

SAFETY EVALUATION OF BAKUN CONCRETE FACED ROCKFILL DAM

 $\mathbb{B}\mathbb{Y}$

HILTON @ MOHD HILTON BIN AHMAD

GS15050

A Project Report Submitted in Partial Fulfillment of the Requirements of the

Degree of Master of Science in Structural Engineering and Construction in the

Department of Civil Engineering

University Putra Malaysia

Serdang, Selangor, Malaysia

2006

SAFETY EVALUATION OF BAKUN CONCRETE FACED ROCKFILL DAM By

HILTON @ MOHD HILTON BIN AHMAD

ABSTRACT

This study deals with a 2-D plane strain finite element analysis of elastic linear (Hooke's law) and non-linear lastest Duncan-Chang Hyperbolic Model to study the structural response of the dam in respect to the deformation and stresses of Main Dam of Bakun's Concrete face Rockfill Dam (CFRD) project which is currently under construction located in Sarawak, Malaysia as the second highest CFRD in the world when completed. Dead, Birth and Ghost element technique was used to simulate sequences of construction of the dam. The comparison of rigid and flexible foundation on the behaviour of the dam was discussed. In the finite element modeling the concrete slab on the upstream was represented through six-noded element, while the interface characteristic between dam body and concrete slab was modeled using interface element. The maximum settlement and stresses of the cross section was founded and the distribution of them were discussed and tabulated in form of graphs and contours. The effect of reservoir filling loading have gradual effect to the dam response behavior. The computed results by the present method were found to be in good agreement with the comparison of value to the existing dams in the world.

PENILAIAN KESELAMATAN EMPANGAN BATUAN BERPERMUKAAN KONKRIT BAKUN

Oleh

HILTON @ MOHD HILTON BIN AHMAD

ABSTRAK

Kajian ini merangkumi analisis unsur terhingga 2-dimensi terikan dasar linear kenyal (hukum Hooke) dan Model tidak linear Hiperbola Duncan-Chang untuk mengkaji reaksi perlakuan struktur empangan terhadap anjakan dan tegasan. Untuk struktur utama projek Empangan batuan berpemukaan konkrit (CFRD) di mana pada masa ini masih dalam proses pembinaan yang terletak di Sarawak, Malaysia sebagai CFRD yang kedua terbesar di dunia apabila siap kelak. Teknik unsur Dead-Birth-Ghost digunakan untuk memulakan turutan pembinaan empangan ini. Perbandingan antara perlakuan empangan ini dengan asas dan tanpa asas terhadap perlakuan empangan ini juga dibincangkan. Dalam model unsur terhingga, papak konkrit pada sebelah hulu empangan diwakili oleh unsur enamnod, manakala ciri antara-muka empangan and papak konkrit dimodelkan menggunakan unsur antara-muka. Anjakan dan tegasan maksimum untuk keratan rentas empangan telah diperolehi dan pengagihannya telah dibincangkan dan digambarkan dalam bentuk graf dan kontur. Kesan bebanan daripada tadahan air mempunyai kesan terhadap reaksi perlakuan empangan tersebut. Keputusan yang diperolehi mempunyai persefahaman yang baik dengan perbandingan keputusan daripada empangan yang sedia ada.

ACKNOWLEDGEMENTS

First of all, I felt thankful to ALLAH for his guidance and blessed my way to complete this dissertation successfully and provide me with excellent mind, toughness and health.

This dissertation would not be a reality without superior guidance of my supervisor, Assoc. Prof. Dr. Jamaloddin Norzaie. His patience and dedication of guiding me through all problems arises along the process of learning in this project will be much appreciated.

I would like to extends my thanks to my honourable Assoc. Prof. Ir. Dr. Mohd Saleh Jaafar and Assoc. Prof. Ir. Dr. Razali Bin Abdul Kadir which helping me so much in making this dissertation a success through their advice and support.

To my entire friends from UPM, KUiTTHO, Universiti Tenaga Nasional, and my fellow friends, your assistance and moral support whenever I need you are much appreciated.

Last but not least, to my employer, Kolej Universiti Teknologi Tun Hussein Onn (KUITTHO) for offering me scholarship and embarked Universiti Putra Malaysia (UPM) to pursue for Masters Level.

Permission to make photocopies of report /Thesis

I, Hilton @ Mohd Hilton Bin Ahmad declare that the report entitled: "Safety Evaluation of Bakun Concrete Faced Rockfill Dam" belongs to me. The content of this report may be used by anyone for the academic purposes of teaching, learning and research only. University Putra Malaysia is permitted to make photocopy of this document for same academic purposes.

Date	: June 14, 2006
Signature	:
Name	: Hilton @ Mohd Hilton Bin Ahmad
E-mail	: hilton@kuittho.edu.my
Phone	: 019-8982725

APPROVAL FORM

The project attached hereto entitled, "Safety Evaluation of Bakun Concrete Faced Rockfill Dam" prepared and submitted by Hilton @ Mohd Hilton Bin Ahmad in partial fulfillment of the requirements for the Degree of Master of Structural and Construction Engineering is hereby approved.

(Assoc. Prof. Dr. Jamaloddin Noorzaci)

Project Supervisor

(Assoc. Prof. Ir. Dr. Mohammad Saleh Jaafar)

Panel Examiner

MINMAR.

(Assoc. Prof Ir. Dr Razali Abdul Kadir)

Panel Examiner

23/6/06

Date

Date

6/06. 25

Date

TABLE OF CONTENTS

	Page
ABSTRACT	iii
ABSTRAK	iv
ACKNOWLEDGEMENTS	V
LIST OF TABLES	viii
LIST OF FIGURES	ix

CHAPTER 1 INTRODUCTION

1.1	Development in Rockfill Dam	2
1.2	Identified Problems	6
1.3	Objectives of Research	7
1.4	Scope of study	8
1.5	Organization of Thesis	9

CHAPTER 2 LITERATURE REVIEW

2.1	Introdu	uction of E	Dam		10
2.2	Concre	ete Faced (Concrete Da	m]]
	2.2.1	Overviev	w of design	and construction of operational CFRDs	12
	2.2.2	Overvie	w of design	and construction of under construction CFRDs	14
2.3	Dams	in Malaysi	ia		16
	2.3.1	CFRD d	ams in Mala	ysia	17
	2.3.2	Seismici	ity in Malays	sia	19
		2.3.2.1	Seismic S	tability of Bakun CFRD	20
2.4	Basic 1	Feature of	CFRD dam		23
2.5	Design	and Cons	struction Pra	ctice of CFRD	26
	2.5.1	Design o	of Foundatio	n	27
	2.5.2 Dam Material and zoning		oning	28	
		2.5.2.1	Dam Zoni	ng	28
		2.5.2.2	Fill cross	section	32
		2.5.2.3	Main Roc	kfill	33
			2.5.2.3.1	Problems in Main Rockfill	33
			2.5.2.3.2	Transition Zone	34
			2.5.2.3.3	Placement of rockfill	35
			2.5.2.3.4	Materials of Main Rockfill	36
	2.5.3	Water Se	ealing syster	n	38
		2.5.3.1	Plinth (To	e slab)	38
		2.5.3.2	Concrete f	face Slab	42
		2.5.3.3	Perimetric	Joint details	46
	2.5.4	Parapet	Wall		48
	2.5.5	General	consideratio	n (Concluding Remark)	49
2.6	Loadir	ıg			50

	2.6.1	Self-wei	ght of the da	am	50
	2.6.2	Water Lo	oading		50
	2.6.3	Silt Load	1 -		51
	2.6.4	Wind loa	ad		51
	2.6.5	Ice Load	ling		51
	2.6.7	Combina	ations of loa	ds	51
2.7	Static S	Soil-Struct	ure Interact	ion (SSI)	51
	2.7.1	Result ar	nd Use of SS	SI Analyses	52
	2.7.2	Importan	nt Features o	f SSI Analyses	53
2.8	Safety	of Dams		·	54
2.9	Observ	ations on	CFRDs und	er Static Loadings	57
	2.9.1	Deforma	tion Proper	ties of Rockfill	57
	2.9.2	Settleme	ent of CFRD	dam	57
		2.9.2.1	Classical	Method: Empirical Predictive Methods	61
			2.9.2.1.1	Predictive Methods of Deformation During	
				Construction	61
			2.9.2.1.2	Predictive Methods of Deformation Behaviour	
				Post Construction	62
	2.9.3	Finite ele	ement analy	sis	63
		2.9.3.1	Static Ana	ılysis	63
			2.9.3.1.1	Introduction	63
			2.9.3.1.2	Linear Analysis	64
			2.9.3.1.3	Non-Linear Analysis	66
		2.9.3.3	Concrete :	slab	74
		2.9.3.4	Rigid vers	sus Flexible Foundation	76
			2.9.3.4.1	Analysis with Foundation	77
2.10	Justific	ation on A	Analysis of	CFRD	78
			-		

CHAPTER 3

FINITE ELEMENT FORMULATION

3.1	Introdu	action and principle to Finite Element	80
3.2	Analysis of 2-D element		85
	3.2.1	Isoparametric elements	85
		3.2.1.1 Six-nodded isoparametric element	87
		3.2.1.2 Eight-nodded isoparametric element	88
	3.2.2	Interface element	90
	3.2.3	Infinite element	93
3.3	Numer	rical Integration	94
3.4	Formulation and application of finite element for non-linear problems.		
	3.4.1	Material Non-linearity	96
		3.4.1.1 Non-Linear Analysis Method	97
		3.4.1.2 Computational procedure	98
	3.4.2	Geometric Non-linearity	100
3.5	Solutio	on Algorithm	101
	3.5.1	General	101

	3.5.2	Algorithms for Simulation Sequence of Construction	101	
		3.5.2.1 Sequential Linear Approach	104	
		3.5.2.2 Sequential Non-linear Approach	104	
	3.5.3	Residual Force Approach	105	
3.5.4 Computational steps in the sequence		Computational steps in the sequence of construction of CFRD	107	
	3.5.5	Convergence Criteria		
3.6	Learni	ng Process and Verification	109	
	3.6.1	Numerical Example No. 1: Cantilever Beam Subjected to Couple	110	
	3.6.2	Numerical Example No. 2: Concrete Strip Footing on Soil	- 111	
	3.6.3	Numerical Example No. 3: Concrete Strip Footing on Soil	113	
	3.6.4	Verification of the Interface Element	115	

CHAPTER 4 CONSTITUTIVE LAW FOR SOILS

41	Introduction	116
т. <u>і</u>		110
4.2	Linear-Elastic Analysis	$\Pi 7$
	4.2.1 Stresses in rock	118
4.3	Introduction to Non-Linear Analysis	120
4.4	Non-Linear Behaviour Model	121
	4.4.1 Non-Linear Hyperbolic Model	122
	4.4.1.1 Duncan-Chang Hyperbolic Model	122
4.5	Interface Constitutive Models	133
	4.5.1 Linear Elastic Model	133
	4.5.2 Nonlinear Elastic Numerical Model (hyperbolic model)	133

CHAPTER 5 ANALYSIS OF BAKUN DAM

5.1	Genera	al		135
5.2	Construction Process of Bakun Main Dam			135
5.3	Bakun Dam Cross Section			138
5.4	Differe	ent Phase o	of Schedule of Construction	14]
5.5	Model	ling of Bak	kun Dam	142
5.6	Loadin	ng		145
	5.6.1	Simulati	on of sequence of construction	146
	5.6.2 Simulation of reservoir filling			148
5.7	Result	on Displac	cement	148
	5.7.1	Linear A	nalysis Graphs	148
		5.7.1.1	Vertical Displacement	149
		5.7.1.2	Horizontal Displacement	157
		5.7.1.3	Contours for Displacements	164
		5.7.1.4	Graph Stress in x-direction	166
		5.7.1.5	Graph Stress in y-direction	174
		5.7.1.6	Graph Stress at concrete face	181
		5.7.1.7	Contours for stresses	182

	5.7.2	Non-Lin	ear Analysis at the end of construction	185
		5.7.2.1	Vertical Displacement	186
		5.7.2.2	Horizontal Displacement	193
		5.7.2.3	Contours for Displacements	200
		5.7.2.4	Graph of σ_v	202
		5.7.2.5	Graph of Stress at Concrete face	209
		5.7.2.6	Contours for stresses	211
	5.7.3	Analysis	of Non-Linear with Reservoir operation	217
		5.7.3.1	Displacement	217
		5.7.3.2	Stresses	220
			5.7.3.2.1 At the face slab	220
			5.7.3.2.2 Contours	222
5.8	Conclu	ding Rem	arks	229

CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS

6.1	Summary	239
6.2	Conclusions	239
6.3	Recommendations	241
REF APP	FERENCES	243 245

LIST OF TABLES

Table		Page
1.1	Rates of post-construction crest settlement of dumped and compacted	
	rockfills in CFRDs (Sherard and Cooke, 1987)	3
1.2	Historical summary of rockfill usage in embankment design (Galloway 1939,	
	Cooke 1984, Cooke 1993).	5
2.1	World's highest existing CFRD	15
2.2	Earthquake Felt in Malaysia	20
2.3	List of CFRDs in Seismic Areas	22
2.4	Material specification	30
2.5	List of High CFRDs in Chronological Order.	37
2.6	Typical rock parameters (from Attewell & Farmer 1976).	38
2.7	Criteria Adopted for Concrete Face Membrane Thickness	43
2.8	Examples of Recorded Dam Failures	56
2.9	Post Construction Crest Settlement	59
2.10	Perimeter joint movement	60
2.11	Results of Yutiao Dam	69
2.12	Comparison of vertical settlement (as August 1999)	74
2.13	Comparison of horizontal displacement increments	74
3.1	E-B model of rockfill material	9 7
3.2	Comparison of Deflection for Cantilever Beam.	111
3.3	Stress-strain Parameter for this problem example.	114
4.1	Linear Analysis versus Non-Linear Analysis	120
4.2	Dams Analyzed by Researchers Using Hyperbolic Model	120
5.1	Different zones for Main Bakun Dam	139
5.2	Ratio's of Maximum Vertical Displacements	150
5.3	Parameters for Duncan's E-B Model	185
5.4	Maximum vertical displacements (in percent) with respect to height of Bakun	236
	CFRD (205m)	
5.5	Maximum Value of Vertical and Horizontal Displacement	236
5.6	Maximum Value of Stresses for Linear and Non-linear Analysis	237

LIST OF FIGURES

Figure		Page
1.1	Types of Earth and Rockfill Dam with Core. (Robin et al., 1992)	2
1.2	Trends in CFRDs over the past years	3
1.3	Type of Concrete Face Rockfill Dam (Robin et al., 1992)	4
2.1	Types of dams (a) Embakment Dam (b) Concrete dam (c) Arch Dam	10
2.2	Central earth core	10
2.3	Sloping earth core	10
2.4	Upstream core	11
2.5	Central thin membrane	11
2.6	CFRD (Black line represents concrete or bitumen face)	11
2.7	Location of Major Dams in Malaysia	16
2.8	Map of Location of CFRD dams in Malaysia	18
2.9	CFRDs in Malaysia.	18
2.10	Plate boundaries and epicentral distribution	19
2.11	PGA map for Malaysia	20
2.12	Typical structure of CFRD	23
2.13	(a) Typical cross-section, details of the crest and material composition of a	
	CFRD.	
	(b) Cross-section and detail of the `plinth' and perimetric joint.	24
2.14	Bakun Project Site View	26
2.15	Rockfill dam is supported by compressible foundation	27
2.16	Foundation Preparation	27
2.17	Current Practice Design of CFRD constructed of Sound Rockfill on a strong	
	Rock Foundation (ICOLD, 1989a)	28
2.18	Galillos Dam (after Amaya and Marulanda, 1985)	31
2.19	Crotty Dam (HEC 1988)	31
2.20	Left: View of Bakun Dam site looking from downstream	
	Right: View of Bakun Dam site looking from upstream	32
2.21	Typical equal settlement curves before reservoir filling	34
2.22	Typical section of CFRD	34

2.23	Bakun Dam Embankment Rock Filling			
2.24	Segredo Dam. Plinth, Typical Cross Section (Maranha, 1991)			
2.25	Comparison of Plinth Design (Cooke, 2000)			
2.26	Plans and Detail of Plinth at Salvajina Dam (Sierra et al., 1985)	40		
2.27	Typical Perimeteic Joint Details (Brown, 2000.)	41		
2.28	Plinth Detail of Bakun Dam	41		
2.29	(a), (b) Plinth layout (c) Plinthline	41		
2.30	Joint details for Khao Laem Dam (Robin et al., 1992)	44		
2.31	Typical of concrete face sealing and joint layout (Kutzner 1997).	45		
2.32	(a) Face starter slab (b) Slipform (c) Face slab	45		
2.33	Salvajino Dam Perimeter and near Abutment Vertical Joints (ICOLD, 1989a).	46		
2.34	Joint Detail of Antamina Dam (Alberto et al., 2000)	47		
2.35	(a) Copper waterstop joint (b) Typical stainless steel waterstop joint	47		
2.36	(a) Joint meter (b) 3-D perimeter joint meter	48		
2.37	Parapet wall connected to face slab	48		
2.38	CFRD settlements due to dead load	50		
2.39	Face sealing "concrete faced" due to water head	4]		
2.40	A catastrophic dam failure thousands deaths in Harrisburg (Pennsylvania).	56		
2.41	Post Construction Crest Settlement	59		
2.42	Perimeter Joint Movement	60		
2.43	Finite Element mesh of the Dam Body (Noorzaei, 1999)	64		
2.44	Vertical displacement of central nodes for 3, 7, 10 layer loading, (Noorzaei, 1999)	64		
2.45	Displacements due to Dead Weight in Standard Dam (Clough et al., 1967)	65		
2.46	Vertical Displacements due to Dead Weight in Standard Dam (Clough et	66		
	al.,1967)			
2.47	Finite element mesh of Foz does Areia (Saboya, 1993)	67		
2.48	(a) Settlements Beneath Dam Axis.			
	(b) Settlement Beneath 1 st stage Axis	67		
2.49	Contours Displacements (m), (Xingzhang et al., 2002)	68		
2.50	Contours of Major and Minor Principal Stresses (MPa), (Xingzhang et al.,	68		

2002)

2.51 Vertical and Horizontal Displacements at End of Reservoir Filling (cm) (Gao		
	al., 2001)	70
2.52	Major and Minor Principle stress at End of Reservoir Filling (MPa)	
	(Gao et al., 2001)	70
2.53	Cethana Section and Mesh Discretization (Khalid, 1990)	70
2.54	Results obtained by using finite element Method of Non-linear analysis	
	Cethana CFRD	71
2.55	Results obtained by Khalid at the face slab compared with in-situ measurement.	72
2.56	Layout of in-situ measurement points	74
2.57	Deformations obtained by numerical simulation and in situ measurement.	74
2.58	Three - dimensional Analysis Model. (Kazuo et al., 2000)	75
2.59	Foundation embankment system	77
2.60	Effect of foundation flexibility on stresses at base of dam (Clough and	
	Woodward,1969)	78
3.1	Schematic diagram of interface elements in CFRD dam	90
3.2	Interface element	90
3.3	Parabolic interface element	91
3.4	Infinite element in a rockfill dam	93
3.5	Integrating points for $n = 3$ in a square region. (Exact for polynomial of fifth	
	order in each direction)	95
3.6	Material zoning TSQ-1	96
3.7	Non-Linear Curves	97
3.8	Iterative procedure	98
3.9	Step iterative procedure	98
3.10	Basic incremental procedure	98
3.11	Mixed procedure	99
3.12	Sequence of Construction Using Birth-Ghost-Dead technique	102
3.13	Flowchart of the Computer Program	109
3.14	Cantilever Beam Mesh (Krishnamoorthy, 2001)	110
3.15	Thick circular cylinder test (Hinton, 1977).	111

3.16	Vertical Displacements in Radius	112		
3.17	Radial Stress Distribution due to Internal Pressure Loading	112		
3.18	Hoop Stress Distributions Due to Internal Pressure Loading.	112		
3.19	Mesh of Concrete Footing on Soil (after Noorzaei et al., 1991)			
3.20	Pressure-Settlement Plots for Central Point of Footing	114		
3.21	Vertical Stresses Distribution along the Centreline of the Footing	114		
3.22	Two Continuums with Interface Element	115		
4.1	Types of Stress-Strain Laws	116		
4.2	Hooke's Law	118		
4.3	Hyperbolic Stress-strain Representation by Kodner.	123		
4.4	Empirical Equations for Expressing Efects of Confining Pressure, (Jambu, 1963)	123		
4.5	Mohr Coulomb Failure Criterions (Noorzaei, 1991)	124		
4.6	Linear Unloading-Reloading Stress-Strain Relationship (Duncan et al., 1984)	126		
4.7	Comparisons between Stress Level and Stress State Criteria for Assignment of			
	Unloading-Reloading Moduli (Duncan et al., 1984)	128		
4.8	Comparison between Stress Level and Stress State Criteria for assignment of			
	Unloading-Reloading Moduli (Duncan et al., 1984)	129		
4.9	Flow Diagram of FEADAM 84 Software (Duncan et. al, 1984)	132		
5.1	(a) Artistic impression of Bakun Hydroelectric Project (HEP) in Sarawak,			
	Malaysia.			
	(b) Location of Bakun HEP in Malaysia	135		
5.2	Bakun Dam Project	136		
5.3	Picture on Bakun Main Dam	1 3 8		
5.4	(a) Cross-section of Bakun Dam			
	(b) Different zones in Bakun Dam	138		
5.5	Phases of construction of Bakun Dam	142		
5.6	Finite element Meshes]44		
5.7	Contours for Vertical Displacement for Bakun Dam Using Single Shot loading			
	for with and without Foundation.	146		
5.8	(a) Sequence of Construction of Bakun Dam			

	(b) End of Reservoir Filling of Bakun Dam	147
5.9	Vertical Displacement at Foundation level (0m) at different stages of	
	construction	151
5.10	Vertical Displacement at 29.5m elevation at different stages of construction for	
	with and without (rigid) foundation.	152
5.11	Vertical Displacement at 52.7m elevation at different stages of construction for	
	with and without (rigid) foundation.	153
5.12	Vertical Displacement at 110.1m elevation at different stages of construction	
	for with and without (rigid) foundation.	154
5.13	Vertical Displacement at 170.92m elevation at different stages of construction	
	for with and without (rigid) foundation.	155
5.14	Vertical Displacement at the middle cross section in y-axis at different stages of	
	construction for with and without (rigid) foundation.	156
5.15	Horizontal Displacement at Foundation level (0m) at different stages of	
	construction	158
5.16	Horizontal Displacement at 29.5m elevation at different stages of construction	
	for with and without (rigid) foundation.	159
5.17	Horizontal Displacement at 52.71m elevation at different stages of construction	
	for with and without (rigid) foundation.	160
5.18	Horizontal Displacement at 110.1m elevation at different stages of construction	
	for with and without (rigid) foundation.	161
5.19	Horizontal Displacement at 170.9m elevation at different stages of construction	
	for with and without (rigid) foundation.	162
5.20	Horizontal Displacement at the middle cross section in y-axis at different stages	
	of construction for with and without (rigid) foundation.	163
5.21	Contours for Vertical Displacement at the end of construction for with and	
	without (rigid) foundation for linear analysis.	164
5.22	Contours for Horizontal Displacement at the end of construction for with and	
	without (rigid) foundation for linear analysis.	165
5.23	Normal stress in x-direction, σ_x at Foundation Level (0m) at different stages of	
	construction for with and without Foundation.	169

5.24	Normal stress in x-direction, σ_x at 29.5m elevation at different stages of	
	construction for with and without Foundation.	170
5.25	Normal stress in x-direction, σ_x at 51.7m elevation at different stages of	
	construction for with and without Foundation.	171
5.26	Normal stress in x-direction, σ_x at 110.1m elevation at different stages of	
	construction for with and without Foundation.	172
5.27	Normal stress in x-direction, σ_x at 170.92m elevation at different stages of	
	construction for with and without Foundation.	173
5.28	Normal stress in y-direction, σ_y at Foundation Level (0m) at different stages of	
	construction for with and without Foundation.	176
5.29	Normal stress in y-direction, σ_y at 29.5m elevation at different stages of	
	construction for with and without Foundation.	177
5.30	Normal stress in y-direction, σ_y at 51.71m elevation at different stages of	
	construction for with and without Foundation.	178
5.31	Normal stress in y-direction, σ_y at 110.1m elevation at different stages of	
	construction for with and without Foundation.	179
5.32	Normal stress in y-direction, σ_y at 170.1m elevation at different stages of	
	construction for with and without Foundation.	180
5.33	Stresses at concrete slab with and without Foundation	181
5.34	Contours of Normal Stress, σ_x at the end of construction stage for with and	
	without Foundation for linear analysis.	183
5.35	Contours of Normal Stress, σ_y at the end of construction stage for with and	
	without Foundation for linear analysis.	184
5.36	Contours of Shear Stress, τ_{xy} at the end of construction stage for with and	
	without Foundation for linear analysis.	184
5.37	Vertical Displacement at Foundation level (0m) at different stages of	
	construction	187
5.38	Vertical Displacement at 29.5m elevation at different stages of construction for	
	with and without (rigid) foundation.	188
5.39	Vertical Displacement at 52.712m elevation at different stages of construction	
	for with and without (rigid) foundation.	189

5.40	Ventited: Risple review and Will Git Should at the stages of	208
5.56	Stnstreetion on crotchs land of ith null (nigid) for south foundation and without	190
	Foundation	210
5.57	Contours of Normal Stress, σ_x at the end of construction stage for with and	
	without Foundation for non-linear analysis.	213
5.58	Contours of Normal Stress, σ_y at the end of construction stage with and without	
	Foundation for non-linear analysis.	214
5.59	Contours of Shear Stress, τ_{xy} at the end of construction stage with and without	
	Foundation for non-linear analysis.	215
5.60	Contours of Minimum Principal Stress, Pmin at the end of construction stage	
	with and without Foundation for non-linear analysis.	215
5.61	Contours of Maximum Principal Stress, P_{max} at the end of construction stage	
	with and without Foundation for non-linear analysis.	216
5.62	Contours for Vertical Displacement with reservoir operation for with and	
	without (rigid) foundation for non-linear analysis.	218
5.63	Contours for Horizontal Displacement with reservoir operation for with and	
	without (rigid) foundation for non-linear analysis.	219
5.64	Stresses at concrete slab of non-linear analysis at the end of reservoir fillings	
	for with foundation and without Foundation.	221
5.65	Contours of Normal Stress, σ_x at reservoir operations for with and without	
	Foundation for non-linear analysis.	226
5.66	Contours of Normal Stress, σ_y at reservoir operations for with and without	
	Foundation for non-linear analysis.	226
5.67	Contours of Shear Stress, τ_{xy} at reservoir operations for with and without	
	Foundation for non-linear analysis.	227
5.68	Contours of Minor Principal Stress, Pmin at reservoir operations for with and	
	without Foundation for non-linear analysis.	228
5.69	Contours of Major Principal Stress, Pmax at reservoir operations for with and	
	without Foundation for non-linear analysis.	228
5.70	Graph of vertical displacement comprising of all types of analysis at the	
	centerline of the dam.	230

5.40	Vertical Displacement at 110.1603m elevation at different stages of	
	construction for with and without (rigid) foundation.	190
5.41	Vertical Displacement at 170.92m elevation at different stages of construction	
	for with and without (rigid) foundation.	191
5.42	Vertical Displacement at the middle cross section in y-axis at different stages of	
	construction for with and without (rigid) foundation.	192
5.43	Horizontal Displacement at Foundation level (0m) at different stages of	
	construction.	194
5.44	Horizontal Displacement at 29.5m elevation at different stages of construction	
	for with and without (rigid) foundation.	195
5.45	Horizontal Displacement at 52.7126m elevation at different stages of	
	construction for with and without (rigid) foundation.	196
5.46	Horizontal Displacement at 110.1603m elevation at different stages of	
	construction for with and without (rigid) foundation.	19 7
5.47	Horizontal Displacement at 170.92m elevation at different stages of	
	construction for with and without (rigid) foundation.	198
5.48	Horizontal Displacement at the middle cross section in y-axis at different stages	
	of construction for with and without (rigid) foundation.	199
5.49	Contours for Vertical Displacement at the end of construction for with and	
	without (rigid) foundation for non-linear analysis.	201
5.50	Contours for Horizontal Displacement at the end of construction for with and	
	without (rigid) foundation for non-linear analysis.	201
5.51	Normal stress in y-direction, σ_y at Foundation Level (0m) at different stages of	
	construction for with and without Foundation.	204
5.52	Normal stress in y-direction, σ_y at 29.5m elevation at different stages of	
	construction for with and without Foundation.	205
5.53	Normal stress in y-direction, σ_y at 51.1m elevation at different stages of	
	construction for with and without Foundation.	206
5.54	Normal stress in y-direction, σ_y at 101.1m elevation at different stages of	
	construction for with and without Foundation.	207
5.55	Normal stress in y-direction, σ_y at 170.9m elevation at different stages of	

	construction for with and without Foundation.	208
5.56	Stresses at concrete slab of non-linear analysis for with foundation and without	
	Foundation	210
5.57	Contours of Normal Stress, σ_x at the end of construction stage for with and	
	without Foundation for non-linear analysis.	213
5.58	Contours of Normal Stress, σ_y at the end of construction stage with and without	
	Foundation for non-linear analysis.	214
5.59	Contours of Shear Stress, τ_{xy} at the end of construction stage with and without	
	Foundation for non-linear analysis.	215
5.60	Contours of Minimum Principal Stress, P_{min} at the end of construction stage	
	with and without Foundation for non-linear analysis.	215
5.61	Contours of Maximum Principal Stress, P_{max} at the end of construction stage	
	with and without Foundation for non-linear analysis.	216
5.62	Contours for Vertical Displacement with reservoir operation for with and	
	without (rigid) foundation for non-linear analysis.	218
5.63	Contours for Horizontal Displacement with reservoir operation for with and	
	without (rigid) foundation for non-linear analysis.	219
5.64	Stresses at concrete slab of non-linear analysis at the end of reservoir fillings	
	for with foundation and without Foundation.	221
5.65	Contours of Normal Stress, σ_x at reservoir operations for with and without	
	Foundation for non-linear analysis.	226
5.66	Contours of Normal Stress, σ_y at reservoir operations for with and without	
	Foundation for non-linear analysis.	226
5.67	Contours of Shear Stress, τ_{xy} at reservoir operations for with and without	
	Foundation for non-linear analysis.	227
5.68	Contours of Minor Principal Stress, Pmin at reservoir operations for with and	
	without Foundation for non-linear analysis.	228
5.69	Contours of Major Principal Stress, P_{max} at reservoir operations for with and	
	without Foundation for non-linear analysis.	228
5.70	Graph of vertical displacement comprising of all types of analysis at the	
	centerline of the dam.	230

INTRODUCTION

Malaysia, which comprises Peninsular Malaysia, Sabah and Sarawak. is located between latitudes 1° and 7° North and longitudes 100° and 119° East. It covers a total land area of over 330,000 km². With rapid population growth and accelerating economic development, much of the world's natural resources are being depleted at an unsustainable rate. One of these resources is WATER which requires urgent attention to ensure sustainable use.

Dams form part of a controlled irrigation system but they also have other roles to play, i.e. flood control, hydroelectric power generation and also as soil conservation. There are a few factors need to be taken care of when designing a dam, i.e. safety, economy, efficiency and appearance. Safety and economy are factors that contradict to each other; however, we may design an economical dam without sacrificing the safety of the dam. In this report, Bakun Dam which is the second biggest Concrete Faced Concrete Dam (CFRD) in the world when completed is analyzed to its safety by using finite element method. Dam structure often store huge quantity of water at great potential energy and if in the case of failure does pose an imminent threat to population and property downstream. There are many cases reported due to dam failure and it cause very severe damages.

Dams are designed to withstand all applied loads, e.g. gravity load, hydrostatic, hydrodynamic pressures etc. The biggest loads on dam are the gravity load due to its massive self weight and also earthquake loads. The accuracy of the estimation of dam safety under static and earthquake (dynamic) and the design work require a good understanding of structural response of dam under both cases. As far as the

1

design aspect concerns, static load and dynamic load are contradicts as in static we need to design the stiffest structure, however, in dynamic it is required to design the structure most flexible. Therefore, the engineers should be aware of both criteria and fulfills to its optimum dam design.

1.1 Development of Rockfill Dam

In first half of 20th century, most rockfill dam were of loosely dumped quarried rock with some version of core or upstream facing including wooden planking, concrete, or hand-placed rock dry-wall as well as only few impervious core rockfill dams was built prior to the 1940, (Maranha,1991). Leakage due to high fill deformation and opening of the joints in these types of dams has become obvious. From thence up until the 1950's, the design and construction of rockfill dams were a matter of empiricism. Then, dam engineers diverted towards the earth core rockfill for the following 20 years.

Figure 1.1: Types of Earth and Rockfill Dam with Core. (Robin et al., 1992)

The transition to compacted rockfill for both earth-core and concrete-face dams occurred during the period 1955-1965 (Cooke 1984) as shown in Figure 1.2. This transition was possible because of the advent of heavy rollers and was particularly spurred Terzaghi's criticism of dumped rockfill for its excessive compressibility as well as more compatible with the needs for an impervious concrete membrane. Comparison between rates of post-construction at the crest settlement between dumped and compacted rockfill are shown in Table 1.1

Figure 1.2: Trends in CFRDs over the past years

Table 1.1: Rates of post-construction crest settlement of dumped and compacted rockfills in CFRDs (Sherard and Cooke, 1987)

	Approximate Rate of Crest Settlement for 100m High CFRD (mm/year)			
Туре	After 5 years	After 10 years	After 30 years	
Compacted Rockfill	3.5	1.5	0.6	
Dumped Rockfill	45	30	10	

The leakages has been controlled to very reasonable levels, gradually the concrete faced rockfill dam (CFRD) resumed its place among rockfill dams. In this type of dam the foundation requirements being essentially the same as for the central core dam, other attributes such as simpler construction logistics, less

3