OMEGA NETWORK HASH CONSTRUCTION

CHUAH CHAI WEN

Thesis submitted in fulfillment of the
requirements for the degree of

Master of Science

June 2009

TABLE OF CONTENTS

DECLARATION. .. e "
ACKNOWLEDGEMENT S, ..ttt "i
TABLE OF CONTEN T S it iv
LIST OF TABLES. ... e »—viii
LIST OF FIGURES. ... e e e ix
AB S T R A K e xiii
A B S T R A C T e Xiv
LIST OF ABBREVIATIONS. ... e XV
CHAPTER 1 - INTRODUCTION

1.1 Introduction to Hash Functions 1
1.2 Motivation 3
1.3 Problem Statement 3
1.4 Hypothesis and Research Questions. 4
1.5 Research Objectives 5
1.6 Research Scope 5
1.7 Research Contributions 6
1.8 Research Justification 6
1.9 Outline ofthe Thesis 7

v

CHAPTER 2 - LITERATURE REVIEW

2.1 Cryptography. 8
2.2 Merkle-Damgard Construction..................................... 11
2.3 Merkle-Damgard Construction in Hash Functions............................... 11
2.4 Tree Based Merkle-Damgard Construction....................................... 13
2.5 Parallel Secure Hash Algorithm ... ' 14
2.6 Related Architecture for Hash Function.. 15
2.7 Omega Network Constructionoiiiiiii . 20
2.8 Multi-core Architecture 21
2.9 Parallel Model 22
2.9.1 DataParallelism................. 22
2.9.2 Task Parallelism...................... 23
2.10 Multithreading Programming .. 24
2.10.1 POSIX Thread 24
2.10.2 OpenMP. .. . 25
2.11 Security Test Tool 27
2.12 Chapter SUMMATY............ ... 28
CHAPTER 3 - RESEARCH METHODOLOGY
3.1 Introduction 30
3.2 Background Study.................. 30
3.3 Research Design of Omega Network Hash Construction.................... ... 31
3.3.1 Omega Network Hash Construction 8. 37
3.3.2 Omega Network Hash Construction 16............................... ... 40

\%

3.3.3 Omega Network Hash Construction 32 43

3.3.4 Omega Network Hash Construction 64

.................................. 46
3.3.5 OmegaNetwork Hash Construction 128 49
3.4 Simulation and Performance Evaluation 52
3.4.1 TestDesign ... 52
3.4.2 Performance Testing 54
3.4.3 Security Testing 54
3.5 Performance Comparison and Evaluation 56
3.6 Result Analysis........ ... 58
3.7 Chapter Summary. 58
CHAPTER 4 - RESULT AND DISCUSSION
4.1 Introduction ... 60
4.2 Performance Analysis. 60
4.2.1 Performance Analysis of Omega Network Hash
Construction Simulated on a Dual Core Machine 65
4.2.2 Performance Analysis of Omega Network Hash
Construction Simulated on a Quad Core Machine 70
4.2.3 Performance Comparison and Discussion.................... 75
4.3 Security Analysis 79
4.4 Chapter Summary. ... 83

vi

CHAPTER 5 - CONCLUSION AND FUTURE WORK

5.1 Introduction 84
5.2 ConcClUSION. .. oo 84
5.3 Limitation ofthe Study. 85

5.4 Future Work ... 86
RE F E R E N CE S ..ottt e e e e et 89
AP P EN DI CE S, .ottt e e e e e e e e 93

vii

LIST OF TABLES PAGE

Table 2.1 Functional characteristics of six hash functions 12
Table 3.1 Set of constant value for Omega Network Hash Construction 32
Table 3.2 The different characteristic and number round calculation

for Omega Network Hash Construction « 36
Table 3.3 Summary of performance measurement's formulas for

Omega Network Hash Construction 58
Table 4.1 Performance analysis Omega Network Hash Construction 8 62
Table 4.2 Performance analysis Omega Network Hash Construction 16 62
Table 4.3 Performance analysis Omega Network Hash Construction 32 63
Table 4.4 Performance analysis Omega Network Hash Construction 64 63
Table 4.5 Performance analysis Omega Network Hash Construction 128 64
Table 4.6 Comparison the speed up of Omega Network Hash Construction 78
Table 4.7 Comparison the speed up of Omega Network Hash Construction 78

based on Amdahl's law and Gustafson Barsis's law

Table 4.8 Comparison the efficiency of Omega Network Hash Construction 78

Table 4.9 Comparison the efficiency of Omega Network Hash Construction 78
based on Amdahl's law and Gustafson Barsis's law

Table 4.10 DIEHARD security test, single block of message to generate 81
binary test file

Table 4.11 DIEHARD security test, multiple blocks of message to generate 82

binary test file

Vil

Figure 1.1
Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7
Figure 2.8
Figure 2.9

Figure 2.10

Figure 2.11
Figure 2.12
Figure 2.13
Figure 2.14
Figure 2.15
Figure 2.16
Figure 2.17
Figure 3.1

Figure 3.2

LIST OF FIGURES

Merkle-Damgard Construction

Two basic architectures for secret key encryption
Cryptography classes

Message digest generation using SHA-512

Overview of Tree Based Merkle-Damgard Construction

An internal pipeline of a single round computational module
The architecture of SHDSA

The sequential function in SHDSA, C' and C?

The architecture of SFHA-256

The architecture of 3C+ Hash Construction

Double-pipe Prefix-free Hash function with Miyaguchi-Preneel

design resulted by Enhanced Merkle- Damgard

Omega Network's design

Multi-core architecture

General overview for data parallelism

General overview for task parallelism

POSIX thread parallel methods

OpenMP parallel constructs

Literature review summarization

SHA-512 algorithm

Flow chart for Omega Network Hash Construction execute in

dual core machine

X

PAGE

10

. 12

13

14

16

16

17

18

19

20

21

22

23

24

26

29

31

34

Figure 3.3

Figure 3.4

Figure 3.5

Figure 3.6

Figure 3.7

Figure 3.8

Figure 3.9

Figure 3.10

Figure 3.11

Figure 3.12

Figure 3.13

Figure 3.14

Figure 3.15

Flow chart for Omega Network Hash Construction execute in
quad core machine

Omega Network Hash Construction 8 running on dual-core
processors

Omega Network Hash Construction 8 running on quad-core
processors

Omega Network Hash Function 16 running on dual-core
processors

Omega Network Hash Construction 16 running on quad-core
processors

Omega Network Hash Construction 32 running on dual-core
processors

Omega Network Hash Construction 32 running on quad-core
processors

Omega Network Hash Construction 64 running on dual-core
processors

Omega Network Hash Construction 64 running on quad-core
processors

Omega Network Hash Construction 128 running on dual-core
processors

Omega Network Hash Construction 12 8 running on quad-core
processors

Test data, single block of message

Test data, multiple blocks of message

X

35

38

39

41

42

44

45

47

48

50

51

55

56

Figure 3.16

Figure 3.17

Figure 4.1

Figure 4.2

Figure 4.3

Figure 4.4

Figure 4.5

Figure 4.6

Figure 4.7

Figure 4.8

Figure 4.9

Figure 4.10

Source code for calculating run time

Chapter 3 description

Execution time comparison between Omega Network

Hash Construction and Merkle-Damgard Construction,simulated

on a dual core machine

Overhead of Omega Network Hash Construction simulated .

on a dual core machine

Speed of Omega Network Hash Construction simulated

on a dual core machine

Efficiency of Omega Network Hash Construction simulated
on a dual core machine

Running cost of Omega Network Hash Construction simulated
on a dual core machine

Execution time comparison between Omega Network

Hash Construction and Merkle-Damgard Construction simulated
on a quad core machine

Overhead of Omega Network Hash Construction simulated

on a quad core machine

Speed up of Omega Network Hash Construction simulated

on a quad core machine

Efficiency of Omega Network Hash Construction simulated
on a quad core machine

Running cost of Omega Network Hash Construction simulated

on a quad core machine

X1

57

59

65

66

67

68

69

70

71

72

73

74

Figure 5.1

Figure A. 1:

Figure A.2:

Figure A.3:

Figure A.4:

Figure A.5:

Collapsing parallel Omega Network Hash Construction

Omega Network Hash Construction 8, serial code for
XORing the last column's digest value

Omega Network Hash Construction 16, serial code for
XORing the last column's digest value

Omega Network Hash Construction 32, serial code for
XORing the last column's digest value

Omega Network Hash Construction 64, serial code for
XORing the last column's digest value

Omega Network Hash Construction 128, serial code for

XORing the last column's digest value

X1i

88

89

90

91

92

93

SENI BINA CINCANGAN BERPANDUKAN RANGKAIAN OMEGA

ABSTRAK

Fungsi cincangan kriptografi merupakan primitif kriptografi yang sangat umum dan
penting. Ia biasanya digunakan dalam proses pengesahan keaslian dan keutuhan data.
Seni binanya adalah berasaskan seni bina Merkle-Damgard yang menerima input
panjang berubah dan menghasilkan nilai cincangan panjang tetap. Seni bina Merkle-
Damgard yang asas beroperasi secara berjujukan terhadap input data, dan hal ini boleh
menimbulkan masalah apabila saiz input yang digunakan adalah besar kerana masa
pengiraan juga akan meningkat secara linear. Oleh yang demikian, satu seni bina
alternatif yang dapat mengurangkan masa pengiraan amat diperlukan terutama sekali
dalam dunia hari ini yang mana pemproses multiteras dan pengaturcaraan
multibebenang begitu lumrah. Seni bina Cincangan berpandukan Rangkaian Omega
yang mampu beroperasi secara selari pada pemproses multiteras telah dicadangkan
sebagai suatu alternatif kepada seni bina Merkle-Damgard. Seni bina Cincangan
berpandukan Rangkaian Omega ternyata menunjukkan prestasi yang lebih baik daripada
seni bina Merkle-Damgard, dan seni bina pilih aturnya menunjukkan bahawa tahap
keselamatannya dari segi penghasilan nilai digest sembarangan adalah lebih baik

daripada seni bina Merkle-Damgard.

xiii

OMEGA NETWORK HASH CONSTRUCTION

ABSTRACT

Cryptographic hash functions are very common and important cryptographic primitives.
They are commonly used for data integrity checking and data authentication. Their
architecture is based on the Merkle-Damgard construction, which takes in a variable-
length input and produces a fixed-length hash value. The basic Merkle-Damgard
construction runs over the input sequentially, which can lead to problems when the input
size is large since the computation time increases linearly. Therefore, an alternative
architecture which can reduce the computation time is needed, especially in today's
world where multi-core processors and multithreaded programming are common. An
Omega Network Hash Construction that can run parallel on multi-core machine has been
proposed as alternative hash function's construction. The Omega Network Hash
Construction performs better than the Merkle-Damgard construction, and its permutation
architecture shows that its security level in term of producing randomness digest value is

better than Merkle-Damgard construction.

X1V

IEEE

MD

NIST

ONHC

RAM

SHA

LIST OF ABBREVIATION

Institute of Electrical and Electronics Engineers
Merkle-Damgard Construction

National Institute of Standards and Technology
Omega Network Hash Construction

Read Access Memory

Secure Hash Algorithm

Thread

XV

CHAPTER 1

INTRODUCTION

1.1 Introduction to Hash Functions

As the Internet rapidly grows, and bandwidth rapidly increases, cryptography is
becoming more and more important for ensuring various types of security over insecure
connections. Among data security primitives, data integrity check and data origin
authentication are the two most common security services that must be applied in many
electronic applications, such as electronic commerce, electronic financial transactions,
software distribution, electronic mail, data storage and others. Data integrity check is
accomplished through the use of cryptographic hash functions, which operate at the root

of many other cryptographic methods in achieving these security services.

The basic operation of a hash function is to transform a variable-size input or
message into a fixed-length string called a "hash value" or "message digest." A hash
value is generated by a function H of the form H(M) = n, where n is the hash value and
M is the variable-length input or message. Hash functions are one-way functions; it is
easy to generate n from a given M, but given only n, it is computationally infeasible to
generate M. Hash functions are designed to produce unambiguous and condense

message digests that are uniquely identifiable with their source messages. However, the

source messages cannot be deduced from the message digests, and for this reason, the

hash function is sometimes known as a digital fingerprint.

Hash functions are built upon the Merkle-Damgard construction [9, 10, 12, 21],
which divides an input into equal-size message blocks and passes each block
sequentially to a function that processes the message block. The function returns a
vector value, which is then passed back to the function for the next message block. A

pre-defined vector value is passed with the first message block.

Many researchers are trying to develop better-performing hash functions. The
sequential architecture of Merkle-Damgard is recognized as a critical factor for overall
hashing performance. However, these researchers are not trying to improve the Merkle-
Damgard construction, but are instead trying to improve specific hashing algorithms,

such as the Secure Hash Algorithm (SHA).

This research proposes the Omega Network Hash Construction as an alternative
hashing architecture to the Merkle-Damgard Construction. Because of the design of the
Omega Network Hash Construction, the original inputs cannot be retrieved from their
corresponding hash values. In the era of multithreading and multi-core technology, the
Omega Network Hash Construction runs in parallel to improve the hashing performance.
The goal of this architecture is to improve performance without sacrificing the security

provided by the existing Merkle-Damgard architecture.

1.2 Motivation

Hash functions, such as SHA-512, are essential for data integrity assurance and
data authentication. For example, they can be used to determine whether any changes
have been made to a message or a file. However, since a Merkle-Damgard construction
accepts an arbitrary-length input and produces a fixed-length hash value, the
computational time to produce a hash value will increase linearly based on tﬁe size ofl
the input. Because input sizes can be very large, a linear runtime may be unacceptably
slow. This research seeks to enhance the performance of hash construction by using the
Omega Network architecture. The SHA-512 hash function is used as the case study for

this research because ofiits popularity.

1.3 Problem Statement

Message Message Message
block 1 block 2 block n
W L \ i
Message Message Message Length
block 1 block 2 block n padding

Y Y Y y
E P § presSesa » f > f P Finalisation

Figure 1.1: Merkle-Damgard Construction [adopted from 9, 10, 12]

The architecture of most hash functions is based on the Merkle-Damgard
construction (see Figure 1.1), which is sequential in nature. This means that when the
size ofthe input increases, the computational time will increase linearly. Each step in the
Merkle-Damgard construction processes a message block and returns a vector. The first
vector is pre-defined, but the remaining vectors are fully dependent on the previous
function's output, which slows down the runtime. This in turn has a major effect on the
performance of SHA, for example. There is a need to enhance the performance and

efficiency of hashing.

14 Hypothesis and Research Questions
The proposed Omega Network Hash Construction run parallel in multi-core
machine can enhance the speed up and efficiency of SHA while maintaining the security
level provided by the existing Merkle-Damgard architecture. The research questions that
this thesis will answer are as follows:
* Is the computational time ofthe Omega Network Hash Construction better? If so,
by how much?
* In terms of performance and security, is the proposed architecture as good as or
better than the existing Merkle-Damgard construction?
* What are the strengths and weaknesses of the proposed Omega Network Hash

Construction?

* Is it worth having an alternative architecture such as the proposed Omega

Network Hash Construction?

1.5 Research Objectives

The objectives for this research are as follows:

1. To maintain SHA's security level provided by the existing Merkle-Damgard
architecture while using the Omega Network Hash Construction.

2. To use the parallel method construct the Omega Network Hash Constructions to
enhance the performance of SHA.

3. To determine which sizes of Omega Network Hash Construction perform well in

the multi-core processors' machine.

1.6 Research Scope

This research will focus on enhancing the performance of SHA, specifically
SHA-512, in terms of speed up efficiency and overhead reduction. The first column's
vector of Omega Network Hash Construction is taken from the input and the remaining
column's vector is taken from XORed the previous column's vector, the parallel method
is used to run parallel the proposed Omega Network Hash Construction while
maintaining the security level as good as or better than SHA-512. Five designs of

Omega Network Hash Construction (8, 16, 32, 64, 128 - for details, refer to Chapter 3)

are simulated in this research to determine which size is more suitable for hash
construction. Finally, the result of Omega Network Hash Construction SHA-512 is
compared with the existing Merkle-Damgard construction SHA-512 to see whether there

are any improvements in speed up, efficiency and overhead reduction.

1.7 Research Contributions

This research has produced an alternative architecture for hashing based on Omega
Network Hash Construction. Chapter 3 explains in detail the architecture of Omega
Network Hash Construction. Chapter 4 shows the performance comparison between
three sizes of Omega Network Hash Construction with Merkle-Damgard construction.
The proposed Omega Network Hash Constructions perform better than Merkle-Damgard

construction.

1.8 Research Justification

Among the existing hash functions, SHA is chosen because of its popularity.
Increasing the performance of SHA by changing the SHA algorithm requires a long and
expensive development period. Thus, the more effective way to get better performance
is by having an alternative architecture to the Merkle-Damgard construction. Omega

Network is chosen due to its design can be executed parallel, the performance and speed

up can be improved and the mix up output can provide better security in term of

randomness.

1.9 Outline of the Thesis

This chapter shows an overview work for the research. The remaining Chapters

are presented as below:

Chapter 2 discusses the related works and concepts which are useful for this
research. An unkeyed primitive is one of the categories of cryptography primitives. The
root architecture is Merkle-Damgard construction. The discussion in this chapter is

based on Merkle-Damgard construction.

Chapter 3 shows the research methodology. Five phases of activities need to be
followed to complete the research. The detail research design is also presented in this

chapter.

Chapter 4 shows the performance and security results of Omega Network Hash
Construction simulation. The performance is presented as graphs, and the security is
shown as a table. The comparison of the performance and security between Omega

Network Hash Construction and Merkle-Damgard construction is also discussed.

The conclusion and future work are presented in Chapter 5. The conclusion is

reached through the result discussed in Chapter 4.

CHAPTER 2

LITERATURE REVIEW

2.1 Cryptography

Cryptography can be classified into two major classes: public key and non-public
key. For public key cryptography, the structure for encryption, key sharing and digital
signature relies on mathematical properties such as finite fields (abstract algebra) and
number theory (prime number, prime factorization, Fermat theorem, Euler theorem, etc).
Non-public key cryptography includes secret key encryption and hash functions. Block
cipher and stream cipher (see Figure 2.1) are two important architectures for secret key
encryption. Merkle-Damgard construction (see Figure 1.1) is the root construction for all

hashing functions. See Figure 2.2 for the classification of modern cryptography.

1 48it Input l
41016 Decoder
7 aiap A Nl 7 9 10 11 12 13 14 15
Key Key
k K
' i
eudorndom by || pendndombye
generator generator
{key straam generator] (vey stream generator]
A 4 y A
Bodn 3t 45 627 58 981011 4203 W 15
16to 4 Encoder
T S ! ey
Plaintext N\ Ciphertext | M\ . Plaintext
4Bt Output byte stream 4V "byte sream | 4Y) "byte stream
(! ENCRYPTION C | DECRYPTION W
Block Cipher Stream Cipher

Figure 2.1: Two basic architectures for secret key encryption [30]

(Cryptogtaphy)

v v
Non Public 2
Key Public Key
PR St TN P L R hensales, cn.aun i
|] iy
Secret Key Hash Function l Encryption | «—‘ Key S ﬂngJ —I Digital Signature | I
I |
Advanced R lhd- "SR T g gl AR RS | >| RSA I >{ Diffie Hellman l >| DSA | |
Encryption '
Standard

| Elliptic Curve
Cryptosystem

| i
Block |
Cipher

o

RC4 J>|

Stream MD. I

Cipber . L MD5 .

' |
AR] Algorithm (SHA S LR FR = s s ,
| v v v |
I [SHA-0 l I SHA- | i SHA-2 l |
| N ‘ |
I y v v ¥ |
| | SHA-224 I | SHA-256 | | SHA-384 l I SHA-512 i |

| Hash function is one way compression function, mostly based on Merkle-Damgard |
| construction which implement sequentially. Thus, Omega Network Hash Constructionl
| is proposed to improve the performance. In this thesis SHA-512 is used as the case I
l_study to test the proposed construction.

B P SV R SRR

e | e ommroo | | L _ o _ . _ _ __ et J
Standard | |

|

|

Figure 2.2: Cryptography classes

2.2 Merkle-Damgard Construction

Hash functions are based on the Merkle-Damgard construction (see Figure 1.1).
In Merkle-Damgard construction, the input is broken up into a series of equal-sized
blocks and processed in sequence with a one-way compression function. Normally the
last block processed is an unambiguous size. To solve this problem, the last block is
padded until the appropriate length is achieved. The vector for the first block function is
pre-defined, and the remaining block function's vector is dependent on the previous
digest value.

Merkle-Damgard construction runs over the input sequentially, and when the size
of input is small, it performs well. But when the size ofthe input is large, the execution
time will increase linearly. In terms ofthe security, it is based on the hash algorithm, for

example the SHA family. SHA-2 is secure while SHA-0 and SHA-1 are not secure.

2.3 Merkle-Damgard Construction in Hash Functions

Hash functions ensure data integrity and data authentication. SHA family is one
of the hash function based on the Merkle-Damgard construction. The members of the
SHA family are SHA-0, SHA-1 and SHA-2. SHA-2 members include SHA-224, SHA-
256, SHA-384 and SHA-512. The members of the SHA family are different based on
their block size, their digest length, the number of constants that they used in the

algorithm of SHA, and the number of iterations performed, (see Table 2.1).

11

Table 2.1: Functional characteristics of six hash functions [1, 21, 22, 30]

SHA Standard SHA-0 | SHA-1 | SHA-224 | SHA-256 | SHA-384 | SHA-
(bits) | (bits) (bits) (bits) (bits) (bits)
Message digest size/ Size of | 160 160 224 256 384 512
hash value
Message size 2% [<2® |=2% LI e v s
Message block size 312 512 512 512 1024 1024
Word size 32 32 32 32 64 64
No iteration in SHA algorithm | 80 80 64 64 80 80
Number of constants = 4 64 64 80 80

For easy reference, Figure 2.3 shows the Merkle-Damgard construction being

used in SHA-512. The input or message is broken equally into 1024-bit blocks. If the

last block is less than 1024 bits, the last block will be padded equal to 1024 bits. Each

message block goes through the SHA-512 algorithm, which consists of 80 iterations and

produces a 512-bit hash value.

N x 1024 bits

- L bits -

- 128 bits»

Message

frooo] ¢

. H H

fe— 1024 bits —ee— 1024 bits —»4

M, M,
1024

1024

W= 52 Hy i

T

!

«—— 1024 bits —=

References:
L bits — Total size of message in bits,

1V — Initial vector

Figure 2.3: Message digest generation using SHA-512 [adopted from 11, 30]

12

24 Tree Based Merkle-Damgard Construction

National Institute of Standards and Technology (NIST) organized a competition
for selecting SHA-3 currently (2009). Jason, W. M is the candidate for this competition;
he submitted a paper called ESSENCE cryptographic hashing algorithm from which the
construction for hashing algorithm is based on Tree Based Merkle-Damgard
construction (see Figure 2.4). The ESSENCE design has been optimized using the
parallel implementation and obtained better performance than the sequential Merkle-
Damgard construction, but it had the poor performance on short messages. He claimed
that his design is a modified version of the sequential Merkle-Damgard construction,
thus his design share the same weaknesses with the existing construction. From the

paper, there is no security test to show whether ESSENCE is secured.

Running Hash
Merkle Trees A >\ /\
MD Blocks
Data ee

Figure 2.4: Overview of Tree Based Merkle-Damgard Construction [20]

13

2.5 Parallel Secure Hash Algorithm

Pipeline is one of the methods for function decomposition in the field of parallel.
Pongyupinpanich and Choomchuay utilized the pipeline method to runs SHA-1, to
enhance the performance of Digital Signature Algorithm (DSA) by overcoming
unreasonable overhead in small applications [27]. There is small modification done on
SHA-1, from which SHA-1 is coded to run in a pipeline mode (see Figure 2.5). E + W,
+ K, is computed parallel with 4 + B + C + D. The authors claimed that the major
drawback from this pipeline design is when there exist a higher number of pipeline
states in which the design is cumbersome and the gate count increases dramatically.
Thus, this pipeline SHA-1 with DSA is not scalable for all size application because it

can only perform well in small size applications.

e}
=] —-

1
w | 1 ﬂ'
'ﬂ Pl RsHA-IP

A, B, C, D, E — Block initialization. W; — Word constants. K; — Round constants.

e—i

Figure 2.5: An internal pipeline of a single round computational module [27]

14

2.6 Related Architecture for Hash Function

The Secure Hash Dynamic Structure Algorithm (SHDSA) [9] is used in many
applications such as public key cryptosystems, digital signature, digital encryption,
message authentication code and random number generators. All of these application's
requirements are different from each other. As a result, Elkamchouchi's group proposed
SHDSA which comes in a variety of configurations.

This dynamic scheme is based on SHA but with one major difference - the hash
value is variable length with possible sizes of 128, 192, and 256 bits (see Figure 2.6).
Besides that, the iterations in each function can be changeable based on the requirement
of the applications. Thus, this dynamic scheme provides different levels of security for
satisfying the choices for those practical applications.

Although SHDSA is designed to be changeable based on the requirement of the
application, the architecture is formulated sequentially and the functions for SHDSA
also executed sequentially (see Figure 2.7). The performance is affected; the execution
time will increase linearly and reach the highest degree of throughput when the size of
input is high. The high speed requirement of SHDSA is highly needed, which is why

SHDSA should be parallelized.

15

S : Original input
The applications Sewp y el Pre-processing
can be changed : : : ,’
to produce the =" : : 3 ;
output either : : : :
128, 192 or 256 SRR ; Lern T T = '
. [~ s oC3INn
bits based on the |}eeeceerecreaas l E5A s ARSI S TP, | i o
: c' c* !
requirement. pomeseneasWeraanannnnnnnnen- : peesssesisssssssiesscassssesaeny
i ol ¥ i :
P 1 i TR J’ P
{ : : t
i ir328 i ! R 32buc¥ v P
LA - H |
E E HI 5 E H: § é
o rets? e
" (C") H#7(C) Output transformation
7128 or 192 or 256 bits

Figure 2.6: The architecture of SHDSA [9]

_l-—
L1

TWL' B K.

D e I e K e K W e o

—| g »

on ﬁ
n | £iib,e,d) | l SIS.8.h) l
S ,
y

Al 14
\ 4 & >

-

b
LN e

&
4
aNe

Figure 2.7: The sequential function in SHDSA, C' and C? [9]

16

Once again, in 2008, Elkamchouchi, et. al. [10] proposed another secure and fast
algorithm called SFHA-256. This one was specifically designed for SHA-256. 1t is
based on the 3C construction, which is based on the Merkle-Damgard construction. The
author claims that the proposed architecture is more secure and performs better than the
existing SHA-256. He claims that performance is better because the number of
operations performed in a step function is reduced and because the architecture consists
of two branches running in parallel (see Figure 2.8). SFHA-256 has fewer processing
steps, but it is still secure because each step function contains operations that make it
difficult for attackers to analyze SFHA-256. The added operations are simple XOR,
addition and shift rotation operations. However, performance still suffers due to the

waiting time that occurs during the processing of hash values.

[\ oo E

iy

Figure 2.8: The architecture of SFHA-256 [10]

17

Gauravaram, et. al. [12] proposed the 3C+ hash construction which is based on
the Merkle-Damgard construction. This 3C+ construction is an enhancement of 3C
construction where a third internal chain has been added on top of the cascade and
accumulation chains of 3C (see Figure 2.9). With this enhancement, the security level of
3C+ is better than both 3C construction and the Merkle-Damgard construction. 3C+
contains more XOR operations which also improves its security. However, in this new
algorithm, there exist conditions where the hashing functions are required to wait for the
input from the previous hash function. Moreover, the whole construction is sequential.

Thus, waiting times can be extremely high in the 3C+ construction.

P

ﬁ/ ™ /T
VY
7] /N ALY
I 22 N s]z Y s
L\ L.\ |_ L |_
e f f f f fl
Cascade and accumulation Third chains or
chains or middle chain final chain

Figure 2.9: The architecture of 3C+ Hash Construction [12]

Mirvaziri et. al. [21] came up with an enhancement to the Merkle-Damgard
construction by developing a single-length compression function implemented on the
Miyaguchi-Preneel block cipher. The architecture has intelligent repetition optimize

hash process, which leads to better security (see Figure 2.10). Though the architecture is

18

designed in double levels, it runs sequentially across the message, which means its

computation time increases linearly when the input size increases.

Repetition hash process for the same message

A
o9
G
~w l ul
{ L f. { ?:
7 .
m X m Q =
B
H, |

Miyaguchi-Preneel architecture:

H; = E(Hi.))(m)D (Hi.)) D my;

Figure 2.10: Double-pipe Prefix-free Hash function with Miyaguchi-Preneel design
resulted by Enhanced Merkle- Damgard [21]

In conclusion, most of the proposed architectures run sequentially, which means
the computation time increases linearly when the input size increases. Given that multi-
core technology and multithreaded programming are common in today’s world, these

architectures are unacceptably slow.

19

227, Omega Network Construction

Omega Network is a construction widely used in telecommunication, due to its
design that supports a switching function for the optical networks [4, 6, 28]. Beside that,
the Omega Network also uses a network algorithm that is used in parallel computing
architecture, which can run in multi-core machines to enhance performance. Yi Pan, et.
al [26] urged that Omega Network is an NP-hard problem. An NP-hard problém is a
problem cannot be solved in polynomial time, which is suitable in cryptography, for
example, in hashing by providing better security to prevent attacker to attack the digest

value easily. Figure 2.11 shows two types of Omega Network 8 and Omega Network

16.

!] [H '
ik AR
: '\t“-'\ :
BET v ‘.. 14
. H .
°]
-
Omega Network 8 [28] Omega Network 16 [6]

Figure 2.11: Omega Network’s design

20

2.8

The multi-core architecture supports many simultaneous instruction executions
via support of multithreaded programming. Intel and AMD processors designs
implement coherent shared memory. The major difference is the design of level two

caches. For the Intel processor, it is shared. For the AMD Dual Core Opteron, the level

Multi-core Architecture

two caches are private for each processor (see Figure 2.12).

“_—_" 3 \
HyperTransport >

Memory-controller

1 N 1
& Front side bus / <
- -
Memory bus controller Level 2 cache

L2 cache =

Intel
L1-1 L1-D L1-1 L1-D L1
Processor PO Processor P1

Crossbar interconnect

System Request Interface

L2 cache L2 cache
AMD AMD
-1 L1-D L1-1 L1-D
Processor PO Processor P1

Figure 2.12: Multi-core architecture [5]

Each design has different advantages. The AMD design gives the processors
more private memory and is therefore suitable for combining several dual processor

chips. The Intel design allows the processors to use more than its share and support

lower latency on-chip communication [5].

21

2.9 Parallel Model
To effectively achieve the better performance through the parallel computing, the
parallel model plays an important role. There are two major parallel models: data

parallelism and task parallelism.

2.9.1 Data Parallelism

Data parallelism is a parallel model where same functions or instructions are
applied repeatedly on large data sets. There are two techniques that being used for
distribute the data to the tasks static mapping and dynamic mapping (see Figure 2.13).
The static mapping is a technique partition the data into number of blocks which equal to
the number of processes. Dynamic mapping is a technique allocates subunits of the data
to processes as and when they become free. These two techniques are varying in term of
the computational progresses. Typically, OpenMP is used as the multithreading

programming in expressing data parallelism [3, 5, 13, 14].

Data distnbute using
Distribute Data | < the technique either
dynamic mapping or
static mapping

Task 1 Task 2 Task 3

Calculate | Task communication | Calculate | Task communication | Calculate
Exchange | < > | Exchange |< > | Exchange

Calculate Calculate Calculate

Collect Results

Figure 2.13: General overview for data parallelism [5, 13]

22

2.9.2 Task Parallelism

Task parallelism is a model that concurrently executes unique or independent
tasks (see Figure 2.14). POSIX thread is a multithreading programming language to
express task parallelism. The popular technique is pipelining and master/slave.
Pipelining is a process that divides the task to be executed in the assembly line.
Master/slave technique is the ‘master’ will distribute the task to be executed by ‘slave’

and then collect the result from ‘slave’, and then finally produce the final result [3, 5, 13,

14].

Task 1

Distnbute Data

Task 2

Task 3

-

Calculate A [Task communication | Eychange A [Task communication | Calculate B

Collect Results

Figure 2.14: General overview for task parallelism [5, 13]

23

2.10 Multithreading Programming
The primary goal of multithreading programming is to enable concurrency and
improve performance in applications. Two common multithreading programming

languages are POSIX thread and OpenMP.

2.10.1 POSIX Thread

POSIX thread, commonly referred to as PThreads, is suitable for task
parallelism. There are various types of POSIX thread methods, such as thread creation,
termination, synchronization, and variable conditions (see Figure 2.15). These methods

are used in ensuring the concurrency task in multi-core machine [5].

POSIX Thread)
e Coordinate the execution of
* Create the thread threads.
and join the e Example:
threads - mutexes: the resource
e Example: Thread . N Thread can be executed by one
- pthread_create Creation Synchronization thread at one time.
- pthread_join - join: a thread must wait
other thread complete or
e When the thread terminate then it just can
i i operate.
finis tl?elr Thread p
operation, the BRH
thiteal bnuse Termination
destroyed. e Creating and destroying
e Example: Condition - pthread_cond_init
- pthread_exit Variable - pthr_eadfcondfdestroy
e Waiting
- pthread cond wait
e Waking thread based on
Other Thread the condition
Methods - pthread cond signal
- pthread cond_broadcast

Figure 2.15: POSIX thread parallel methods [5]

24

REFERENCES

Ahmad, 1., and Das, A. S. (2005). Hardware Implementation Analysis of SHA-
256 and SHA-512 Algoritms on FPGAs. University Trier. Pp. 345 - 360.

Ayguade, E., Copty, N., Duran, A., Hoeflinger, J., Lin, Y., Massaioli, F., Teruel,
X., Unnikrishnan, P., and Zhang, G. S. (2008). The Design of OpenMP Tasks.
In: IEEE Transactions on Parallel and Distributed Systems, Vol. 20, No. 3,
March 2009. Pp. 404-418.

Bal, H. E., and Haines, M. (1998). Approaches for Integrating Task and Data
Parallelism. In: IEEE Concurrency, Vol. 6, No. 3. Pp. 74 - 84,

Bernhard, P. J., and Rosenkrantz, D. J. (1994). Partitioning Message Patterns for
Bundled Omega Networks. In IEEE Transactions On Parallel and Distributed
System, Vol. 5, No. 4. April 1994. Pp. 353 - 363.

Calvin, L., and Snyder, L. (2009). Principles of Parallel Programming. Pearson
International Edition.

Das, S. and Chaudhuri, A. (1990). Analysis ofthe Effect of Size of Omega
Network on its Fault Tolerance Behaviour in Presence of Multiple Faults. In:
IEEE. Pp. 628-631.

FDK Corporation. (2003). The Evaluation of Randomness of RPG100 by Using
NIST and DIEHARD Tests. Pp 1 - 6.

Kang, B. H., Lee, D. H., and Hong, C. P. (2008). Pseudorandom Number
Generation Using Cellular Automata. © Springer Science+Business Media
B.V. Pp.401-404.

&9

[9] Elkamchouchi, H. M., Einarah, A. M., and Hagras, E. A. A. (2006). A New
Secure Hash Dynamic Structure Algorithm (SHDSA) for Public Key Digital
Signature Schemes. In: The 23" National Radio Science Conference (NRSC
2006). Pp. 1 -9.

[10] Elkamchouchi, H. M., Nasr, M. E., and Abdelfatah, R. 1. (2008). A New Secure
and Fast Hashing Algorithm (SFHA-256). In: 25" National Radio Science
Conference (NRSC 2008). Pp. 1 - 8.

[11] Emam, S. A., and Emami, S. S. (2007). Design and Implementation ofa Fast,
Combined SHA-512 on FPGA. In: IJCSNS International Journal of Computer
Science and Network Security, VOL. 7 No. 5, May 2007. Pp. 165 - 168.
(IJCSNYS).

[12] Gauravaran, P., Millan, W., Dawson, E., and Viswanathan, K. (2006).
Constructing Secure Hash Functions by Enhancing Merkle- Damgard
Construction. In: Springer - Verlag Berlin Heidelberg. Pp. 407 - 420.

[13] Grama. A., Gupta, A., Karypis, G., and Kumar, V. (2003). Introduction to
Parallel Computing, Second Edition. Addison Wesley.

[14] Intel Corporation. (2003). Threading Methodology: Principles and Practices
Version 2.0. Copyright © 2002, 2003 Intel Corporation. Pp. 15-42.

[15] Jackiewicz, M., and Kuriata, E. (2004). Analysis of Non-linear Pseudo-noise
Sequences. In Springer - Verlag London, United Kigdom. Pp. 93 - 102.

[16] Jang, I. J and Yoo, H. S. (2006). Pseudorandom Number Generator Using
Optimal Normal Basis. ICCSA 2006, LNCS 3982 ©Springer-Verlag Berlin
Heidelberg. Pp. 206-212.

[17] Kim, S. J., Umeno, K., and Hasegawa, A. (2003). Corrections ofthe NIST
Statistical Test Suite for Randomness. In: Chaos-based Cipher Chip Project,
Presidential Research Fund, Communications Research Laboratory,
Incorporated Administrative Agency. Pp. 1-14.

90

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Marsaglia, G. (1996). DIEHARD: A Battery of Test of Randomness. [Accessed
1* January 2009], Available from World Wide Web:
http://i.cs.hku.hk/~diehard/cdrom.

Marsaglia, G., and Tsang, W. W. (2000). Some difficult-to-pass tests of
randomness. In: Innovation and Technology Support Programme, Government
ofHong Kong, Grant ITS/277/0. Pp. 1 - 9.

Martin, J. W. (2009). ESSENCE: A Candidate Hashing Algorithm for the NIST
Competition. Pp. 1-43.

Mirvaziri, H., Jumari, K., Ismail, M., and Hanapi, M. (2007). Collision Free
Hash Function Based on Miyaguchi- Preneel and Enhanced Merkel- Damgard
Scheme. In: The 5™ Student Conference on Research and Development -
SCOReD 2007 11 - 12 December 2007, Malaysia.

NIST. (1993). Announcing the Standard for Secure Hash Standard, 180 - 1. In:
National Institute of Standard. [Accessed 1% January 2009]. Available from
World Wide Web: http://www.itl.nist.gov/fipspubs/fipl80-1.htm.

NIST. (2002). Announcing the Standard for Secure Hash Standard, 180 - 2. In:
National Institute of Standard. Pp. 1-75.

NIST Special Publication 800-22. (2008). A Statistical Test Suite for Random
and Pseudorandom Number Generators for Cryptographic Applications. In:
National Institute of Standard. [Accessed 1% January 2009]. Available from
World Wide Web: http://csrc.nist.gov/mg/.

Olivar, G. (2007). FIPS 180-2 SHA-224/256/384/512 Implementation. [Accessed
1* January 2009], Available from World Wide Web:
http: //www, ouah. or g/o gay/sha2 /

Pan, Y., Ji, C. Y., Lin, X. L., and Jia, X. H. (2002). Evolutionary Approach for
Message Scheduling in Optical Omega Networks. In: Proceedings of the Fifth
International Conference on Algorithms and Architectures for Parallel
Processing (ICA3PP.02). Pp. 9-17.

91

[28]

[29]

Pongyupinpanich, S., and Choomchuay, S. (2001). An Architecture for a SHA-

1 Applied for DSA. In: Proceedings of the First Electrical Engineering/
Electronics, Computer, Telecommunications, and Information Technology
(ECTI) Annual Conference. Pp. 133 - 136.

Shen, X. J., Yang, F., Pan, Y. (1999). Equivalent Permutation Capabilities
between Time Division Optical Omega Network and Non-optical Extra Stage
Omega Network. Pp. 356-362.

Shin, S. H., Park, G. D., and Yoo, K. Y. (2008). A Virtual Three-Dimension
Cellular Automata Pseudorandom Number Generator Based on the Moore
Neighborhood Method. In: Springer-Verlag Berlin Heidelberg. Pp. 174-181.

Stallings, W. 2006. Cryptography and Network Security Principles and Practices.
Prentice Hall.

Sunar, B., and Koc, C. K. (2009). True Random Number Generators for
Cryptography. Springer Science+Business Media, LLC. Pp. 55 - 72.

92

