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ABSTRACT 

This research investigated the thermal environmental performance of atria in the tropics. 

with special reference to Malaysia. The main design problems that affect the thermal and 

energy performance in existing Malaysian atria are overlighting and overheating due to 

the direct application of western top-lit atrium roof form. As such. this research proposed 

the side-lit atrium form which aimed at controlling direct sunlight as a way to improve 

thermal and energy performance of atria in the tropics. Based on the proposed conceptual 

atrium form, this research examined quantitatively some of the low energy design 

features and ventilation strategies that can possibly contribute to a better indoor thermal 

environmental perfonnance of atria in the tropics. The ultimate aim of this research is to 

propose design principles and guidelines for new low-energy atria in the tropics. 

The combined research methods are as follows: developing a conceptual low energy 

atrium form based on the vernacular design features to be used for computer modelling 

studies; calTying out field measurement and monitoring on an existing atrium building 

which provides validation data for dynamic thermal simulation program TAS: modelling 

exercise on the same monitored building using dynamic thermal modelling to develop 

confidence in cOlTectly modelling thermal stratification within the multi-level atrium: 

employing dynamic thermal modelling to model representative atrium forms (i.e. both 

side-lit and top-lit model) and examine quantitatively the effects of some of the key 

design parameters (i.e. wall-to-roof void area, roof overhangs, and internal solar blinds) 

on the thermal comfort and energy performance in atria due to both full natural 

ventilation and pressurised ventilation; and utilising computational Ouid dynamics (CFD) 

to complement the dynamic thermal simulation results, and to investigate quantitatively 

the thermal and ventilation performance within the atrium well in response to the changes 

of design parameters (i.e. varying the inlet to outlet opening area ratio and outlet" s 

alTangement). 

The research findings supported the research proposition and demonstrated the 

effectiveness of the side-lit form as a way to improve the thermal and energy performance 

with regard to users' thermal comfort in atria in the tropics. The main findings from both 

dynamic thermal simulation and computational Ouid dynamics (CFD) arc as follo\\s: full 

natural ventilation strategy is not viable for Ivlala\'sian atria: both suilicicnth hic:h \'.all-......... .. .. ...... 



to-roof void area and extending high-level internal solar blinds can greatly improve the 

atrium's thermal performance particularly on occupied levels; sufficiently wide roof 

overhangs above the clerestory areas of the side-lit atrium form generally improves the 

thermal and energy performance within the central atrium throughout the year; reasonably 

comfortable thermal environment on occupied levels of a low-rise atrium can be achieved 

by only supplying cooler air at low-level with sufficient ventilation rate: sufficiently 

higher inlet to outlet opening area ratio can improve the thermal performance on the 

occupied levels; and with equal inlet and outlet opening area, changing the outlet" s 

arrangement (i.e. location and arrangement) would not significantly affect the atrium's 

thermal perforn1ance. 
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Theoretically obtained air velocity for inlet (m/s) 

Theoretically obtained air velocity for outlet (m/s) 

Friction loss due to airflow through the outlet (J/kg) 

Ratio of man's surface area while clothed to while nude 

Gravitational acceleration (=9,82 m/s2) 

Intemal radiant exchange between room surfaces (W /K) 

Convective heat transfer coefficient (W/m2oK) 

Intemal convective heat transfer coefficient (W/m2K) 

Extemal convective heat transfer coefficient (W/m2K) 

Extemal radiative heat transfer coefficient (W/m2K) 

Intemal radiative heat transfer coefficient (W/m2K) 

Vertical distance between the centre of inlet and the centre of outlet (m) 

Vertical distance between the inlet and the neutral pressure plane (m) 

xx 



k 

L 

M 

111 

11 

P 

P 

Pol 

Pol 

P a 

PI!' 

PMV 

PPD 

qCOIlll,int 

qcand,ext 

qcnm·,cxl 

dlr,c:xt 
qhar 

qK/I(i 

Vertical distance between the outlet and the neutral pressure plane (m) 

Thermal resistance of clothing (m2°C/W) 

Kinetic energy of turbulence (m2/s2) 

Characteristic length of the heat transfer surface (m) 

Metabolic rate (W/m2) 

Mass flow rate (kg/s) 

Opening area ratio ( = .111/.112 ) 

Radiant proportion 

Static pressure (N/m2) 

Indoor pressure at inlet (Pa) 

Indoor pressure at outlet (Pa) 

Pressure difference across the inlet (Pa) 

Outdoor pressure at inlet (Pa) 

Outdoor pressure at outlet (Pa) 

Pressure difference across the outlet (Pa) 

Water vapour pressure in ambient air (millibar) 

The screen water vapour pressure (millibar) 

Predicted Mean Vote 

Predicted Percentage Dissatisfied (%) 

Internal surface conduction heat flux (W/m2) 

External surface conduction heat flux (W/m2) 

Internal convective heat flux (W/m2) 

External convective heat flux (W/m2) 

Direct nonnal (beam) solar radian intensity (W/n/) 

Direct solar radiation on the horizontal plane (W/m2) 

Total long-wave incident on the surface from its environment (W/m2) 

Long-wave radiant flux by the external surface (W/nl) 

The global radiation incident on the horizontal plane (W/m2) 

Long-wave incident on the surface from the sky (W/m2) 
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