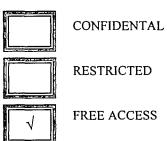
DESIGN AND DEVELOPMENT OF AN INNOVATIVE APPARATUS FOR PRODUCING A SPIRAL CATALYST SUBSTRATE FOR CATALYTIC CONVERTER

MOHD FAHRUL BIN HASSAN

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

UNIVERSITI TUN HUSSEIN ONN MALAYSIA


STATUS CONFIRMATION FOR MASTER'S THESIS

DESIGN AND DEVELOPMENT OF AN INNOVATIVE APPARATUS FOR PRODUCING A SPIRAL CATALYST SUBSTRATE FOR CATALYTIC CONVERTER

ACADEMIC SESSION : 2008/2009

I, MOHD FAHRUL BIN HASSAN, agree to allow this Master's Thesis to be kept at the Library under the following terms:

- 1. This Master's Thesis is the property of the Universiti Tun Hussein Onn Malaysia.
- 2. The library has the right to make copies for educational purpose only.
- 3. The library is allowed to make copies of this report for educational exchange between higher educational institutions.
- 4. ****** Please Mark $(\sqrt{})$

(Contains information of high security or of great importance to Malaysia as STIPULATED under the OFFICIAL SECRET ACT 1972) (Contains restricted information as determined by the organization/ institution where research was conducted

(WRIT ER'S SIGNATURE)

Permanent address:

234, PARIT BARU, BATU 18 AIR HITAM, 84060 MUAR, JOHOR.

Approved (SUPER SIGNATURE)

CROF. ING. DR. DARWIN SEDAVANO Ponsyarah Jobatan Kojuruteraon Bahan & Rekabontuk Fokulti Kojuruteraon Mekanikal & Pembuatan Universiti Tun Husacin Onn Malaysia

Supervisor's Name

101/2010 CI Date :

Date

Note :

If this Master's Thesis is classified as CONFIDENTAL or RESTRICTED, please attach the letter from the relevant authority/organization stating reasons and duration for such classifications. This thesis has been examined on date 2 September 2009 and is sufficient in fulfilling the scope and quality for the purpose of awarding the Degree of Master.

Chairperson:

PROF. IR. DR. SAPARUDIN BIN ARIFIN Faculty of Mechanical and Manufacturing Engineering Universiti Tun Hussein Onn Malaysia

Examiners:

DR. HJ. BADRUL BIN OMAR Faculty of Mechanical and Manufacturing Engineering Universiti Tun Hussein Onn Malaysia

DR. HARYANTI SAMEKTO Faculty of Mechanical and Manufacturing Engineering Universiti Tun Hussein Onn Malaysia

DR. ING. ERWIN ZAHARI NURCAHYA Implementation Engineer/Consultant Siemens PLM Software GmbH, Germany

DESIGN AND DEVELOPMENT OF AN INNOVATIVE APPARATUS FOR PRODUCING A SPIRAL CATALYST SUBSTRATE FOR CATALYTIC CONVERTER

MOHD FAHRUL BIN HASSAN

A thesis submitted in Fulfillment of the requirement for the award of the Degree of Master of Mechanical Engineering

Faculty of Mechanical and Manufacturing Engineering Universiti Tun Hussein Onn Malaysia

DECEMBER 2009

"I hereby declare that the work in this thesis is my own except for quotations and summaries which have been duly acknowledged"

Student : MOHD'FAHRUL BIN HASSAN 01/01/2010 Date : e, dr. Darwin Cedavano Perfeyor):h nosan. Vatar Kojurutaraan Bahan & Retabantuk Tatil Kojurutaraan Makenikal & Pombuatar Ivoraiti Tun Huseain Onn Malaysia Jel Fr U Supervisor : PROF. DR. ING JDARWIN SEBAYANG Co Supervisor : DR. ING. PUDJI UNTORO Co Supervisor :

ASSOC. PROF. HJ. MOHD ASHRAF BIN OTHMAN

ACKNOWLEDGEMENT

The author would like to express his sincere appreciations to his supervisor, Prof. Dr. –Ing. Darwin Sebayang who has given him so much encouragement and invaluable guidance through out the duration for this research.

A special appreciation to Prof. Ken-ichiro Mori from Material Forming Laboratory, Department of Production System Engineering, Toyohashi University of Technology, Japan for his kind invitation to his laboratory and helping in solving the problem. In addition, the author also would like to convey his appreciation to Dr. – Ing. Pudji Untoro, Assoc. Prof. Hj. Mohd Ashraf bin Othman and Mr. Shahrin Hisham bin Amirnordin for their kind co-operation and positive comments during the research performed.

Finally, appreciations also go to everyone involved directly or indirectly towards the compilation of this thesis.

ABSTRACT

Spiral catalyst substrate is one of the substrate types for catalytic converter and has high geometric surface area. It is to provide support structure in which the washcoat and the catalyst are applied. Currently, an issue of considerable interest in producing the substrate from a thin sheet metal with a thickness 0.11mm and using FeCrAl material has become a trend. Existing patented apparatus overseas use a complicated system and specific details are scarce. Therefore, this research presents the works in designing and developing an innovative apparatus based on a systematic approach of Pahl and Beitz's model of design process. Furthermore, Finite Element Method (Dynaform) was applied for the forming analysis of a trapezoid cell of corrugation on a thin sheet metal and spiral shape of corrugated sheet metal. These works provide the conceptual designs for the apparatus of Corrugated Tool for corrugation process and Spiral Tool for spiral process. The selected conceptual design was established by developing a model of the apparatus. A rule of thumb for requiring unloaded diameter of corrugated sheet metal in spiral shape was derived. Forming Limit Diagram (FLD) shows that the thin sheet metal was successfully formed without any cracking and Thickness Diagram shows that the thickness of the formed thin sheet metal was in safe thickness. The springback effect that occurs during the sheet metal in spiral shape was solved using the developed casing. The designed apparatus of Corrugated Tool and Spiral Tool were fabricated and optimization was performed by producing the spiral catalyst substrate. The innovative apparatus for producing the full scale of spiral catalyst substrate were successfully designed and developed.

ABSTRAK

Spiral catalyst substrate adalah salah satu daripada jenis-jenis substrate yang digunakan untuk catalytic converter dan mempunyai luas permukaan geometri yang tinggi. Ianya adalah untuk memberi struktur sokongan dimana washcoat dan catalyst akan ditempatkan. Pada masa ini, isu=isu yang mendapat perhatian dalam membuat substrate daripada kepingan logam nipis dengan ketebalan 0.11mm dan menggunakan bahan FeCrAl telah menjadi kebiasaan. Beberapa alatan sedia ada yang telah dipatenkan di luar negara menggunakan sistem yang berselirat dan perincian tidak diberikan sepenuhnya. Oleh itu, penyelidikan ini mempersembahkan tugasan dalam merekabentuk dan membangunkan alatan yang inovatif berdasarkan pendekatan yang sistematik model Pahl dan Beitz's untuk proses merekabentuk. Tambahan pula, Kaedah Unsur Tidak Terhingga (Dynaform) telah digunapakai untuk analisis pembentukan alunan sel berbentuk trapezoid pada kepingan logam nipis dan bentuk lingkaran kepingan logam yang telah dialunkan. Kerja-kerja ini memberikan gambaran untuk konsep rekabentuk untuk alatan Corrugated Tool untuk proses alunan dan Spiral Tool untuk proses lingkaran. Konsep rekabentuk yang telah dipilih dimulakan dengan membangunkan model alatan tersebut. Rule of thumb untuk mendapatkan diameter tanpa beban kepingan logam yang telah dialunkan dalam bentuk lingkaran telah diperolehi. Rajah Pembentukan Tidak Terbatas (FLD) menunjukan bahawa kepingan logam nipis telah berjaya dibentuk tanpa sebarang koyak dan Rajah Ketebalan menunjukan bahawa ketebalan kepingan logam yang dibentuk adalah dalam keadaan selamat. Kesan springback yang berlaku semasa kepingan logam dalam bentuk lingkaran telah diselesaikan dengan meletakkan spiral catalyst substrate dalam bekas yang dibuat. Alatan yang telah direkabentuk iaitu Corrugated Tool dan Spiral Tool dibangunkan dan kesempurnaan telah dijalankan dengan memhasilkan spiral catalyst substrate.

CONTENTS

	TITL	E	i
	DECL	ARATION	ii
	ACKI	OWLEDGEMENT	iii
	ABST	RACT	iv
	CONT	TENTS	vi
	LIST	OF TABLES	xii
	LIST	OF FIGURES	xiv
	LIST	OF SYMBOLS	xix
	LIST	OF APPENDICES	xxi
CHAPTER 1	INTR	ODUCTION	1
	1.1	Research Background	1
	1.2	Problem Statement	6
	1.3	Research Aim	7
	1.4	Research Objective	7

	1.5	Research Scope	7
	1.6	Research Significance	8
CHAPTER 2	LITE	RATURE REVIEW	9
	2.1	Catalyst Substrate Parameter	9
	2.1.1	Geometries of Catalyst Substrate	10
	2.1.2	Manufacturing of Spiral Catalyst Substrate	11
	2.2	Review of Available Patented Apparatus in the Market	13
	2.2.1	Apparatus for Producing a Honeycomb Body	13
	2.2.2	Methods for Manufacturing by Heat Treatment of Metals	14
	2.2.3	Multi-point Welding Method	15
	2.2.4	Apparatus for Shaping a Spiral Catalyst Support	16
	2.2.5	Spiral Catalyst Substrate Produced by the Previous Invention	17
	2.2.6	The Advantages and Disadvantages of the Previous Invention	18
	2.3	Fundamental of Forming Process	19
	2.3.1	Mechanical Behavior of Material	19

	2.3.1.1	Tension	19
	2.3.1.2	Torsion	23
	2.3.2	Sheet Metal Forming Process	24
	2.3.2.1	Bending of Sheet and Plate	24
	2.3.2.2	Stamping Process	29
	2.3.2.3	Formability of Sheet Metals and Modeling	30
	2.4	Research Context	32
CHAPTER 3	METH	IODOLOGY	33
	3.1	Introduction	33
	3.2	Models of Modern Design Concepts	33
	3.2.1	Systematic Approach of Pahl and Beitz's Model of Design process	35
	3.2.1.1	Planning and Task Clarification	36
	3.2.1.2	Conceptual Design	36
	3.2.1.3	Embodiment Design	37
	3.2.1.4	Detail Design	38
	3.3	An Overview of Producing Process	38
	3.4	Finite Element Simulation Approach	39

CHAPTER 4		EMATIC APPROACH OF DESIGNING	
		DEVELOPING AN INNOVATIVE	
		RATUS FOR PRODUCING A SPIRAL	
	CATA	LYST SUBSTRATE	41
	4.1	Clarification of the Task	41
	4.2	Conceptual Design	42
	4.2.1	Abstracting to Identify the Essential Problems	43
	4.2.2	Establishing Function Structures	44
	4.2.3	Searching for Working Principles	45
	4.2.4	Combining Working Principles	47
	4.2.5	Selecting Working Principles	48
	4.2.6	Firming Up into Principle Solution Variants	48
	4.2.7	Evaluating Principle Solution Variants	53
	4.3	Embodiment Design	56
	4.3.1	Preliminary Layout	57
	4.3.1.1	Tool and Die for Corrugation Process	57
	4.3.1.2	Housing for Corrugation Process	58
	4.3.1.3	Arrangement for Corrugation Process	59
	4.3.1.4	Housing for Spiral Process	60

ix

4.3.1.5	5 Twister for Spiral Process	61
4.3.1.6	5 Shaper for Spiral Process	62
4.3.1.7	7 Arrangement for Spiral Process	63
4.3.2	Definitive Layout	64
4.3.2.1	Mechanical properties of the FeCrAl material	64
4.3.2.2	2 Tool and Die for Corrugation Process	69
4.3.2.3	B Housing for Corrugation Process	90
4.3.2.4	4 Arrangement of Corrugation Process	91
4.3.2.5	5 Housing for Spiral Process	92
4.3.2.6	5 Twister for Spiral Process	93
4.3.2.7	7 Shaper for Spiral Process	101
4.3.2.8	8 Arrangement for Spiral Process	104
4.3.2.9	9 Selection of Material and Manufacturing Process	114
4.3.3	Development of Models for Corrugation Process and Spiral Process	117
4.3.3.1	Experimental Test	118
4.4	Detail Design	123

	4.4.1	Corrugated Tool Specifications	123
	4.4.2	Spiral Tool Specifications	124
	4.4.3	Production Drawing	124
	4.4.4	Development of Prototype for Corrugated Tool and Spiral Tool	125
	4.4.4.1	Development of Corrugated Tool	125
	4.4.4.2	2 Development of Spiral Tool	126
	4.4.5	Optimization of the Developed Apparatus	126
	4.4.5.1	Producing the Spiral Catalyst Substrate	127
CHAPTER 5	5 CONO	CLUSION AND RECOMMENDATION	133
	5.1	Research Conclusion	133
	5.2	Recommendation for Future Works	133
REFERENC	ES		135
APPENDIX			141

LIST OF TABLES

2.1	Review of catalyst substrate produced by the previous	
	Patents	17
2.2	Review of patented apparatus and methods of	
	manufacturing a spiral catalyst substrate	18
4.1	Summarization of preliminary engineering design	41
4.2	Working principles for corrugation process	46
4.3	Working principles for spiral process	46
4.4	Variant for solution principles of corrugation process	47
4.5	Morphological Matrix for spiral process	47
4.6	Evaluation of three principle solution variants for	
	corrugation process	54
4.7	Evaluation of three principle solution variants for	
	spiral process	56
4.8	Mechanical properties of the FeCrAl material	68
4.9	Pinion and driven gear dimension	79
4.10	The torque required in different width of sheet metal	83
4.11	The required power and horsepower in different width	
	of sheet metal	85
4.12	The input dimensions	95
4.13	Material properties	98
4.14	The summarization of torque required with different	
	widths and diameters	100
4.15	Selection of materials and manufacturing processes	
	of tool development for corrugation process	114
4.16	Selection of materials and manufacturing processes	
	of tool development for Spiral Process	116
4.17	Preparation of the specimens	118

4.18	Summarization of the result obtained	122
4.19	The result of loaded diameter estimation by using the	
	generated rule of thumb	123
4.20	Designed specifications of Corrugated Tool	124
4.21	Designed specifications of Spiral Tool	124

LIST OF FIGURES

1.1	Catalytic converter in the exhaust line of vehicle	2
1.2	Structure of catalytic converter	3
1.3	Catalyst substrate inside of the catalytic converter	3
1.4	Spiral catalyst substrate	4
1.5	The focused are on process development of catalytic	
	converter	5
1.6	The process of making a sheet metal into a spiral	
	shape	6
2.1	Parameters of catalyst substrate development	10
2.2	The process of manufacturing a sheet metal into a	
	spiral shape	12
2.3	Illustration of an apparatus for producing a	
	honeycomb body	14
2.4	(a) is a side view of an assembly suitable for	
	processing metal structures according to process of	
	the invention; (b) is a plan view of an exemplary metal	
	structure shaped	15
2.5	(a) is an explanatory view showing a forming process	
	of flat and corrugated sheet metal; (b) is an explanatory	
	view showing a welding process by electric discharges	16
2.6	(a) is an end view of a metal catalyst support before it	
	has been flattened, also showing the layers in fragmentary	
	form; (b) is a side view of the apparatus used in the	
	method of making the catalyst support of the invention	17
2.7	(a) Original and final shape of a standard tensile-test	
	specimen. (b) Outline of a tensile-test sequence	
	showing different stages in the elongation of the	

	specimen	21
2.8	The stress-strain curve	23
2.9	Sheet Metal Bending process. (a): position part on	
	the die; (b): position punch on the part; (c): perform	
	bending; (d): take out the part	25
2.10	Common die bending operations, showing the	
	die-opening dimension W, used in calculating bending	
	forces	26
2.11	Examples of various bending operations	27
2.12	Terminology for springback in bending	28
2.13	Springback factor, Ks, for various material.	
	(a) 2024-0 and 7075-0 aluminum, (b) austenitic	
	stainless steels, (c) 2024-T aluminum, (d) ¹ /4-hard	
	austenitic stainless steels, and (e) $\frac{1}{2}$ -hard to full hard	
	austenitic stainless steels	29
2.14	Cross-sectional view of a simple draw die	29
2.15	Diagram showing the relation between punch force	
	and side-wall tension	30
2.16	Forming limit diagram (FLD) for various sheet metal	31
3.1	Comparison of full phase models of design process	34
3.2	Pahl and Beitz's Model of Design Process	35
3.3	Steps of conceptual design	37
3.4	An overview of producing process of the spiral	
	catalyst substrate.	39
3.5	The finite element simulation of sheet metal forming	
	process	40
4.1	The main processes of the designed apparatus	43
4.2	Problem formulation and overall function as per	
	requirements list for corrugation process	43
4.3	Problem formulation and overall function as per	
	requirements list for spiral process	44
4.4	Overall function of the corrugation process	44
4.5	Overall function of the spiral process	45
4.6	Variant 1 for corrugation process	48

4.7	Variant 2 for corrugation process	49
4.8	Variant 3 for corrugation process	50
4.9	Variant 1 for spiral process	50
4.10	Variant 2 for spiral process	51
4.11	Variant 3 for spiral process	52
4.12	Variant 4 for spiral process	52
4.13	Objectives tree for corrugation process	53
4.14	Objectives tree for spiral process	55
4.15	Geometry of the cell shape	58
4.16	Preliminary layout of Tool and Die for corrugation	
	process	58
4.17	Preliminary layout of Housing for corrugation process	59
4.18	Preliminary layout of corrugation process	60
4.19	Preliminary layout of Housing for spiral process	61
4.20	The preliminary layout of Twister for spiral process	62
4.21	Preliminary layout of Shaper for spiral process	63
4.22	Preliminary layout of spiral process	63
4.23	The dimension of specimen for tensile test	65
4.24	The specimens for tensile test	65
4.25	Machine of tensile test	66
4.26	The stress-strain curve of the sheet metal	66
4.27	Detail layout of Tool and Die module for corrugation	
	process	69
4.28	Overview of forming procedures and the selected	
	forming analysis area	70
4.29	The dimensions of the tooling for corrugation process	71
4.30	Modeling setup for forming analysis of corrugation	
	process	71
4.31	Material of the defined blank part	72
4.32	Boundary condition for corrugation process	73
4.33	The friction and contact for corrugation process	74
4.34	The process condition for corrugation process	75
4.35	Deformed geometry of the Blank	76
4.36	Finite Limit Diagram (FLD) of the Blank	76

4.37	Thickness of the formed Blank	77
4.38	The overview of dimensions of gear	78
4.39	Die opening for V-bending on pinion gear	80
4.40	Angle of the gear	81
4.41	Force analysis on pinion gear	81
4.42	Proposed diagram of the shaft	86
4.43	Specification of GMB single-row deep groove ball	
	bearing	90
4.44	Detail layout of Housing module for corrugation	
	process	91
4.45	Detail geometry layout of tool development for	
	corrugation process	91
4.46	Detail layout of Housing module for spiral process	92
4.47	Detail layout of Twister module for spiral process	93
4.48	An overview of torque generated by Twister	94
4.49	The dimensions of the spiral spring design	95
4.50	Entering the input dimensions in FED9	97
4.51	Entering the material characteristics in FED9 storage	98
4.52	The example of result obtained for the first input	
	dimensions	99
4.53	Graph of torque versus diameter with different widths	100
4.54	Detailed layout of Shaper module for spiral process	102
4.55	Detail geometric layout of tool development for spiral	
	process	104
4.56	Overview of forming procedures and the selected	
	forming analysis area.	105
4.57	The dimensions of the tooling	106
4.58	Modeling setup for forming analysis of spiral process	106
4.59	Material of the blank part	107
4.60	Boundary condition for spiral process	108
4.61	The friction and contact for spiral process	109
4.62	The process condition for spiral process	110
4.63	Forming analysis on layer with diameter of 20mm	111
4.64	Forming analysis on layer with diameter of 50mm	112

4.65	Forming analysis on layer with diameter of 100mm	113
4.66	Models of the apparatus; (a) Corrugated Tool for	
	corrugation process; (b) Spiral Tool for spiral process	118
4.67	Corrugation process by the Corrugated Tool	119
4.68	Spiral process by the Spiral Tool	119
4.69	The specimen in the Spiral Tool	120
4.70	Measured the loaded diameter of spiral shape by digital	
	caliper	120
4.71	The specimens in fully unloaded configuration	121
4.72	Measured the unloaded diameter of spiral shape by	
	Vertical Profile Projector	121
4.73	Half view of the outer layer of the specimens	122
4.74	The developed apparatus of Corrugated Tool	125
4.75	The developed apparatus of Spiral Tool	126
4.76	Flat thin sheet metal of FeCrAl material	127
4.77	Performing a corrugation process by Corrugated Tool	128
4.78	The corrugated sheet metal of FeCrAl material	128
4.79	Laminating the corrugated sheet metal with the flat	
	sheet metal	129
4.80	Inserting the laminated sheet metals and clamped at	
	Twister rod	129
4.81	Performing a spiral process by Spiral Tool	130
4.82	The spiral shape of laminated sheet metals in requested	
	diameter	130
4.83	Overview of laminated sheet metal in developed casing	131
4.84	Placing the spiral catalyst substrate in the developed	
	casing	132

LIST OF SYMBOLS

CO	-	Carbon Monoxide
HC	2	Hydrocarbon
NO _x	-	Nitrogen Oxide
D	ä	Diameter or Die opening
L	-	Length
cpsi	2	centre per square inch
t	-	Thickness
N _{tu}	=	Effective of mass exchanger
g_{m1}^{oa}	-	Overall mass transfer
\dot{m}_G	-	Mass flow rate of the stream
Ao	-	Cross-sectional area
F	=	Force
σ	-	Tension or stress
e	2	Elongation or nominal strain
1	-	Instantaneous
lo	=	Original gauge length
E	-	Modulus of elasticity
Κ	3	Strength coefficient
3	-	Strain
n	=	Exponent coefficient
Т	-	Torque
τ	-	Torsion
r	-	Radius
G	Ŧ	Shear modulus
K_{bf}	-	Friction
TS	-	Tensile strength

w	-	Width
R _i	-	Initial radius
$R_{\rm f}$	-	Final radius
Ks	-	Springback factor
Y	-	Yield stress
FLD	-	Forming Limit Diagram
θ	-	Angle
$\mathbf{F}_{\mathbf{t}}$	2	Angular force
$\mathbf{F}_{\mathbf{r}}$	-	Radial force
Р	=	Power
HP	-	Horsepower