
CORE Metadata, citation and similar papers at core.ac.uk

Provided by UTHM Institutional Repository

https://core.ac.uk/display/12006494?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

11""IIIII1III~I~llll~I~~~IIIII~~~iill""11111111 V.I .•.•.• ••
30000002343794

UNIVERSITI TEKNOLOGI MALAYSIA psz 19:16 (pind. 1/07)

DECLARATION OF THESIS / UNDERGRADUATE PROJECT PAPER AND COPYRIGHT

Author's full name: NORFARADILLA BINTI WAI-IID

Date of birth 3 AUGUST 1983

Title CODE CLONE DETECTION USING STRING BASED

STRING BASED TREE MATCHING TECHNIOUE

Academic Session: 2008/2009

I declare that this thesis is classified as :

D CONFIDENTIAL

D RESTRICTED

W OPEN ACCESS

(Contains confidential information under the Official Secret
Act 1972)*

(Contains restricted information as specified by the
organization where research was done)*

I agree that my thesis to be published as online open access
(full text)

I acknowledged that Universiti Teknologi Malaysia reserves the right as follows:

NOTES

1. The thesis is the property of Universiti Teknologi Malaysia.
2. The Library of Universiti Teknologi Malaysia has the right to make copies for the purpos

of research only.
3. The Library has the right to make copies of the thesis for academic exchange.

830803-01-5584 ASSOC. PROF.
(NEW Ie NO. /PASSPORT NO.)

Date Date : ::~I - I 0 - 0 ~

If the thesis is CONFIDENTAL or RESTRICTED, please attach with the letter from
the organization with period and reasons for confidentiality or restriction.

"1 hereby declare that I have read this project report (course \\ork) and in my

opinion this project report is sufficient in terms of scope and quality for the

award of the degree of Master of Science (Computer Science)"

Signature

Name of Supervisor

Date

CODE CLONE DETECTION USING STRING BASED TREE i\'IATCi-lING

TECHNIQUE

NORFARADILLA BINTI WAHID

A project report submitted in partial fulfillment of the

requirements for the award of the degree of

Master of Science (Computer Science)

Faculty of Computer Science and Information System

Universiti Teknologi Malaysia

OCTOBER 2008

II

I declare that this project report entitled "Code Clone Deleelion l 'sing SIring !Ju,ll'd

Tree MUlching Techl1ique ""is the result of my 0\\'11 research except as cited in the

references. The project report has not been accepted for any degree and is nut

concurrently submitted in candidature of any other degree.

Signature CifJ; --' : ~

Name : NORFARADILLA BINTI W/\IIID

Date ?\ 0 C1D~8? ;lb t f

III

To my heiol'ed poren/s. fiance ond/omiiy.

IV

ACKNOWLEDGEMENT

In preparing this report. I was in contact with many people. researchers, and

academicians. They have contributed towards my understanding and thoughts. In

particular, I wish to express my sincere appreciation to my project supervisor, Dr Ali

Selamat. for encouragement. guidance, critics and friendship.

My fellow postgraduate students should also be recognized for their support.

My sincere appreciation also extends to all my colleagues and others who have

provided assistance at various occasions. Their views and tips are useful indeed.

Without their continued support and interest. this thesis would not have been the

same as presented here.

v

ABSTRAK

Pengklonan kod telah menjadi suatu isu sejak beberapa tahun kebelakangan

ini selari dengan peliambahan jumlah aplikasi web dan perisian berdiri sendiri pada

hari ini. Pengklonan memberi kesan yang sangat besar kepada fasa penyelenggaran

sistem kerana secm'a tidak langsung peningkatan bilangan pengulangan kod yang

sama di dalam sesebuah sistem akan menyebabkan kompleksiti sistem turut

meningkat. Terdapat banyak teknik pengesanan klon telah dihasilkan pada hari ini

dan secm'a umumnya ianya boleh dikategorikan kepada pengesanan berasaskan

jujukan perkataan. token. pepohon dan semantik. Tujuan projek ini adalah untuk

mengetahui kemungkinan untuk menggunakan suatu teknik dari pemetaan ontologi

untuk menyelesaikan masalah ini. tetapi kami tidak menggunakan ontologi di dalam

pengesanan klon. Telah dibuktikan di dalam eksperimen awalan bahawa ia mampu

untuk mengesan klon. Oi dalam tesis ini kami menggunakan dua aras pengesanan.

Aras pertama menggunakan 'pelombong sub-pepohon terkerap' di mana ia mampu

mengesan sub-pepohon yang sama antara fail yang berbeza. Kemudian sub-pepohon

yang sama dinyatakan dalam bentuk ayat dan persamaan antm'a kedua-duanya dikira

menggunakan 'metrik ayat'. Daripada eksperimen. kami mendapati bahawa sistem

kami adalah tidak berganting kepada sebarang bahasa dah menghasilkan keputusan

yang bagus dari segi precision tetapi tidak dari segi recall. Ia mampu mengesan klon

serupa dan yang hamper sama.

VI

ABSTRACT

Code cloning have been an issue in these few years as the number of

available web application and stand alone software increase nowadays. The major

consequences of cloning is that it would risk the maintenance process as there are

many duplicated codes in the systems that practically increase the complexity of the

system. There are many code clone detection techniques that can be found nowadays

which generally can be group into string based, token based. tree based and semantic

based. The aim of this project is to find out the possibility of using a technique of

ontology mapping technique to solve the problem, but we are not using the real

ontology for the clone detection. It has been prove that there is the possibility as it

manages to detect clone code. In this thesis the clone detection is using two layers of

detection: i.e. structural similarity and string based similarity. The structural

similarity is by using subgraph miner where it capable to get the similar subtree

between different files. And then we extract all elements of that paJ1icular subtree

and treat the elements as a string. Two strings from different files then applied with

similarity metric to know whether it is a clone pair. From the experimental result we

found that the system is language independent but the result is good in precision but

not so good recall. It is also capable to detect two main types of clone. i.e identical

clones and similar clones.

\"11

TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARA TION II

DEDICATION III

ACKNOWLEDGEIvlENT 1\'

ABSTRAK \'

ABSTRACT \'1

TABLE OF CONTENTS \'11

LIST OF TABLES x

LIST OF FIGURES XI

LIST OF ABBREVIATIONS XIII

LIST OF SYMBOLS XI\'

LIST OF APPENDICES X\'

1 INTRODUCTION

1.1 Overview

1.2 Background orthe Problem ') -

1.3 Problem Statement 5

1.4 Objectives of the Project 6

1.5 Seope of the Project 7

1.7 Thesis outline 7

2 LITERATURE REVIEW

2.1 Introduction

') ') Code Cloning l)

2.2,1 Reasons of code cloning 11

VIII

2.2.2 Code cloning Consequences 14

2.2.3 Code Cloning versus Plagiarism 15

2.2.4 Code Cloning and the Software

Copyright Infringement Detection 16
') .., _ • .:l Code Cloning in web applications 17

2.3.1 Definition of clones from web application research

View 19

2.3.2 Source of Clones 19

2.4 Existing Work of Code Cloning Detection 20

2.4.1 String based 22

2.4.2 Token based 23

2.4.3 Tree based 24

2.4.4 Semantic based 25

2.4.5 Fingerprinting 25

2.4.6 Analysis on Current Approaches 26

') -_.J The Semantic \Veb 28

2.5.1 Architecture of the Semantic Web 29

2.5.2 Web Ontology 30

') - .., Web Ontology Description Languages
..,..,

_.J . .:l .:l.:l

2.5.4 Various Application of Ontology 34

2.5.5 Ontology Mapping 36

2.5.6 Ontology Mapping Approaches 39

2.5.7 The Ontology Mapping Technique 40

2.5.7.1 String Metrics 45

2.5.7.2 Frequent Subgraph Mining 47

2.5.7.3 MoFa, gSpan. FFSM, and Gaston 48

2.5.7.4 Representing Web Programming as Tree 50

2.6 Clone Detection Evaluation 52

2.7 Different with work by .larzabek 54

2.7.1 Clone Miner by .larzabek 55

2.7.1.1 Detection Of Simple Clones 56

2.7.1.2 Finding Structural Clone 56

2.7.2 Comparison of existing work and our 58

proposed work.

3 RESEARCH METHODOLOGY

3.1 Introduction

., 7
j.- Proposed technique of clone detection

3.2.1 Structural Tree Similarity

., 7 7
j.-.- String based tree matching

., .,
Preprocessing j.j

3.4 Frequent subgraph mining

3.5 String based matching

3.6 Clone Detection Algorithm

3.7 Clone Detection Evaluation

4 EXPERIMENT AL RESULT AND DISCUSSION

4.1 Introduction

4.2 Data representation

4.2.1 Original source program into XML format

4.2.2 Subtree mining data representation

4.3 Frequent Subtree Mining

4.4 String metric computation

4.5 Experimental setup

4.6 Experimental results

4.7 Comparison of result using different parameters

5 CONCLUSION

5.1

5.2

5.3

REFERENCES

Appendices A - C

Introduction

Future Works

Strength of the system

IX

61

62

65

67

70

71

73

75

75

77

78

79

81

83

86

87

88

96

103

104

104

105

112

x

LIST OF TABLES

TABLE NO. TITLE PAGE

2.1 A summary of code cloning and plagiarism detection 16

2.2 Brief description of ontology languages

List of string metric 45

3.1 Example of cross-table used to compare programs across

two systems 71

3.2 Brief description of each frequent sub graph miner 72

4.1 Data for program testing 89

4.2 Experimental result using GSpan miner 91

4.3 Experiment using different parameter value 99

XI

LIST OF FIGURE

FIGURE NO TITLE PAGE

I. I A sample parse tree with generated characteristic 4

vectors.

2. I Example of a pair of cloned code in traditional program. I 1

2.2 Tree-diagram for the Reasons for Cloning 13

') ,., _ . .) Variation of clone detection research and the

classification of detection 22

2.4 Architecture of Semantic Web 29

') -_.) Simple example of ontology 32

2.6 Simple example of mapping between two ontologies. 38

2.7 Illustration of ontology mapping approaches 40

2.8 Tree representation of an XML source code 48

2.9 Clones per file 57

2. I 0 Frequent clone pattern with file coverage 58

XII

2.11 Similar node structure between two XML code fragments 59

2.12 Difference of work by .Tarzabek and Basit(2005) and our

proposed work 60

3.1 Mapping between concepts of O'a and O'p 65

.., /
,).- Diagrammatic view of clone detection technique 69

.., ..,
Preprocessing phase 70 ,).,)

3.4 Illustration of detected clone within two trees 73

3.5 A pair of source code fragment classified as nearly identical.

nearly-identical 74

3.6 Clone detection algorithm 75

4.1 Transformation of original PHP code into HTML code 80

4.2 XML form of the previous HTML code 81

4.3 A tree as list of nodes and edges 82

4.4 Example of tree as vertices and edges list 83

4.5 Frequent subtrees generated by graph miner. 85

4.6 Code fragment containing original frequent subtree. 87

4.7 Real output from the clone detection system 90

4.8 Recall and precision for GSpan-Jaro Winkler 93

XIII

4.9 Robustness of GSpan-Jaro Winkler 93

4.10 Computational time for GSpan-Jaro Winkler 94

4.11 Recall and Precision for GSpan-Levenshtein Distance 94

4.12 Robustness for GSpan-Levenshtein Distance 95

4.13 Computational time for GSpan-Levenshtein Distance 95

4.14 Two close clones cannot be taken as a single clone 98

4.15 Precision result using different minimum support and 100

threshold

4.16 Recall result using different minimum support and 101

threshold

XIV

LIST OF ABBREVIATIONS

\VA Web Application

TS Traditional Software

CCO Code Clone Detection

PD Plagiarism Detection

Sim(.\'/, s:,)

COIII/J1(.\'/, s:')

Duns/,s:,)

Winkler(.\'/. s:')

max COl71SlIhSlring

lenglh(sl)

lenglh(·\'c)

IILen,J

IILen,c

jJ

(1

LIST OF SYMBOLS

similarity between two strings. s] and S2

commonality between s] and S2

difference between s] and S2

improvement value to improve the result

the sum of the lengths of common substring

length of s]

length of S2

length of the unmatched substring from s]

length of the unmatched substring from S2

a parameter of range 0 and .::1:}

a threshold

xv

XVI

LIST OF APPENDICES

APPENDIX TITLE PAGE

A Project Activities 111

B Existing Works of Code Clone Detection 113

C Experimental result tables 117

CHAPTER I

INTRODUCTION

1.1 Ovcr'vicw

As the world of computers is rapidly developing, there are tremendous needs

of software development for different purposes. And as we can see today. the

complexity of the software been developed are different between one and another.

Sometimes, developers take easier way of implementation by copying some

fragments of the existing programs and use the code in their work. This kind of work

can be called as code cloning. Somehow the attitude of cloning can lead to the other

issues of software development for example the plagiarism and software copyright

infringement (Roy and Cordy. 2007).

In most of the cases. in order to figure out the issues and to help better

software maintenance. we need to detect the codes that have been cloned (Baker.

1995). In the web applications development. the chances of doing clones are bigger

since there are too many open source software available in the Internet (Bailey and

Burd. 2005). The applications are sometimes just a 'cosmetic' of another existing

system. There are quite a number of researches in software code cloning detection.

but not so particularly in the area of web based applications.

1.2 Background of the Problem

Software maintenance has been widely accepted as the most costly phase

of a software lifecycle. with figures as high as 80% of the total development cost

being repOlied (Baker, 1995). As cloning is one of the contributors to\yards this cost.

the software clone detection and resolution has got considerable attention from thc

software engineering research community and many clone detection tools and

techniques have been developed (Baker, 1995). However, when-it comcs to

commercialization of the software codes. most of the software house developers tend

to claim that their works are 100% done in house without using other codes copics

forrh various sources. This has made a difficulty for the intellectual property

copyright entities such as SIRIM and patent searching offices in finding the

genuineity of the software source codes developed by the in house company. Thcre is

a need to identif~y the software source submitted for patcnt copyright application to

be a genuine source code without having any copyright infringements. Besides that.

the cloning is somehow raising the issue of plagiarism. The simplest example is in

the academic area where students tend to copy their friends' works and submit the

assignments with only slight modifications.

Usually, in software development process. there is a nccd for components

reusability either in designing and coding. Reuse in object-oriented systems is made

possible through different mechanisms such as inheritance. shared librarics. object

composition. and so on. Still. programmcrs often need to reuse components which

have not been designed for reuse. This may happen during the initial of systcms

development and also when the software systems go through the cxpansion phase

and new requirements have to be satisfied. In these situations. thc programmcrs

usually follow the low cost copy-paste technique. instead of costly rcdesigning-thc­

system approach. hence causing clones. This type of codc cloning is the most basic

and widely used approach to\yards software reusc. Scyeral stuciies suggest that as

much as 20-30% of large soft\yare systcms consist of cloned codc (Krinke.

2001). The problem with code cloning is that errors in thc original must be lixcd in

every copy. Other kinds of maintenance changes. for instance. cxtensions Of

..,
-'

adaptations, must be applied multiple times. too. Yet. it is usually not documented

where code was copied. In such cases, one needs to detect them. For large systems.

detection is feasible only by automatic techniques. Consequently. several techniques

have been proposed to detect clones automatically (Bellon et al.. 2007).

There are quite a number of works that detect the similarity by representing

the code in tree or graph representation and also some using string-based detection.

and semantic-based detection. Almost all the clone detection technique had the

tendency of detecting syntactic similarity and only some detect the semantic part of

the clones. Baxter in his work (Baxter et al.. 1998) proposes a technique to extract

clone pairs of statements, declarations, or sequences of them from C source fi les. The

tool parses source code to build an abstract syntax tree (AST) and compares its

subtrees by characterization metrics (hash fLmctions). The parser needs a "full­

fledged" syntax analysis for C to build AST. Baxter's tool expands C macros (define.

include, etc) to compare code portions written with macros. Its computation

complexity is 0(/1). where n is the number of the subtree of the source files. The hash

function enables one to do parameterized matching. to detect gapped clones. and to

identify clones of code portions in which some statements are reordered. In AST

approaches. it is able to transform the source tree to a regular form as we do in the

transformation rules. However. the AST based transformation is generally expensi\"e

since it requires full syntax analysis and transformation.

In other work (Jiang et al. 2007) present an efficient algorithm for identifying

similar subtrees and apply it to tree representations of source code. Their algorithm is

based on a novel characterization of subtrees with numerical \"ectors in the Euclidean

space RIl and an efficient algorithm to cluster these \"ectors with respected to the

Euclidean distance metric. Subtrees \\"ith vectors in one cluster are considered

similar. They have implemented the tree similarity algorithm as a clone detection

tool called DECKARD and e\"aluated it on large code bases \\Titten in C and Ja\a

including the Linux kernel and JDK. The experiments sho\\" that DECK:\RD is both

scalable and accurate. It is also language independent. applicable to any language

with a formally specified grammar.

4

Key:

8 " t rmm iffel-?~'a'1! , ,

(nQnlermi~al 1

: irrelevant :

(mergeable ~
I vectoT I
~ ~ ~~r9id y~~ ~ ~

Figure 1.1: A sample parse tree with generated characteristic vectors[14].

In (Krinke, 2001), Krinke presents an approach to identify similar code in

programs based on finding similar subgraphs in attributed directed graphs. This

approach is used on program dependence graphs and therefore considers not only the

syntactic structure of programs but also the data flow within (as an abstraction of the

semantics). As a result, it is said that no tradeoff between precision and recall- the

approach is very good in both.

Kamiya in one of his work in (Kamiya et al., 2002) suggest the use of suffix

tree. In the paper they have used a suffix-tree matching algorithm to compute token­

by token matching, in which the clone location information is represented as a tree

with sharing nodes for leading identical subsequences and the clone detection is

performed by searching the leading nodes on the tree. Their token-by token matching

is more expensive than line-by-line matching in terms of computing complexity since

a single line is usually composed of several tokens. They proposed several

optimization techniques especially designed for the token-by-token matching

algorithm, which enable the algorithm to be practically useful for large software.

Appendix B of this thesis, describe briefly some existing techniques of code

clone detection and plagiarism. It also discusses the strength and weaknesses of each

technique.

