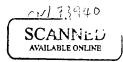
AL 30 ZZELENI S. SMILLOOF, MULLIONE MULLIONE MULLIONE MULLIONE MULLING SEE MULLING STOPPING SOUTHERS GENERATIVE

5 III.-00-2

MURINAD PAREZAL RIN (SMAR)

PRODUCT SUPPORTSON


MR. LEILIGE MA DALM

MARKED STREET

RANDERON ANALALI LERINGA RANDERON ANALALI LERINGA RANDER A TENTAR ALAXIELE - ALAXIE

PERPUSTAKAAN KUI TTHO

PROJECT VERIFICATION

I hereby declare that the project paper or thesis has been read and I have the opinion that the project paper is appropriate in terms of scope coverage and quality for awarding the Bachelor Technology in Mechatronics Engineering

Signature

junti

.

Name of Supervisor

: ZULKIFTI GIN NOAIM

Date

: 5 FEB. 2003

DYNAMIC SIMULATION, MODELING, AND ANALYSIS OF AN AUTOMATED SEALING AND PRE-CUT PLASTIC BAG MACHINE

5 BTL - 00 - 2

MUHAMAD FAHEZAL BIN ISMAIL

PROJECT SUPERVISOR MR. ZULKIFLI BIN NAIM

A FINAL YEAR PROJECT REPORT SUBMITTED IN PARTIAL FULFILMENT FOR THE BACHELOR TECHNOLOGY IN MECHATRONICS ENGINEERING

MECHATRONICS ENGINEERING INDUSTRIAL ELECTRONICS DEPARTMENT GERMAN-MALAYSIAN INSTITUTE AND KUITTHO

24 FEBRUARY 2003

OATH

I hereby declare that this thesis, submitted to GMI as a partial fulfillment of the requirement for the degree of Bachelor Technology in Mechatronics Engineering. I also certify that the work explain here is entirely my own except for literature review, the fundamental mathematical modeling and summarise when sources are appropriately cited the references. This thesis also is free from any plagiarism and available within the GMI library or available within the Kuittho library for the purpose of research and development.

Signature	: <u>L'annel</u>
Name of Author	: MUHAMAD FAHEZAL BIN ISMAIL
Date	: 5 th March 2003

DEDICATION

I would like to dedicate this thesis to my beloved family especially my mom and dad with their confidence in me to overcome the entire obstacle in my journey to success. This dedication also goes to my lovely fiancée whom persistently gives me precious support and motivation through out the year.

ACKNOWLEDGEMENT

I would like to acknowledge my project supervisor, Mr. Zulkifli bin Naim whom I have a great deal of helpful advice, solved every project work problem that I encountered. He also gave me valuable support and advice in order to achieve my objective of project paper. He has persistently put his attempt in developing my self-confidence and provide ideas in the project implementation.

In particular, I wish to acknowledge to a lecturer from International Islamic University of Malaysia, Mr Shahrul Naim bin Sidek for his cooperation, advice and precious knowledge of Matlab and Simulink programming for my project paper. He also gave some suggestion on my project in order to improve it.

I would especially like to thank Mr James Lai as a Field Support/Application Engineer of National Instrument for his advice and guidelines for using Labview and gave new ideas to support my project simulator.

Finally I wish to thank to Mr. Faiz, Mr Zainuddin, Mr Chin, and Mr Badli Shah for their commitment as GMI staff give me valuable support to complete my thesis. I would like to extend my appreciation to my colleagues for the supporting and help. They provided inspiring conversation and attractive in the project.

ABSTRACT

A mathematical model is an algorithm or set of equations that is combined with a set of data values to represent the significant behavior of a system, process, or phenomenon. The development of a mathematical model for a given real-world system can be a difficult task. In cases where the system's dynamics are not well understood, a series of experiments must be performed to collect data that can then be processed using various techniques to yield a model of system behavior. This thesis introduced some of the methods used in the development of mathematical models of real world systems and phenomena.

Based on the study, the system response of tension plastic for an automated sealing and pre-cut plastic bag machine will give us the overview of the system performance. The mathematical model of DC motor are developed and tested with PI controller model too see the feedback with various values of Kp (proportional gain) and Ki (Integral gain). The study of characteristics of control system like settling time, rising time, steady state error and overshoot has been done. Previous study of this kind of web tension or unwinder/winder application is mostly used of PI controller. The reason will be discuss on this thesis implementation. Using Matlab and Simulink as a simulation software does the experiment.

The system simulator is made for guideline or reference to engineer or machine design so that they can test their material used in unwinding and winding system applications. Using Labview as virtual instrument software does the testing experiment.

TABLE OF CONTENT

	pages
OATH	ii
DEDICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	v
LIST OF TABLES	xii
LIST OF FIGURES	xiii
LIST OF SYMBOLS AND ABBREVIATIONS	xx

CHAPTER 1 INTRODUCTION

1.1	Project Introduction			
	1.1.1	Brief overview of an Dynamic Simulation, Modeling,		
	and A	nalysis for an Automated Sealing and Pre-cut Plastic Bag		
	Machine.			
	1.1.2	Principle of an Automated Sealing and Pre-cut		
	Plastic	Bag Machine.	2	
1.2	Object	tive of the Project/Thesis	3	
	1.2.1	Purpose of study	3	
	1.2.2	Statement of problem	3	
1.3	Benefi	ts of dynamic simulation in unwinder and winder industry	4	
1.4	Application of Project/Thesis 4			

1.5	Definit	ions of important terms	5
	1.5.1	Dynamic Simulation	5
	1.5.2	Mathematical Modeling	5
	1.5.3	Analysis	5
	1.5.4	Virtual Instrumentation	5
	1.5.5	Overshoot	5
	1.5.6	Rise time	5
	1.5.7	Settling time	6
	1.5.8	Closed loop system	6
	1.5.9	Open loop system	6
1.6	Limita	tions	7
	1.6.1	Modeling and analysis	7
	1.6.2	Virtual instrument and dynamic simulation	7

CHAPTER II LITERATURE REVIEW

2.1	A hist	ry of Dynamic and Simulation			
2.2	A histe	ory of Control System	9		
	2.2.1	Liquid level control	9		
	2.2.2	Speed control	10		
	2.2.3	Closed loop system (feedback control)	10		
2.3	Motio	n Control	11		
2.4	The T	The Tension control			
	2.4.1	What's Tension Control	11		
	2.4.2	Why a Tension Control	12		
	2.4.3	Where does it apply?	12		
	2.4.4	Technical Consideration (tension control)	13		
		2.4.4.1 Single zone	13		
		2.4.4.2 Two zones	14		
		2.4.4.3 Multiple zones	15		
	2.4.5	General block diagram	16		
		2.4.5.1 Zone 1, typical characteristic (Unwinder)	16		
		2.4.5.2 Zone 2, typical characteristic	17		
		2.4.5.3 Zone 3, typical characteristic (Winder)	17		

	2.4.6	Closed loop solution	18-21
	2.4.7	Open loop solution	21
	2.4.8	Methods to sense the tension	22
		2.4.8.1 Direct tension	22
		2.4.8.2 Indirect tension 1	23
		2.4.8.3 Indirect tension 2	23
2.5	PID co	ontrol implementation	24
	2.5.1	Three term controller	24
	2.5.2	The characteristics of P, I, and D controllers	25
	2.5.3	Pl loop consideration	25
		2.5.3.1 Where can outer loop can be found?	25
		2.5.3.2 Outer loop implementation and set up	26
		2.5.3.3 Web tension dancer position regulator	27
2.6	LVDT	sensor	29
	2.6.1	The principle operation of LVDT	30
2.7	Applic	ation example of web tension control system	32
	2.7.1	Dancer control	32
	2.7.2	Load cell control	33
	2.7.3	Analog control	34
	2.7.4	Electronics Control	35

CHAPTER III METHODOLOGY

3.1	Analytical method for modeling dynamic systems		
	3.1.1	Modeling	37
	3.1.2	Mathematical equation description	37
	3.1.3	Design	37
	3.1.4	Analysis	37
3.2	The co	ontrol system design process	38
	3.2.1	Establishing the system goals	39
	3.2.2	Identify the variables to control	39
	3.2.3	Write the specifications of variables	39
	3.2.4	Establish the system configuration and identify the actuate	r
	Or ser	nsor	39
	3.2.5	Obtain the model of process, the actuator and the sensor	39

	3.2.6	Describe the controller and select the key parameter		
		To be adjusted	40	
	3.2.7	Optimize the parameters and analyze the performance	40	
3.3	Transf	fer function	40	
	3.3.1	Element of system	41	
	3.3.1.1	1 Transfer function for $\frac{V2(s)}{V1(s)} = -\frac{1}{RCs}$	41	
	3.3.1.2	2 Transfer function for $\frac{V2(s)}{V1(s)} = -RCs$	41	
	3.3.1.3	3 Transfer function for $\frac{V2(s)}{V1(s)} = -\frac{R2(R1Cs+1)}{R1}$	42	
	3.3.1.4	4 Transfer function $\frac{V2(s)}{V1(s)} = -\frac{(R1C1s+1)(R2C2s+1)}{R1C2s}$	42	
	3.3.1.5	5 Transfer function $\frac{\theta(s)}{Vf(s)} = \frac{Km}{s(Js+b)(Lfs+Rf)}$	43	
	3.3.1.6	6 Transfer function $\frac{\theta(s)}{Va(s)} = \frac{Km}{s[(Ra + Las)(Js + b) + KbKm]}$	43	
	3.3.1.7	7 Transfer function $\frac{\theta(s)}{Vc(s)} = \frac{Km}{s(\tau s+1)}$	44	
3.4	Model	ing of DC motor	45	
	3.4.1	Speed modeling	45	
	3.4.2	Physical parameter	45	
	3.4.3	Electrical characteristics	46	
	3.4.4	Mechanical characteristics	47	
	3.4.5	State space	48	
	3.4.6	Transfer function block diagram	49-51	
3.5	The R	outh-Herwirtz Stability Critireon	52-54	
3.6	The R	oot-Locus method	54-55	
	3.6.1	Closed loop poles	55-56	
3.7	Modeling Tension System			
3.8	Traditional Analog Control 58-59			
3.9	The c	ontrol system block diagram of unwinder and winder		
	Machi	ine `	60-61	

CHAPTER IV ANALYSIS OF RESULTS AND SIMULATOR CONCEPT

4.1	Dynar	nic Simulation (Matlab script) 63			
4.2	The P	I controller for DC motor speed	63		
	4.2.1	Kp = 52.4, Ki = 5, 10, 15, 20, 25, 30, 35, 40, 45, 50	64-70		
		4.2.1.1 Summary of the results with $Kp = 52.4$	71		
		4.2.1.2 Conclusions of the results	72		
	4.2.2	Kp = 296.3	72-78		
		4.2.2.1 Summary of the results with $Kp = 296.3$	79		
		4.2.2.2 Conclusions of the results	80		
	4.2.3	Kp = 494	80-86		
		4.2.3.1 Summary of the results with Kp = 494	87		
		4.2.3.2 Conclusions of the results	88		
	4.2.4	Kp = 526.8	88-94		
		4.2.4.1 Summary of the results with Kp = 526.8	95		
		4.2.4.2 Conclusions of the results	96		
	4.2.5	Kp = 784	96-102		
		4.2.5.1 Summary of the results with $Kp = 784$	103		
		4.2.5.2 Conclusions of the results	104		
4.3	Dynar	nic simulation (Simulink 4)	104		
4.4	The S	imulator	106		
	4.4.1	Motor speed control	107		
	4.4.2	Alarm signal	107		
	4.4.3	Tension limit setting	108		
	4.4.4	Direction of plastic flow	108		
	4.4.5	Plastic tension display	109		
	4.4.6	Waveform chart display	109		

Bachelor Technology in Mechatronics Engineering

61-62

CHAPTER V CONCLUSION AND RECOMMENDATION

5.1	Conclusion	110
5.2	Recommendation	111

REFERENCES

APPENDIXES

Арре	ndix	Α	Matlab program code for system experiment	
1. 2. 3.	Matlab	Script	(Root locus, Pirlocus.m) . (DC motor speed and PI controller, Pldcspd.m) . (Comparison between Kp and Ki values, Pldcspd.m)	115 116 117-118
Арре	ndix	в	Labview Motion Control Hardware	
1. 2. 3.	Steppe	er and	tion interface Servo motor drives ol cables and adaptor	119 120 121

Appendix C Simulink block reference

1.	Continuous block library	122
2.	Math block library	123-124
3.	Sinks and Sources block library	125-126

112-114

Ξ

LIST OF TABLES

TABLE	TITLE	PAGE NUMBER
2.1	Fundamental characteristics of Kp, Ki and Kd	25
3.1	Principle properties of Low Density Polyethylene	62
4.1	The response of Kp = 52.4 and Ki (0< Ki <= 50)	71
4.2	The response of Kp = 280 and Ki (0< Ki <= 50)	79
4.3	The response of Kp = 494 and Ki (0< Ki <= 50)	87
4.4	The response of Kp = 526.8 and Ki (0< Ki <= 50)	95
4.5	The response of Kp = 784 and Ki Ki (0< Ki <= 50)	103

=

LIST OF FIGURES

FIGURES	CONTENT	PAGE NUME	BER
1.1	Machine process flow		2
2.1	The single zone method		13
2.2	The two zones		14
2.3	The multiple zones		15
2.4	The general block diagram of unwinder/wir	ider system	16
2.5	Zone 1 system structure		16
2.6	Zone 2, system structure		17
2.7	Zone 3, system structure		17
2.8	The block diagram closed loop system for	tension control	18
2.9	Overview of closed loop control tension sys	stem	19
2.10	Complete closed loop system tension cont	rol	20
2.11	The block diagram of open loop for tension	control	21

Muhd Fahezal	Final Year Project Mechatronics 2003	xiv
2.12	Complete open loop system tension control	22
2.13	Load cell implement to direct tension	22
2.14	Dancer arm implement to indirect tension	23
2.15	Free loop implement to direct tension	23
2.16	Speed loop with outer loop trim	26
2.17	Position outer loop with speed control	26
2.18	Dancer position regulator	28
2.19	Basic structure of LVDT sensor	29
2.20	The basic winding configuration of the LVDT	30
2.21	The signal response when the magnetic core is perfectly centered	31
2.22	The signal response when the magnetic cores move upward	31
2.23	The response when the magnetic cores move downward	32
2.24	Complete system with dancer control	33
2.25	Complete system with load cell control	33
2.26	Complete system with analog control	34
2.27	Complete system with electronic control	35

Muhd Fahezal	Final Year Project Mechatronics 2003	XV
3.1	Elements of analytical method for modeling Dynamic system	36
3.2	Elements of control system design process	38
3.3	Integrating circuit	41
3.4	Differentiating circuit	41
3.5	Differentiating circuit	42
3.6	Integrating filter	42
3.7	DC motor with field-controlled and rotational actuator	43
3.8	DC motor with armature-controlled and rotational actuator	r 43
3.9	DC motor with two-phase control field and Rotational actuator	44
3.10	The free body diagram of DC motor	45
3.11	Block diagram representation of eqns. (3-17) and (3-18)	50
3.12	Block diagram of dc motor	51
3.13	Overall transfer function for the DC motor	51
3.14	The block diagram of closed loop poles	55
3.15	Free body diagram of unwinder/winder system	57
3.16	Complete block diagram of unwinder/winder system	60
3.17	General overview of unwinder/winder system	61

Muhd Fahezai	Final Year Project Mechatronics 2003	xvi
3.18	Plastic spring model	62
4.1	Root locus method to find the value of Kp	64
4.2	The system response when Ki=5	65
4.3	The system response when Ki=10	66
4.4	The system response when Ki=15	66
4.5	The system response when Ki=20	67
4.6	The system response when Ki=25	67
4.7	The system response when Ki=30	68
4.8	The system response when Ki=35	68
4.9	The system response when Ki=40	69
4.10	The system response when Ki=45	69
4.11	The system response when Ki=50	70
4.12	The combination of the Ki values for system response	71
4.13	Root-locus method to find the value of Kp	72
4.14	The system response when Ki=5	73
4.15	The system response when Ki=10	74
4.16	The system response when Ki=15	74
4.17	The system response when Ki=20	75

Muhd Fahezal	Final Year Project Mechatronics 2003	
4.18	The system response when Ki=25	75
4.19	The system response when Ki=30	76
4.20	The system response when Ki=35	76
4.21	The system response when Ki=40	77
4.22	The system response when Ki=45	77
4.23	The system response when Ki=50	78
4.24	The combination of the Ki values for system response	79
4.25	Root-locus method to find the value of Kp	80
4.26	The system response when Ki=5	81
4.27	The system response when Ki=10	82
4.28	The system response when Ki=15	83
4.29	The system response when Ki=20	83
4.30	The system response when Ki=25	84
4.31	The system response when Ki=30	84
4.32	The system response when Ki=35	85
4.33	The system response when Ki=40	85
4.34	The system response when Ki=45	86
4.35	The system response when Ki=50	86

Muhd Fahezal	Final Year Project Mechatronics 2003	xviii
4.36	The combination of Ki values for system response	87
4.37	Root-locus method to find value of Kp	88
4.38	The system response when Ki≕5	89
4.39	The system response when Ki=10	90
4.40	The system response when Ki=15	90
4.41	The system response when Ki=20	91
4.42	The system response when Ki=25	91
4.43	The system response when Ki=30	92
4.44	The system response when Ki=35	92
4.45	The system response when Ki=40	93
4.46	The system response when Ki=45	93
4.47	The system response when Ki=50	94
4.48	The combination of Ki values for system response	95
4.49	Root-locus method to find the value of Kp	96
4.50	The system response when Ki=5	97
4.51	The system response when Ki=10	98
4.52	The system response when Ki=15	98
4.53	The system response when Ki=20	99

Bachelor Technology in Mechatronics Engineering

Muhd Fahezal	Final Year Project Mechatronics 2003	
4.54	The system response when Ki=25	99
4.55	The system response when Ki=30	100
4.56	The system response when Ki=35	100
4.57	The system response when Ki=40	101
4.58	The system response when Ki=45	101
4.59	The system response when Ki=50	102
4.60	The combination of the Ki values	103
4.61	PI controller using Simulink	104
4.62	The response signal of position output	105
4.63	The response signal of speed output	105
4.64	The front panel of system simulator	106
4.65	The knobs for motor speed control (Unwinder/Winder)	107
4.66	Alarm indicator for plastic tension warning	107
4.67	Digital control for lower and upper limit of tension	108
4.68	The animation display of plastic flow	108
4.69	The meter and digital indicator of plastic tension	109
4.70	The waveform chart display for output signal	109
5.1	Typical Motion components	111

LIST OF SYMBOLS AND ABBREVATIONS

Va	-	Armature voltage or source voltage
Vc	-	induced voltage
VRa	-	Voltage across armature resistance
VLa	-	Voltage across inductance
Ra	-	Armature resistance
ia	-	Armature current
La	-	Inductance or armature coil
Κv	-	Velocity constant
ພa	-	The rotational velocity of the armature
Τω	-	The torque produce by velocity of rotor
Τω '	-	The torque due to rotational acceleration of the rotor
Te	-	Electromagnetic torque
ΤL	-	The torque of the mechanical load

J	-	The inertia of the rotor
B, b	-	Damping coefficient
Ω m	-	Speed of motor
θ	-	Position of shaft
f	-	Tension.
τa	_	armature circuit time constant
τl	-	tension/speed time constant
τC	-	current PI time constant
τS	_	speed PI time constant
τt		tension PI time constant