that can run parallel on multi-core machine has been

proposed as alternative hash function's construction. The Omega Network Hash

Construction performs better than the Merkle-Damgard construction, and its permutation

architecture shows that its security level in term of producing randomness digest value is

better than Merkle-Damgard construction.
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CHAPTER 1 

INTRODUCTION

1.1 Introduction to Hash Functions

As the Internet rapidly grows, and bandwidth rapidly increases, cryptography is

becoming more and more important for ensuring various types of security over insecure

connections. Among data security primitives, data integrity check and data origin

authentication are the two most common security services that must be applied in many

electronic applications, such as electronic commerce, electronic financial transactions,

software distribution, electronic mail, data storage and others. Data integrity check is

accomplished through the use of cryptographic hash functions, which operate at the root

of many other cryptographic methods in achieving these security services.

The basic operation of a hash function is to transform a variable-size input or

message into a fixed-length string called a "hash value" or "message digest." A hash

value is generated by a function H of the form H(M) = n, where n is the hash value and

M is the variable-length input or message. Hash functions are one-way functions; it is

easy to generate n from a given M, but given only n, it is computationally infeasible to

generate M. Hash functions are designed to produce unambiguous and condense

message digests that are uniquely identifiable with their source messages. However, the
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source messages cannot be deduced from the message digests, and for this reason, the

hash function is sometimes known as a digital fingerprint.

Hash functions are built upon the Merkle-Damgard construction [9, 10, 12, 21],

which divides an input into equal-size message blocks and passes each block

sequentially to a function that processes the message block. The function returns a 

vector value, which is then passed back to the function for the next message block. A 

pre-defined vector value is passed with the first message block.

Many researchers are trying to develop better-performing hash functions. The

sequential architecture of Merkle-Damgard is recognized as a critical factor for overall

hashing performance. However, these researchers are not trying to improve the Merkle-

Damgard construction, but are instead trying to improve specific hashing algorithms,

such as the Secure Hash Algorithm (SHA).

This research proposes the Omega Network Hash Construction as an alternative

hashing architecture to the Merkle-Damgard Construction. Because of the design of the

Omega Network Hash Construction, the original inputs cannot be retrieved from their

corresponding hash values. In the era of multithreading and multi-core technology, the

Omega Network Hash Construction runs in parallel to improve the hashing performance.

The goal of this architecture is to improve performance without sacrificing the security

provided by the existing Merkle-Damgard architecture.
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The architecture of most hash functions is based on the Merkle-Damgard

construction (see Figure 1.1), which is sequential in nature. This means that when the

size of the input increases, the computational time will increase linearly. Each step in the

Merkle-Damgard construction processes a message block and returns a vector. The first

vector is pre-defined, but the remaining vectors are fully dependent on the previous

function's output, which slows down the runtime. This in turn has a major effect on the

performance of SHA, for example. There is a need to enhance the performance and

efficiency of hashing.

1.4 Hypothesis and Research Questions

The proposed Omega Network Hash Construction run parallel in multi-core

machine can enhance the speed up and efficiency of SHA while maintaining the security

level provided by the existing Merkle-Damgard architecture. The research questions that

this thesis will answer are as follows:

• Is the computational time of the Omega Network Hash Construction better? If so,

by how much?

• In terms of performance and security, is the proposed architecture as good as or

better than the existing Merkle-Damgard construction?

• What are the strengths and weaknesses of the proposed Omega Network Hash

Construction?
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• Is it worth having an alternative architecture such as the proposed Omega

Network Hash Construction?

1.5 Research Objectives

The objectives for this research are as follows:

1. To maintain SHA's security level provided by the existing Merkle-Damgard

architecture while using the Omega Network Hash Construction.

2. To use the parallel method construct the Omega Network Hash Constructions to

enhance the performance of SHA.

3. To determine which sizes of Omega Network Hash Construction perform well in

the multi-core processors' machine.

1.6 Research Scope

This research will focus on enhancing the performance of SHA, specifically

SHA-512, in terms of speed up efficiency and overhead reduction. The first column's

vector of Omega Network Hash Construction is taken from the input and the remaining

column's vector is taken from XORed the previous column's vector, the parallel method

is used to run parallel the proposed Omega Network Hash Construction while

maintaining the security level as good as or better than SHA-512. Five designs of

Omega Network Hash Construction (8, 16, 32, 64, 128 - for details, refer to Chapter 3)
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are simulated in this research to determine which size is more suitable for hash

construction. Finally, the result of Omega Network Hash Construction SHA-512 is

compared with the existing Merkle-Damgard construction SHA-512 to see whether there

are any improvements in speed up, efficiency and overhead reduction.

1.7 Research Contributions

This research has produced an alternative architecture for hashing based on Omega

Network Hash Construction. Chapter 3 explains in detail the architecture of Omega

Network Hash Construction. Chapter 4 shows the performance comparison between

three sizes of Omega Network Hash Construction with Merkle-Damgard construction.

The proposed Omega Network Hash Constructions perform better than Merkle-Damgard

construction.

1.8 Research Justification

Among the existing hash functions, SHA is chosen because of its popularity.

Increasing the performance of SHA by changing the SHA algorithm requires a long and

expensive development period. Thus, the more effective way to get better performance

is by having an alternative architecture to the Merkle-Damgard construction. Omega

Network is chosen due to its design can be executed parallel, the performance and speed
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up can be improved and the mix up output can provide better security in term of

randomness.

1.9 Outline of the Thesis

This chapter shows an overview work for the research. The remaining Chapters

are presented as below:

Chapter 2 discusses the related works and concepts which are useful for this

research. An unkeyed primitive is one of the categories of cryptography primitives. The

root architecture is Merkle-Damgard construction. The discussion in this chapter is

based on Merkle-Damgard construction.

Chapter 3 shows the research methodology. Five phases of activities need to be

followed to complete the research. The detail research design is also presented in this

chapter.

Chapter 4 shows the performance and security results of Omega Network Hash

Construction simulation. The performance is presented as graphs, and the security is

shown as a table. The comparison of the performance and security between Omega

Network Hash Construction and Merkle-Damgard construction is also discussed.

The conclusion and future work are presented in Chapter 5. The conclusion is

reached through the result discussed in Chapter 4.
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CHAPTER 2 

LITERATURE REVIEW

2.1 Cryptography

Cryptography can be classified into two major classes: public key and non-public

key. For public key cryptography, the structure for encryption, key sharing and digital

signature relies on mathematical properties such as finite fields (abstract algebra) and

number theory (prime number, prime factorization, Fermat theorem, Euler theorem, etc).

Non-public key cryptography includes secret key encryption and hash functions. Block

cipher and stream cipher (see Figure 2.1) are two important architectures for secret key

encryption. Merkle-Damgard construction (see Figure 1.1) is the root construction for all

hashing functions. See Figure 2.2 for the classification of modern cryptography.
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2.2 Merkle-Damgard Construction

Hash functions are based on the Merkle-Damgard construction (see Figure 1.1).

In Merkle-Damgard construction, the input is broken up into a series of equal-sized

blocks and processed in sequence with a one-way compression function. Normally the

last block processed is an unambiguous size. To solve this problem, the last block is

padded until the appropriate length is achieved. The vector for the first block function is

pre-defined, and the remaining block function's vector is dependent on the previous

digest value.

Merkle-Damgard construction runs over the input sequentially, and when the size

of input is small, it performs well. But when the size of the input is large, the execution

time will increase linearly. In terms of the security, it is based on the hash algorithm, for

example the SHA family. SHA-2 is secure while SHA-0 and SHA-1 are not secure.

2.3 Merkle-Damgard Construction in Hash Functions

Hash functions ensure data integrity and data authentication. SHA family is one

of the hash function based on the Merkle-Damgard construction. The members of the

SHA family are SHA-0, SHA-1 and SHA-2. SHA-2 members include SHA-224, SHA-

256, SHA-384 and SHA-512. The members of the SHA family are different based on

their block size, their digest length, the number of constants that they used in the

algorithm of SHA, and the number of iterations performed, (see Table 2.1).
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2.6 Related Architecture for Hash Function

The Secure Hash Dynamic Structure Algorithm (SHDSA) [9] is used in many

applications such as public key cryptosystems, digital signature, digital encryption,

message authentication code and random number generators. All of these application's

requirements are different from each other. As a result, Elkamchouchi's group proposed

SHDSA which comes in a variety of configurations.

This dynamic scheme is based on SHA but with one major difference - the hash

value is variable length with possible sizes of 128, 192, and 256 bits (see Figure 2.6).

Besides that, the iterations in each function can be changeable based on the requirement

of the applications. Thus, this dynamic scheme provides different levels of security for

satisfying the choices for those practical applications.

Although SHDSA is designed to be changeable based on the requirement of the

application, the architecture is formulated sequentially and the functions for SHDSA

also executed sequentially (see Figure 2.7). The performance is affected; the execution

time will increase linearly and reach the highest degree of throughput when the size of

input is high. The high speed requirement of SHDSA is highly needed, which is why

SHDSA should be parallelized.
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