brought to you by CORE

ADAPTIVE NOISE CANCELLATION BV LMS ALGORITHM

SHAREAH BINTI SAON

KOLLI UNIVERSITI TEKNOLOGI TUN HUSSEN ONN

JUDUL	ADAP1	ADAPTIVE NOISE CANCELLATION BY LMS			
		SESI PENGAJIAN: <u>2003/2004</u>			
Saya	·	SHARIFAH BINTI SAON (HURUF BESAR)			
mengaku Perpustaka	membenarkan aan dengan sya	tesis (PSM /Sarjana/ Doktor Falsafah)* ini disimpan di urat-syarat kegunaan seperti berikut:			
 Tesis ini adalah hakmilik Kolej Universiti Teknologi Tun Hussein Onn Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi. **Sila tandakan (<) 					
	SULIT	ULIT (Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)			
	TERHAD	ERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)			
\checkmark	TIDAK TER	HAD			
(TAND	A .	ENULIS) (TANDAPANGAN PENYELIA)			
Alamat Tetap: <u>NO 52, JALAN MAHMOOD</u> <u>PARIT JAWA</u> <u>PM HJ MOHD IMRAN BIN GHAZALI</u>					
94150 MI	Nama Penyelia				

CATATAN:

.

* **

Potong yang tidak berkenaan. Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT atau TERHAD. Tesis dimaksudkan sebagai tesis bagi Ijazah Doktor Falsafah dan Sarjana secara penyelidikan, atau disertasi bagi pengajian secara kerja kursus dan penyelidikan, atau Laporan Projek Sarjana Muda (PSM). ٠

"We declare that I have read this thesis and in our opinion, it is suitable in terms of scope and quality for the purpose of awarding a Master Degree of Electrical Engineering".

Signature	Anne
Supervisor I	: Assoc. Prof. Hj. Mohd Imran B. Ghazali
Date	: 2/07/04
	J.
Signature	- Jale frim
Supervisor II	: Prof. Dr. Hashim Bin Saim

Date

:_

5/7/04

.

ADAPTIVE NOISE CANCELLATION BY LMS ALGORITHM

SHARIFAH BINTI SAON

A project report submitted as partial fulfillment of the requirements for the award of the Master Degree of Electrical Engineering

Department of Electrical Engineering Faculty of Engineering Kolej Universiti Teknologi Tun Hussein Onn

APRIL 2004

"I declare that this project is the result of my own work except the ideas and summaries of which I have clarified their sources."

.

.

Signature	:	
Author	:) <u>Sharifah binti saon</u>
Date	:	01/07/2004

.

•

To my husband Abd Kadir Bin Mahamad, My child's, Mohamad Azri and Nur Aliah

.

.

ACKNOWLEDGEMENTS

.

I would like to express my appreciation to my thesis supervisors Assoc. Prof. Hj. Mohd Imran Bin Ghazali and Prof. Dr. Hashim Bin Saim for their excellent guidance, suggestions, contributions and encouragement throughout this study.

I would like to thank all my friends for supporting and standing by me through this year.

This work would not have been possible without the support and love of my family. I would also like to thank my family.

ABSTRACT

The research on controlling the noise level in an environment has been the focus of many researchers over the last few years. Adaptive noise cancellation (ANC) is one such approach that has been proposed for reduction of steady state noise. In this research, the least mean square (LMS) algorithm using MATLAB was implemented. Step size determination was done to determine the best step size and effects of the rate of convergence. Sound recorder was used to record sound and saved as .wav file. Graphical user interface (GUI) was created to make it user friendly. The output of the analysis showed that the best step size was 0.008. Smaller step size of 0.001 tend to lower the speed of convergence, and too big a step size, 0.8 tend to cause the system to diverge. Analysis on synthesized data showed that the noise reduction did not eliminate the original signal. The implementation on actual data showed slight difference between the output and input level. In real situation, as in theory, this technique can be used to reduce noise level from noisy signal without reducing the characteristic of the signal.

v

ABSTRAK

Penyelidikan terhadap pengawalan paras kebisingan dalam persekitaran telah menjadi fokus penyelidikan beberapa tahun kebelakangan ini. Penyesuaian penghapusan kebisingan (ANC) adalah salah satu pendekatan yang dapat mengurangkan keadaan tetap kebisingan. Dalam penyelidikan ini, algoritma purata kuasa dua terkecil (LMS) menggunakan MATLAB digunakan. Penentuan saiz langkah dilakukan untuk menentukan saiz langkah yang terbaik dan kesannya terhadap kadar penumpuan. Perakam bunyi digunakan untuk merakam bunyi dan disimpan sebagai .wav fail. Antaramuka pengguna bergambar (GUI) direka bagi menjadikannya mesra pengguna. Hasil analisis yang diperolehi, didapati saiz langkah yang terbaik adalah 0.008. Saiz langkah yang lebih kecil, 0.001 menyebabkan kadar penumpuan menjadi perlahan dan bagi saiz langkah yang terlalu besar, 0.8 sistem akan mencapah. Analisis keatas data yang direka menunjukkan pengurangan bising tanpa menjejaskan isyarat asal. Perlaksanaan data sebenar menunjukkan hanya sedikit perbezaaan diantara paras isyarat keluaran dan masukan. Dalam situasi sebenar, secara teorinya teknik ini mampu untuk mengurangkan paras bising dari isyarat tanpa mengubah ciri isyarat tersebut.

TABLE OF CONTENTS

CHAPTER TITLE

PAGE

. .

DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	v
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	x
LIST OF FIGURES	xi
LIST OF SYMBOL AND ABBREVIATION	xiii
LIST OF APPENDICES	xiv

I INTRODUCTION

1.1	Background	1
1.2	Problem Statement	2
1.3	Research Objectives	3
1.4	Scope of Research	4
1.5	Report Organization	4

II LITERATURE REVIEW

2.1	Review	5
2.2	Related Research	6

3.1Application of Adaptive Filter13.2Stochastic Gradient Approach13.3Adaptive Filter with LMS algorithm13.3.1Digital Filter13.3.2Adaptive Algorithm (LMS1algorithm)1	
 3.2 Stochastic Gradient Approach 3.3 Adaptive Filter with LMS algorithm 3.3.1 Digital Filter 3.3.2 Adaptive Algorithm (LMS algorithm) 	1
 3.3 Adaptive Filter with LMS algorithm 3.3.1 Digital Filter 3.3.2 Adaptive Algorithm (LMS algorithm) 	5
3.3.1Digital Filter13.3.2Adaptive Algorithm (LMS1algorithm)1	6
3.3.2 Adaptive Algorithm (LMS 1 algorithm)	7
algorithm)	9
3.3.2.1 Summary of the LMS 2	23
3.3.3 Property of the LMS 2	24
3.3.3.1 Stability Constraint 2	24
3.3.3.2 Convergence rate 2	25
3.3.3.3 Time Constant 2	26
3.3.3.4 Excess Mean Square Error 2	27
3.4 Adaptive Noise Cancellation (ANC)	27
3.5 Signal To Noise Ratio	28
IV RESEARCH METHODOLOGY	
4.1 Review	29
4.2 Algorithm	30
4.2.1 Step size determination	30
4.2.2 Simulation for Sinusoidal Input	34
4.2.3 Simulation for Synthesized Data	34
4.2.4 Simulation for Actual Data	34

V RESULT AND DISCUSSION

5.1	Step S	Size Determination	38
	5.1.1	Summary of the step size programme	39
	5.1.2	Result for step size determination	40
5.2	5.2 Sinusoidal Simulation		47
	5.2.1	Summary of the sinusoidal	48
		programme	
	5.2.2	Result for sinusoidal simulation	49

viii

5.3	Synthesized Data Simulation	52
	5.3.1 Summary of the synthesized data	53
	programme	
	5.3.2 Result for synthesized data	55
5.4	Actual Data Simulation	59
	5.4.1 Summary of the actual data	59
	programme	
	5.4.2 Result for actual data	61
CON	NCLUSION	
7.1	Conclusion of the Research	63
7.2	Recommendation for Future Research	64
REF	ERENCES	65
APP	ENDIX	68

VI

ix

LIST OF TABLES

NO OF TABLE TITLE

PAGE

.

2.1	Opposition and similarity of time domain and frequency	e domain and frequency	
	domain adaptive noise cancellation	8	
3.1	Application of adaptive filter	14	
3.2	Summary of the LMS algorithm	23	
5.1 (a)	MSE for step size = 0.001	41	
5.1 (b)	MSE for step size = 0.008	42	
5.1 (c)	MSE for step size = 0.8	43	
5.2	Number of iterations for step size test	44	
5.3	Number of iteration for filter order test	46	

LIST OF FIGURES

NO OF FIGURE TITLE

PAGE

. -

2.1	The split noise canceller	7
3.1	Four basic classes of adaptive filter application	14
3.2	General block diagram of adaptive filter	17
3.3	Block diagram of digital filter	19
3.4	Block diagram of LMS adaptive filter	22
4.1	Step size determination	31
4.2	Simulation for sinusoidal input	32
4.3	Simulation for synthesized data	33
4.4	Block diagram for simulate actual data	35
4.5	Experimental setup	35
4.6	Actual data simulation	36
5.1	GUI for step size determination	38
5.2 (a)	Learning curves with step size $= 0.001$	41
5.2 (b)	Learning curves with step size $= 0.008$	42
5.2 (c)	Learning curves with step size $= 0.8$	43
5.3	Step size determination with different filter order (L)	45
5.4	GUI for sinusoidal simulation	47
5.5	Simulation result for sinusoidal input with several step	49
	size	
5.6	Filtered signal for sinusoidal data with different filter	51
	order (L)	
5.7	GUI for synthesized simulation	52

NO OF 1	FIGURE TITLE	PAGE
5.8	Pop-up windows to load the file	54
5.9	Simulation result for synthesized data with different s	step 56
	size	
5.10	Filtered signal for synthesized data with different filte	er 58
	order (L)	
5.11	GUI for actual data simulation	59
5.12	Simulation result for actual data	61

xii

LIST OF SYMBOL AND ABBREVIATION

.

ANC	-	Adaptive noise cancellation	
LMS	_	Least mean square	
n	_	Time	
LMS-AP	_	Augmented predictor LMS	
MLMS-AP	—	Modified LMS-AP	
SPR	_	Strictly positive real	
FIR	-	Finite impulse respond	
RLS	-	Recursive least square	
AR	-	Autoregressive	
ARMA	-	Autoregressive moving average	
GAL	-	Gradient adaptive lattice	
d(n)	-	Desired signal	
x(n)	_	Reference signal	
y(n)	-	Output of adaptive filter	
e(n)	-	Error signal	
IIR	-	Infinite impulse response	
$MSE\left(\xi(n)\right)$	_	Mean square error	
Р	_	Cross-correlation matrix	
R	_	Input correlation matrix	
L	-	Filter order	
μ	_	Step size	
MSD	-	Mean square deviation	
SNR	_	Signal to noise ratio	
GUI	_	Graphical user interface	

xiii

LIST OF APPENDICES

APF	PANDIX T	TITLE	
A	Table A-1: MSE for 4, 8 and 16	SE for 4, 8 and 16 filter order	
	Table A-2: MSE for 32, 64 and 1	28 filter order	69
В	MATLAB code for sinusoidal pr	ogramme	70

xiv

· ,

CHAPTER I

INTRODUCTION

1.1 Background

Acoustic problems in an environment has gained more attention due to the tremendous growth of technology that lead to noisy engines, heavy machineries, pumps, air condition, music and other noise sources. These acoustic problems sometime can disturb the neighbours next door. Normally human ears are very sensitive at audio range (lower frequency) from 20 Hz to 20 kHz, even though it depends on the age and physical condition of a person. So, any sound within these frequencies has the tending to disturb human hearing and can be classified as noise.

The reduction of acoustic noise in speech has been investigated for many years [3]. The major application of noise reduction is by improving voice communication at noisy sites using noise cancelling microphones [1]. In these microphones, the near-field response is independent of frequency and the far-field response is similar to high-pass frequency. Another technique is by using a single input that exploits the noise model. The noise model is estimated when speech is absent. In such situation, the approach of *adaptive noise cancellation* (ANC) is applicable. ANC, also called noise reduction is one of such approach that has been proposed for reduction of steady state noise [1]. ANC technique employs two inputs, the *primary input* (speech corrupted by noise) and the *reference input* (noise alone) [1, 2]. The dual input approach tries to estimate the differential path characteristics from the noise source to the primary and reference input.

There are many algorithms that can be use for adaptive filter in ANC, but the simplest and effective algorithm for the operation of adaptive filter is least mean square (LMS) algorithm [10]. The LMS algorithm is a stochastic gradient algorithm that iterates each tap weight of a transversal filter in the direction of the gradient of mean square error of an error signal. The LMS algorithm uses a fixed step size parameter to control the correction applied to each tap weight from one iteration to the next.

Adaptive filters are used for non-stationary signals and environments. Applications of adaptive filters include system identification, layered earth modeling, predictive coding, adaptive noise cancellation, multi channel reduction, radar/solar signal processing, channel equalization for cellular mobile phone and echo cancellation. It consists of two parts, digital filter and adaptive algorithm. Digital filter is used to perform the desired signal processing and the adaptive algorithm is used for adjusting the coefficients or weights of the filter and to minimize the mean square value.

1.2 Problem Statement

Adaptive noise cancellation with *least mean square* (LMS) algorithm is one of the most popular algorithms to solve many problems [7]. Its popularity comes

from its ability to perform well for both static and dynamic noise disturbances, easy to implement and effective to use. This adaptive process, mean it does not require knowledge of signal or noise characteristic.

To record the sound recording of an air condition in a room producing unwanted noise, the sound recorder must filter out other disturbances. An adaptive filter can trace that noise, and reduce it so that it can produce suitable sound recording.

Base on this situation, a filter code with least means square (LMS) algorithm using MATLAB was through to be able to eliminate or reduce periodic noise from audio signal and was implement in this project. The filtered audio signal was recorded and so the clean signal could be played back.

1.3 Research Objectives

The project was to implement the least means square (LMS) algorithm using MATLAB for noise reduction level in audio signal.

1.4 Scope of Research

The scopes of the research:-

- 1. Writing LMS algorithm using MATLAB.
- 2. Generate model for system identification to determine the suitable step size.

4

- 3. Data is an audio signal collected in closed room, using sound recorder.
- 4. Data will be simulated using LMS algorithm to reduce noise in an audio signal.
- 5. Implement an existing code to reduce periodic noise in audio signal.

1.5 Report Organization

The next chapter will discuss on reviews of different approaches to the noise cancellation problem. Chapter III will discuss the theoretical parts of adaptive noise cancellation, adaptive filter and algorithm used in this project, the derivation and equations involved in LMS algorithm. Then proposed adaptive noise cancellation by LMS algorithm scheme will be discussed and the methodology of this proposed will be elaborated in Chapter IV.

The main objective of this project is to implement LMS algorithm using MATLAB that can reduce the noise from the noisy signals. Chapter V discusses the graphical user interface that was created for the research and results of the simulation. The conclusion of this project and the recommendation for future work are highlighted in the last Chapter of this report.

CHAPTER II

LITERATURE REVIEW

2.1 Review

The initial work on adaptive echo cancellers started around 1965[10]. It appears that Kelly of Bell Telephone Laboratories proposed the echo cancellation using adaptive filter, where the speech signal itself was utilized in performing the adaptation [12]. In 1975, Widrow *et al* has originated the adaptive line enhancer to cancel 60-Hz interference at the output of an electrocardiography amplifier and recorder. The adaptive echo cancellers and adaptive line enhancer is an example of the adaptive noise cancellation.

Research on adaptive filter started earlier than adaptive noise cancellation, that is around 1950s. The least mean square (LMS) algorithm was one of the adaptive filter devised by Windrow and Holf in their study of pattern-recognition scheme, known as the adaptive linear element. Robbins and Monro (1951) highlighted that the LMS algorithm was closely related to the concept of stochastic approximation. The difference between LMS and the stochastic approximation was the usage of step size. The LMS algorithm uses a fixed step-size parameter to control the correction applied to each tap weight for each iteration, but in stochastic approximation methods the step size parameter is inversely proportional to time n or to a power of n.

2.2 Related Research

Adaptive noise cancellation with the LMS algorithm has become a popular solution to the noise canceller. Orgen A.C., *et al* [1] proposed two algorithms to improve steady state residual noise. These two algorithms are LMS algorithm with augmented predictor (LMS-AP) and modified LMS-AP (MLMS-AP). Both the algorithms depend on strictly positive real (SPR) whitening filter. SPR condition uses error filtering to ensure stability and convergence. SPR is a new approach of a whitening mechanism, and it manifests the signal processing task in a number. If the whitening filter is SPR, the residual variance provided by MLMS-AP is larger than that given by LMS-AP, although lower than the LMS. For non-SPR whitening filter, LMS-AP is divergence and MLMS-AP performs at least as well as LMS algorithm.

Ho K. C. and Ching P. C. [2] introduced the new structure for adaptive noise cancellation to improve the convergence characteristics. They have devised the splitpath adaptive filters (split canceller) as illustrated in **Figure 2.1** by splitting the original finite impulse respond (FIR) into two linear phase filter connected in parallel [2]. Both filter uses LMS algorithm to minimize the system output error and adapted independently to obtain the performance of the overall system. This method has successfully improved the convergences speed by almost two times. It required around 500 iterations compared to 1000 iterations done by LMS algorithm.