SPO CHARTING FROCEDURE FOR MONITORING OF SMALL AND LARGE SHIFTS IN PROCESS MEAN

IBRANIN MASOCO

UNIVERSITI TEKNOLOGI MALAYSIA

(11/64445

	UNIVE	PSZ 19 : 16 RSITI TEKNOLOGI MALAYSIA
	BORANG P	PENGESAHAN STATUS TESIS ***
JUDUL:	SPC CHARTIN	NG PROCEDURE FOR MONITORING OF
	SMALL AND	LARGE SHIFTS IN PROCESS MEAN
	SE	SI PENGAJIAN : <u>2004/2005</u>
Saya	IB	BRAHIM BIN MASOOD
		(HURUF BESAR)
mengaku mer Teknologi Ma	nbenarkan tesis *(PSM alaysia dengan syarat-sy	/ Sarjana / Doktor Falsafah) ini disimpan di Perpustakaan Universiti yarat kegunaan seperti berikut:-
	ah hakmilik Universiti 1 linan di dalam bentuk ke	Teknologi Malaysia ertas atau mikro hanya boleh dibuat dengan kebenaran bertulis daripada
4. Tesis hany	a boleh diterbitkan deng	gi Malaysia dibenarkan membuat salinan untuk tujuan pengajian sahaja. gan kebenaran penulis. Bayaran royalty adalah mengikut kadar yang
	benarkan Perpustakaan	membuat salinan tesis ini sebagai bahan pertukaran di antara institusi
pengajian ** cila tan	tinggi. Idakan (🖌)	
Sila all		
	SULIT	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)
	TERHAD	(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi / badan di mana penyelidikan dijalankan.
 ✓ 	TIDAK TERHAD	
		Disahkan olch:
	Aut	
		Alat
(TAN	DATANGAN PENUI	LIS) (TANDATANGAN PENYELIA)
Alamat Teta	p: <u>100-B, Felda</u>	Taib Andak, Prof. Madya Dr. Adnan bin Hassan
	<u>81000 Kulai</u> .	Nama Penyelia
	Johor Darul Ta	<u>akzım.</u>
Tarikh :	29 NOVEMBE	ER 2004 Tarikh : 29 NOVEMBER 2004

CATATAN: * Potong yang tidak berkenaan
 ** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa / organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT atau TERHAD.
 *** Tesis dimaksudkan sebagai tesis bagi Ijazah Doktor Falsafah dan Sarjana secara penyelidikan atau disertasi bagi pengajian secara kerja kursus dan penyelidika atau laporan projek sarjana muda.

UTM(FKM)-1/02

Fakulti Kejuruteraan Mekanikal Universiti Teknologi Malaysia

PENGESAHAN PENYEDIAAN SALINAN E-THESIS

Judul tesis : SPC CHARTING PROCEDURE FOR MONITORING OF SMALL AND LARGE SHIFTS IN PROCESS MEAN

 Ijazah
 : SARJANA KEJURUTERAAN (MEKANIKAL – TEKNOLOGI

 PEMBUATAN TERMAJU)

 Fakulti
 : FAKULTI KEJURUTERAAN MEKANIKAL

Sesi Pengajian : <u>2004/2005</u>

Saya

IBRAHIM BIN MASOOD

(HURUF BESAR)

No. Kad Pengenalan 740818-01-6599 mengaku telah menyediakan salinan e-thesis sama seperti tesis asal yang telah diluluskan oleh panel pemeriksa dan mengikuti panduan penyediaan Tesis dan Disertasi Elektronik (TDE), Sekolah Pengajian Siswazah, Universiti Teknologi Malaysia, November 2002.

(Tandatángan Pelajar)

Alamat tetap :

100-B, Felda Taib Andak, 81000 Kulai. Johor Darul Takzim.

Tarikh: 29 NOVEMBER 2004

(Tandatangan penyelia sebagai saksi)

Penyelia : <u>PROF. MADYA DR ADNAN BIN HASSAN</u> Fakulti : <u>FAKULTI KEJURUTERAAN MEKANIKAL</u> Tarikh : 29 NOVEMBER 2004

Nota: Borang ini yang telah dilengkapi hendaklah di kemukakan kepada FKM bersama penyerahan CD.

"I declare that I have read through this Postgraduate Project report and in my opinion it has fulfilled the requirement in term of the scope and quality for the purpose of awarding the Masters of Engineering in Mechanical – Advance Manufacturing Technology."

Signature

Supervisor's Name : ASSOC. PROF. DR. ADNAN BIN HASSAN

Date

: 29 NOVEMBER 2004

SPC CHARTING PROCEDURE FOR MONITORING OF SMALL AND LARGE SHIFTS IN PROCESS MEAN

IBRAHIM MASOOD

This project report submitted in partial fulfillment of requirement for Masters of Engineering in Mechanical- Advanced Manufacturing Technology

> Faculty of Mechanical Engineering University of Technology Malaysia

> > November 2004

"I herby declare that this Postgraduate Project report is the result of my own work and the idea except for the works that I had cited clearly stated the resources."

Signature

Date

Author's Name IBRAHIM BIN MASOOD : 29 NOVEMBER 2004 :

In the name of Allah the Most Gracious and the Most Merciful

SPECIALLY TO MY LOVELY FAMILY,

AMINAH, ZAITON, SITI FATIMAH AND SITI SAFURA

ACKNOWLEDGEMENTS

In the name of Allah the Most Gracious and the Most Merciful

First, I would like to express my greatest gratitude to my thesis supervisor, Associate Professor Dr. Adnan bin Hassan for invaluable supervision, advice, guidance and encouragement in the effort to accomplish this project. This project was completed with his valuable support and assistance.

This project had given me much additional knowledge on statistical process control area especially control charts, open my mindset for organizing research and will be an important factor to be practiced in my future career.

I also would like to express my greatest appreciation to my wife (Zaiton Adil), mother (Minah Hussein), daughters (Siti Fatimah and Siti Safura), Along, Angah, Uda and Cik for your inspiration and care. For friends especially to Mr. Rajeswaran s/o Perumal, thank you for the supporting ideas and co-operation. Your trust, support and understand always to be my motivator along the way of accomplishing this project.

Yours sincerely, Ibrahim bin Masood 2 MMA, Faculty of Mechanical Engineering University Technology of Malaysia, Skudai, Johor Darul Takzim.

ABSTRACT

The research objectives are to study the effectiveness of traditional control charts that are Shewhart, Two-Sided Cusum and EWMA in monitoring small and large process mean shifts and to propose an improved statistical process control charting procedures that effective for monitoring all process mean shifts. Process mean shift can be described as unstable patterns such as shift pattern itself and trend pattern. Average run length (ARL), Type I Error and Type II Error are used as the performance measures. The charting procedures were coded in MATLAB program and extensive simulation experiments were conducted. Design of Experiment (DOE) methods were applied in selecting the suitable design parameters of control charts before conducting the detail ARL simulations. The ARL simulation identifies each control chart monitoring advantages and disadvantages. In general, Two-Sided *Cusum* and *EWMA* were confirmed effective for detecting small process shifts, while Shewhart only effective for large process shifts. Specifically, Two-Sided Cusum with (k, h) = (0.5, 4.77) and (0.75, 3.34) were identified produced small Type I error, so effective for monitoring small process mean shift, more effective than EWMA and close to Nelson's Run Rules performance for 0.750 to 2.50 shift range. The findings were validated using a few real process data. The concurrent application of Shewhart, Two-Sided Cusum with (k, h) = (0.5, 4.77) and (0.75, 3.34) were proposed as an improved charting scheme. It is observed more effective than the Combined Shewhart-Cusum which was recommended by Lucas (1982). However, Nelson's Run Rules is not recommended because it provides large Type I error even so effective for monitoring process shift. The findings were confirmed and detailed the individual Nelson Run Rules performances stated by Nelson (1985), except rules for detecting stratification. Finding on different rules gave different 'rate of false signal' (RFS), contradicted with result based on Monte Carlo method (Nelson, 1985) but confirmed the result from Trietsch (1997). Findings on EWMA were confirmed Montgomery (1996) which stated that small constant (λ) more sensitive for identifying small shifts while large λ better for identifying large shifts.

ABSTRAK

Objektif penyelidikan ini adalah mengkaji keberkesanan carta kawalan tradisional iaitu Shewhart, Cusum Dua-Belah dan EWMA bagi mengawal anjakan purata proses yang kecil dan besar serta mencadangkan peningkatan tatacara carta kawalan proses statistik yang berkesan bagi keseluruhan anjakan purata proses. Anjakan purata proses boleh dinyatakan sebagai corak-corak tidak stabil seperti corak anjakan dan mendaki. Purata Panjang Larian (ARL), Ralat Jenis I dan Ralat Jenis II digunakan sebagai penilai keupayaan. Tatacara kawalan dikodkan di dalam program MATLAB dan simulasi ujikaji yang terperinci dijalankan. Ujikaji Rekabentuk (DOE) diapplikasikan di dalam memilih parameter-parameter carta kawalan yang bersesuaian sebelum menjalankan simulasi ARL. Simulasi ARL mengenalpasti kelebihan dan kelemahan setiap carta kawalan proses. Umumnya, Cusum Dua-Belah dan EWMA dikenalpasti berkesan bagi mengesan anjakan proses yang kecil sementara Shewhart hanya berkesan bagi anjakan proses yang besar. Secara terperinci, Cusum Dua-Belah dengan (k, h) = (0.5, 4.77) dan (0.75, 3.34)dikenalpasti mengeluarkan Ralat Jenis I yang kecil, sangat berkesan bagi mengawal anjakan proses yang kecil, lebih baik berbanding EWMA dan hampir menyamai keupayaan Undang Larian Nelson bagi julat anjakan 0.750 sehingga 2.50. Pemerhatian tersebut telah disahkan menggunakan beberapa data proses yang sebenar. Penggunakan serentak carta kawalan Shewhart, Cusum Dua-Belah dengan (k,h) = (0.5, 4.77) dan (0.75, 3.34) dicadangkan sebagai peningkatan skim kawalan. Ia lebih berkesan berbanding Gabungan Shewhart-Cusum yang disyorkan oleh Lucas (1982). Biarpun begitu, Undang Larian Nelson tidak disyorkan kerana memberikan Ralat Jenis I yang besar, walaupun sangat berkesan bagi mengawal anjakan proses. Penemuan tersebut mengesahkan dan memperincikan keupayaan Undang Larian Nelson yang dinyatakan oleh Nelson (1985), kecuali bagi mengesan percampuran. Undang berbeza memberikan 'kadar kesilapan isyarat' (RFS) berbeza, bercanggah dengan kaedah Monte Carlo (Nelson, 1985) tetapi mengesahkan keputusan Trietsch (1997). Penemuan ke atas EWMA mengesahkan pernyataan Montgomery (1996) yang menyifatkan bahawa pemalar (λ) yang kecil lebih sensitif bagi mengenalpasti anjakan proses yang kecil sementara λ yang besar lebih sensitif bagi anjakan besar.

TABLE OF CONTENTS

CHAPTER CONTENT

PAGE

ACKNOWLEDGEMENTS	ii
ABSTRACT	iii
ABSTRAK	iv
TABLE OF CONTENT	v

I	INTRODUCTION
	minobechen

1.1	Introduction	1
1.2	Statement of the Problem	3
1.3	Objectives	3
1.4	Scope and Key Assumptions	4
1.5	Definitions of Terms	4
1.6	Research Activity Plan	5
1.7	Summary	6

II LITERATURE REVIEW

2.1	Introduction			
2.2	Effects to the Process Mean Shift and Variation 9			
2.3	The Roles of Control Chart	10		
2.4	Researches in Improving Control Chart Performance	11		
2.5	The Principle of Control Charts for Variables 16			
2.6	Example of Control Charting Procedures			
	2.6.1 Shewhart Control Chart	16		
	2.6.2 Two-Sided Cusum Control Chart	19		
	2.6.3 <i>EWMA</i> Control Chart	22		
2.7	Nelson Run Rules for Interpreting Shewhart Control Chart	25		
2.8	The Standardized Normal X-bar Chart	27		
2.9	Summary	28		

٧I

1	Т	
_	л	

RESEARCH METHODOLOGY

3.1	Introduction 2		
3.2	Summary of Research Methodology	30	
3.3	Source of Data		
	3.3.1 Synthetic Data	32	
	3.3.2 Published Data	33	
3.4	Graphical Representation of Process Data	33	
3.5	Control Chart Performance Measure	34	
3.6	Design of Experiment Plan	36	
3.7	Validation of Result	38	
3.8	Summary	38	

IV GENERATION OF PROCESS DATA STREAMS

4.1	Introdu	uction	39
4.2	Develo	opment of MATLAB <i>M-File</i> Program	39
4.3	In-Pro	cess Control Data (Example 1: Seed Number = 14)	41
	4.3.1	In-Process Control Data (Seed Number = 3)	42
	4.3.2	In-Process Control Data on Two-Sided Cusum	
		Control Chart ($k=0.5$, $h=5$)	43
	4.3.3	In-Process Control Data on EWMA Control Chart	
		(λ=0.05, <i>L</i> =2.615)	44
4.4	Shift P	attern Data (small shift upward)	44
	4.4.1	Shift Pattern Data (large shift upward)	45
	4.4.2	Shift Pattern Data (large shift downward)	46
	4.4.3	Small Shift Pattern Data on Two-Sided Cusum	47
	4.4.4	Large Shift Pattern Data on Two-Sided Cusum	47
	4.4.5	Small Shift Pattern Data on EWMA Control Chart	48
	4.4.6	Large Shift Pattern Data on EWMA Control Chart	49
4.5	Trend	Pattern Data (small trend upward)	50
	4.5.1	Trend Pattern Data (large trend upward)	51
	4.5.2	Trend Pattern Data (large trend downward)	52
	4.5.3	Small Trend Pattern on Two Sided Cusum Control	
		Chart ($k=0.5, h=5$)	52

	4.5.4	Large Trend Pattern on Two Sided Cusum Control	
		Chart ($k=0.5, h=5$)	53
	4.5.5	Small Trend Pattern on EWMA Control Chart	
		(λ=0.05, <i>L</i> =2.615)	54
	4.5.6	Small Trend Pattern on EWMA Control Chart	
		(λ=0.05, <i>L</i> =2.615)	55
4.6	The E	ffect of Baseline Noise Level, Magnitude of Shift	
	and T	rend	56
4.7	Summ	ary	57

DESIGN PARAMETER SELECTION FOR SHEWHART, TWO-SIDED CUSUM AND EWMA CONTROL CHARTS

 \mathbf{V}

VI

5.1	Introduction 5		
5.2	Desigr	n Parameters for Shewhart X-bar Control Chart	58
	5.2.1	Selection of Design Parameters (Shewhart)	59
	5.2.2	Design of Experiment Factorial Plot (Shewhart)	60
5.3	Desigr	Parameter for Two-Sided Cusum Control Chart	62
	5.3.1	Selection of Design Parameters(Two-Sided Cusum)	63
	5.3.2	Design of Experiment Factorial Plot	
		(Two-Sided Cusum)	64
5.4	Desigr	n Parameter for EWMA Control Chart	66
	5.4.1	Selection of Design Parameters (EWMA)	67
	5.4.2	Design of Experiment Factorial Plot for EWMA	
		(Unstable Process)	68
	5.4.3	Design of Experiment Factorial Plot for EWMA	
		(Stable Process)	69
5.5	Summ	агу	70
PERFO	ORMA	NCE OF <i>SHEWHART, TWO-SIDED CUSUM</i> AN	D
EWMA	I CONT	FROL CHARTS	

6.1	Introduction	71
6.2	Performance of Shewhart Control Chart with Run Rules	
	6.2.1 Performance with Shift Pattern	72

	6.2.2	Performance of Two Alternatives Shewhart X-ba	<i>!</i> ! *
		Chart	78
	6.2.3	Performance with Trend Pattern	80
6.3	Perfor	mance of Two-Sided Cusum Control Chart	
	6.3.1	Performance with Shift Pattern	83
	6.3.2	Performance with Trend Pattern	88
6.4	Perform	mance of EWMA Control Chart	
	6.4.1	Performance with Shift Pattern	91
	6.4.2	Performance with Trend Pattern	95
6.5	Perfor	mance Validation	98
	6.5.1	Validation 1: Electrical Resistance of Insulation	
		Material (in MΩ)	99
	6.5.2	Validation 2: Wafer Width in Cassette of	
		Lithography Process	103
	6.5.3	Validation 3: Metallic Film Thickness (in μ m)	107
6.6	Summ	ary	111
DISC	USSION	J	
71	Introduy	rtion	112

	7.1	Introduction	112
	7.2	Errors in Interpretation the Control Charts Performances	112
	7.3	Performance of Shewhart Control Chart and	
		Nelson's Run Rules	116
	7.4	Performance Comparison of Shewhart, Two-Sided Cusum	
		and EWMA	120
	7.5	Proposed Charting Scheme for Monitoring Process Shift	123
	7.6	Summary	125
VIII	CON	CLUSION AND SUGGESTION	
	8.1	Conclusion	126
	8.2	Suggestion for Further Study	127
	REFI	ERENCES	128

VП

v111

APPENDIX

A1	133
A2	134
A3	136
B1	137
B2	139
B3	141
B4	148
B5	151
B6	154
B7	156

ix

LIST OF FIGURES

FIGURI	E TITLE PA	GE
1.1	Statistical Quality Engineering (SQE) tool classification (Adnan, 2002)	2
1.6	Flow chart of research activities	5
2.2	Causes effect to process mean and variance (Montgomery, 1996)	9
2.4(a)	Control charts performance improvement trend	11
2.4(b)	ARLs of the Self-Starting Cusum chart procedures and	15
2.6.1	Plotted data on X-bar, R charts	17
2.6.2	Plotted data on Two-Sided Cusum control chart (Montgomery, 1996)	20
2.6.3	Plotted data on EWMA control chart (Montgomery, 1996)	23
2.7(a)	Nelson's Run Rules (Griffith, 1996)	26
2.7(b)	Area of controlling Shewhart control chart using Nelson's Run Rules	26
2.8	Plots of varying control limits with same data (Nelson, 1989)	27
3.4	Four plots in describing individual data (NIST)	34
3.5	Method of counting ARL	35
3.6	Graph K vs λ for ARL_{stable} 50, 100, 250 and 370 (Crowder, 1989)	38
4.2	Flow chart for evaluating control charts performances	40
4.3	In-process control data on Standardized Shewhart control chart	42
4.3.1	In-process control data on Standardized Shewhart control chart	42
4.3.2	In-process control data on Two-Sided Cusum control chart	43
4.3.3	In-process control data on EWMA control chart	44
4.4	Small shift upward pattern data on Standardized Shewhart control chart	45
4.4.1	Upward shift pattern data on Standardized Shewhart control chart	45
4.4.2	Downward 2σ shift on <i>Standardized Shewhart</i> control chart	46
4.4.3	Upward 0.5 shift pattern data on Two-Sided Cusum control chart	47
4.4.4	Upward 25 shift pattern data on Two-Sided Cusum control chart	48
4.4.5	Upward 0.5 σ shift pattern data on <i>EWMA</i> control chart	
	$(\lambda = 0.05, L = 2.615)$	49
4.4.6	Upward 2σ shift pattern data on <i>EWMA</i> control chart	
	$(\lambda = 0.05, L = 2.615)$	49

4.5	Small upward trend pattern data on Standardized Shewhart chart	50
4.5.1	Large upward trend pattern data on Standardized Shewhart chart	51
4.5.2	Downward 0.0055 trend pattern data on Standardized Shewhart chart	52
4.5.3	Upward 0.0055 trend pattern data on Two-Sided Cusum control chart	53
4.5.4	Upward 0.0155 trend pattern data on Two-Sided Cusum control chart	53
4.5.5	Upward 0.005 σ trend pattern data on <i>EWMA</i> control chart	54
4.5.6	Upward 0.015 σ trend pattern data on <i>EWMA</i> control chart	55
4.6(a)	Different shifts pattern data on Basic Cusum control chart	56
4.6(b)	Different trends pattern data on <i>Basic Cusum</i> control chart (s x 10^{-1})	57
5.2.2(a)	Main Effects Plot for Shewhart control chart	60
5.2.2(b)	Factor Interaction Plot for Shewhart control chart	61
5.3.2(a)	Main Effects Plot for Two-Sided Cusum chart	64
5.3.2(b)	Factor Interaction Plot for <i>Two-Sided Cusum</i> with $k = 0.5$ and 0.75	65
5.3.2(c)	Factor Interaction Plot for <i>Two-Sided Cusum</i> with $k = 0.5$ and 1.0	66
5.4.2(a)	Main Effects Plot for <i>EWMA</i> at unstable process	68
5.4.2(b)	Factor Interaction Plot for EWMA control chart at unstable process	69
5.4.3(a)	Main Effects Plot for <i>EWMA</i> at stable process	69
5.4.3(b)	Factor Interaction Plot for EWMA control chart at stable process	70
6.2.1(a)	ARLs for Shewhart, Nelson's Rules 2, 5 and 6	74
6.2.1(b)	ARLs for Shewhart, Nelson's Rules 3 & 4 and the Modified Rule 4	75
6.2.1(c)	ARLs for Shewhart, Nelson's Rule 8 and the Modified Rule 8	76
6.2.1(d)	ARLs for Shewhart and the Nelson's Run Rules	77
6.2.1(e)	ARLs for Shewhart, all Nelson's Run Rules and the Modified Run Rules	78
6.2.3(a)	Different view ARLs for Shewhart and Nelson's Run Rules	81
6.2.3(b)	ARLs for Shewhart, Nelson's Rule 8 and the Modified Rule 8	82
6.3.1(a)	ARL for Two-Sided Cusum with fixed k and various h	84
6.3.1(b)	ARL for Two-Sided Cusum with $k = 0.5$ and various h	85
6.3.1(c)	ARL for Two-Sided Cusum with $k = 0.75$ and various h	86
6.3.1(d)	ARL for Two-Sided Cusum, Shewhart and all Nelson's Run Rules	87
6.3.1(e)	ARL for Two-Sided Cusum schemes used by Hawkins (1993a)	88
6.3.2(a)	ARL for Two-Sided Cusum, Shewhart and all Nelson's Run Rules	89
6.3.2(b)	ARL for Two-Sided Cusum with $k = 0.5$ and various h	90
6.3.2(c)	ARL for Two-Sided Cusum with $k = 0.75$ and various h	90

6.3.2(d) ARL for Two-Sided Cusum schemes used by Hawkins (1993a)	91
6.4.1(a) ARL for EWMA control schemes, $\omega = L$	92
6.4.1(b) ARL for EWMA at small process mean shift	93
6.4.1(c) ARL for EWMA at large process mean shift	93
6.4.1(d) ARL for EWMA, Shewhart and all Nelson's Run Rules	94
6.4.1(e) Large view ARL for EWMA, Shewhart and all Nelson's Run Rules	95
6.4.2(a) ARL for EWMA with different (λ, L) , $\omega = L$	96
6.4.2(b) ARL for a few EWMA, Shewhart and all Nelson Run Rules, $\omega = L$	97
7.2(a)	ARL _{unstable} and Type II Error for the related control schemes	114
7.2(b)	ARL _{unstable} and Type II Error for EWMA, Shewhart and	
	all Nelson's Run Rules	115
7.4	ARL for Shewhart, Two-Sided Cusum and EWMA control schemes	123

LIST OF TABLES

TABLE	TITLE PA	GE
1.6	Definition of terms	4
2.4	Classification of improvement trend on control chart performance	12
2.6.1	Sample data for X-bar, R charts (Montgomery, 1996)	18
2.6.2	Sample data for Two-Sided Cusum control chart (Montgomery, 1996)	21
2.6.3	Sample data for <i>EWMA</i> control chart (Montgomery, 1996)	24
3.2	Research question and methodology	30
3.6(a)	Layout of experiment	36
3.6(b)	The design of experiment worksheet example	36
3.6(c)	Table of expected ARL	37
4.3	Parameter for Standardized Shewhart X-bar control chart	41
4.3.1	Parameter for Standardized Shewhart X-bar control chart	42
4.3.2	Parameter for Two-Sided Cusum control chart	43
4.3.3	Parameter for EWMA control chart	44
4.4	Parameter of shift pattern data for Standardized Shewhart control chart	44
4.4.1	Parameter of shift pattern data for Standardized Shewhart control chart	45
4.4.2	Parameter of shift data for Standardized Shewhart control chart	46
4.4.3	Parameter of $0.5\sigma_{x-bar}$ shift pattern data for <i>Two-Sided Cusum</i>	47
4.4.4	Parameter of $2.0\sigma_{x-bar}$ shift pattern data for <i>Two-Sided Cusum</i>	47
4.4.5	Parameter of $0.5\sigma_{x-bar}$ shift pattern data for <i>EWMA</i> control chart	48
4.4.6	Parameter of shift pattern data for EWMA control chart	49
4.5	Parameters of $0.005\sigma_{x-bar}$ trend pattern data for <i>Standardized Shewhart</i>	50
4.5.1	Parameter of $0.015\sigma_{x-bar}$ trend pattern data for <i>Standardized Shewhart</i>	51
4.5.2	Parameter of trend pattern data for Standardized Shewhart control chart	52
4.5.3	Parameter of $0.005\sigma_{x-bar}$ trend pattern data for <i>Two-Sided Cusum</i> chart	52
4.5.4	Parameter of trend pattern data for Two-Sided Cusum control chart	53
4.5.5	Parameter of $0.005\sigma_{x-bar}$ trend pattern data for <i>EWMA</i> control chart	54
4.5.6	Parameter of $0.015\sigma_{x-bar}$ trend pattern data for <i>EWMA</i> control chart	55
5.2.1(a)	The first DOE for Shewhart control chart	59
5.2.1(b)	The second DOE for Shewhart control chart	60

5.2.2	Analysis Factorial Design for Shewhart control chart	62
5.3.1(a)	DOE on <i>Two-Sided Cusum</i> control chart ($k = 0.5$ and 1.0)	63
5.3.1(b)	DOE on <i>Two-Sided Cusum</i> control chart ($k = 0.5$ and 0.75)	63
5.3.2	Analysis Factorial Design on Two-Sided Cusum control chart	64
5.4.1(a)	DOE for <i>EWMA</i> control chart (unstable process)	67
5.4.1(b)	DOE for EWMA control chart (stable process)	67
5.4.2	Analysis Factorial Design for EWMA control chart (unstable process)	68
6.2.1	ARL for Shewhart control chart with Run Rules	73
6.2.2	ARL for Shewhart with Two Alternatives schemes and	
	Nelson's Run Rules	79
6.2.3	ARL for Shewhart control chart with Nelson's Run Rules	80
6.3.1	ARL for Two-Sided Cusum control chart	83
6.3.2	ARL for Two-Sided Cusum control chart	88
6.4.1	ARL for EWMA control chart	92
6.4.2	ARL for EWMA control chart	95
6.5.1(a)	Graphical representation of EROIM data	99
6.5.1(b)	Comparative performance between control schemes for EROIM data	101
6.5.2(a)	Graphical representation of WWIC data	103
6.5.2(b)	Comparative performance between control schemes for WWIC data	105
6.5.3(a)	Graphical representation of MFT data	107
6.5.3(b)	Comparative performance between control schemes for MFT data	110
7.2	ARLs and Errors for a few control charting schemes	113
7.3.1	ARL comparison on Shewhart control chart	116
7.3.2	Comparison of result on Nelson's Run Rules	119
7.4	ARL for Two-Sided Cusum from Montgomery (1996) and the author	120
7.5	ARL for the Combined Shewhart-Cusum and the proposed scheme	124

71 Y

CHAPTER I

INTRODUCTION

1.1 Introduction

Quality can be defined as *the totality of features and characteristics of a product or service that bears on its ability to satisfy stated or implied needs* (ASQ). The simple term means an ability of manufacturer or organization to satisfy or exceed the consumer wants through products and/or services. As technology keep on growing in various fields especially in mechanical, electronic and chemical base, various kinds of product for consumer can be produced. In many developed and developing countries where the economy are stable, people have an ability to pay for quality products even the price is high. However, in recent miniaturization technology growth where production toward finer size components, people need also become diversify and complex. Today, customers are sensitive about quality of product or services that they paid. Therefore, in order to keep in pace with customer interest, manufacturer have to ensure any products that are being produced will meet a certain quality level. This can be achieved with the good functionality, stable mating components, consistent sizes and high durability.

Products of high quality and competitive price cannot be manufactured without supporting with technology tools either in product development activities and production run. The implementation of concurrent engineering in product development activities, statistical quality engineering tools and computer aided tools until production stage will help to maintain quality in long term production run. An organization can maintain their products and/or services quality by implementing the 'Statistical Quality Engineering' (SQE) tools. SQE tools can be classified into eight main elements that are quality function deployment (QFD), design of experiment (DOE), statistical process control (SPC), acceptance sampling, process capability (Cp), failure mode and effect analysis (FMEA), gauge repeatability and reproducibility (GR&R) and six sigma.

In continuous production activity, usually seven basic SPC tools such as flow chart, check sheet, scatter plot, control chart, histogram, Pareto analysis and Ishikawa fish bone chart are applied concurrently. Control charts are classified to the variable and attribute control charts. Control chart for variables consists of several types such as *Shewhart X-bar*,*R* and *X-bar*,*S*, Cumulative sum (*Cusum*), exponentially weighted moving average (*EWMA*), individual moving range and others. The diagram of SQE tools classification from Adnan (2002) is modified by adding the types of variable control charts that involved in this project. Figure 1.1 illustrates this classification.

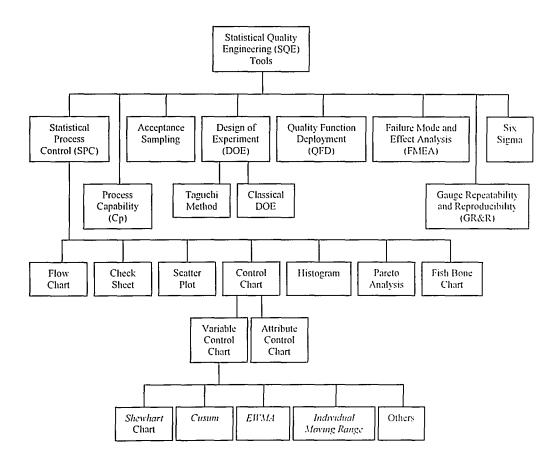


Figure 1.1: Statistical Quality Engineering (SQE) tools classification (Adnan, 2002)

Control charts function as the statistical method to monitor and control the process variable or attribute within the computed or historical control limits. Control limits are usually computed based on drawing specification, machine capability or historical process mean and standard deviation. Most production practicers will use the tightened control limits which is 1.33 times smaller than the specification limits. For stable process, a centerline between these two control limits need to be maintained continuously. Basically, control charts acts to monitor a process by signals any plotted data that is out from the control limits.

1.2 Statement of the Problem

In conducting a continuous quality improvement, control chart for variable is one of the SPC tools that useful to monitor and signal any unstable process. In achieving high quality products, application of effective charting scheme is a critical aspect. The traditional control charts such as 'cumulative sum' (*Cusum*) and 'exponentially weighted moving average' (*EWMA*) are known only effective for identifying small shifts, while *Shewhart X-bar* is only effective for identifying large process mean shifts. However, actual process mean variation is normally unpredictable either it will deform to small or large shifts when process become unstable. Therefore, an improved control charting scheme that effective for monitoring both small and large process mean shifts need to be investigated.

1.3 Objectives

The specific objectives of this research are:

- (i) To study the effectiveness of *Shewhart*, *Two-Sided Cusum* and *EWMA* control charts for monitoring small and large shifts in process mean within $\pm 3\sigma$ control limits.
- (ii) To propose an improved Statistical Process Control charting scheme for effective monitoring of both small and large shifts on process mean.