

COMPUTATIONAL FLUID DYNAMICS (CFD) ANALYSIS FOR A CATALYTIC CONVERTER DESIGN

SHAHRIN HISHAM BIN AMIRNORDIN

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

.

BORANG PENGESAHAN STATUS TESIS*				
judul: <u>COMPUTATIONAI</u> <u>CATALYTIC CON</u>	JUDUL: COMPUTATIONAL FLUID DYNAMICS (CFD) ANALYSIS FOR A CATALYTIC CONVERTER DESIGN			
	SESI PENGAJIAN: <u>2008/2009</u>			
Saya SHAHRIN HISI	HAM BIN AMIRNORDIN (730204-10-5125) (HURUF BESAR)			
mengaku membenarkan tesis (PS dengan syarat-syarat kegunaan so	SM/Sarjana/ Doktor-Falsafah)* ini di simpan di Perpustakaan eperti berikut:			
 Tesis adalah hakmilik Unive Perpustakaan dibenarkan me Perpustakaan dibenarkan mengajian tinggi. ** Sila tandakan (√) 	ersiti Tun Hussein Onn Malaysia. embuat salinan untuk tujuan pengajian sahaja. nembuat salinan tesis ini sebagai bahan pertukaran antara institusi			
SULIT	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)			
TERHAD	(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)			
√ TIDAK TERHA	D			
All -	Disankan olen			
(TANDATANGAN PENUI Alamat Tetap:	LIS) Ponsy(FFANDA TANGAN PENYELIA) Jabaten K brutoraan Behen & Rotebentut: Fakulti Kejurutoraan Motanikai & Pombuaten Univerciti Tun Hussein Onn Melayda			
4, JALAN MANIS 18	PROFESOR DR ING. DARWIN SEBAYANG			
<u>TAMAN MANIS 2,</u> <u>86400 PARIT RAJA, BATU P/</u> <u>JOHOR.</u>	AHAT (Nama Penyelia)			
TARIKH: 10 APPIL 20	09 TARIKH: 10.4.2009			

CATATAN:

*

Potong yang tidak berkenaan.

- ** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan dikelaskan sebagai SULIT atau TERHAD.
- Tesis dimaksudkan sebagai tesis bagi Ijazah Doktor Falsafah dan Sarjana secara penyelidikan, atau disertai bagi pengajian secara kerja kursus dan penyelidikan atau Laporan Projek Sarjana Muda (PSM).

"We acknowledge that we have read this thesis and in our opinion it has fulfilled the requirement in terms of scope and quality for the award of the

Degree of Master of Mechanical Engineering".

Signature	:	Por, INC. DR. DARWIN SEBAYANO Pensyarah Jabatah Kejuruteraan Bahan & Rekabontut
		Fakulti Kejurutoraan Mekanikal & Pombuatan Universiti Tun Hussein Onn Malaysia
Supervisor I	:	PROFESSOR DR ING. DARWIN SEBAYANG
Date	:	10.4.2009
Signature	:	Dr. Khalld bin Hasnan Timbalan Dekan (Penyelidikan & Pembangunan) Fakulti Kejuruteraan. Metanikal & Pembuetan Universiti Tun Hussein Onn Malausia
Supervisor II	:	DR. KHALID BIN HASNAN
Date	:	10.4.09

COMPUTATIONAL FLUID DYNAMICS (CFD) ANALYSIS FOR A CATALYTIC CONVERTER DESIGN

SHAHRIN HISHAM BIN AMIRNORDIN

Thesis submitted in fulfillment of the requirement for the award of the degree of Master in Mechanical Engineering

Faculty of Mechanical and Manufacturing Engineering Universiti Tun Hussein Onn Malaysia

APRIL, 2009

"I hereby acknowledge that this thesis is the result of my own work except the quotes and extracts which have been accordingly cited"

Signature	:	Alfre-
Name	:	SHAHRIN HISHAM BIN AMIRNORDIN
Date	:	10. APRIL 2009

ACKNOWLEDGEMENT

I would like to express my gratitude to all those who gave me the possibility to complete this thesis especially to my supervisor, Professor Dr.-Ing, Darwin Sebayang who has trusted me on this title and kindly guide me to complete this research. Special thanks to my co-supervisor, Dr. Khalid bin Hasnan who has given motivation and support especially in the technical writing, thesis arrangement and the process of research itself. I would like to show my sincere gratitude for those who have contributed directly and indirectly towards the success of this research project. I am deeply indebted to Prof. Dr. Vijay R. Raghavan from Universiti Teknologi Petronas whose help, stimulating suggestions and encouragement helped me especially in Fluid Mechanics and Computational Fluid Dynamics. My colleagues from the Faculty of Mechanical and Manufacturing Engineering supported me in my research work. I want to thank them for all their help, support, interest and valuable hints. Especially I am obliged to Suzairin Md. Seri, Mas Fawzi Ali, Wan Saiful-Islam Wan Salim, Zamri Noranai, Mohammad Fahmi Abd. Ghafir, Dr. Ahmad Jais Alimin, Dr. Badrul Omar, Dr. Shahruddin Mahzan and to all my colleagues with their motivation and assistance in any means to make the research success.

Especially, I would like to give my special thanks to my wife Hamimah Abd Rahman for her love, understanding and wisdom inspired my work; my children, Muhammad Firdaus and Muhammad Amir Faisal; my parents, Amirnordin Hasan and Kalsom Bahari; parents-in-law and family members whose patience and support enabled me to complete this work.

ABSTRACT

Design of catalytic converters involves four major components including casing, washcoat, catalyst and substrate. However, the design process is complicated as it involves various parameters. One of the problems faced by designers is obtaining the performance of catalytic converters where the substrate is made up of a large number of cells. Therefore, an effort to solve the problem using Computational Fluid Dynamics (CFD) with an alternative modeling technique is deployed. This study involved a preliminary design which employed an adapted sub-grid scale modeling as an alternative method for the analysis of substrate performance. The Pahl and Beitz's model was applied in the design process. The adapted sub-grid scale modeling was used to predict the pressure loss, select the cell shape and produce the performance chart which could show the relationship between the parameters involved. The proposed adapted sub-grid scale modelling method was found to give results within 5 % error which was better compared to the single channel method. Results also indicated the advantage of hexagonal-shaped over square-shaped cells in terms of pressure loss where the former showed a 43 % lower value than the latter. The Mechanical-Chemical Performance Mapping (MCPM) was finally obtained. The mapping could be used to assist in the substrate design of catalytic converters.

ABSTRAK

Rekabentuk penukar bermangkin melibatkan empat komponen utama termasuk bekas, lapisan, pemangkin dan substrat. Namun begitu, proses rekabentuk adalah kompleks kerana ia melibatkan pelbagai parameter. Salah satu masalah yang dihadapi oleh perekabentuk adalah untuk memperolehi prestasi penukar bermangkin di mana substrat terdiri daripada banyak sel. Oleh itu, usaha telah dilakukan untuk menyelesaikan masalah dengan menggunakan Pengiraan Dinamik Bendalir (CFD) sebagai kaedah permodelan alternatif telah digunakan. Kajian ini melibatkan rekabentuk awalan di mana ia mengadaptasikan kaedah sub-grid yang telah diperbaiki sebagai kaedah alternatif dalam analisis prestasi substrat. Model Pahl and Beitz's telah digunakan dalam proses merekabentuk. Kaedah sub-grid telah digunakan untuk meramalkan kejatuhan tekanan, memilih bentuk sel dan memperolehi carta prestasi yang menunjukkan hubungan antara parameter terlibat. Kaedah sub-grid yang dicadangkan telah menunjukkan bentuk heksagon memberikan perbezaan keputusan sebanyak 5 % dan ia lebih baik berbanding kaedah satu sel. Keputusan juga menunjukkan kelebihan sel berbentuk heksagon berbanding bentuk segiempat dari segi kejatuhan tekanan di mana bentuk heksagon menunjukkan 43 % lebih rendah kejatuhan tekanan berbanding bentuk segiempat. Carta Prestasi Mekanikal dan Kimia akhirnya diperolehi. Ia boleh digunakan untuk membantu dalam merekabentuk substrat sesebuah penukar bermangkin.

TABLE OF CONTENTS

CHAPTER	ITE	М	PAGE
	DEC	CLARATION	ii
	ACK	NOWLEDGEMENT	iii
	ABS	TRACT	iv
	ABS	TRAK	v
	CON	TENT	vi
	LIST	F OF TABLES	ix
	LIST	r of figures	xi
	LIST	COF ABBREVIATION	XV
	LIST	F OF SYMBOLS	xvi
	LIST	F OF APPENDIXES	xviii
I	INT	RODUCTION	
	1.1	Research Background	1
	1.2	Problem Statement	3
	1.3	Objectives	3
	1.4	Scope	4
	1.5	Importance of the Research	4
	1.6	Preview of the Thesis	5
II	LIT	ERATURE REVIEW	
	2.1	Introduction	7
	2.2	Development of Automotive Catalytic	
		Converter	7
	2.3	Flow inside Catalytic Converter	10

2.4	Pressure Loss in Catalytic Converter	12
2.5	The Geometry of Honeycomb Monolith	
	2.5.1 Cell Density and Wall Thickness	17
	2.5.2 Catalyst Length	20
	2.5.3 Cross Sectional Area of Substrate	20
	2.5.4 Cell Shape	21
2.6	The Performance Evaluation Criteria (PEC)	22
2.7	Modeling Technique	24

III

METHODOLOGY

3.1	Introd	luction	27
3.2	Conce	eptual Design	27
3.3	Prelin	ninary Design	29
3.4	Comp	outational Fluid Dynamics (CFD)	29
3.5	CFD I	Process	31
	3.5.1	Pre-Processor	32
	3.5.2	Geometry	32
	3.5.3	Meshing	37
	3.5.4	CFX-Pre	38
	3.5.5	Solver	43
	3.5.6	Post-processing	43

IV

PRELIMINARY DESIGN OF CATALYTIC CONVERTER

4.1	Introduction	46
4.2	Objective of the Design	46
4.3	Functional Analysis	46
4.4	Performance Specification	49
4.5	Generating Alternatives	51
4.6	Evaluating Alternatives	55
4.7	Determination of Substrate Parameter	61
4.8	Analysis on the Preliminary Design of	
	Catalytic Converter	63

RESULTS AND DISCUSSION

5.1	Overv	iew	66
5.2	Grid I	ndependence	66
5.3	Valida	ation	70
5.4	Perfor	mance Evaluation Criteria of Hexagon and	
	Squar	e Cell Shape	73
	5.4.1	Constant Hydraulic Diameter	
		(0.923 mm)	74
	5.4.2	Analysis of Various Hydraulic	
		Diameter	77
	5.4.3	Constant Cross Sectional Area	
		(0.992 mm^2)	78
	5.4.4	Analysis on Various Cross Sectional	
		Area	81
	5.4.5	Constant Cell Density (900 cpsi)	83
	5.4.6	Analysis on Various Cell Density	
		(400 to 1200 cpsi) at Constant Wall	
		Thickness (4.5 mil)	85
	5.4.7	Analysis of Various Cell Density	
		(400 to 1200 cpsi) with Wall	
		Thickness 2.5 to 7.5 mil	87
5.5	Mecha	anical-Chemical Performance Mapping	91
CON	CLUSI	ONS AND FUTURE WORK	
6.1	Summ	nary	98
REFI	ERENC	ES	101
APPI	ENDIXI	ES	106

VI

LIST OF TABLES

TABLE

TITLE

PAGE

2.1	Existing Models on the Pressure Drop Calculation	12
2.2	Constant Values on the Pressure Drop Calculation	14
2.3	Friction Factor for Different Shapes	16
3.1	Reference of Geometry	32
3.2	Geometry Employed during Validation using Sub-Grid	
	Scale Modeling	33
3.3	Air Properties at 20 °C and 1 atmosphere	39
4.1	Requirement List of Catalytic Converter	50
4.2	Requirement List of Components	51
4.3	Design Solution of Catalytic Converter	53
4.4	Alternative Solution 1	53
4.5	Alternative Solution 2	54
4.6	Alternative Solution 3	55
4.7	Ranking of Objectives	56
4.8	Five-Point Evaluation Scale	58
4.9	Evaluation Chart of Solution 1	59
4.10	Evaluation Chart of Solution 2	59
4.11	Evaluation Chart of Solution 3	60
4.12	Summary of Evaluation Result	60
5.1	Results of Pressure Drop for Hexagon Cell Shape with	
	Different Number of Elements using Sub-grid Scale Modeling	68
5.2	Results of Pressure Drop for Square Cell Shape with	
	Different Number of Elements using Sub-grid Scale Modeling	69
5.3	Difference of Pressure Drop for Hexagon Cell Shape	71
5.4	Difference of Pressure Drop for Square Cell Shape	72

5.5	Geometrical Comparison for Constant Hydraulic	
	Diameter (0.923 mm)	75
5.6	Computed Pressure Drop and Friction Factor from	
	Re = 305 to 2138	75
5.7	Comparison of Parameters for Hexagon Shape	77
5.8	Comparison of Parameters for Square Shape	78
5.9	Geometrical Comparison for Constant Cross Sectional Area	
	(0.992mm ²)	79
5.10	Computed Pressure Drop at Air Velocity 5 to 35 m/s	79
5.11	Comparison of Parameters for Hexagon Shape	81
5.12	Comparison of Parameters for Square Shape	82
5.13	Geometrical Comparison for Constant Cell Density (900 cpsi)	84
5.14	Computed Pressure Drop at Air Velocity 5 to 35 m/s	84
5.15	Comparison of Parameters for Hexagon Shape	86
5.16	Comparison of Parameters for Square Shape	86
6.1	Selected Parameters of a Catalytic Converter	99

LIST OF FIGURES

TITLE

FIGURE

2.1	Components of Catalytic Converter	8
2.2	Metallic Substrate using Ferum Chromium Aluminium (FeCrAl)	
	Corrugated Foil	10
2.3	Effects of Different Cell Density towards Conversion Efficiency	18
2.4	Effects of Different Cell Density towards Hydrocarbon (HC)	
	Emission	19
2.5	Effects of Different Cell Density towards Geometric Surface	
	Area (GSA)	19
2.6	Effects of Different Cell Density towards Heat Capacity	20
2.7	Single Channel Modeling	24
2.8	Sub-Grid Scale Modeling	26
2.9	Domain of Sub-Grid Scale Modeling	26
3.1	Route of the Research	28
3.2	Steps Involved in the Computational Fluid Dynamics	
	(CFD) Process	31
3.3	Sub-grid Method Applied on Square Cell Honeycomb Monolith	34
3.4	Sub-Grid Method Applied on Hexagon Cell Honeycomb	
	Monolith	35
3.5	Geometry of Square Cell Shape Using Sub-Grid Method	36
3.6	Geometry of Hexagon Cell Shape Using Sub-Grid Method	36
3.7	Meshing of Square Cell Shape	37
3.8	Meshing of Hexagon Cell Shape	38
3.9	Geometry of Square Cell Showing the Inlet	39
3.10	Geometry of Square Cell Showing the Outlet	40
3.11	Geometry of Square Cell Showing the Wall	.40

PAGE

3.12	Geometry of Square Cell Showing the Symmetry	41
3.13	Geometry of Hexagon Cell Showing the Inlet	41
3.14	Geometry of Hexagon Cell Showing the Outlet	42
3.15	Geometry of Hexagon Cell Showing the Wall	42
3.16	Geometry of Hexagon Cell Showing the Symmetry	43
3.17	Pressure Contour along the Channel of Square Cell Shape	44
3.18	Pressure Contour along the Channel of Hexagon Cell Shape	44
4.1	'Black Box Model' of Catalytic Converter	
4.2	'Transparent Box Model' of Catalytic Converter	47
4.3	Sub-function Diagram of Catalytic Converter	48
4.4	Objectives Tree of Catalytic Converter	49
4.5	Angle of Diffuser in Catalytic Converter	50
4.6	Weighted Objective Tree	58
4.7	Comparison of Pressure Drop and Specific Surface Area,	
	A/V for Three Alternative Solutions	62
4.8	Preliminary Design of Catalytic Converter	62
4.9	Working Domain of Catalytic Converter	63
4.10	Grid Generated on the Model	64
4.11	Pressure Distribution	64
4.12	Velocity Distribution	65
4.13	Velocity Vector	65
5.1	Results of Pressure Drop for Hexagon Cell Shape with	
	Different Number of Elements using Sub-grid Scale Modeling	68
5.2	Results of Pressure Drop for Square Cell Shape with	
	Different Number of Elements using Sub-grid Scale Modeling	69
5.3	Comparison of Pressure Drop for Hexagon Cell Shape	71
5.4	Comparison of Pressure Drop for Square Cell Shape	72
5.5	A Parity Chart of Correlation between Simulation and	
	Experimental Pressure Drop	73
5.6	Comparison of Friction Factor with Constant Hydraulic	
	Diameter (0.923 mm)	76
5.7	Comparison of Pressure Drop and Specific Surface Area, A/V	
	with Constant Hydraulic Diameter (0.923 mm),	
	Length = 152.4 mm , Velocity = 20 m/s (Re = 1222)	76

5.8	Comparison of Friction Factor at Various Hydraulic Diameter	78
5.9	Comparison of Friction Factor with Constant Cross Section	
	(0.992 mm^2)	80
5.10	Comparison of Pressure Drop at 20 m/s of Air Velocity and	
	Specific Surface Area, A/V with Constant Cross Section	
	(0.992 mm^2) Length = 152.4 mm, Velocity = 20 m/s	
	($Re = 1417$ for hexagon, $Re = 1318$ for square)	80
5.11	Comparison of Friction Factor with Various Cross Sectional	
	Area	82
5.12	Comparison of Specific Surface Area, A/V with Various	
	Cross Sectional Area	83
5.13	Comparison of Friction Factor with Constant Cell Density	
	(900 cpsi)	84
5.14	Comparison of Pressure Drop at 20 m/s of Air Velocity	
	and Specific Surface Area, A/V with Constant Cell Density	
	(900 cpsi) Length = 152.4 mm, Velocity = 20 m/s;	
	($Re = 1160$ for hexagon, $Re = 1036$ for square)	85
5.15	Comparison of Friction Factor from 400 to 1200 cpsi	
	at Constant Wall Thickness 4.5 mil	86
5.16	Comparison of Specific Surface Area, A/V from 400 to	
	1200 cpsi at Constant Wall Thickness 4.5 mil	87
5.17	Comparison of Friction Factor from 400 to 1200 cpsi	
	for Hexagon with Wall Thickness (2.5 to 7.5 mil)	88
5.18	Comparison of Friction Factor from 400 to 1200 cpsi for	
	Square Shape with Wall Thickness (2.5 to 7.5 mil)	89
5.19	Comparison of Friction Factor from 400 to 1200 cpsi with	
	Wall Thickness (2.5 to 7.5 mil)	90
5.20	Comparison of Specific Surface Area, A/V with Various	
	Cell Density from 400 to 1200 cpsi with Wall Thickness	
	(2.5 to 7.5 mil)	91
5.21	Mechanical-Chemical Performance Mapping from 400 to	
	1200 cpsi (with Wall Thickness 2.5 to 7.5 mil)	
	for Hexagon Shape	93
5.22	Ilustration Using Mechanical-Chemical Performance	

	Mapping for Hexagon Shape	94
5.23	Comparison of Various Substrates for Hexagon Shape	95
5.24	Mechanical-Chemical Performance Mapping from 400	
	to 1200 cpsi (with Wall Thickness 2.5 to 7.5 mil) for	
	Square Shape	95
5.25	Illustration Using Mechanical-Chemical Performance	
	Mapping for Square Shape	96
5.26	Comparison of Various Substrates for Square Shape	97
6.1	A Preliminary Design of a Catalytic Converter	99

LIST OF ABBREVIATION

- AEA The United Kingdom Atomic Energy Authority
- Al₂O₃ Aluminium Oxide (Alumina)
- ASC Advanced Scientific Computing
- CFD Computational Fluid Dynamics
- CFX-Pre Solver in ANSYS CFX Software
- cpsi Cell Per Square Inch
- cpsc Cell Per Square Centimeter
- EURO European Standards of Emission Regulations
- FeCrAl Ferum Chromium Aluminium
- GSA Geometric Surface Area
- MAA Malaysian Automotive Association
- OFA Open Frontal Area
- OSC Oxygen Storage Capacity
- PEC Performance Evaluation Criteria
- PDE Partial Differential Equation
- RMS Root Mean Square
- RS Root Square
- TWCC Three-Way Catalytic Converter
- U.S United States of America
- 1D One Dimensional
- 2D Two Dimensional
- 3D Three Dimensional

LIST OF SYMBOLS

А	-	Surface Area (mm ²)	
atm	-	Atmosphere	
A/V	-	Specific Surface Area (mm ² /mm ³)	
С	-	Carbon	
сс	-	Volume of Combustion Chamber (cm ³)	
CeO_2	-	Cerium Oxide (Ceria)	
СО	-	Carbon Monoxide	
$\rm CO_2$	-	Carbon Dioxide	
°C	-	Degree Celsius	
D_h	-	Hydraulic Diameter (mm)	
Е	-	Height of Surface Roughness (µm)	
f	-	Darcy Friction Factor	
f'	-	Fanning Friction Factor	
HC	-	Hydrocarbon	
h _{tot}	-	Specific Total Enthalphy (m ² /K ²)	
H_2	-	Hydrogen	
H_2O	-	Water	
L_e	-	Developing Length	
MgO_2	-	Magnesium Oxide	
mil	-	1/1000 inch	
NO _x	-	Nitrogen Oxide	
n	-	Number of Data	
O ₂	-	Oxygen	
р	-	Static Pressure (Pa)	
Pd	-	Palladium	
Pt	-	Platinum	

Re	-	Reynolds Number
Rh	-	Rhodium
S_E	-	Energy Source (kg/m.K ³)
${\rm SiO}_2$	-	Silicon Oxide (Silica)
S_M	-	Momentum Source (kg/m ² .K ²)
1	-	Time (sec)
Т	-	Static Temperature (°C)
и	-	Velocity (m/s)
U	-	Vector Function of U(x,y,z)
V	-	Volume (m ³)
vs	-	Versus
W	-	Watt
Xexp	-	Experimental Data
Xsim	-	Predicted Data
ρ	-	Density (kg/m ³)
ΔP	-	Pressure Drop (Pa)
λ	-	Thermal Conductivity (W/m.K)
μ	-	Dynamic Viscosity (kg/m.s)
ν	-	Kinematic Viscosity (m ² .s)
▽ =	=	$\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}$
	[l	U_x

$$U = \begin{bmatrix} U_y \\ U_z \end{bmatrix}$$

$$\nabla \bullet U = \frac{\partial U_x}{\partial x} + \frac{\partial U_y}{\partial y} + \frac{\partial U_z}{\partial z}$$

$$\nabla \bullet (\rho U \odot U) = \begin{bmatrix} \frac{\partial}{\partial x} (\rho U_x U_x) \div \frac{\hat{c}}{\partial y} (\rho U_y U_x) \div \frac{\partial}{\partial z} (\rho U_z U_x) \\ \frac{\partial}{\partial x} (\rho U_x U_y) \div \frac{\hat{c}}{\partial y} (\rho U_y U_y) \div \frac{\partial}{\partial z} (\rho U_z U_y) \\ \frac{\hat{c}}{\partial x} (\rho U_x U_z) \div \frac{\partial}{\partial y} (\rho U_y U_z) - \frac{\hat{c}}{\partial z} (\rho U_z U_z) \end{bmatrix}$$

LIST OF APPENDIXES

APPENDIX		TITLE	PAGES
A	Pahl and Beitz's Model of	f the Design Process	107
В	Meshing Criteria of Hexag	gon and Square Shape	108
С	Mechanical-Chemical Per	formance Mapping for	
	Hexagon Cell Shape		109
D	Mechanical-Chemical Per	formance Mapping for	
	Square Cell Shape		110
E	Rational Design Method		111
F	Development of Catalytic	Converter	112

CHAPTER I

INTRODUCTION

1.1 Research Background

The need for mobility will increase in future, particularly in the fastdeveloping nations due to the growing world prosperity. In Malaysia, the number of new vehicles registration from 1980-2005 exhibits rapid increase and has contributed to the total of 15 million registered vehicles on the road (MAA Annual Report, 2006). However, this economically necessary development should not come at the expense of the environment. This is particularly important amidst of air pollution and global warming becoming a major issue nowadays. For this reason, the emission limits are being introduced around the world and continually being made stricter every year.

The history began with the introduction of 1970 United States (U.S) Clean Air Act Air which required the steep emissions reduction for the new 1975 and 1976 automobiles. Since 1975, automotive companies have developed technologies that enable the U.S Environmental Protection Agency to successfully adopt the usage of catalytic converter and three-way catalyst (Gerard and Lave, 2000). European countries had also implemented the strict regulations of the European Standard (EURO) beginning from 1992 with the intention to reduce the emissions including carbon monoxide (CO), hydrocarbon (HC) and nitrogen oxide (NO_x) from the combustion engines. Consequently, the enforcement of these regulations had finally led to the compulsory utilization of catalytic converter as an emission treatment for the vehicles exhaust gas around the world.

Looking from the engineering design point of view, it is important to optimize design parameters in order to increase the performance of catalytic converter. Miyairi *et al.* (2003) had investigated the effects of cell shape on mass transfer and pressure loss of substrates design. Structural advantages, mechanical and thermal characteristics of square and hexagonal cells had also been studied by Tanaka *et al.* (2003). Maus (1997) had mentioned that an increase of cell density and Geometric Surface Area (GSA) had reduced the HC emissions efficiency. A reduction in wall thickness also reduces the heat capacity of a substrate; hence improve the cold start problem. Inlet pipe and diffuser geometry and monolithic length also influence the overall performance of catalytic converter.

The installation of catalytic converter in the exhaust system has not been without problem. It has to be highly efficient in treating the emissions without sacrificing the engine performance. The catalyst surface area needs to be sufficient to treat the gases to meet the emission target of the vehicles. However, this will result in the increase of the pressure drop. This is the main issue to overcome since it indicates the engine loss in term of power and fuel economy. Typically the engine will lose about 300 W of power per 1000 Pa of pressure loss (Pannone and Mueller, 2001). As a result, a trade-off between the pressure loss and total surface area has become the major concern in determining the appropriate geometry of catalytic converter.

Pressure drop in catalytic converter are associated with two major components: substrate and flow distribution devices (including manifold, inlet and outlet pipe, inlet and outlet diffuser) (Lakshmikantha and Meck, 2002). The largest contribution of the exhaust backpressure is coming from the substrate. Its earlier shape was in pellet form (using spherical particulate γ -Al₂O₃ particles) before being replaced with the honeycomb monolith. The latter was more advantageous in term of lower pressure drop by having high open frontal area (~70%) and parallel channels (Searless, 2002). The honeycomb monolith is also available in different cell density and shapes offering potential flexibility. However, the geometries have