
OMEGA NETWORK HASH CONSTRUCTION

By

CHUAH CHAI WEN

Thesis submitted in fulfillment of the

requirements for the degree of

Master of Science

June 2009



TABLE OF CONTENTS

DECLARATION " 

ACKNOWLEDGEMENTS "i

TABLE OF CONTENTS iv

LIST OF TABLES »—viii

LIST OF FIGURES ix

ABSTRAK xiii

ABSTRACT xiv

LIST OF ABBREVIATIONS xv

CHAPTER 1 - INTRODUCTION

1.1 Introduction to Hash Functions 1 

1.2 Motivation 3 

1.3 Problem Statement 3 

1.4 Hypothesis and Research Questions 4 

1.5 Research Objectives 5 

1.6 Research Scope 5 

1.7 Research Contributions 6 

1.8 Research Justification 6 

1.9 Outline of the Thesis 7 

iv



CHAPTER 2 - LITERATURE REVIEW

2.1 Cryptography 8 

2.2 Merkle-Damgard Construction 11

2.3 Merkle-Damgard Construction in Hash Functions 11

2.4 Tree Based Merkle-Damgard Construction 13

2.5 Parallel Secure Hash Algorithm ' 14

2.6 Related Architecture for Hash Function 15

2.7 Omega Network Construction 20

2.8 Multi-core Architecture 21

2.9 Parallel Model 22

2.9.1 Data Parallelism 22

2.9.2 Task Parallelism 23

2.10 Multithreading Programming 24

2.10.1 POSIX Thread 24

2.10.2 OpenMP 25

2.11 Security Test Tool 27

2.12 Chapter Summary 28

CHAPTER 3 - RESEARCH METHODOLOGY

3.1 Introduction 30

3.2 Background Study 30

3.3 Research Design of Omega Network Hash Construction 31

3.3.1 Omega Network Hash Construction 8 37

3.3.2 Omega Network Hash Construction 16 40

v



3.3.3 Omega Network Hash Construction 32 43

3.3.4 Omega Network Hash Construction 64 46

3.3.5 Omega Network Hash Construction 128 49

3.4 Simulation and Performance Evaluation 52

3.4.1 Test Design 52

3.4.2 Performance Testing 54

3.4.3 Security Testing 54

3.5 Performance Comparison and Evaluation 56

3.6 Result Analysis 58

3.7 Chapter Summary 58

CHAPTER 4 - RESULT AND DISCUSSION

4.1 Introduction 60

4.2 Performance Analysis 60

4.2.1 Performance Analysis of Omega Network Hash

Construction Simulated on a Dual Core Machine 65

4.2.2 Performance Analysis of Omega Network Hash

Construction Simulated on a Quad Core Machine 70

4.2.3 Performance Comparison and Discussion 75

4.3 Security Analysis 79

4.4 Chapter Summary 83

vi



CHAPTER 5 - CONCLUSION AND FUTURE WORK

5.1 Introduction 84

5.2 Conclusion 84

5.3 Limitation of the Study 85

5.4 Future Work 86

REFERENCES 89

APPENDICES 93

vii



LIST OF TABLES PAGE

Table 2.1 Functional characteristics of six hash functions 12

Table 3.1 Set of constant value for Omega Network Hash Construction 32

Table 3.2 The different characteristic and number round calculation

for Omega Network Hash Construction • 36

Table 3.3 Summary of performance measurement's formulas for

Omega Network Hash Construction 58

Table 4.1 Performance analysis Omega Network Hash Construction 8 62

Table 4.2 Performance analysis Omega Network Hash Construction 16 62

Table 4.3 Performance analysis Omega Network Hash Construction 32 63

Table 4.4 Performance analysis Omega Network Hash Construction 64 63

Table 4.5 Performance analysis Omega Network Hash Construction 128 64

Table 4.6 Comparison the speed up of Omega Network Hash Construction 78

Table 4.7 Comparison the speed up of Omega Network Hash Construction 78

based on Amdahl's law and Gustafson Barsis's law

Table 4.8 Comparison the efficiency of Omega Network Hash Construction 78

Table 4.9 Comparison the efficiency of Omega Network Hash Construction 78

based on Amdahl's law and Gustafson Barsis's law

Table 4.10 DIEHARD security test, single block of message to generate 81

binary test file

Table 4.11 DIEHARD security test, multiple blocks of message to generate 82

binary test file

Vlll



LIST OF FIGURES PAGE

Figure 1.1 Merkle-Damgard Construction 3 

Figure 2.1 Two basic architectures for secret key encryption 9 

Figure 2.2 Cryptography classes 10

Figure 2.3 Message digest generation using SHA-512 • 12

Figure 2.4 Overview of Tree Based Merkle-Damgard Construction 13

Figure 2.5 An internal pipeline of a single round computational module 14

Figure 2.6 The architecture of SHDSA 16

Figure 2.7 The sequential function in SHDSA, C1 and C2 16

Figure 2.8 The architecture of SFHA-256 17

Figure 2.9 The architecture of 3C+ Hash Construction 18

Figure 2.10 Double-pipe Prefix-free Hash function with Miyaguchi-Preneel 19

design resulted by Enhanced Merkle- Damgard

Figure 2.11 Omega Network's design 20

Figure 2.12 Multi-core architecture 21

Figure 2.13 General overview for data parallelism 22

Figure 2.14 General overview for task parallelism 23

Figure 2.15 POSIX thread parallel methods 24

Figure 2.16 OpenMP parallel constructs 26

Figure 2.17 Literature review summarization 29

Figure 3.1 SHA-512 algorithm 31

Figure 3.2 Flow chart for Omega Network Hash Construction execute in 34

dual core machine

ix



Figure 3.3 Flow chart for Omega Network Hash Construction execute in 35

quad core machine

Figure 3.4 Omega Network Hash Construction 8 running on dual-core 38

processors

Figure 3.5 Omega Network Hash Construction 8 running on quad-core 39

processors

Figure 3.6 Omega Network Hash Function 16 running on dual-core 41

processors

Figure 3.7 Omega Network Hash Construction 16 running on quad-core 42

processors

Figure 3.8 Omega Network Hash Construction 32 running on dual-core 44

processors

Figure 3.9 Omega Network Hash Construction 32 running on quad-core 45

processors

Figure 3.10 Omega Network Hash Construction 64 running on dual-core 47

processors

Figure 3.11 Omega Network Hash Construction 64 running on quad-core 48

processors

Figure 3.12 Omega Network Hash Construction 128 running on dual-core 50

processors

Figure 3.13 Omega Network Hash Construction 12 8 running on quad-core 51

processors

Figure 3.14 Test data, single block of message 55

Figure 3.15 Test data, multiple blocks of message 56

x



Figure 3.16 Source code for calculating run time 57

Figure 3.17 Chapter 3 description 59

Figure 4.1 Execution time comparison between Omega Network 65

Hash Construction and Merkle-Damgard Construction,simulated

on a dual core machine

Figure 4.2 Overhead of Omega Network Hash Construction simulated • 66

on a dual core machine

Figure 4.3 Speed of Omega Network Hash Construction simulated 67

on a dual core machine

Figure 4.4 Efficiency of Omega Network Hash Construction simulated 68

on a dual core machine

Figure 4.5 Running cost of Omega Network Hash Construction simulated 69

on a dual core machine

Figure 4.6 Execution time comparison between Omega Network 70

Hash Construction and Merkle-Damgard Construction simulated

on a quad core machine

Figure 4.7 Overhead of Omega Network Hash Construction simulated 71

on a quad core machine

Figure 4.8 Speed up of Omega Network Hash Construction simulated 72

on a quad core machine

Figure 4.9 Efficiency of Omega Network Hash Construction simulated 73

on a quad core machine

Figure 4.10 Running cost of Omega Network Hash Construction simulated 74

on a quad core machine

xi



Figure 5.1 Collapsing parallel Omega Network Hash Construction 88

Figure A. 1: Omega Network Hash Construction 8, serial code for 89

XORing the last column's digest value

Figure A.2: Omega Network Hash Construction 16, serial code for 90

XORing the last column's digest value

Figure A.3: Omega Network Hash Construction 32, serial code for 91

XORing the last column's digest value

Figure A.4: Omega Network Hash Construction 64, serial code for 92

XORing the last column's digest value

Figure A.5: Omega Network Hash Construction 128, serial code for 93

XORing the last column's digest value

xii



SENI BINA CINCANGAN BERPANDUKAN RANGKAIAN OMEGA

ABSTRAK

Fungsi cincangan kriptografi merupakan primitif kriptografi yang sangat umum dan

penting. Ia biasanya digunakan dalam proses pengesahan keaslian dan keutuhan data.

Seni binanya adalah berasaskan seni bina Merkle-Damgard yang menerima input

panjang berubah dan menghasilkan nilai cincangan panjang tetap. Seni bina Merkle-

Damgard yang asas beroperasi secara berjujukan terhadap input data, dan hal ini boleh

menimbulkan masalah apabila saiz input yang digunakan adalah besar kerana masa

pengiraan juga akan meningkat secara linear. Oleh yang demikian, satu seni bina

alternatif yang dapat mengurangkan masa pengiraan amat diperlukan terutama sekali

dalam dunia hari ini yang mana pemproses multiteras dan pengaturcaraan

multibebenang begitu lumrah. Seni bina Cincangan berpandukan Rangkaian Omega

yang mampu beroperasi secara selari pada pemproses multiteras telah dicadangkan

sebagai suatu alternatif kepada seni bina Merkle-Damgard. Seni bina Cincangan

berpandukan Rangkaian Omega ternyata menunjukkan prestasi yang lebih baik daripada

seni bina Merkle-Damgard, dan seni bina pilih aturnya menunjukkan bahawa tahap

keselamatannya dari segi penghasilan nilai digest sembarangan adalah lebih baik

daripada seni bina Merkle-Damgard.

xiii



OMEGA NETWORK HASH CONSTRUCTION

ABSTRACT

Cryptographic hash functions are very common and important cryptographic primitives.

They are commonly used for data integrity checking and data authentication. Their

architecture is based on the Merkle-Damgard construction, which takes in a variable-

length input and produces a fixed-length hash value. The basic Merkle-Damgard

construction runs over the input sequentially, which can lead to problems when the input

size is large since the computation time increases linearly. Therefore, an alternative

architecture which can reduce the computation time is needed, especially in today's

world where multi-core processors and multithreaded programming are common. An

Omega Network Hash Construction that can run parallel on multi-core machine has been

proposed as alternative hash function's construction. The Omega Network Hash

Construction performs better than the Merkle-Damgard construction, and its permutation

architecture shows that its security level in term of producing randomness digest value is

better than Merkle-Damgard construction.

xiv



LIST OF ABBREVIATION

IEEE Institute of Electrical and Electronics Engineers

MD Merkle-Damgard Construction

NIST National Institute of Standards and Technology

ONHC Omega Network Hash Construction

RAM Read Access Memory

SHA Secure Hash Algorithm

T Thread

xv



CHAPTER 1 

INTRODUCTION

1.1 Introduction to Hash Functions

As the Internet rapidly grows, and bandwidth rapidly increases, cryptography is

becoming more and more important for ensuring various types of security over insecure

connections. Among data security primitives, data integrity check and data origin

authentication are the two most common security services that must be applied in many

electronic applications, such as electronic commerce, electronic financial transactions,

software distribution, electronic mail, data storage and others. Data integrity check is

accomplished through the use of cryptographic hash functions, which operate at the root

of many other cryptographic methods in achieving these security services.

The basic operation of a hash function is to transform a variable-size input or

message into a fixed-length string called a "hash value" or "message digest." A hash

value is generated by a function H of the form H(M) = n, where n is the hash value and

M is the variable-length input or message. Hash functions are one-way functions; it is

easy to generate n from a given M, but given only n, it is computationally infeasible to

generate M. Hash functions are designed to produce unambiguous and condense

message digests that are uniquely identifiable with their source messages. However, the

1



source messages cannot be deduced from the message digests, and for this reason, the

hash function is sometimes known as a digital fingerprint.

Hash functions are built upon the Merkle-Damgard construction [9, 10, 12, 21],

which divides an input into equal-size message blocks and passes each block

sequentially to a function that processes the message block. The function returns a 

vector value, which is then passed back to the function for the next message block. A 

pre-defined vector value is passed with the first message block.

Many researchers are trying to develop better-performing hash functions. The

sequential architecture of Merkle-Damgard is recognized as a critical factor for overall

hashing performance. However, these researchers are not trying to improve the Merkle-

Damgard construction, but are instead trying to improve specific hashing algorithms,

such as the Secure Hash Algorithm (SHA).

This research proposes the Omega Network Hash Construction as an alternative

hashing architecture to the Merkle-Damgard Construction. Because of the design of the

Omega Network Hash Construction, the original inputs cannot be retrieved from their

corresponding hash values. In the era of multithreading and multi-core technology, the

Omega Network Hash Construction runs in parallel to improve the hashing performance.

The goal of this architecture is to improve performance without sacrificing the security

provided by the existing Merkle-Damgard architecture.

2





The architecture of most hash functions is based on the Merkle-Damgard

construction (see Figure 1.1), which is sequential in nature. This means that when the

size of the input increases, the computational time will increase linearly. Each step in the

Merkle-Damgard construction processes a message block and returns a vector. The first

vector is pre-defined, but the remaining vectors are fully dependent on the previous

function's output, which slows down the runtime. This in turn has a major effect on the

performance of SHA, for example. There is a need to enhance the performance and

efficiency of hashing.

1.4 Hypothesis and Research Questions

The proposed Omega Network Hash Construction run parallel in multi-core

machine can enhance the speed up and efficiency of SHA while maintaining the security

level provided by the existing Merkle-Damgard architecture. The research questions that

this thesis will answer are as follows:

• Is the computational time of the Omega Network Hash Construction better? If so,

by how much?

• In terms of performance and security, is the proposed architecture as good as or

better than the existing Merkle-Damgard construction?

• What are the strengths and weaknesses of the proposed Omega Network Hash

Construction?

4



• Is it worth having an alternative architecture such as the proposed Omega

Network Hash Construction?

1.5 Research Objectives

The objectives for this research are as follows:

1. To maintain SHA's security level provided by the existing Merkle-Damgard

architecture while using the Omega Network Hash Construction.

2. To use the parallel method construct the Omega Network Hash Constructions to

enhance the performance of SHA.

3. To determine which sizes of Omega Network Hash Construction perform well in

the multi-core processors' machine.

1.6 Research Scope

This research will focus on enhancing the performance of SHA, specifically

SHA-512, in terms of speed up efficiency and overhead reduction. The first column's

vector of Omega Network Hash Construction is taken from the input and the remaining

column's vector is taken from XORed the previous column's vector, the parallel method

is used to run parallel the proposed Omega Network Hash Construction while

maintaining the security level as good as or better than SHA-512. Five designs of

Omega Network Hash Construction (8, 16, 32, 64, 128 - for details, refer to Chapter 3)

5



are simulated in this research to determine which size is more suitable for hash

construction. Finally, the result of Omega Network Hash Construction SHA-512 is

compared with the existing Merkle-Damgard construction SHA-512 to see whether there

are any improvements in speed up, efficiency and overhead reduction.

1.7 Research Contributions

This research has produced an alternative architecture for hashing based on Omega

Network Hash Construction. Chapter 3 explains in detail the architecture of Omega

Network Hash Construction. Chapter 4 shows the performance comparison between

three sizes of Omega Network Hash Construction with Merkle-Damgard construction.

The proposed Omega Network Hash Constructions perform better than Merkle-Damgard

construction.

1.8 Research Justification

Among the existing hash functions, SHA is chosen because of its popularity.

Increasing the performance of SHA by changing the SHA algorithm requires a long and

expensive development period. Thus, the more effective way to get better performance

is by having an alternative architecture to the Merkle-Damgard construction. Omega

Network is chosen due to its design can be executed parallel, the performance and speed

6



up can be improved and the mix up output can provide better security in term of

randomness.

1.9 Outline of the Thesis

This chapter shows an overview work for the research. The remaining Chapters

are presented as below:

Chapter 2 discusses the related works and concepts which are useful for this

research. An unkeyed primitive is one of the categories of cryptography primitives. The

root architecture is Merkle-Damgard construction. The discussion in this chapter is

based on Merkle-Damgard construction.

Chapter 3 shows the research methodology. Five phases of activities need to be

followed to complete the research. The detail research design is also presented in this

chapter.

Chapter 4 shows the performance and security results of Omega Network Hash

Construction simulation. The performance is presented as graphs, and the security is

shown as a table. The comparison of the performance and security between Omega

Network Hash Construction and Merkle-Damgard construction is also discussed.

The conclusion and future work are presented in Chapter 5. The conclusion is

reached through the result discussed in Chapter 4.

7



CHAPTER 2 

LITERATURE REVIEW

2.1 Cryptography

Cryptography can be classified into two major classes: public key and non-public

key. For public key cryptography, the structure for encryption, key sharing and digital

signature relies on mathematical properties such as finite fields (abstract algebra) and

number theory (prime number, prime factorization, Fermat theorem, Euler theorem, etc).

Non-public key cryptography includes secret key encryption and hash functions. Block

cipher and stream cipher (see Figure 2.1) are two important architectures for secret key

encryption. Merkle-Damgard construction (see Figure 1.1) is the root construction for all

hashing functions. See Figure 2.2 for the classification of modern cryptography.

8







2.2 Merkle-Damgard Construction

Hash functions are based on the Merkle-Damgard construction (see Figure 1.1).

In Merkle-Damgard construction, the input is broken up into a series of equal-sized

blocks and processed in sequence with a one-way compression function. Normally the

last block processed is an unambiguous size. To solve this problem, the last block is

padded until the appropriate length is achieved. The vector for the first block function is

pre-defined, and the remaining block function's vector is dependent on the previous

digest value.

Merkle-Damgard construction runs over the input sequentially, and when the size

of input is small, it performs well. But when the size of the input is large, the execution

time will increase linearly. In terms of the security, it is based on the hash algorithm, for

example the SHA family. SHA-2 is secure while SHA-0 and SHA-1 are not secure.

2.3 Merkle-Damgard Construction in Hash Functions

Hash functions ensure data integrity and data authentication. SHA family is one

of the hash function based on the Merkle-Damgard construction. The members of the

SHA family are SHA-0, SHA-1 and SHA-2. SHA-2 members include SHA-224, SHA-

256, SHA-384 and SHA-512. The members of the SHA family are different based on

their block size, their digest length, the number of constants that they used in the

algorithm of SHA, and the number of iterations performed, (see Table 2.1).

11









2.6 Related Architecture for Hash Function

The Secure Hash Dynamic Structure Algorithm (SHDSA) [9] is used in many

applications such as public key cryptosystems, digital signature, digital encryption,

message authentication code and random number generators. All of these application's

requirements are different from each other. As a result, Elkamchouchi's group proposed

SHDSA which comes in a variety of configurations.

This dynamic scheme is based on SHA but with one major difference - the hash

value is variable length with possible sizes of 128, 192, and 256 bits (see Figure 2.6).

Besides that, the iterations in each function can be changeable based on the requirement

of the applications. Thus, this dynamic scheme provides different levels of security for

satisfying the choices for those practical applications.

Although SHDSA is designed to be changeable based on the requirement of the

application, the architecture is formulated sequentially and the functions for SHDSA

also executed sequentially (see Figure 2.7). The performance is affected; the execution

time will increase linearly and reach the highest degree of throughput when the size of

input is high. The high speed requirement of SHDSA is highly needed, which is why

SHDSA should be parallelized.

15





















REFERENCES

[1] Ahmad, I., and Das, A. S. (2005). Hardware Implementation Analysis of SHA-
256 and SHA-512 Algoritms on FPGAs. University Trier. Pp. 345 - 360.

[2] Ayguade, E., Copty, N., Duran, A., Hoeflinger, J., Lin, Y., Massaioli, F., Teruel,
X., Unnikrishnan, P., and Zhang, G. S. (2008). The Design of OpenMP Tasks.
In: IEEE Transactions on Parallel and Distributed Systems, Vol. 20, No. 3,
March 2009. Pp. 4 0 4 - 4 1 8 .

[3] Bal, H. E., and Haines, M. (1998). Approaches for Integrating Task and Data
Parallelism. In: IEEE Concurrency, Vol. 6, No. 3. Pp. 74 - 84.

[4] Bernhard, P. J., and Rosenkrantz, D. J. (1994). Partitioning Message Patterns for
Bundled Omega Networks. In IEEE Transactions On Parallel and Distributed
System, Vol. 5, No. 4. April 1994. Pp. 353 - 363.

[5] Calvin, L., and Snyder, L. (2009). Principles of Parallel Programming. Pearson
International Edition.

[6] Das, S. and Chaudhuri, A. (1990). Analysis of the Effect of Size of Omega
Network on its Fault Tolerance Behaviour in Presence of Multiple Faults. In:
IEEE. Pp. 628-631.

[7] FDK Corporation. (2003). The Evaluation of Randomness of RPG100 by Using
NIST and DIEHARD Tests. Pp 1 - 6.

[8] Kang, B. H., Lee, D. H., and Hong, C. P. (2008). Pseudorandom Number
Generation Using Cellular Automata. © Springer Science+Business Media
B.V. Pp.401-404.

89



[9] Elkamchouchi, H. M., Einarah, A. M., and Hagras, E. A. A. (2006). A New
Secure Hash Dynamic Structure Algorithm (SHDSA) for Public Key Digital
Signature Schemes. In: The 23rd National Radio Science Conference (NRSC
2006). Pp. 1 - 9.

[10] Elkamchouchi, H. M., Nasr, M. E., and Abdelfatah, R. I. (2008). A New Secure
and Fast Hashing Algorithm (SFHA-256). In: 25th National Radio Science
Conference (NRSC 2008). Pp. 1 - 8.

[11] Emam, S. A., and Emami, S. S. (2007). Design and Implementation of a Fast,
Combined SHA-512 on FPGA. In: IJCSNS International Journal of Computer
Science and Network Security, VOL. 7 No. 5, May 2007. Pp. 165 - 168.
(IJCSNS).

[12] Gauravaran, P., Millan, W., Dawson, E., and Viswanathan, K. (2006).
Constructing Secure Hash Functions by Enhancing Merkle- Damgard
Construction. In: Springer - Verlag Berlin Heidelberg. Pp. 407 - 420.

[13] Grama. A., Gupta, A., Karypis, G., and Kumar, V. (2003). Introduction to
Parallel Computing, Second Edition. Addison Wesley.

[14] Intel Corporation. (2003). Threading Methodology: Principles and Practices
Version 2.0. Copyright © 2002, 2003 Intel Corporation. Pp. 15-42.

[15] Jackiewicz, M., and Kuriata, E. (2004). Analysis of Non-linear Pseudo-noise
Sequences. In Springer - Verlag London, United Kigdom. Pp. 93 - 102.

[16] Jang, I. J and Yoo, H. S. (2006). Pseudorandom Number Generator Using
Optimal Normal Basis. ICCSA 2006, LNCS 3982 ©Springer-Verlag Berlin
Heidelberg. Pp. 2 0 6 - 2 1 2 .

[17] Kim, S. J., Umeno, K., and Hasegawa, A. (2003). Corrections of the NIST
Statistical Test Suite for Randomness. In: Chaos-based Cipher Chip Project,
Presidential Research Fund, Communications Research Laboratory,
Incorporated Administrative Agency. Pp. 1-14.

90



[18] Marsaglia, G. (1996). DIEHARD: A Battery of Test of Randomness. [Accessed
1st January 2009], Available from World Wide Web:
http://i.cs.hku.hk/~diehard/cdrom.

[19] Marsaglia, G., and Tsang, W. W. (2000). Some difficult-to-pass tests of
randomness. In: Innovation and Technology Support Programme, Government
of Hong Kong, Grant ITS/277/0. Pp. 1 - 9.

[20] Martin, J. W. (2009). ESSENCE: A Candidate Hashing Algorithm for the NIST
Competition. Pp. 1 - 4 3 .

[21] Mirvaziri, H., Jumari, K., Ismail, M., and Hanapi, M. (2007). Collision Free
Hash Function Based on Miyaguchi- Preneel and Enhanced Merkel- Damgard
Scheme. In: The 5th Student Conference on Research and Development -
SCOReD 2007 11 - 12 December 2007, Malaysia.

[22] NIST. (1993). Announcing the Standard for Secure Hash Standard, 180 - 1. In:
National Institute of Standard. [Accessed 1st January 2009]. Available from
World Wide Web: http://www.itl.nist.gov/fipspubs/fipl80-l.htm.

[23] NIST. (2002). Announcing the Standard for Secure Hash Standard, 180 - 2. In:
National Institute of Standard. Pp. 1 - 7 5 .

[24] NIST Special Publication 800-22. (2008). A Statistical Test Suite for Random
and Pseudorandom Number Generators for Cryptographic Applications. In:
National Institute of Standard. [Accessed 1st January 2009]. Available from
World Wide Web: http://csrc.nist.gov/mg/.

[25] Olivar, G. (2007). FIPS 180-2 SHA-224/256/384/512 Implementation. [Accessed
1st January 2009], Available from World Wide Web:
http: //www, ouah. or g/o gay/sha2 / 

[26] Pan, Y., Ji, C. Y., Lin, X. L., and Jia, X. H. (2002). Evolutionary Approach for
Message Scheduling in Optical Omega Networks. In: Proceedings of the Fifth
International Conference on Algorithms and Architectures for Parallel
Processing (ICA3PP.02). Pp. 9 - 1 7 .

91



[27] Pongyupinpanich, S., and Choomchuay, S. (2001). An Architecture for a SHA-
1 Applied for DSA. In: Proceedings of the First Electrical Engineering/
Electronics, Computer, Telecommunications, and Information Technology
(ECTI) Annual Conference. Pp. 133 - 136.

[28] Shen, X. J., Yang, F., Pan, Y. (1999). Equivalent Permutation Capabilities
between Time Division Optical Omega Network and Non-optical Extra Stage
Omega Network. Pp. 356-362.

[29] Shin, S. H., Park, G. D., and Yoo, K. Y. (2008). A Virtual Three-Dimension
Cellular Automata Pseudorandom Number Generator Based on the Moore
Neighborhood Method. In: Springer-Verlag Berlin Heidelberg. Pp. 174-181.

[30] Stallings, W. 2006. Cryptography and Network Security Principles and Practices.
Prentice Hall.

[31] Sunar, B., and Koc, C. K. (2009). True Random Number Generators for
Cryptography. Springer Science+Business Media, LLC. Pp. 55 - 72.

92


