

PREDICTION OF PUNCHING LIFE SPAN FOR PHOSPHOR BRONZE STAMPING OFERATION

MOHD FADZIL MUIN BIN HASHIM

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

	BORANG PENGESAHAN STATUS TESIS*
NDUL.	PREDICTION OF PUNCHING LIFE SPAN FOR PHOSPHOR BRONZE STAMPING OPERATION
	SESI PENGAJIAN:
Sava	MOHD FADZIL MUIN BIN HASHIM (HURUF BESAR)
mengalar dengan sya	membenarkan iesis (PSM/Sarjana/Doktor Lalsafab?) ini disimpan di Perpustakaan iai syarat kegunaan seperti berilan:
L. Tesis 2. Perpu 3. Perpu penga 4. TSila	idalah hakmilik Kolej Universiti Teknologi Tun Hussein Onn. stakaan dibenarkan membuat salman untuk tujuan pengajian sahaja. stakaan dibenarkan membuat salinan tesis ini sebagat bahan pertukaran antara institusi jian tinggi. tandakan (✔)
	SULIT (Mengandungi maHumai yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTARAHSIA RASMI 1972)
	TERITAD (Mengandungi maklumat TERITAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan;
V	
	Michande Mithel.
(T.)	(NDATANGAN PENULIS) (TANDAT XGAX PENUTUA;
Alamat Tet. No 7 Ja 86400 F Batu Pa	Ilan Wira 2, Taman Wira, Pt I Raja, hat, Johor
Laríkiu:	26/08/2007 Tankt:
	·

"I hereby declared that I have read this thesis and in my opinion this thesis in terms of contents and quality requirements fulfill the purpose for the award of the Master of Mechanical Engineering".

:

:

Signature

Name of Supervisor

Austusj.

PROF. DR. SULAIMAN BIN HASSAN

26/08/2007.

Date

PREDICTION OF PUNCHING LIFE SPAN FOR PHOSPHOR BRONZE STAMPING OPERATION

•.

MOHD FADZIL MUIN BIN HASHIM

Thesis submitted in fulfillment of the requirements for the award of Master of Mechanical Engineering

> Faculty of Mechanical and Manufacturing Universiti Tun Hussein Onn Malaysia

> > AUGUST 2007

Thesis submitted in fulfillment of the requirements for the award of Master of Mechanical Engineering. "I hereby declare that the work in this thesis is my own except for quotations and summaries which have been duly acknowledged"

.....

Signature

Name of Student

:

:

:

.....

MOHD FADZIL MUIN BIN HASHIM

Date

26/08/07

To my dear wife, Zohaida, the most positive person I know and a constant source of encouragement. She believed in me before I believed in myself.

To my dear children Firdaus, Iman, Naeem, and Syifa. Also to my dear parents. They would have been pleased and proud to see the results of this undertaking.

Acknowledgements

Praise be to Him only, with His Grace and Mercy, He had given me the strength and courage to do and complete this project.

Firstly I want to thank my supervisor Prof. Dr Sulaiman Hj. Hassan from UTHM for his support and guidance during the project period.

Special thanks to Mr. Takahiro Yoshiike who is a stamping die designer and had supported me. Also special thanks to small group of skillful world class die maintenance technicians with dedicated production staffs and subordinates who had worked together with me to achieve these results.

I want to thank Vba programmers who have guided me to write a customized program for punch re-sharpening level using advanced Vba source codes world wide especially John Walken Bach (USA). In addition, thanks to Krueger from UK for the opens source Constrained Cubic Spline Vba subroutine. Finally, to countless friends, local and international who had guided me directly or indirectly.

ABSTRAK

Meramal hayat mata alat punch adalah kritikal untuk produk kerana ianya akan menyebabkan kualiti produk menjadi kurang baik, merendahkan kadar pengeluaran dan membazir masa bagi proses penajaman. Mata alat perlu diasah selepas digunakan beberapa kali kerana dimensinya akan merosot dan ini menyebabkan ketidak tepatan yang akan menyebabkan dimensi produk tidak mengikut yang ditentukan. Salah satu kaedah yang digunakan bagi penentuan masa penajaman mata alat ialah melalui anggaran kasar mengunakan unit kshots. Selalunya anggaran ini tidak tepat dan ianya menyebabkan proses penajaman dan proses mencetak yang tidak ekonomi. Kajian ini dilakukan untuk mengatasi kelemahan ini. Mata alat yang digunakan dalam kajian ini adalah dari jenis Cementite Tungsten Carbide dan bahan kerja yang digunakan ialah Phosphor Bronze Strip. Darjah kekerasan relatif bahan adalah lebih kurang 6.3. Proses pencetakan yang digunakan ialah proses pencetakan progresif dan ianya dijalankan di sebuah kilang elektronik yang termuka. Untuk kadar kshots yang tertentu, profil kehausan mata alat diukur dan ketidak tepatan dimensi produk dikaji. Peningkatan burr pada produk juga dikaji pada setiap 4000 unit produk. Hayat mata alat adalah ditentukan apabila produk yang dihasilkan rosak. Semasa ini, mata alat akan membulat, kehausan dapat dikenalpasti dan kerekahan pada hujung mata alat dilihat. Dapatan dari kajian ini ialah hubungan kadar kehausan berkadar terus kepada kshots dan ini memudahkan algorithma bagi penentuan hayat mata alat dibuat. Model simulasi dicipta dengan mengunakan 'Constraint Cubic Spline algorithm', pengkaji telah dapat meramal ketumpulan dan kehausan mata alat dengan lebih tepat. Walau bagaimanapun bentuk dan bahan mata alat serta kekerasan relatif akan mempengaruhi algorithma ini. Kajian ini menjimatkan kos proses pencetakan melalui mengurangkan ketidak tepatan ramalan kehausan dan hayat mata alat yang seterusnya mengurangkan kerosakan produk, mengurangkan burr dan membolehkan penajaman dibuat dengan lebih tepat. Secara keseluruhan, algorithma yang didapati dapat menambah baik kecekapan dan menambah produktiviti.

ABSTRACT

Predictions of punching life span for stamping process is critical since affect the quality of product, the production rate and cause waste in time and cost. The punch need to be sharpened correctly after a number of punches since its dimensional accuracy will deteriorate and cause inaccuracy in the dimensions of the product and thus do not satisfy the quality requirements. One of the method that are normally used to determine the point where re-sharpening should be carried out is through estimating the number of shots or unit kshots that will produce products that are dimensionally inaccurate and the occurrence of burr on the product. The research was carried out to overcome this problem. The punch that was used is made of Cementite Tungsten Carbide and the work piece is Phosphor Bronze Strip. The relative hardness is about 6.3. The stamping process is a progressive stamping process carried out in a well known electronic factory. The profile of the wear of the punch is measured and the error in product dimension is identified. The increase presence of burr is also studied and identified for every 4000 product. The end of punch life span is determined when there is a dimensional inaccuracy on the product and the product is rejected. This research found that at this point punch is rounded, wear is present and cracks occurred at the cutting edge of the tool. As a result of this research, relation between the punch wear and kshots are found to be proportionate and this enable an algorithm to be formulated. Simulation model is built to enable more accurate algorithm is developed. The simulation model used 'Constraint Cubic Spline algorithm'. The researcher is able to forecast a more accurately the kshots that relates to punch wear and thus save products dimensional inaccuracy and product rejects. An improved sharpening process is also possible and this provide accurate resharpening work. The accuracy of the sharpening prediction also reduce burr and have enhance the efficiency of the resharpening process. In conclusion, the algorithm has improved productivity and save cost to the company.

CONTENTS

CHAPTER TITLE

PAGES

1

ACKNOWLEDGEMENTS	iv
ABSTRACT	vi
TABLES OF CONTENTS	vii
LIST OF FIGURES	xi
LIST OF TABLES	XV
LIST OF SYMBOLS	xvi
LIST OF DEFINITION	xvii
LIST OF APPENDIXS	xxiii

CHAPTER 1 INTRODUCTION

1.1	Needs For Prediction of Punching	1
	Life Span	
1.2	Research Motivation	2
1.3	Aim	2
1.4	Research Objectives	3
1.5	Research Scope	3

CHAPTER 2 LITERATURE REVIEW

2.1	Introduction	4
2.2	Punch Wear Characteristics	4
2.3	Wear Mechanism and Quantification	12
2.4	Quantification of Adhesive Wear	14
2.5	Punch Wear At The Cutting Edge	16
2.6	Summary	19

CHAPTER III THEORY OF STAMPING AND FACTORS 20 THAT ASSOCIATES WITH PUNCHING LIFE SPAN 20

3.1	Introduc	ction		20
3.2	The Theory of Stamping			20
	3.2.1	Classifi	cation of Stamping	21
	3.2.2	Progres	sive Stamping	25
3.3	Basic Cl	haracteris	tics of Shear Cutting	26
3.4	Factors	For Stamp	oing Accuracy	29
	3.4.1	Machin	e Accuracy	29
	3.4.2	Static .	Accuracy	29
	3.4.3	Dynam	nic Accuracy	30
		3.4.4	Die Set Accuracy	31
		3.4.5	Influence of punch	
			die clearance	32
		3.4.6	Insufficient Clearance	33
		3.4.7	Excessive Clearance	34
		3.4.8	Stock Material	35
			Accuracy	35
		3.4.9	Phosphor Bronze Strip	35
3.5	Summa	ry		36

4

CHAPTER IV EXPERIMENTAL METHOD

4.1

4.2

4.3

4.4 4.5

4.6 4.7 4.8

Introdu	ction		38
Experimental Procedure Flow Chart			
Selectio	on Of Pi	inches	40
Prepara	tion Of	Stamping Machine	44
Stampin	ng Die S	Set	44
Equipn	nents		45
Scienti	fic Imag	ging Software	47
Data A	nalysis	Software	47
4.8.1	Interp	olation Algorithms	48
4.8.2	Linea	r Piecewise Interpolation	48
	4.8.3	Constrained Cubic Spline	
		Interpolation	49
	4.8.4	Measures For The	
		Estimation of Predicted	51
		Error	
4.9	Punch	ing Operation	52
4.10	SEM	Micrograph of Punch Dull	
	Surfac	ce	53
4.11	Measu	uring The Punch Wear	55
4.12	Equat	ion of The Wear Profile	55
4.13	Comp	outation of Punching Life	
	Span a	and Wear Characteristics	58
4.14	Summ	nary	59

38

CHAPTER V RESULTS AND DISCUSSIONS

5.1	Introduc	tion	61
5.2	Punchin	g Life Span	62
5.3	Validatio	on of Punching Life Span	73
	5.3.1	Validation of Punch S1 Life	
		Span	71
	5.3.2	Validation of Punch S2 Life	
		Span	73
	5.3.3	Validation of Punch S3 Life	
		Span	74
5.4	Predictio	on of Optimum Re-sharpening	
	Length o	f Worn Punch Program	76
5.5	Validat	ion of Punch S1 Side Wear	
		Length	77
5.6	Validat	ion of Punch S2 Side Wear	
		Length	78
5.7	Validat	ion of Punch S3 Side Wear	
		Length	80
5.8	Summa	ary	81

CHAPTER VI CONCLUSION 83

6.1	Conclusion	83
6.2	Contribution to Science	86
6.3	Future Works	86

REFERENCES

N

61

LIST OF FIGURES

FIGURES	TITLE	PAGES
2.1	Characteristics factors related to occurrence of	5
	burr (After Kanno, 1986)	
2.2	Relationship between the surface abrasion of the	6
	punch and the occurrence of burr (After	
	Kanno,1986)	
2.3	Schematic area of side wear (After Mitsumi	8
	Corp,2002)	
2.4	Transition of area of side wear (After Mitsumi	8
	Corp,2002)	
2.5	Transition of burr height with different punch	9
	materials (After Mitsumi Corp,2002)	
2.6	Transition of burr height with increase in number	11
	of shots (After Mitsumi Corp,2002)	
2.7	Mechanism of adhesive wear by plasticity (After	13
	Roberts,2003)	
2.8	Model for derivation of Archard wear equation	14
	(After Roberts, 2003)	
2.9	Forces reacting on tooling surface during	17
	punching process (After Lange, 1975)	
2.10	Tooling conditions of the shearing process (After	17
	Yoshida 2001)	
2.11	SEM Micrograph of crack initiation (After	18
	Yoshida , 2001)	
3.1	Plastic deformations phase (After Lascoe, 1986)	21

xi

3.2	Penetration deformations phase (After	21
	Lascoe,1986)	
3.3	Fracture phase (After Lascoe, 1986)	22
3.4	Stamping operations using shearing principles	24
	(After Lascoe, 1986)	
3.5	Comparison of cutting off and parting operation	25
	(After Lascoe, 1986)	
3.6	A progressive stamping skeleton (After	26
	Shinano,1985)	
3.7	The four basic characteristics of shearing cutting	27
	(After Lascoe, 1986)	
3.8	Theoretical part edge after blanking (After	28
	Taupin, ,1996)	
3.9	Actual part edge after stamping using phosphor	28
	bronze material	
3.10	The effects of clearance towards part's e (After	33
	David, 2000)	
3.11	Effects of insufficient clearance towards facture	
	zone (After David, 2000)	33
4.1	Flowchart for the experimental procedure	39
4.2	Location of punches in the stamping die	40
4.3	The pilot punch identified as S1	41
4.4	The oblong pilot punch identified as S2	42
4.5	The punch identified as S3	42
4.6	Stamping machine	44
4.7	The stamping die set	45
4.8	The Scanning Electron Microscope	46
4.9	Overshooting of Cubic Spline and Smoothness of	51
	Constrained Cubic Spline	
4.10	Cleaning the punch before analyzing	53
4.11	Mounting the punch on the SEM stage	54
4.12	SEM micrograph of the punch wear cutting edge	54
4.13	Screenshot of SCION imaging software	55

4.14	Screenshot of the Excel Function to extract	56
	coefficients	
4.15	Screenshot of tabulated data points	58
4.16	Equations of punch wear profile after 5.1 Mshots	57
4.17	Screen shot of the computed worn punch loss area	59
5.1(a)	Measured variables of worn punch	62
5.1(b)	Schematic of punch re-sharpening length	63
5.1(c)	Comparison of burr height between (a) sharp	66
	punch and a (b) worn punch when life span is reached	
5.1(d)	SEM micrograph of worn punch (X 1200)	67
5.1(e)	SEM micrograph of a failed punch	67
5.2	Comparison between shots-dependent of average	69
	area loss on different punches S1, S2 and S3	
5.3	Agreement between shot-dependence on average	72
	area loss and recorded area loss of punch S1 is	
	reached between 0 Mshots to 4.7 Mshots	
5.4	Agreement between shot-dependent average area	73
	loss and recorded area loss of punch S2 is reached	
	between 0 Mshots to 5.2 Mshots	
5.5	Agreement between shot-dependent average area	74
	loss and recorded area loss of punch S3 is reached	
	between 0 Mshots to 5.4 Mshots	
5.6	Process flow for predicting and validating the side	76
	wear length	
5.7	Agreement between shot-dependent side wear	78
	lengths of recorded and predicted curve of punch	
	S1 is reached between 0 Mshots to 4.7 Mshots.	
5.8	Agreement between shot-dependent side wear	79
	lengths of recorded and predicted curve of punch	
	S2 is reached between 0 Mshots to 4.9 Mshots.	
5.9	Agreement between shot-dependent side wear	80
	lengths of recorded and predicted curve of punch	
	S3 is reached between 0 Mshots to 5.4 Mshots	

B.1	Recorded data for checking stamping machine	98
	dynamic accuracy	
E.1	A straight is used to approximate the curve $f(x)$	101
	between x1 and x2	
F1.1	Comparison between the cutting edge of the	
	punch S1 taken at a different interval	
F1.2	Shows the comparison of punch's wear profile at	106
	different intervals	
F1.3	The CCS interpolation has fitted a smooth line	108
	between the observed data points	
F1.4	Shows the screenshot of the simulation program	109
G1.1	Wear profile of punch S1 after run 01	110
G1.2	Wear profile of punch S1 after run 02	110
G1.3	Wear profile of punch S1 after run 03	111
G1.4	Wear profile of punch S1 after validation process	111
G2.1	Wear profile of punch S2 after run 01	112
G2.2	Wear profile of punch S2 after run 02	112
G2.3	Wear profile of punch S2 after run 03	113
G2.4	Wear profile of punch S2 after validation process	113
G3.1	Wear profile of punch S3 after run 01	114
G3.2	Wear profile of punch S3 after run 02	114
G3.3	Wear profile of punch S3 after run 03	115
G3.4	Wear profile of punch S3 after validation process	115
H1.1	Samples of punch S1 micrograph after run 02	116
H1.2	Samples of punch S1 micrograph after run 03	116
H2.1	Samples of punch S2 micrograph after run 02	117
H2.2	Samples of punch S2 micrograph after run 03	117
H3.1	Samples of punch S3 micrograph after run 02	118
H3.2	Samples of punch S3 micrograph after run 03	118

xiv

LIST OF TABLES

TABLES TITLE

PAGES

2.1	List of punch material used to determine life span	7	
3.1	Classification of stamping operation	23	
4.1	The operational conditions of stamping machine	43	
5.1	Area loss by worn punches S1,S2 and S3	68	
5.2	Summary of observed wear rates between punches	70	
	S1,S2 and S3		
5.3	Validation results of punches life span and wear	75	
	rate		
5.4	Prediction accuracy and curve validation range	81	
F1.1	An extract of the excel formula that generates the	104	
	coefficients		
F1.2	A detail list of data generated by the polynomial	105	
	equation of the punch model S1 at the 2 nd		
	repetition of the industrial experiment		
F1.3	Data of punch model S1	107	
F1.4	Data generated by Constrained Cubic Spline	107	
	Interpolation		

LIST OF SYMBOLS

А	-	Area loss due to wear at the punch cutting edge
Н	-	Hardness
v	-	Volume loss due to wear at the punch cutting edge
W	-	Wear rate of a punch (mm ² /Mshots)
Wsp	-	Specific Wear Rate (mm2/m/N)
R^2	-	Coefficient of determination.
spm	-	Unit of stamping velocity in strokes per minute.
Κ	-	Wear rate (mm ² /m)
Κ	-	Archard wear coefficient
L	-	Life of a punch before next re-sharpening
Mshots		The unit of punch hits through the stock material.

LIST OF DEFINITIONS

Abrasion	A process where hard particles are forced against and moved along a solid surface.
Abrasive wear	It is a displacement of material, due to hard particles or hard protuberances. A hard body plastically deforms (with or without removal of matter) a softer body.
Adhesion	(1) The attractive force between adjacent surfaces in a frictional contact; (2) the state in which interfacial forces hold two surfaces together.
Adhesive wear	At a certain moment, the force applied to the contact is supported by the existing junctions. An adhesive junction is produced. It is either hardly resistant at all and the two bodies separate with no change, or the junctions is relatively resistant, and a crack forms in the less resistant body.
Blank	The piece of sheet or strip metal produced in cutting dies. The produced pieces are discrete and have no material carrier.
Blanking	The process of cutting out a flat piece of the size and shape necessary to produced the desired part.

Bolster plate	The static plate attached to the top of the bed of a press.
Burr	A rough ridge, edge, protuberance, or area such as that left on metal after cutting, drilling, punching, etc. In stamping it occurs in cutting dies because of the clearance between punch and die.
Burr side	This term is refers to the side or face of a blank or other stamping which comes in direct contact with punch in a blanking operation, and the side or face of a blank or other stamping which comes in direct contact with the die in a punching operation.
Capacity of a	The related capacity of a press is the pressure, in tons,
press	which the slide will safely exert at the bottom of the stroke in doing work within the range of the press.
Clearance	In punching and shearing dies, the gap between the die and the punch.
Crank press	A mechanical press the slide of which is actuated by a crankshaft.
Die set	A tool holder held in alignment by guideposts and bushings and consisting of a lower shoe, upper shoe or punch holder, guideposts and bushings.
Die shoe	A plate or blocks which die holder is mounted. A die shoe functions primarily as a base for the complete die assembly and, when used, is bolted or clamped to the bolster plate or face of slide.

xviii

Elastic limits	The maximum stress to which a material or body can be subjected and still return to its original shape and dimension.
Flank of punch	The position at the horizontal plane of punch where it will shear the stock material.
Metal	A group of substance that can conduct electricity and heat and can be hammered into shape or draw out in sheets.
Progression	The precise linear travel of the stock strip at each press stroke and is equal to the inter-station distance. Also called pitch, advance, or feed.
Progressive die	A die with two or more stations arranged in line for performing two or more operations on a part one operation usually being performed at each station. The parts are connected by a carrier strip until final parting or cutoff operation.
Punch	i) The male part of the die, as distinguish the female part called the die. The punch is the upper member of the complete die and is mounted on the slide.ii) The act of piercing or punching a hole. Also referred to as <i>punching</i>
Punching	The die shearing of a closed contour in which the sheared out sheet metal part is scrap.