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ABSTRACT 

Design of catalytic converters involves four major components including 

casing, washcoat, catalyst and substrate. However, the design process is complicated 

as it involves various parameters. One of the problems faced by designers is 

obtaining the performance of catalytic converters where the substrate is made up of a 

large number of cells. Therefore, an effort to solve the problem using Computational 

Fluid Dynamics (CFD) with an alternative modeling technique is deployed. This study 

involved a preliminary design which employed an adapted sub-grid scale modeling as 

an alternative method for the analysis of substrate performance. The Pahl and Beitz's 

model was applied in the design process. The adapted sub-grid scale modeling was 

used to predict the pressure loss, select the cell shape and produce the performance 

chart which could show the relationship between the parameters involved. The 

proposed adapted sub-grid scale modelling method was found to give results within 5 

% error which was better compared to the single channel method. Results also 

indicated the advantage of hexagonal-shaped over square-shaped cells in terms of 

pressure loss where the fonner showed a 43 % lower value than the latter. The 

Mechanical-Chemical Performance Mapping (MCPM) was finally obtained. The 

mapping could be used to assist in the substrate design of catalytic converters. 
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ABSTRAK 

Rekabentuk penukar bermangkin melibatkan empat komponen utama 

termasuk bekas, lapisan, pemangkin dan substrat. Namun begitu, proses rekabentuk 

adalah kompleks kerana ia melibatkan pelbagai parameter. Salah satu masalah yang 

dihadapi oleh perekabentuk adalah untuk memperolehi prestasi penukar bem1angkin 

di mana substrat terdiri daripada banyak seI. Oleh itu, usaha telah dilakukan untuk 

menyelesaikan masalah dengan menggunakan Pengiraan Dinamik Bendalir (CFD) 

sebagai kaedah permodelan altematiftelah digunakan. Kajian ini melibatkan 

rekabentuk awalan di mana ia mengadaptasikan kaedah sub-grid yang telah 

diperbaiki sebagai kaedah alternatif dalam analisis prestasi substrat. Model Pahl and 

Beitz's telah digunakan dalam proses merekabentuk. Kaedah sub-grid telah 

digunakan untuk meramalkan kejatuhan tekanan, memilih bentuk sel dan 

memperolehi carta prestasi yang menunjukkan hubungan an tara parameter terIibat. 

Kaedah sub-grid yang dicadangkan telah menunjukkan bentuk heksagon 

memberikan perbezaan keputusan sebanyak 5 % dan ia lebih baik berbanding kacdah 

satu seI. Keputusanjuga menunjukkan kelebihan sel berbentuk heksagon berbanding 

bentuk segiempat dari segi kejatuhan tekanan di mana bentuk heksagon 

menunjukkan 43 % lebih rendah kejatuhan tekanan berbanding bentuk scgiempat. 

Carta Prestasi Mekanikal dan Kimia akhirnya diperolehi. 1a boleh digunakan untuk 

membantu dalam merekabentuk substrat sesebuah penukar bern1angkin. 
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CHAPTER I 

INTRODUCTION 

1.1 Research Background 

The need for mobility will increase in future, particularly in the fast

developing nations due to the growing world prosperity. In Malaysia, the number of 

new vehicles registration from 1980-2005 exhibits rapid increase and has contributed 

to the total of 15 million registered vehicles on the road (MAA Annual Report, 

2006). However, this economically necessary development should not come at the 

expense of the environment. This is particularly important amidst of air pollution 

and global warming becoming a major issue nowadays. For this reason, the emission 

limits are being introduced around the world and continually being made stricter 

every year. 

The history began with the introduction of 1970 United States (U.S) Clean 

Air Act Air which required the steep emissions reduction for the new 1975 and 1976 

automobiles. Since 1975, automotive companies have developed technologies that 

enable the U.S Environmental Protection Agency to successfully adopt the usage of 

catalytic converter and three-way catalyst (Gerard and Lave, 2000). European 

countries had also implemented the strict regulations of the European Standard 

(EURO) beginning from 1992 with the intention to reduce the emissions including 

carbon monoxide (CO), hydrocarbon (HC) and nitrogen oxide (NOJ from the 

combustion engines. Consequently, the enforcement of these regulations had finally 

led to the compulsory utilization of catalytic converter as an emission treatment for 
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the vehicles exhaust gas around the world. 

Looking from the engineering design point of view, it is important to 

optimize design parameters in order to increase the perfornlance of catalytic 

converter. Miyairi et af. (2003) had investigated the effects of cell shape on mass 

transfer and pressure loss of substrates design. Structural advantages, mechanical 

and them1al characteristics of square and hexagonal cells had also been studied by 

Tanaka et al. (2003). Maus (1997) had mentioned that an increase of cell density and 

Geometric Surface Area (GSA) had reduced the He emissions efficiency. A 

reduction in wall thickness also reduces the heat capacity of a substrate; hence 

improve the cold start problem. Inlet pipe and diffuser geometry and monolithic 

length also influence the overall perfom1ance of catalytic converter. 

The installation of catalytic converter in the exhaust system has not been 

without problem. It has to be highly efficient in treating the emissions without 

sacrificing the engine performance. The catalyst surface area needs to be sufficient 

to treat the gases to meet the emission target of the vehicles. However, this will result 

in the increase of the pressure drop. This is the main issue to overcome since it 

indicates the engine loss in ternl of power and fuel economy. Typically the engine 

will lose about 300 W of power per 1000 Pa of pressure loss (Pannone and Mueller, 

2001). As a result, a trade-off between the pressure loss and total surface area has 

become the major concern in detem1ining the appropriate geometry of catalytic 

converter. 

Pressure drop in catalytic converter are associated with two major 

components: substrate and flow distribution devices (including manifold, inlet and 

outlet pipe, inlet and outlet diffuser) (Lakshmikantha and Meck, 2002). The largest 

contribution of the exhaust backpressure is coming from the substrate. Its earlier 

shape was in pellet fornl (using spherical particulate ),-Ah03 particles) before being 

replaced with the honeycomb monolith. The latter was more advantageous in term 

oflower pressure drop by having high open frontal area (-70%) and parallel 

channels (Searless, 2002). The honeycomb monolith is also available in different 

cell density and shapes offering potential flexibility. However, the geometries have 




