A STUDY ON THERMAL ENVIRONMENTAL PERFORMANCE IN ATRIA IN THE TROPICS WITH SPECIAL REFERENCE TO MALAYSIA

ABD HALID ABDULLAH

HERIOT-WATT UNIVERSITY SCHOOL OF THE BUILT ENVIRONMENT MAY 2007

A Study on Thermal Environmental Performance in Atria in the Tropics with Special Reference to Malaysia

by

Abd Halid Abdullah

submitted for the degree of Doctor of Philosophy

Heriot-Watt University

School of the Built Environment

May 2007

This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognize that the copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without the prior written consent of the author or of the University (as may be appropriate).

ABSTRACT

This research investigated the thermal environmental performance of atria in the tropics. with special reference to Malaysia. The main design problems that affect the thermal and energy performance in existing Malaysian atria are overlighting and overheating due to the direct application of western top-lit atrium roof form. As such, this research proposed the side-lit atrium form which aimed at controlling direct sunlight as a way to improve thermal and energy performance of atria in the tropics. Based on the proposed conceptual atrium form, this research examined quantitatively some of the low energy design features and ventilation strategies that can possibly contribute to a better indoor thermal environmental performance of atria in the tropics. The ultimate aim of this research is to propose design principles and guidelines for new low-energy atria in the tropics.

The combined research methods are as follows: developing a conceptual low energy atrium form based on the vernacular design features to be used for computer modelling studies; carrying out field measurement and monitoring on an existing atrium building which provides validation data for dynamic thermal simulation program TAS; modelling exercise on the same monitored building using dynamic thermal modelling to develop confidence in correctly modelling thermal stratification within the multi-level atrium; employing dynamic thermal modelling to model representative atrium forms (i.e. both side-lit and top-lit model) and examine quantitatively the effects of some of the key design parameters (i.e. wall-to-roof void area, roof overhangs, and internal solar blinds) on the thermal comfort and energy performance in atria due to both full natural ventilation and pressurised ventilation; and utilising computational fluid dynamics (CFD) to complement the dynamic thermal simulation results, and to investigate quantitatively the thermal and ventilation performance within the atrium well in response to the changes of design parameters (i.e. varying the inlet to outlet opening area ratio and outlet's arrangement).

The research findings supported the research proposition and demonstrated the effectiveness of the side-lit form as a way to improve the thermal and energy performance with regard to users' thermal comfort in atria in the tropics. The main findings from both dynamic thermal simulation and computational fluid dynamics (CFD) are as follows: full natural ventilation strategy is not viable for Malaysian atria; both sufficiently high wall-

to-roof void area and extending high-level internal solar blinds can greatly improve the atrium's thermal performance particularly on occupied levels; sufficiently wide roof overhangs above the clerestory areas of the side-lit atrium form generally improves the thermal and energy performance within the central atrium throughout the year; reasonably comfortable thermal environment on occupied levels of a low-rise atrium can be achieved by only supplying cooler air at low-level with sufficient ventilation rate; sufficiently higher inlet to outlet opening area ratio can improve the thermal performance on the occupied levels; and with equal inlet and outlet opening area, changing the outlet's arrangement (i.e. location and arrangement) would not significantly affect the atrium's thermal performance.

For my parents, beloved wife and children.

ACKNOWLEDGEMENTS

I wish to express my sincere thanks and gratitude to my supervisor, Dr Fan Wang, for his guidance, advice, support, encouragement and help to make this thesis a reality. I am also grateful to the Director of Research, Professor Gareth Pender, for his valuable support and contributions in the preparation of this thesis.

I acknowledge the assistance of students and staff at the Department of Architecture, South China University of Technology, Guangzhou for their willingness to cooperate during the field measurement and monitoring period. In particular I would like to address special thanks to Professor Meng Qinlin and Associate Professor Zhao Lihua for their support and valuable suggestions; and the following students: Zhang Yu, Gao Yunfei, Tu Jianwei, Jin Ling, Wang Zhigang, Pan Yufen, Chen Zhuolun, Hu Shaohua, Liu Yanhua, and Zhau Quan, for their technical support and assistance, without whom the completion of the field measurement would have been highly improbable.

My thanks go to the staff at the School of the Built Environment, Heriot-Watt University. I would especially like to thank Dr Iain MacDougall and Ms Margaret Inglis for providing assistance and technical support during the course of running the simulations using both dynamic thermal software TAS and computational fluid dynamics software PHOENICS in the Resource Room.

I wish to thank the University Tun Hussein Onn Malaysia (UTHM) and the Government of Malaysia for awarding me the scholarship that enables me to do this research.

My special thanks must go to my beloved wife, Rozana Mohd Ali for the support, sacrifice and patience throughout the long period of this research and to my lovely children (Laila Nazneen, Mohd Zulhilmi, Mohd Aiman, Mohd Hariz and Nurin Mastura) for their understanding of not spending enough time with them.

ACADEMIC REGISTRY **Research Thesis Submission**

Name:	ABD HALID ABDULLAH		
School/PGI:	School of the Built Environment		
Version: (i.e. First, Resubmission, Final)	Final	Degree Sought:	PhD

Declaration

In accordance with the appropriate regulations I hereby submit my thesis and I declare that:

- 1) the thesis embodies the results of my own work and has been composed by myself
- 2) where appropriate, I have made acknowledgement of the work of others and have made reference to work carried out in collaboration with other persons
- 3) the thesis is the correct version of the thesis for submission*.
- 4) my thesis for the award referred to, deposited in the Heriot-Watt University Library, should be made available for loan or photocopying, subject to such conditions as the Librarian may require
- 5) I understand that as a student of the University I am required to abide by the Regulations of the University and to conform to its discipline.
- * Please note that it is the responsibility of the candidate to ensure that the correct version of the thesis is submitted.

Signature of Candidate.	attatio	Date:	03 July 2007
Guildina		1	·

Submission

Submitted By (name in capitals):	
Signature of Individual Submitting:	
Date Submitted:	

For Completion in Academic Registry

Received in the Academic Registry by (name in capitals):	
Method of Submission (Handed in to Academic Registry; posted through internal/external mail):	
Signature:	Date:

TABLE OF CONTENTS

Abstract	i
Dedication	iii
Acknowledgements	iv
Declaration statement	v
Table of Contents	vi
List of Tables	xii
List of Figures	xiv
Glossary of Symbols	XX
Published Papers	XXV

Chapter 1 :	Introduction			
1.1	Background	1		
	1.1.1 Background on Global Pollution	2		
	1.1.2 Malaysia in General and Its Socio-economic Profile	4		
	1.1.3 Overview of Malaysia's Current and Future Energy Scenario	5		
	1.1.4 Current Architectural Practice in Malaysia	8		
	1.1.5 Issues Concerning Atrium Buildings	9		
1.2	Research Problem			
1.3	Research Objectives			
1.4	Research Justification and Significance			
1.5	Research Scope			
1.6	Structure of the Thesis	19		
Chapter 2 :	Literature Review			

2.1	Introduction		
2.2	Tropical Climates and Architecture		
	2.2.1	Definition and Areas of Tropical Climate	22
	2.2.2	Analysis of Hot and Humid Tropical Climate of Malaysia	23
	2.2.3	General Characteristics of the Hot Humid Climate of	
		Peninsular Malaysia	34

	2.2.4	The External Climatic Design Data for Kuala Lumpur,	
		Malaysia	36
	2.2.5	General Considerations for Hot and Humid Tropical	
		Architecture	38
2.3	Atriun	n Review	40
	2.3.1	Historical Development and Its Evolution	40
	2.3.2	The Modern Atrium and Its Definition	42
	2.3.3	The Generic Atrium Forms	45
	2.3.4	Atrium Buildings in Malaysia	46
	2.3.5	Overview of Research Trend in Atria	52
2.4	Therm	al Comfort	57
	2.4.1	Human Comfort and Thermoregulatory System	57
	2.4.2	Factors Affecting Comfort	61
	2.4.3	Comfort Equations	62
	2.4.4	Comfort Zones	65
	2.4.5	Indoor Comfort Criteria for Malaysians	67
2.5	Buildi	ng Ventilation Systems	69
	2.5.1	Critical Parameters in Ventilation System Design	70
	2.5.2	Types of Ventilation System	71
	2.5.3	Theory for Natural Ventilation by Thermal Buoyancy in	
		Atria	78
2.6	Comn	non Research Methods and Experimental Procedures for	
		Atrium Studies	88
	2.6.1	Actual Building Measurement	88
	2.6.2	Scale Model Experiments	90
	2.6.3	Computer Modelling	92
	2.6.4	Combined Methods	94
2.7	Sumn	nary	95
Chapter 3 :	Resea	arch Methodology	
3.1	Introc	luction	97
3.2	Conce	eptual Atrium Form	98
3.3	Field	Measurement	99
3.4	Dyna	mic Thermal Building Simulation	100

	3.4.1 Overview of TAS Applications	101
	3.4.2 Justification of TAS	113
3.5	CFD Simulation	114
	3.5.1 Overview of CFD Applications	115
	3.5.2 Governing Equations	116
	3.5.3 Numerical Grid	118
	3.5.4 Turbulence Modelling	121
	3.5.5 Wall Functions	128
	3.5.6 Discretisation Scheme	128
3.6	Summary	130
Chapter 4:	Vernacular Architecture as the Basis for the Development of a	
	Conceptual Low-Energy Atrium Form	
4.1	Introduction	131
4.2	Vernacular Architecture of Malaysia and Their Main Characteristics	132
4.3	The Validity and Limitations of Using Vernacular Forms and Design	ı
	Principles	139
4.4	Basic Principles of a Low-Energy Building Design	146
4.5	The Proposed Low Energy Atrium Form for Malaysia	151
	4.5.1 Justification of Utilising the Side-lit Linear Atrium Form	154
4.6	Summary	155
Chapter 5 :	A Field Study on Indoor Thermal Environment in an Atrium in	
	the Tropics	
5.1	Introduction	156
5.2	General Characteristics of Guangzhou Weather	157
5.3	Description of Building and Solar Control Strategy	157
5.4	The Objectives of the Field Study	161
5.5	The Variables Measured and Equipment Used	162
	5.5.1 Measurement of Thermal Comfort	162
	5.5.2 Measurement of Internal Surface Temperatures	165
	5.5.3 Measurement of Radiation Intensity of Internal Surfaces	166
	5.5.4 Measurement of Air Temperatures	167
5.6	Calibration of Experimental Equipment	169

5.7	Experimental Procedures	170
5.8	Results and Discussion	171
5.9	Conclusion	175

Chapter 6 :	Verification and Validation of the Dynamic Thermal Modelling			
	Software TAS			
6.1	Introdu	action	177	
6.2	Descrip	ption of the 3-D TAS Atrium Model and Simulation	178	
	6.2.1	3-D TAS Model	179	
	6.2.2	Building Data	182	
6.3	Sensiti	vity Testing of the 3-D TAS Model	185	
	6.3.1	Sensitivity Test Analysis	186	
6.4	Results	s and Discussion	192	
6.5	Conclu	nsion	197	
Chapter 7 :	Dynan	nic Thermal Modelling to Study the Thermal		
	Environmental Performance in Malaysian Atria			
7.1	Introduction		200	
7.2	Genera	al Characteristics of the Tested Atrium Models	201	
	7.2.1	The Representative Models	202	
	7.2.2	Variations of the Representative Models for Parametrical		
		Studies	202	
7.3	The Ol	bjectives of the Dynamic Thermal Modelling	204	
7.4	Descri	ption of the 3D-TAS Atrium Model and Simulations	204	
	7.4.1	Fully Naturally Ventilated Simulation	208	
	7.4.2	Pressurised Air Ventilation Simulation	210	
7.5	Criteri	a for Assessment of Indoor Thermal Performance and		
	Comfo	ort	216	
7.6	Result	s and Discussion	218	
	7.6.1	Fully Naturally Ventilated Simulation	218	
	7.6.2	Pressurised Air Ventilation Simulation	228	
7.7	Conclu	usion	234	

Chapter 8 :	Computational Fluid Dynamics (CFD) Modelling Study of				
	Thermal Environmental Performance in Atria				
8.1	Introdu	action	237		
8.2	Criteri	a for Assessment of Indoor Thermal Performance and			
	Comfo	ort	238		
8.3	Develo	opment of CFD Atrium Model	239		
	8.3.1	Domain	239		
	8.3.2	Boundary Conditions	240		
	8.3.3	Turbulence Model	243		
	8.3.4	Radiation Model	244		
	8.3.5	Grid Density	245		
	8.3.6	Iteration Number	246		
8.4	Param	etrical studies	247		
	8.4.1	The Effect of Varying Opening Area Ratio on Atrium's			
		Thermal Environmental Performance	247		
	8.4.2	The Effect of Outlet's Arrangement on Atrium's Thermal			
		Environmental Performance	250		
8.5	Result	s and Discussion	252		
	8.5.1	CFD Atrium Model Tests	253		
	8.5.2	Validation of CFD Atrium Models	255		
	8.5.3	Parametrical Studies	259		
8.6	8.6 Conclusion		269		
Chapter 9 :	Conc	lusions and Recommendations			
9.1	Introd	luction	271		
9.2	Sumn	nary of Research Development	271		
9.3	Concl	usions	273		
	9.3.1	Low-Energy Atrium Form for the Hot Humid Tropical			
		Regions	274		
	9.3.2	Field Study on Indoor Thermal Environment in an Atrium in			
		the Tropics	275		
	9.3.3	Validation of the Dynamic Thermal Modelling Program			
		TAS	277		

	9.3.4	Dynamic Thermal Modelling of the Representative Atrium	
		Models	279
	9.3.5	CFD Modelling of the Representative Atrium Models	282
	9.3.6	Other General Considerations	284
9.4	Recon	nmendations for Future Research	285
Appendix A	: Equ Rad	ipment for Measurement of Internal Surface Temperature and iation Intensity of Internal Surfaces	288
Appendix B	: Dyna Gues	amic Thermal Modelling (TAS program) of the Xihu Yuan sthouse, Guangzhou	289
Appendix C	: Dyna Atriu	amic Thermal Modelling (TAS program) of the Representative Im Models (Side-lit and Top-lit Models)	300
Appendix D	: Com Repr	putational Fluid Dynamics (CFD) Modelling of the esentative Atrium Models (Side-lit and Top-lit Models)	309
Reference			314

.

LIST OF TABLES

Table 2.1	Summary of comparison of mean daily solar radiation for various	
	stations in Peninsular Malaysia.	25
Table 2.2	Mean daily value of solar radiation for major stations in Peninsular	
	Malaysia.	25
Table 2.3	Average hourly solar radiation for Subang Station in March.	26
Table 2.4	Average number of hours of bright sunshine per month/year.	27
Table 2.5	Mean daily hours of sunshine for five major stations.	27
Table 2.6	Comparison of air temperature for stations in Peninsular Malaysia	29
Table 2.7	Mean daily air temperature for four stations in Peninsular Malaysia.	29
Table 2.8	Comparison of relative humidity for six stations in Peninsular	
	Malaysia.	30
Table 2.9	Comparison of mean daily relative humidity for five stations in	
	Peninsular Malaysia.	30
Table 2.10	Comparison of daily prevailing wind direction.	32
Table 2.11	Relationship of winds, season and rainfall regime.	32
Table 2.12	Comparison of mean annual rainfall amount and highest month.	33
Table 2.13	Comparison of mean daily rainfall amount for five stations in	
	Peninsular Malaysia.	33
Table 2.14	The ASHRAE scale of thermal sensation	63
Table 2.15	Neutral temperature and comfort ranges of subjects in Malaysia.	68
Table 2.16	Approximate ventilation rates requirement.	70
Table 2.17	Measurement techniques and applications.	89
Table 6.1	Net air movement within atrium zones at 1600 hours	189
Table 7.1	Cooling load and supply air flow rate for office zones	
	(Side-lit model).	213
Table 7.2	Cooling load and supply air flow rate for office zones	
	(Top-lit model).	213
Table 7.3	Inter-zone air movement: All floors pressurised (Side-lit model).	214
Table 7.4	Inter-zone air movement: All floors pressurised (Top-lit model).	215

Table 7.5	Inter-zone air movement: Ground floor only pressurised	
	(Side-lit model).	216
Table 7.6	Inter-zone air movement: Ground floor only pressurised	
	(Top-lit model).	216
Table 8.1	The supply airflow rate for each of the low-level inlet openings.	241
Table 8.2	Estimated net heat input, Q_{s_s} within the atrium for both representative	
	models at 1400 hours.	242
Table 8.3	The size and location of high-level outlet opening for both	
	representative models due to different opening area ratios.	248
Table 8.4	The z-coordinates at which the average air temperatures were taken	
	at three levels within each of the atrium levels.	253

LIST OF FIGURES

Figure 1.1	Map of Malaysia and South East Asian region.	4
Figure 1.2	Malaysia energy share of total primary energy supply in 2003.	6
Figure 1.3	Malaysia energy consumption in 2003 by sector.	6
Figure 1.4	Malaysia primary energy consumption per dollar of gross domestic	
	product (GDP) between 1980-2000.	7
Figure 1.5	Indoor visual and thermal environmental consequences of a typical	
	top-lit tropical atrium.	14
Figure 1.6	The resultant indoor visual and thermal environment in a side-lit	
	(clerestory windows) atrium in the tropics.	16
Figure 2.1	Tropical regions: humid and dry tropics.	23
Figure 2.2	Potential of climatic controls to flatten the temperature curve from	
	natural conditions.	38
Figure 2.3	Plan and section of House of Ur, Mesopotamia.	41
Figure 2.4	Plan and section of Persian House, showing the use of courtyard and	
	badger.	41
Figure 2.5	Plan and interior perspective of Pension Building, Washington DC.	42
Figure 2.6	Typical guest room plan and section through atrium, Hyatt Regency	
	Hotel, Atlanta.	43
Figure 2.7	Ground floor plan, top floor plan, and section through atrium, The	
	Ford Foundation Headquarters, New York.	44
Figure 2.8	Section through sunspace of Clifton Nurseries by Terry Farrell.	45
Figure 2.9	Generic form of atrium building.	45
Figure 2.10	Plan of the Weld Shopping Mall, Kuala Lumpur showing typical use	
	of the atrium as a space organiser	46
Figure 2.11	Bin Laden Headquarters Building, Jeddah	47
Figure 2.12	The degree of cooling required in an atrium in warm and humid	
	condition	48
Figure 2.13	The importance of orientation in avoiding solar heat gain in tropical	
	area.	50

Figure 2.14	Critical cut-off angle for Malaysia on North and South walls for	
	effective shading design.	50
Figure 2.15	Radiative cooling	51
Figure 2.16	Convective cooling	52
Figure 2.17	Body heat exchange.	58
Figure 2.18	Schematic diagram of the thermoregulatory system in man.	60
Figure 2.19	Predicted Percentage of Dissatisfied (PPD) as a function of Predicted	
	Mean Vote (PMV).	64
Figure 2.20	The Bioclimatic Chart by Olgyay [1963], with an activity level of 1.2	
	met and clothing insulation of 1.0 in warm climates.	65
Figure 2.21	The Psychrometric Chart marks up as the Building Bioclimatic Chart	
	by Givoni	66
Figure 2.22	Ventilation rates for fresh air control.	71
Figure 2.23	Wind pressure drives cross ventilation.	72
Figure 2.24	A chimney uses the wind to create suction and the stack effect within	
	the building to the air flow.	73
Figure 2.25	Mechanical supply-only ventilation.	74
Figure 2.26	Combined natural ventilation and supply-only mechanical ventilation	
	(Displacement ventilation).	74
Figure 2.27	Mechanical extract-only ventilation.	75
Figure 2.28	Balanced Mechanical System.	76
Figure 2.29	Zonal mixed-mode strategy	77
Figure 2.30	Seasonal mixed-mode.	78
Figure 2.31	Natural ventilation through two openings by thermal buoyancy.	79
Figure 2.32	Pressures, pressure differences and air velocities at the two openings.	84
Figure 3.1	2-D Cartesian grids with non-uniform grid spacing.	119
Figure 3.2	Structured and body-fitted 2-D grid for the simulation of airflow	
	around a person.	119
Figure 3.3	Unstructured grid of the inside surfaces of the 'Reichstag' building,	
	Berlin.	120
Figure 3.4	Hierarchy of turbulence model.	122
Figure 4.1	The traditional Malay house.	133
Figure 4.2	Climatic response in traditional Malay house.	133

Figure 4.3	An open settlement pattern of the traditional Malay houses in rural	
	context.	134
Figure 4.4	Typical traditional Chinese shophouse showing five-foot walkway	
	and jack roof.	136
Figure 4.5	The interior layout of a typical two-storey Chinese shophouse.	137
Figure 4.6	Jack roof and double-tiered roof designed to enhance natural	
	ventilation.	137
Figure 4.7	Vernacular mosque in Malaysia, using double-hipped roof and	
	clerestories for natural lighting and ventilation.	138
Figure 4.8	Schematic drawings of the proposed conceptual atrium form for	
	Malaysia.	152
Figure 5.1	Ground floor plan and cross section of Xihu Yuan Guesthouse.	158
Figure 5.2	The west facing atrium of Xihu Yuan Guesthouse.	159
Figure 5.3	Internal roof blinds in an atrium of Xihu Yuan Guesthouse.	160
Figure 5.4	Water spray on the atrium's glazed roof of Xihu Yuan Guesthouse.	161
Figure 5.5	B & K Thermal Comfort Meter Type 1212.	163
Figure 5.6	Yokogawa Data Logging System DA 100.	167
Figure 5.7	Schematic cross-section showing vertical measuring points	
	(thermocouples position).	168
Figure 5.8	Indoor / Outdoor average air temperature.	171
Figure 5.9	Average vertical radiation intensity and roof surface temperature.	172
Figure 5.10	Average horizontal radiation intensity and roof surface temperature.	173
Figure 5.11	Average internal surface temperatures and Predicted Mean Vote	
	(0.3 clo).	174
Figure 6.1	The 3-D geometric TAS model of Xihu Yuan Guesthouse.	179
Figure 6.2	The ground floor plan of Xihu Yuan Guesthouse in 3D-TAS.	180
Figure 6.3	First floor atrium zones allocation of Xihu Yuan Guesthouse in 3-D	
	TAS.	181
Figure 6.4	Schematic cross-section of the Xihu Yuan Guesthouse showing	
	atrium zones vertically.	181
Figure 6.5	Average air and mean radiant temperatures at 1600 hrs due to the	
	difference solar irradiances.	187
Figure 6.6	Zones air temperature and net inter-zone bulk air movement between	
	the atrium zones at 1600 hours.	190

Figure 6.7	Average measured/predicted air temperatures for hot and overcast	
	day.	192
Figure 6.8	Average measured/predicted air temperatures for hot and clear day.	192
Figure 6.9	Average measured/predicted resultant temperature and roof blinds	
	surface temperature for hot and clear day.	195
Figure 6.10	Average measured/predicted air and mean radiant temperatures at	
	1400 hrs.	196
Figure 7.1	The representative atrium models.	202
Figure 7.2	Variations of the representative models for parametrical studies.	203
Figure 7.3	The 3-D TAS atrium models.	205
Figure 7.4	Schematic cross-section showing atrium zones for representative	
	models.	206
Figure 7.5	Total daily solar heat gains: Representative models vs. Models	
	without wall-to-roof void.	219
Figure 7.6	Average air temperatures at 1400 hrs due to different sizes of low-	
	and high-level openings (in m^2): Side-lit representative model.	221
Figure 7.7	Average air temperatures at 1400 hrs due to different sizes of low-	
	and high- level openings (in m^2): Top-lit representative model.	221
Figure 7.8	Average air temperatures at 1400 hrs due to different wind speeds:	
	Representative models.	222
Figure 7.9	Average air/mean radiant temperatures at 1400 hrs: Side-lit models	
	with and without wall-to-roof void.	223
Figure 7.10	Average air/mean radiant temperatures at 1400 hrs: Top-lit models	
	with and without wall-to-roof void.	224
Figure 7.11	Seasonal daily solar heat gains: Side-lit models with and without roof	
	overhang.	225
Figure 7.12	Average air/mean radiant temperatures at 1400 hrs: Side-lit models	
	with and without roof overhang.	226
Figure 7.13	Solar heat gains for models with internal solar blinds.	227
Figure 7.14	Average air/mean radiant temperatures at 1400 hrs: Side-lit models	
	with and without internal solar blinds.	228
Figure 7.15	Average air/mean radiant temperatures at 1400 hrs: Top-lit models	
	with and without internal solar blinds.	228

Figure 7.16	Total daily sensible/latent loads: 'all occupied floors pressurised' vs.	
	'ground floor only pressurised'.	229
Figure 7.17	Average air temperatures on occupied levels due to 'all occupied	
	floors pressurised' ventilation.	230
Figure 7.18	Average air temperatures on occupied levels due to 'ground floor	
	only pressurised' ventilation.	231
Figure 7.19	Average air, mean radian and resultant temperatures at 1400 hrs due	
	to 'all occupied floors pressurised' ventilation.	232
Figure 7.20	Average resultant temperatures during office hours due to 'all	
	occupied floors pressurised' ventilation.	232
Figure 7.21	Average air, mean radiant and resultant temperatures at 1400 hrs due	
	to 'ground floor only pressurised': Representative models.	234
Figure 7.22	Average resultant temperatures during office hours due to 'ground	
	floor only pressurised' ventilation.	234
Figure 8.1	Numerical domains of both representative atrium models.	240
Figure 8.2	Models showing low-level inlet and high-level outlet sizes due to	
	different opening area ratios.	249
Figure 8.3	Models showing outlet's arrangement: side-lit model with horizontal	
	top vent and top-lit model with vertical side vent.	251
Figure 8.4	Average air temperature within the atrium due to different grid	
	densities.	254
Figure 8.5	Average air temperature within the atrium due to different iterations.	255
Figure 8.6	Air and resultant temperature distribution at 1400 hours within the	
	side-lit model.	256
Figure 8.7	Air and resultant temperature distribution at 1400 hours within the	
	top-lit model.	257
Figure 8.8	Predicted average air and resultant temperatures within the atrium at	
	1400 hours resulting from both TAS and CFD simulations.	258
Figure 8.9	Average air temperature and pressure within the side-lit model due to	
	different opening area ratios.	260
Figure 8.10	Average air temperature and pressure within the top-lit model due to	
	different opening area ratios.	260

•

Figure 8.11	Vector plot of air velocity for opening area ratio, $n=1.0$ and the	
	average air velocity within the side-lit model due to different opening	
	area ratios.	261
Figure 8.12	Vector plot of air velocity for opening area ratio, $n=1.0$ and the	
	average air velocity within the top-lit model due to different opening	
	area ratios.	262
Figure 8.13	Air temperature, PMV and resultant temperature plots within the	
	side-lit model for opening area ratio, $n=1.0$.	263
Figure 8.14	Air temperature, PMV and resultant temperature plots within the top-	
	lit model for opening area ratio, $n=1.0$.	264
Figure 8.15	Air temperature plot for model with horizontal top vent and the	
	average air temperature within the side-lit model due to different	
	outlet's arrangement.	266
Figure 8.16	Air velocity vector plot for model with horizontal top vent and the	
	average air velocity within the side-lit model due to different outlet's	
	arrangement.	267
Figure 8.17	Air temperature plot for model with vertical side vent and the	
	average air temperature within the top-lit model due to different	
	outlet's arrangement.	267
Figure 8.18	Air velocity vector plot for model with vertical side vent and the	
	average air velocity within the top-lit model due to different outlet's	
	arrangement.	268

GLOSSARY OF SYMBOLS

Α	Effective component surface area (m ²)
A_{l}	Opening area of inlet (m ²)
A ₂	Opening area of outlet (m ²)
A _{c1}	Area of the vena contracta for inlet (m^2)
A_{c2}	Area of the vena contracta for outlet (m^2)
$A_{ m du}$	DuBois area: body surface area of the human body (m^2)
A_i	The mean of the internal and external surface areas (m^2)
C_{c1}	Contraction coefficient for inlet
C_{c2}	Contraction coefficient for outlet
C_d	Discharge coefficient
$C_{\nu 1}$	Air velocity coefficient for inlet
C_{v2}	Air velocity coefficient for outlet
C _p	Specific heat capacity at constant pressure of the fluid (=1010 J/kg.K)
$v_{theo,1}$	Theoretically obtained air velocity for inlet (m/s)
Vtheo,2	Theoretically obtained air velocity for outlet (m/s)
ΔE_{fr2}	Friction loss due to airflow through the outlet (J/kg)
f_{cl}	Ratio of man's surface area while clothed to while nude
g	Gravitational acceleration (=9.82 m/s^2)
G_i	Internal radiant exchange between room surfaces (W/K)
h_c	Convective heat transfer coefficient (W/m ² °K)
$h^{\rm int}$	Internal convective heat transfer coefficient (W/m ² K)
h ^{ext}	External convective heat transfer coefficient (W/m ² K)
h ^{rad,ext}	External radiative heat transfer coefficient (W/m ² K)
$h^{rad,int}$	Internal radiative heat transfer coefficient (W/m ² K)
Н	Vertical distance between the centre of inlet and the centre of outlet (m)
H_1	Vertical distance between the inlet and the neutral pressure plane (m)

H_2	Vertical distance between the outlet and the neutral pressure plane (m)
I _{cl}	Thermal resistance of clothing (m ² °C/W)
k	Kinetic energy of turbulence (m^2/s^2)
L	Characteristic length of the heat transfer surface (m)
М	Metabolic rate (W/m ²)
nn	Mass flow rate (kg/s)
11	Opening area ratio (= A_1/A_2)
р	Radiant proportion
р	Static pressure (N/m ²)
p_{i1}	Indoor pressure at inlet (Pa)
p_{i2}	Indoor pressure at outlet (Pa)
Δp_1	Pressure difference across the inlet (Pa)
P_{o1}	Outdoor pressure at inlet (Pa)
p_{o2}	Outdoor pressure at outlet (Pa)
Δp_2	Pressure difference across the outlet (Pa)
P _a	Water vapour pressure in ambient air (millibar)
P _w	The screen water vapour pressure (millibar)
PMV	Predicted Mean Vote
PPD	Predicted Percentage Dissatisfied (%)
$q^{\mathit{cond},int}$	Internal surface conduction heat flux (W/m ²)
$q^{cond,ext}$	External surface conduction heat flux (W/m ²)
$q^{conv,int}$	Internal convective heat flux (W/m ²)
$q^{conv,ext}$	External convective heat flux (W/m ²)
$q^{\it dir_beam}$	Direct normal (beam) solar radian intensity (W/m ²)
$q_{hor}^{dir,\mathrm{ext}}$	Direct solar radiation on the horizontal plane (W/m ²)
q_{env}	Total long-wave incident on the surface from its environment (W/m^2)
q^{ext}	Long-wave radiant flux by the external surface (W/m^2)
$q_{\it hor}^{\it glob}$	The global radiation incident on the horizontal plane (W/m^2)
q_{gnd}	Long-wave incident on the surface from the sky (W/m ²)