AN EVALUATION OF BIOCLIMATIC HIGH RISE OFFICE BUILDINGS IN A TROPICAL CLIMATE: ENERGY CONSUMPTION AND USERS' SATISFACTION IN SELECTED OFFICE BUILDINGS IN MALAYSIA

LOKMAN HAKIM ISMAIL

.

AN EVALUATION OF BIOCLIMATIC HIGH RISE OFFICE BUILDINGS IN A TROPICAL CLIMATE: ENERGY CONSUMPTION AND USERS' SATISFACTION IN SELECTED OFFICE BUILDINGS IN MALAYSIA

By

Lokman Hakim Ismail

Thesis submitted in accordance with the requirement of the University of Liverpool for the degree of Doctor of Philosophy

> School of Architecture University of Liverpool

> > December 2007

ACKNOWLEDGEMENTS

This Research has been carried out on a full-time basis since January 2004 and would not have been possible without support and cooperation from various parties. Firstly, I am indebted to the University Tun Hussein Onn (UTHM), Batu Pahat, Johor for sponsoring my doctoral study at the University of Liverpool, in the United Kingdom. Particular recognition goes to Associate Professor Dr. Wahid Razally my former Head of Department, Professor Ir. Dr. Amir Hashim Mohd. Kasim, The Deputy Vice Chancellor of UTHM (former Dean Faculty of Civil and Environmental Engineering, for his encouragement and to all my colleagues in the Faculty who have spared their valuable time in taking over my teaching and administrative loads while I am here in the United Kingdom.

Secondly, I wish to record my sincere thanks and appreciation to my supervisors, Dr. Magda Sibley, Mike Barber and Professor David Oldham for their guidance and supervision during these years. To my adviser, Professor Barry Gibbs, I express my gratitude for his support and constructive ideas on the research. To the Head of School, Professor Dr. Robert Kronenburg and all his teaching, administrative and technical staff who, directly or indirectly, have supported my study at the School. Similar thanks go to the Faculty itself, which partially funded my fieldwork in Kuala Lumpur and Penang, Malaysia.

Last but not least, my foremost gratitude is to my wife, Rozaida Ghazali, who has taken a bigger responsibility in taking care of the children on a full-time basis and at the same time undertaking her PhD program as part of her duty as a Lecturer of Information Technology at the University Tun Hussein Onn (UTHM), and to my children Yasmin Kamilia, Amirul Mukminin and Sufi Dayana for their understanding and enthusiastic participation in coming with me to Liverpool. I hope they have benefited from the early education system and a wonderful life in the United Kingdom. Similar gratitude also goes to my parents, Mr. Ismail Werdani and Ms. Zainon Salleh. To my family and parents, I thank you for your fullest support and to whom this thesis is dedicated. *Alhamdulillah*

Lokman Hakim Ismail

Liverpool (January 2004 – August 2007)

ABSTRACT

This research has been carried out with the aim to investigate how high rise office building design in tropical climate can contribute in reducing energy consumption while maintaining comfort. The main objective of this study is to compare the performance of a sample of bioclimatic high rise office blocks with that of conventional ones when situated in a tropical climate such as that in Malaysia. The research firstly reviewed all the characteristics of bioclimatic buildings in the Malaysian Peninsula particularly the traditional Malay house and the transformation through time. Secondly, the research studied some design planning and architecture of several high-rise office buildings principally the bioclimatic approaches. Thirdly, the claimed benefits of bioclimatic design approach for high rise office buildings were examined in the results of previously conducted research projects, dealing with energy consumption and design approaches which compares the bioclimatic and conventional high rise. The performance was measured according to a combination of technical and social criteria: direct observation on various architectural aspects, environmental measurement and users' perception of comfort and satisfaction with their working environment via questionnaires. The energy consumptions were compared based on the electricity bills recorded for at least a year period. The local building energy index is used as the benchmark to check whether there were real energy savings in the bioclimatic high rise office blocks or otherwise. The major finding of this work is that the occupants in bioclimatic high rise office buildings have a higher level of satisfaction with their working environment than those in conventional office blocks. There is evidence that bioclimatic high rise office buildings are energy efficient as the most recent bioclimatic high rise office building (Menara UMNO), has a lower energy index than the ASEAN standard and within the latest Malaysian Standard related to energy efficiency. In the past, high rise buildings have been perceived as inefficient users of energy, with the new bioclimatic design concept and technologies, there is no doubt that high rise office buildings in the future would be much better in design that provide better environment to the users and consume less energy.

Keywords:

Bioclimatic, High rise, Energy, Sustainable Architecture, Tropical Climate, Comfort,

TABLE OF CONTENTS

knowledgements	
stract	i
ble of Contents	
t of Figures	11.
t of Tables	
t of Abbreviations	xiv
t of Figures t of Tables t of Abbreviations	

PART I: LITERATURE REVIEW THE BASIC CONCEPT OF BUILDING DESIGN AND ENVIRONMENT, LOW ENERGY STRATEGIES IN BUILDINGS AND ENERGY SYSTEMS.

CHAPTER 1: INTRODUCTION AND RESEARCH BACKGROUND

1.0	Introduction	1
1.1	Background	2
1.2	Problem Statement	4
1.3	Research Questions	
1.4	Hypothesis	
1.5	Aim and Objectives of the Research	
1.6	Significance of the Study	
1.7	Scope of the Study	8
1.8	Thesis Outline	9
1.9	Summary and Conclusion	

CHAPTER 2: ENVIRONMENTAL STRATEGIES FOR BUILDING DESIGN IN TROPICAL CLIMATES

	IN TROFICAL CLIMATES	
2.0 Int	roduction	
2.1	Traditional Architecture	
2.1.1	Bioclimatic Strategies in Traditional Malay Houses	14
2.1.2	Components of the Physical Element in the Malay House	
2.1.3	Physical Changes in the Malay House	20
2.1.4	Conventional High Rise Building	
2.1.5	Limitation in Early (Conventional) High-rise Building	
2.2	Bioclimatic Strategies for High-rise Buildings	
2.2.1	Bioclimatic Categories	
2.2.2	The Form and Envelope Category	
2.3	Environmental Performance of High Rise Buildings	
2.3.1	Environmental Consideration	
2.3.2	Energy Consumption	
2.3.3	Architectural Design	
2.4	Indoor Comfort Design Condition	
2.5	Human Comfort and Health	
2.5.1	Thermal Comfort	
2.5.2	Visual Comfort	
2.5.3	Acoustic Comfort	43
2.6	Ecological, Passive and Bioclimatic Design Strategies	
2.7	Evaluation of Thermal Conditions	

2.8	Predicted Mean Vote (PMV) & Predicted Percentage Dissatisfied (PPD)	51
2.8.1	Predicted Mean Vote (PMV)	
2.8.2	Predicted Percentage Dissatisfied (PPD)	52
2.9	Office Building Design	53
2.10	Low Energy Design	55
2.11	Energy and Environmental Evaluation	57
2.12	Summary and Conclusion	58

CHAPTER 3: RESEARCH DESIGN AND METHODOLOGY

3.1Research Design for Evaluating High Rise Office Blocks in Malaysia.613.2Environmental Evaluation623.3Building Energy consumptions633.4Post Occupancy Evaluation (POE)653.4.1Physical monitoring673.4.2Questionnaires673.4.3Observation703.5Data Collection713.5.1Objectives of the field study723.5.3Preparation for the field study723.5.4Environmental Parameters Measurement733.5.5Data Gathered In the Field Study743.6Data Analysis Techniques773.6.1.1Reliability Analysis783.6.1.2Chi-Square Test (χ^2)793.6.1.3The Level of Significance793.6.2Environmental & Energy Consumption Data803.7Summary and Conclusion80	3.0 Ir	itroduction	
3.2Environmental Evaluation623.3Building Energy consumptions633.4Post Occupancy Evaluation (POE)653.4.1Physical monitoring673.4.2Questionnaires673.4.3Observation703.5Data Collection713.5.1Objectives of the field study723.5.2Methodology of the field study723.5.3Preparation for the field study723.5.4Environmental Parameters Measurement733.5.5Data Gathered In the Field Study743.6Data Analysis Techniques773.6.1.1Reliability Analysis783.6.1.2Chi-Square Test (χ^2)793.6.1.3The Level of Significance793.6.2Environmental & Energy Consumption Data803.7Summary and Conclusion80	3.1	Research Design for Evaluating High Rise Office Blocks in Malaysia	
3.3Building Energy consumptions633.4Post Occupancy Evaluation (POE)653.4.1Physical monitoring673.4.2Questionnaires673.4.3Observation703.5Data Collection713.5.1Objectives of the field study713.5.2Methodology of the field study723.5.3Preparation for the fields study723.5.4Environmental Parameters Measurement733.5.5Data Gathered In the Field Study743.6Data Analysis Techniques773.6.1.1Reliability Analysis783.6.1.2Chi-Square Test (χ^2)793.6.1.3The Level of Significance793.6.2Environmental & Energy Consumption Data803.7Summary and Conclusion80	3.2	Environmental Evaluation	62
3.4Post Occupancy Evaluation (POE)653.4.1Physical monitoring.673.4.2Questionnaires673.4.3Observation.703.5Data Collection713.5.1Objectives of the field study.713.5.2Methodology of the field study.723.5.3Preparation for the field study.723.5.4Environmental Parameters Measurement.733.5.5Data Gathered In the Field Study.743.6Data Analysis Techniques.773.6.1.1Reliability Analysis.783.6.1.2Chi-Square Test (χ^2)793.6.2Environmental & Energy Consumption Data.803.7Summary and Conclusion80	3.3	Building Energy consumptions	63
3.4.1Physical monitoring673.4.2Questionnaires673.4.3Observation703.5Data Collection713.5.1Objectives of the field study713.5.2Methodology of the field study723.5.3Preparation for the fields study723.5.4Environmental Parameters Measurement733.5.5Data Gathered In the Field Study743.6Data Analysis Techniques773.6.1.1Reliability Analysis783.6.1.2Chi-Square Test (χ^2)793.6.1.3The Level of Significance793.6.2Environmental & Energy Consumption Data803.7Summary and Conclusion80	3.4	Post Occupancy Evaluation (POE)	65
3.4.2Questionnaires673.4.3Observation703.5Data Collection713.5.1Objectives of the field study713.5.2Methodology of the field study723.5.3Preparation for the fields study723.5.4Environmental Parameters Measurement733.5.5Data Gathered In the Field Study743.6Data Analysis Techniques773.6.1Questionnaires773.6.1.1Reliability Analysis783.6.1.2Chi-Square Test (χ^2)793.6.2Environmental & Energy Consumption Data803.7Summary and Conclusion80	3.4.	1 Physical monitoring	67
3.4.3Observation	3.4.	2 Questionnaires	67
3.5Data Collection713.5.1Objectives of the field study713.5.2Methodology of the field study723.5.3Preparation for the fields study723.5.4Environmental Parameters Measurement733.5.5Data Gathered In the Field Study743.6Data Analysis Techniques773.6.1Questionnaires773.6.1.1Reliability Analysis783.6.1.2Chi-Square Test (χ^2)793.6.2Environmental & Energy Consumption Data803.7Summary and Conclusion80	3.4.	3 Observation	
3.5.1Objectives of the field study713.5.2Methodology of the field study723.5.3Preparation for the fields study723.5.4Environmental Parameters Measurement733.5.5Data Gathered In the Field Study743.6Data Analysis Techniques773.6.1Questionnaires773.6.1.1Reliability Analysis783.6.1.2Chi-Square Test (χ^2)793.6.2Environmental & Energy Consumption Data803.7Summary and Conclusion80	3.5	Data Collection	71
3.5.2Methodology of the field study723.5.3Preparation for the fields study723.5.4Environmental Parameters Measurement733.5.5Data Gathered In the Field Study743.6Data Analysis Techniques773.6.1Questionnaires773.6.1.1Reliability Analysis783.6.1.2Chi-Square Test (χ^2)793.6.1.3The Level of Significance793.6.2Environmental & Energy Consumption Data803.7Summary and Conclusion80	3.5.	1 Objectives of the field study	71
3.5.3Preparation for the fields study	3.5.	2 Methodology of the field study	72
3.5.4Environmental Parameters Measurement733.5.5Data Gathered In the Field Study743.6Data Analysis Techniques773.6.1Questionnaires773.6.1.1Reliability Analysis783.6.1.2Chi-Square Test (χ^2)793.6.1.3The Level of Significance793.6.2Environmental & Energy Consumption Data803.7Summary and Conclusion80	3.5.	3 Preparation for the fields study	72
3.5.5Data Gathered In the Field Study743.6Data Analysis Techniques773.6.1Questionnaires773.6.1.1Reliability Analysis783.6.1.2Chi-Square Test (χ^2) 793.6.1.3The Level of Significance793.6.2Environmental & Energy Consumption Data803.7Summary and Conclusion80	3.5.4	4 Environmental Parameters Measurement	73
3.6Data Analysis Techniques	3.5.	5 Data Gathered In the Field Study	74
3.6.1Questionnaires773.6.1.1Reliability Analysis783.6.1.2Chi-Square Test (χ^2) 793.6.1.3The Level of Significance793.6.2Environmental & Energy Consumption Data803.7Summary and Conclusion80	3.6	Data Analysis Techniques	77
3.6.1.1Reliability Analysis783.6.1.2Chi-Square Test (χ^2) 793.6.1.3The Level of Significance793.6.2Environmental & Energy Consumption Data803.7Summary and Conclusion80	3.6.	1 Questionnaires	77
3.6.1.2Chi-Square Test (χ^2) 793.6.1.3The Level of Significance793.6.2Environmental & Energy Consumption Data803.7Summary and Conclusion80	3.	6.1.1 Reliability Analysis	78
3.6.1.3 The Level of Significance 79 3.6.2 Environmental & Energy Consumption Data 80 3.7 Summary and Conclusion 80	3.	6.1.2 Chi-Square Test (χ^2)	79
 3.6.2 Environmental & Energy Consumption Data	3.	6.1.3 The Level of Significance	79
3.7 Summary and Conclusion	3.6.2	2 Environmental & Energy Consumption Data	80
	3.7	Summary and Conclusion	80

PART II: CASE STUDIES AND ANALYSIS ENVIRONMENTAL DESIGN CONDITION AND USERS PERCEPTION IN MALAYSIA, RECOMMENDATIONS AND CONCLUSION

CHAPTER 4: CASES STUDIES CHARACTERISTICS 4.0 Introduction

.0	Introduc	tion	
4.1	Case	e Studies Buildings in Peninsular Malaysia	
4	.1.1 C	ase Study in Penang	
	4.1.1.1	Menara UMNO (Bioclimatic)	
	4.1.1.2	Menara KOMTAR (Conventional)	
4	.1.2 C	ase Study in Kuala Lumpur& Petaling Jaya	
	4.1.2.1	Menara Mesiniaga (Bioclimatic)	
	4.1.2.2	Menara IBM (bioclimatic)	
	4.1.2.3	Menara Tun Ismail Mohd Ali (Conventional)	
	4.1.2.4	Menara Lembaga Urusan Tabung Haji (Conventional)	
4.2	Clin	natic Characteristic	
4.3	Obs	ervation of Architectural Design	
4.4	Ener	gy Used	
4.5	Sum	mary and Conclusion	

CHAPTER 5: PERCEPTION OF ARCHITECTURAL ELEMENTS IN OFFICE SPACES

5.0 In	troduction	
5.1	Description of respondents	
5.2	User's Perception of their Building Design	
5.3	Office Spaces	
5.3.1	General Layout	
5.3.2	2 Adequacy of space	
5.3.3	Flexibility of space use	
5.3.4	Ceiling Height	
5.3.5	Window Size	
5.3.6	Window Position	
5.3.7	View to Outside from Working Areas	
5.3.8	B Difficulty to Open/Close Window	
5.3.9	Satisfaction towards the Availability of Windows	
5.3.1	0 Satisfaction towards the overall appearance of the office building	
5.3.1	1 Discussion	
5.4	Summary and Conclusion	

CHAPTER 6: PERCEPTION OF ARCHITECTURAL ELEMENTS IN COMMUNAL SPACES

6.0 Int	roduction	140
6.1	Appearance & Pleasantness of Spaces	
6.1.1	Main Entrance	
6.1.2	Outside View from Common Area	
6.1.3	Aesthetics	
6.1.4	Landscaping	
6.1.5	Lift Lobby Area	
6.2	Access	158
6.2.1	Parking Spaces	158
6.2.2	Public Corridor and Accessibility	160
6.2.3	Access to Terraces and Circulation	162
6.3	Special Features (sky court and roof top)	163
6.4	Satisfaction towards Public Area Spaces in the Building	167
6.5	Summary and Conclusion	169

CHAPTER 7: INDOOR ENVIRONMENTAL MEASUREMENTS 7.0 Introduction

173
. 173
.177
. 179
.204

CHAPTER 8: PERCEPTION OF INDOOR ENVIRONMENTAL CONDITION

8.0	Introduction	206
8.1	Thermal Resistance Value of Clothing (clo value)	209
8.2	Thermal Condition	211
8.3	Indoor Ventilation	217
8.4	ASHRAE Thermal Comfort Program Result	229

8.5	Indoor Lighting	239
8.6	Noise Level in Building	250
8.7	Overall Condition	256
8.8	Summary and conclusion	

CHAPTER 9: USER'S SATISFACTION: INTERPRETING THE RESULTS 9.0 Introduction

9.1 Reliability test	262
9.2 Chi-Square Test	263
9.2.1 Gender and Satisfaction	264
9.2.2 Ethnic Group and Satisfaction	266
9.2.3 Job Category and Satisfaction	269
9.2.4 Number of Colleague and Satisfaction	271
9.2.5 Zone Level and Satisfaction	273
9.3 Summary and Conclusion	274

CHAPTER 10: DISCUSSION AND RECOMMENDATIONS 10.0 Introduction

10.0 Intr	oduction	
10.1	Project Background	
10.2	Hypothesis Review	
10.3	Summary of Major Findings	
10.3.1	Energy Used	
10.3.2	Architectural Features (Office Area)	
10.3.3	Architectural Features (Communal Area & Building Services)	
10.3.4	Environmental Measurements	
10.3.5	Environmental Perception	
10.3.6	Statistical Analyses	
10.4	Design Recommendation for Comfort Conditions	
10.5	Energy Consumption	
10.6	Contributions	
10.7	Limitations	
10.8	Recommendation and Suggestion for Future Research	
10.9	Conclusion	
REFERE	NCES	

APPENDICES

Appendix 1: Questionnaires	
Appendix 2: Equipments	
Appendix 3: Outdoor Weather Data	
Appendix 4: ATCP Output Results	
Appendix 5: Electricity Consumption	
Appendix 6: Chi-Square Test for Several Features	
Appendix 7: Paper Abstracts	
End page	

LIST OF FIGURES

CHAPTER 1	
Figure 1.1: Kuala Lumpur city towers and development	2
Figure 1.2: Tropical architecture in traditional Malay house	
Figure 1.3: Structure of the study	
CHAPTER 2	
Figure 2.1: Climatic design of the traditional Malay house	14
Figure 2.2: External environment of the Malay house	15
Figure 2.3: Traditional Malay houses	17
Figure 2.4: Window or door component for control glare	18
Figure 2.5: Spatial components	19
Figure 2.6: Yeang's bioclimatic approach model	25
Figure 2.7: Olgyay's bioclimatic approach model	25
Figure 2.8: Malaysia's electricity generation, 1980-2003	32
Figure 2.9: Energy consumption by building type in Malaysia	33
Figure 2.10: Approximate average values of energy consumption in office	
buildings in Malaysia	33
Figure 2.11: Daylight distribution for a typical door in KOMTAR during	
overcast sky	36
Figure 2.12: Illustration of different glazing shading strategies indicating	
convective and radiant heat exchange	37
Figure 2.13: Assessment of comfort based on the heat-balance model	39
Figure 2.14: Interaction between the human feeling of comfort, building use,	
building envelope and energy consumption	40
Figure 2.15: Ecologic architecture base on design information	44
Figure 2.16: Ecologic design factors	45
Figure 2.17: Relationship of passive, bioclimatic and ecological approaches	46
Figure 2.18: The new approach in a global context of sustainable development	47
Figure 2.20. An edent igned we del e Stiller in this study	47
Figure 2.20. All adapt ional model of thermoregulation	49
Figure 2.21. Kelationships between indoor neutralities and outdoor temperatures	49
Variable neutralities and humidity	50
Figure 2.22: Predicted Derecettage of Disecti-field (DDD) f	50
Predicted Mean Vote (PMI)	50
Figure 2.24: Ventilation biorarchy	
rigure 2.24. Ventilation metaleny	
CHAPTER 3	
Figure 3.1: Factors that influence energy consumption	60
Figure 3.2: Energy evaluation approach (metering strategies)	00
Figure 3.3: Estimated energy usage in an example building	64
Figure 3.4: Post occupancy evaluation techniques	0-7
Figure 3.5: Questionnaire structure for architectural features	0 <i>5</i> 68
Figure 3.6: Questionnaire structure for environmental features.	
Figure 3.7: Adopted research methodology	
Figure 3.8: Case study information and required data	70
Figure 3.9: Analysis diagram for architectural elements	77

CHAPTER 4 Figure 4.1: Loc

Figure 4.1: Location of cases study (Penang and Kuala Lumpur)	
Figure 4.2: Several images captured in UMNO tower	
Figure 4.3: Several images captured in MESINIAGA tower	
Figure 4.4: Several images captured in IBM Plaza.	91
Figure 4.5: Several images captured in KOMTAR tower	93
Figure 4.6: Several images captured in TIMA tower	95
Figure 4.7: Several images captured in LUTH tower	97
Figure 4.8: Bioclimatic indicators for high rise buildings	100
Figure 4.9: Average energy consumption in office buildings	103
CHAPTER 5	
Figure 5.1: Typical layout plan for all building	109
Figure 5.2: Histogram and normal curve for the general layout	110
Figure 5.3: Effect of plan form, core positions and circulation, routes on	
possible space arrangements for shallow, medium-depth and deep space	112
Figure 5.4: Service core where the lift lobby area is located in all building	
Figure 5.5: Typical office space (working station) in all buildings	114
Figure 5.6: Histogram and normal curve for adequacy of space	116
Figure 5.7: Dimension of typical desks and areas required for several	
office activities	117
Figure 5.8: Histogram and normal curve for flexibility use of space	119
Figure 5.9: Building height and average floor height.	121
Figure 5.10: Histogram and normal curve for ceiling height at user's	
working station	122
Figure 5.11: Facade description for all building (cross section)	122
Figure 5.12: Typical window size at all buildings	124
Figure 5.13: Histogram and normal curve for window size at working station	125
Figure 5.14: Window position in all buildings	126
Figure 5.15: Histogram and normal curve for window position at working station	127
Figure 5.16: Outside view from working station in all buildings	128
Figure 5.17: Histogram and normal curve for outside view from working area	130
Figure 5.18: Openable windows at the glazing façade in UMNO building	130
Figure 5.19: Histogram and normal curve for how difficult/easy to	
close/open the window	132
Figure 5.20: Histogram and normal curve for satisfaction toward available of window.	133
Figure 5.21: Histogram and normal curve for overall appearance of the building	135
Figure 5.22: Spaces for short discussion and work presentation	137
Figure 5.23: Typical ceiling height recommended in most high rise office building	137

Figure 6.1: The main entrance for all buildings	.142
Figure 6.2: Outside view from common areas in all buildings	. 144
Figure 6.3: The vital aesthetic view of all buildings	.146
Figure 6.4: Vertical landscaping around bioclimatic buildings	. 149
Figure 6.5: Landscaping around the buildings	.150
Figure 6.6: Typical lift lobby area in all buildings	.152
Figure 6.7: Typical lift for all buildings	.154
Figure 6.8: Public corridor & accessibility in all buildings	. 161
Figure 6.9: Sky courts in bioclimatic buildings	. 164
Figure 6.10: Roof top area in all buildings	. 166
Figure 6.11: Public area spaces in building	.167

Figure 7.1: Comparison of daytime indoor temperature	
Figure 7.2: Comparison of daytime indoor relative humidity	
Figure 7.3: Comparison of daytime indoor air velocity	
Figure 7.4: Comparison of indoor daytime light intensity	177
Figure 7.5: Comparison of daytime indoor sound pressure level	
Figure 7.6: Sound pressure level at various conditions	
Figure 7.7: UMNO: Location area of respondents and measured parameters	
Figure 7.8: MNIAGA: Location area of respondents and measured parameters	
Figure 7.9: IBM: Location area of respondents and measured parameters	
Figure 7.10: KOMTAR: Location area of respondents and measured parameters	
Figure 7.11: TIMA: Location area of respondents and measured parameters	
Figure 7.12: LUTH: Location area of respondents and measured parameters	
Figure 7.13: UMNO: Photographic view of several locations in buildings	
Figure 7.14: MESINIAGA: Photographic view of several locations in buildings	
Figure 7.15: KOMTAR: Photographic view of several locations in buildings	
Figure 7.16: TIMA: Photographic view of several locations in buildings	
Figure 7.17: LUTH: Photographic view of several locations in buildings	

CHAPTER 8

Figure 8.1: Clo calculator template in ASHRAE thermal comfort program	209
Figure 8.2: Thermal sensation rating in the office	213
Figure 8.3: Satisfaction rating towards the thermal condition in the office	214
Figure 8.4: Histogram and normal curve for thermal condition rating at	
several building areas	216
Figure 8.5: Natural ventilation rating in the office	219
Figure 8.6: Satisfaction rating towards natural ventilation in the office	220
Figure 8.7: Histogram and normal curve for quality of natural ventilation	
rating at several building areas	222
Figure 8.8: Air conditioner air circulation rating condition in the office	225
Figure 8.9: Satisfaction rating towards overall air conditioner circulation	
in the office	226
Figure 8.10: Histogram and normal curve for quality of artificial ventilation	
(air conditioner) rating at several building areas	228
Figure 8.11: Natural lighting rating in the office	242
Figure 8.12: Satisfaction rating towards the natural lighting in the office	243
Figure 8.13: Histogram and normal curve for quality of natural lighting	
rating at several building areas	245
Figure 8.14: Artificial lighting rating in the office	246
Figure 8.15: Satisfaction rating towards artificial lighting in the office	247
Figure 8.16: Histogram and normal curve for artificial lighting rating at	
several building areas	249
Figure 8.17: Noise level rating in the office	252
Figure 8.18: Satisfaction rating towards noise level in the office	253
Figure 8.19: Histogram and normal curve for quality of noise condition	
rating at several building areas	255
Figure 8.20: Satisfaction rating towards overall environmental condition in the building	g257
Figure 8.21: Level of happiness rating working in the building	258

Figure 9.1: Statistical significant diagram for respondents and satisfaction	s275
--	------

LIST OF TABLES

CHAPTER 2

Table 2.1: Electricity consumption in Malaysia	32
Table 2.2: Energy consumption distribution for commercial buildings in Malaysia	.33
Table 2.3: Energy consumption and index for several office buildings in Kuala Lumpur	.34

CHAPTER 3

Table 3.1: Rating scales used in the questionnaires	. 68
Table 3.2: Data obtained in the fieldworks	.75

CHAPTER 4

Table 4.1: Bioclimatic indicators for high rise buildings	
Table 4.2: Energy consumption in all buildings	
Table 4.3: Overall annual energy performance (electricity) and CO ₂ emission	

Table 5.1: Respondents background: Profile of subjects	107
Table 5.2: Rating scales used for the evaluation of design qualities	108
Table 5.3: Rating scales used for condition evaluation	108
Table 5.4: General layout	110
Table 5.5: Typical space standard for various office functions	
Table 5.6: Number of colleagues working in the same area/space/room	115
Table 5.7: Adequacy of space	115
Table 5.8: Cross tabulation between number of colleagues working in the	
same area and adequacy of space	116
Table 5.9: Chi-square tests for number of colleagues working in the same	
area and adequacy of space cross tabulation	116
Table 5.10: Flexibility of space use	119
Table 5.11: Flexibility of space use based on job categories	120
Table 5.12: Chi-square tests for flexibility of space use and job categories	
cross tabulation	120
Table 5.13: Ceiling height at the office	121
Table 5.14: Perception of window size in office spaces by respondents	125
Table 5.15: The position of the respondent's desk in relation to the window	126
Table 5.16: Window position and location in the buildings	127
Table 5.17: Cross tabulation the position of the respondent's desk in relation	
to the window and the quality of window position in the office spaces	128
Table 5.18: Chi-square tests for the quality of the window in relation to the	
position of user's desk	.128
Table 5.19: The outside view from their working areas	. 129
Table 5.20: Difficult/easy to open/close the window at workstation and common room	. 131
Table 5.21: Satisfaction towards the availability of window in their office	. 133
Table 5.22: Chi-square tests for satisfaction toward available of window	.134
Table 5.23: Level of satisfaction towards the overall appearance of the office building	.134
Table 5.24: Chi-square tests for satisfaction towards overall appearance of the building	. 135
Table 5.25: Building rank by architectural features (office space)	. 138

Table 6.1: Rating scales used for the evaluations of design quality	.141
Table 6.2: Rating scales used for condition evaluation	. 141
Table 6.3: Rating scales used for satisfaction level evaluation	.141
Table 6.4: Quality of the pleasantness of the main entrance	.143
Table 6.5: Quality of the view to the outside from common area	. 145
Table 6.6: The aesthetic value/image/prestige of the building	. 147
Table 6.7: Cross tab between the quality of the building image/prestige/aesthetic	
& satisfaction with the public area spaces in the building	. 147
Table 6.8: Chi-square tests for the quality of the building image/prestige/aesthetic	
& satisfaction with the public area spaces in the building	. 147
Table 6.9: Cross tab the quality of the building image/prestige/aesthetic &	
satisfaction with the overall appearance of the building	148
Table 6.10: Chi-square tests the quality of the building image/prestige/aesthetic &	
satisfaction with the overall appearance of the building	148
Table 6.11: Quality of the landscaping at most of the common areas	151
Table 6.12: Lift lobby area pleasantness	153
Table 6.13: The lift services interval time in the building	155
Table 6.14: Level of satisfaction towards the overall lift services in the building	156
Table 6.15: Satisfaction towards the overall lift services by zone level	157
Table 6.16: Chi-square tests for cross tabulation between zone level and	
satisfaction towards lift services	157
Table 6.17: Number of parking spaces for car, motorcycle, and bicycle in the building	159
Table 6.18: Quality of the public corridor and accessibility	161
Table 6.19: Quality of the access to terraces and circulation	162
Table 6.20: Quality of sky court in the building	164
Table 0.21: Quality of the building roof top	166
Table 0.22: Level of satisfaction towards public area spaces in the building	168
Table 0.23: Building rank by architectural features (communal spaces & services)	170

Table 7.1: Measured parameter by time reading $(T_a, RH \text{ and } V_a)$	
Table 7.2: Measured parameter by time reading (light intensity)	177
Table 7.3: Measured parameter by time reading (sound level)	180
Table 7.4: Average Sound level in other Malaysian offices	180
Table 7.5: Indoor air temperature reading in bioclimatic buildings	189
Table 7.6: Indoor air temperature reading in conventional buildings	190
Table 7.7: Indoor relative humidity reading in bioclimatic buildings	191
Table 7.8: Indoor relative humidity reading in conventional buildings	192
Table 7.9: Indoor air velocity reading in bioclimatic buildings	193
Table 7.10: Indoor air velocity reading in conventional buildings	194
Table 7.11: Indoor light meter reading in bioclimatic buildings	195
Table 7.12: Indoor light meter reading in conventional buildings	196
Table 7.13: Indoor sound meter reading in bioclimatic buildings	197
Table 7.14: Indoor sound meter reading in conventional buildings	198
Table 7.15: Average measured parameter by building type	204
· • · ·	

Table 8.1: Indoor environment evaluation diagram	.207
Table 8.2: Rating scales used for environmental satisfaction	.207
Table 8.3: Rating scales used for environmental condition	.208
Table 8.4: Rating scales used for environmental quality	.208
Table 8.5: Thermal resistance value of clothing (clo value) for all buildings	.209
Table 8.6: Rating frequency for overall thermal sensation in the office	.213
Table 8.7: Rating for satisfaction level towards thermal condition in the office	.214
Table 8.8: Rating frequency for quality of thermal condition at working station (office)	.215
Table 8.9: Rating frequency for quality of thermal condition at lift lobby	.215
Table 8.10: Rating frequency for quality of thermal condition at corridor	.215
Table 8.11: Rating for overall air movement from natural ventilation in the office	.219
Table 8.12: Rating for satisfaction level towards natural ventilation in the office	.220
Table 8.13: Quality of natural ventilation at work station	221
Table 8.14: Quality of natural ventilation at lift lobby	221
Table 8.15: Quality of natural ventilation at corridor	221
Table 8.16: Rating for overall air circulation from air conditioner system in the office	225
Table 8.17: Satisfaction towards overall air conditioner air circulation in the office	226
Table 8.18: Quality of air conditioner air circulation at working station	227
Table 8.19: Quality of air conditioner air circulation at lift lobby	227
Table 8.20: Quality of air conditioner air circulation at corridor	227
Table 8.21: ASHRAEE thermal comfort program result (summary)	230
Table 8.22: A TCP input data for bioclimatic buildings	231
Table 8.23: ATCP input data for conventional buildings	232
Table 8.24: A TCP output data for UMNO (bioclimatic)	233
Table 8.25. A TCP output data for MESINIAGA (bioclimatic)	234
Table 8.20. ATCP output data for KOMTAP (providential)	235
Table 8.27. ATCP output data for TIMA (conventional)	236
Table 8.29: ATCP output data for LUTH (conventional)	237
Table 8.30: Overall level of natural light in the office spaces	238
Table 8.31: Rating for satisfaction level towards natural light in building	242
Table 8.32: Quality of natural light at working station	243
Table 8.33: Quality of natural light at lift lobby	244
Table 8.34: Quality of natural light at corridor	244 244
Table 8.35: Overall level of artificial lighting in the office	244
Table 8.36: Rating frequency for satisfaction with the artificial lighting in office	240
Table 8.37: Quality of artificial lighting at working station.	748
Table 8.38: Quality of artificial lighting at lift lobby	248
Table 8.39: Quality of artificial lighting at corridor/pathway	248
Table 8.40: Rating frequency for overall noise level in the office	252
Table 8.41: Rating frequency for satisfaction towards noise condition in office	253
Table 8.42: Quality of the noise level at working station	254
Table 8.43: Quality of the noise level at lift lobby	254
Table 8.44: Quality of the noise level at corridor	254
Table 8.45: Rating frequency for satisfaction towards working environment	257
Table 8.46: Rating frequency for level of happiness working in this building	258
Table 8.47: Building rank by users' perception towards environmental conditions	260

CHAPTER 9	
Table 9.1: Internal consistency reliability test	262
Table 9.2: Cross tabulation between gender and satisfaction.	
Table 9.3: Satisfaction towards window available in the office and gender crosstab	265
Table 9.4: Difficulty to open/close window in the office and gender crosstab	203 265
Table 9.5: Gender and satisfaction towards thermal condition in the office crosstab	205 265
Table 9.6: Chi-square tests for ethnic group & satisfaction	205 266
Table 9.7: Crosstab between ethnic group & satisfaction with the natural lighting	200
available in office	267
Table 9.8: Crosstab between ethnic group & satisfaction with the artificial lighting	
available in the office	267
Table 9.9: Crosstab between ethnic group & satisfaction with the natural ventilation	
available in the office	268
Table 9.10: Crosstab ethnic group & satisfaction with the window in the office	268
Table 9.11: Crosstab between ethnic group & satisfaction with the overall	
maintenance in the building	268
Table 9.12: Crosstab between ethnic group & satisfaction with the overall	
housekeeping in the building	268
Table 9.13: Crosstab ethnic group & satisfaction with the overall lift services	
in the building	268
Table 9.14: Crosstab between job category & natural lighting in the office	
Table 9.15: Crosstab between job category and satisfaction	269
Table 9.16: Crosstab between job category & thermal condition in the office	270
Table 9.17: Crosstab between job category & natural ventilation in the office	270
Table 9.18: Crosstab between job category & noise level in the office	270
Table 9.19: Crosstab between number of colleague in the same room and satisfaction	271
Table 9.20: Satisfaction towards thermal condition in the office and number of	
colleagues working in the same area crosstab	272
Table 9.21: Satisfaction towards public area spaces in the building and number of	
colleagues working in the same area crosstab	272
Table 9.22: Level of happiness working in the building and number of colleagues	
working in the same area crosstab	272
Table 9.23: Satisfaction towards thermal condition in the office by zone level	273
Table 9.24: Satisfaction with overall office environment by zone level	273
Table 9.25: Crosstab between zone level and satisfaction	273

Table 10.1: Energy consumption in all buildings	282
Table 10.2: Overall annual energy performance (electricity) and CO ₂ emission	282
Table 10.3: Building rank by architectural features (office space)	283
Table 10.4: Building rank by architectural features (communal spaces & services)	285
Table 10.5: Building rank by users' perception towards environmental conditions	287

LIST OF ABBREVIATIONS

ASEAN	=	The Association of Southeast Asia Nations.
ASHRAE	=	American Society of Heating Refrigerating and Air Conditioning
		Engineer Atlanta.
ATCP	=	ASHRAE Thermal Comfort Program.
BNL	=	Background Noise Level.
CIBSE	=	The Chartered Institution of Building Services Engineer London.
CIMB	=	Commerce International Merchant Bankers Tower.
CO_2	=	Carbon Dioxide.
CPZ	=	Control Potential Zone
DISC	=	Predicted Thermal Discomfort
EPU	=	Economic Planning Unit of Malaysia
FT*	=	New Effective Temperature
FW	=	Fast West
HVAC		Hasting Ventilation and Air Conditioning
IDM	_	Mongra IBM (IDM Concentration Terror)
	_	International Standards (Operation Tower).
ISU KOMTAD	_	International Standards Organisation.
KOMTAK	=	Menara Kompleks Tun Abdul Razak (Tun Abdul Razak Complex
1 50		lower).
LEO	=	Low Energy Office.
LUTH	=	Menara Lembaga Urusan Tabung Haji (Pilgrim Management and
		Fund Board Tower).
MECM		Ministry of Energy, Communications and Multimedia, Malaysia.
MESINIAGA	=	Menara Mesiniaga (Mesiniaga Tower).
MMS	=	Malaysian Meteorological Service of Malaysia.
MRT	=	Mean Radiant Temperature.
MS	=	Malaysian Standards.
NS	=	North – South.
PC	=	Personal Computer.
PD	=	Predicted percent dissatisfied due to Draft.
PMD	=	Prime Minister Department of Malaysia.
PMV	=	Predicted Mean Vote.
PNB	=	Permodalan Nasional Berhad Tower.
POE	=	Post Occupancy Evaluation.
PPD	=	Predicted Percent Dissatisfied.
PSPS	=	Cumulative Percent of People Choosing a Particular Air Velocity at
		the Specific Temperatures Tested
RH	=	Relative Humidity
SPSS	=	Statistical Package for the Social Sciences computer software
T	_	Air Temperature
T_a TIMA	=	Mengra Tun Ismail Mobd Ali (Tun Ismail Mobd Ali Tower)
T /TN	_	Neutral Temperature
T_{n}	_	Thermal Sensation Vote
TSENIS	_	Dradiated Thermal Sensation
IJENO	_	Freucieu Themhai Sensation.
	_	United Malay Nation Organisation Tower.
	_	University 1 un Hussein Unn of Malaysia.
V _a	=	Air Velocity.

CHAPTER 1: INTRODUCTION AND RESEARCH BACKGROUND

- ------

1.0 Introduction

It is generally accepted that traditional or vernacular architecture is well adapted to the dominant climate of its surroundings by means of the method of trial and error. Passive environmental strategies in Malaysia have been widely adopted in vernacular buildings for many centuries before the colonial era. These strategies are evident in the traditional Malay houses and their various components. However, during the colonial era, with the influence of western styles, many of these strategies were abandoned particularly with the introduction of new building typologies.

Since independence in 1957, Malaysian architecture has experienced significant transformation, as many colonial towns have turned into the new state capitals. Symbols of nationhood were expressed in new and daring form of buildings, houses and structures designed by overseas trained Malaysian architects (Ruby and Christ, 1998). Creative and innovative techniques which were applied in the construction industry have changed the scale of commercial and residential buildings and have also enabled the erection of tall buildings in the capital city of Kuala Lumpur and other major cities such as Penang and Shah Alam.

In the 1990s, the drastic increase in economic growth has also increased the rate of building construction of numerous mega projects. This trend has extended to major cities in the country as shop houses have been replaced by shopping arcades, then by mega malls. Large scale housing estates have created suburban centres and townships with repetitive single and double storey terraced houses. Bungalows and apartments have been replaced by condominiums with centralized facilities and more high-rise tower buildings have been created all over the cities.

The low cost of electricity and domestic air-conditioning systems associated with higher expectations of social lifestyle and levels, have contributed to the high popularity of artificial cooling equipment in buildings (Ismail, 2000). Persistent economic growth encouraged a high rate of building construction in a number of Malaysian cities and the proliferation of high-rise office towers and shopping complexes (see figure 1.1). These towers are symbolically associated with a fast growing economy and a sign of progress, aimed at placing Malaysia at the forefront of the developing countries in the region (Chen, 1998).

As the global and national economy has become continuously stable, the construction industry has also increased drastically. New design concepts have been introduced, with most of them disregarding the lessons from the local tropical vernacular architecture. The new and "progressive" architecture is generally allied with the architecture of immaculate steel and glass panels. Problems of energy usage, air quality and amenities provided by the building to its users have then become an issue (Radzi, 1998).

Figure 1.1: Kuala Lumpur city towers and development

1.1 Background

In the new millennium, greater urbanization demands more environmentally responsive solutions to the way Malaysians live and work. Passive environmental response is becoming popular in modern building design. The basic principles of vernacular tropical architecture are being re-interpreted in the new "green architecture" with the adoption of more natural ventilation, lighting as well as sun shading devices as evident in the local vernacular architecture.

These strategies are found working in the architecture of the traditional Malay house (see figure 1.2). It is fully shaded by vegetation and trees surrounding its area and providing a buffer zone to the indoor environment. Height is increased in the roof architecture in order to capture winds at a higher velocity, and openings incorporated in the walls encourage airflow through the buildings. Building orientation towards the direction of the prevailing wind is also an important factor in maintaining good cross ventilation (Davidson, 1998).

Figure 1.2: Tropical architecture in traditional Malay house (Source: Davidson, 1988:86-88)

Many of these strategies developed in the vernacular architecture are fully applicable to the architecture of contemporary buildings. However, we are today dealing with different building typologies, new building materials and building and planning regulations. Furthermore, lack of interest to learn from the past has led the local traditional architecture to develop further. According to Wan Abidin;

'From the understanding of the construction and design rules, the transformation of Malay houses through the ages can be traced. However, lack of interest in these traditional design and construction principles has inhibited the formal development of the Malay house and will further lead to its demise. Learning from tradition in Malaysia is hindered by law, policy, education curriculum, research and practice which not only discourage but also present obstacles to the development of traditional buildings' (Wan Abidin, 1984:28).

There is no doubt that urbanization in Malaysia is growing drastically especially in Kuala Lumpur and Penang. Resources of urban land for high density urban development have led to the proliferation of high-rise buildings. Many buildings are built up high to create more space and maximize the use of land, enabling developers to create more usable floor space. Many newly built hotels; condominiums, apartments, commercial centres as well as offices are built in this style.

Because of the high energy consumption of high-rise buildings, it is important to integrate clear adequate environmental strategies in the design. Energy efficiency of a building based on bioclimatic principles is determined by a set of environmental, technical and usage factors. The location of a building is a major determinant of bioclimatic strategies (Coch, 1998). Specific requirements for every single building type in terms of energy efficiency

should be defined. It is important to renew and update existing building regulations which have been inherited from the colonial period. Building standards should reflect the local people's socio-economic needs and local cultural and ecological conditions.

1.2 Problem Statement

Malaysia is located in the tropical climates region and has economic growth predicted to be continuously stable for the next three decades. The construction industry growth anticipated that the Malaysian architect would be able to promote new design concepts that represent the national identity, provide comfort and energy efficiency. Unfortunately most have left behind the traditional approaches of tropical architecture and adopted the international style which is generally associated with the architecture of immaculate glass boxes.

The cooling device which plays a significant role in providing a comfortable environment has been over exploited and contributes to energy waste (Ismail, 2000). Office workers suffer discomfort and this contributes to deterioration in their work performance. This reflects that natural ventilation and sun shading are still important features to be considered in building design in the tropics.

In the early 80's, the styles of the Malay vernacular architecture inspired many young architects and engineers in designing Malaysia's contemporary architecture. The Malay vernacular architecture has modified its style in order to adapt to modern society. According to Ahmad:

'Many modern buildings have focused their design concepts on the Malay vernacular architecture, particularly the Malay houses and palaces. Various roof shapes have derived from the Malay houses such as the states of Negeri Sembilan, Kelantan and Terengganu' (Ahmad et al., 2002:4).

In Kuala Lumpur there are buildings which are identified as following the same steps, such as Commerce International Merchant Bankers Berhad (CIMB) Tower, Permodalan Nasional Berhad (PNB) Tower, Maybank Tower, the National Museum and the National Library building. However, these types of buildings are only representations of the so called 'identity' and thus do not carry a deeper meaning of the vernacular tradition. The passive strategies approaches applied in the traditional house have not been properly implemented in these buildings. This is still happening in the new millennium although Wan Abidin first talked about it more than 25 years ago.

'Most of these works and studies are merely descriptive and almost all romanticise the beauty of a dying tradition attempts to 'create a national identity' have led to the borrowed use of indigenous architecture not only in residential buildings but also in the design of commercial and recreational buildings' (Wan Abidin, 1984:28).

One of the main characteristics of traditional Malay Houses is that they were designed with a deep understanding and respect for nature. This design with nature approach found in the traditional Malay house is best reflected in the climatic design of the house. According to Lim;

'To appreciate the climatic adaptations of the traditional Malay house, one must first understand the climatic and environmental conditions that the house is set in' (Lim, 1987:77).

1.3 Research Questions

The bioclimatic design approach design for high rise buildings was introduced and implemented by a few architects who learnt from their mistakes. The Malay vernacular architecture has modified their styles in order to adapt to the new building typologies without disregarding the local climatic and environmental conditions. The approach was later presumed to be the corrective strategies of the early high rise. However, the rationale for adapting the bioclimatic approach to high-rise design is that it can address many of the problems which conventional high-rise design does not. But to what extend does bioclimatic approach contribute to resolving these problems?

- Does the bioclimatic approach create a better environment for the building users?
- How do building users perceive the bioclimatic design?
- How does it affect their behaviours within the building?
- Does it really reduce energy consumption and by how much?
- What are the bioclimatic features that contribute in low energy building design?
- How does a bioclimatic approach reduce energy use in existing building?

These are the challenges that are needed to be countered not only by the architects promoting this approach but also those who are really involved in this industry.

1.4 Hypothesis

Environmental factors are the basic elements of bioclimatic principles. The principles have been developed and being used at design stages of bioclimatic high rise office as part of low energy strategies. Therefore, the following assumptions have to be substantiated through a series of building design evaluations.

Hypothesis 1:

"High rise office buildings in Malaysia incorporating bioclimatic design have better environmental performance and consume less energy than conventional ones"

- The transformation of bioclimatic approach from traditional into modern high rise office building in Malaysia can be seen in several component of the design.
- The bioclimatic approach provides natural ventilation and consequently will reduce energy consumption for cooling strategies especially from air- conditioning systems in high rise office building.
- The bioclimatic building must finally benefit from the natural light or day lighting strategies that will significantly reduce energy consumption for artificial lighting in high rise office building.

Hypothesis 2:

"Bioclimatic high rise office buildings create a better working environment for the users and provide higher level of satisfaction than conventional ones".

• The bioclimatic approach for high rise office building creates a better environment for the building users and they do perceive the benefits of the bioclimatic approach.

1.5 Aim and Objectives of the Research

It is frequently argued that bio-climatic design strategies result in substantial energy savings in buildings and higher levels of user's satisfaction. However, such claims have not been fully substantiated by systematic research particularly when dealing with building types such as high rise office blocks.

"The aim of the research is to investigate how high rise office building design in tropical climate can contribute in reducing energy consumption while maintaining comfort. The main objective of this study is to compare the performance of a sample of Bioclimatic high rise office blocks with that of conventional ones in two Malaysian cities". Such performance was measured according to a combination of technical and social criteria: direct observation on various architectural aspects, environmental measurement and users' perception of comfort and satisfaction with their working environment. In this study, the processes were divided into two parts and the specific objectives can be described as follows:

Part I: Literature Review - The Basic Concept of Building Design and Environment, Low Energy Strategies in Buildings and Energy Systems.

- Perform a critical literature review on energy consumption in office building in order to identify problems and research area, and to develop hypotheses, research question as well as research methodology.
- Review the design of high rise buildings, the evolution and the invention of the bioclimatic high rise.
- Review previous research work on bioclimatic design in tropical climates.
- Learn from vernacular architecture and environment in a tropical climate with regard to ventilation strategy, optimization of natural lighting and protection against heavy rain and glare.
- Understand building performance evaluation method and approach in the scope of users' perception, energy consumption and comfort condition.
- Determine and identify a suitable method and approach for the case studies and design an appropriate working program.

Part II: Case Studies Data Analysis - Environmental Design Condition and Users Perception in Malaysia, Recommendations and Conclusion

- Document case studies characteristics
- Conduct direct measurement using specific equipment to provide quantitative data for air temperatures, air flow rates, light levels and noise levels.
- Conduct personal observation on the use of space.
- Accomplish an energy consumption for case study buildings using available utility bills (electricity) provided by the building's manager.
- Conduct a survey on users' perception and behaviour within the building using questionnaires to provide qualitative data.