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ABSTRACT 

The Bratu problem ul/(x) + /\eu(x) = 0 with u(O) = u(l) = 0 has two 

exact solutions for values of 0 < A < Ac, no solutions if A > Ac while unique 

solution is obtained when A = Ac where Ac = 3.513830719 is the critical 

value. The First Bratu-Type problem corresponds A = _7[2 while the Second 

Bratu-Type problem is ul/(x) + 7[
2e-u(x) = o. The exact solution of the First 

Bratu-Type problem blows up at x = 0.5 while the Second Bratu-Type problem 

is continuous. The present work seeks to compare various numerical methods 

for solving the Bratu and Bratu-Type problems. The numerical methods are the 

standard Adomian decomposition method, the modified Adomian decomposition 

method, the shooting method and the finite difference method. These methods 

are implemented using Maple. Convergence is achieved by applying the four 

methods when 0 < A ::; 2, however the shooting method is the most effective 

method as it gives the smallest maximum absolute error. ·When A = Ac, none of 

these methods give the convergence solutions. Due to the nature of the solution 

of the First Bratu-Type problem, only the shooting method and the modified 

Adomian decomposition method can give the convergence values to the exact 

solution. The finite difference method is proved to be the most effective method 

for the Second Bratu-Type problem compared to other methods. 

Keywords: Bratu problem, Bratu-Type problems, standard Adomian decomposi

tion method, modified Adomian decomposition method, shooting method, finite 

difference method. 
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ABSTRAK 

Masalah Bratu UIl(X)+AeU(X) = 0 dengan syarat sempadan v.(O) = u(l) = 0 

mempunyai dua penyelesaian bagi 0 < A < Ae , tiada penyelesaian jika /\ > /\ 

dan penyelesaian unik jika A = Ae di mana Ae = 3.513830719 adalah merupakan 

nilai genting. rvIasalah Jenis-Bratu Pertama mengambil nilai A = _1[2 manakala 

masalah .Ienis-Bratu Kedua adalah u"(x) + 1[
2e-u (x) = O. Penyelesaian sebe

nar bagi masalah Jenis-Bratu Pertama meningkat secara mendadak pada titik 

x = 0.5 manakala penyelesaian sebenar masalah Jenis-Bratu Kedua adalah selan

jar. Disertasi ini melaporkan mengenai perbandingan di antara beberapa kaedah 

berangka bagi menyelesaikan masalah Bratu dan Jenis-Bratu. Perbandingan ini 

melibatkan penggunaan empat kaedah iaitu kaedah penghuraian Adomian asal, 

kaedah penghuraian Adomian terubahsuai, kaedah penembakan dan kaedah pem

beza terhingga. Setiap penyelesaian berangka dilaksanakan dengan menggunakan 

Maple. Bagi kes 0 < A ::::; 2, keempat-empat kaedah tersebut telah memberikan 

penyelesaian berangka yang menumpu. Didapati kaedah penembakan merupakan 

kaedah yang paling efektif. Hanya kaedah penembakan dan kaedah penghuraian 

Adomian terubahsuai telah menunjukkan penyelesaian menumpu bagi masalah 

Jenis-Bratu Pertama. Kaedah pembeza terhingga merupakan kaedah yang pal

ing efektif bagi mendapatkan penyelesaian berangka untuk masalah Jenis-Bratu 

Kedua berbanding kaedah yang lain. 

Kata kunci: Masalah Bratu, masalah Jenis-Bratu, kaedah penghuraian Adomian 

asal, kaedah penghuraian Adomian terubahsuai, kaedah penembakan, kaedah 

pembeza terhingga. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

\I\Then mathematical modeling is used to describe physical, biological or 

chemical phenomena, one of the most common results of the modeling process is 

a system of partial differential equations. 

The Bratu problem is a partial differential equation which appears 1Il a 

number of applications such as the steady state model of the solid fuel ignition 

in thermal combustion theory and the Chandrasekhar model of the expansion of 

the universe. The former model stimulates a thermal reaction process in a rigid 

material, where the process depends on a balance between chemically generated 

heat addition and heat transfer by conduction (Averick et al., 1992). 

The classical Bratu problem can be described as follows: 

o on D: {(x, Y) EO::; x ::; 1 , 0 ::; y ::; I} (1.1 ) 

with 

11 - 0 on 3D, 



where 6. is the Laplace operator and D is a bounded domain in TI2. According to 

Jacobsen and Schmitt (2001), equation (1.1) arises in the study of the quasi linear 

parabolic problem : 

(1.2) 

l/ 0, x E EJD, 

which is also known as the solid fuel ignition model and is derived as a model for 

the thermal reaction process in a combustible, nondeformable material of constant 

density during the ignition period. Here A is known as the Fmnk-J(amendskii 

1 
parameter, l/ is a dimensionless temperature and - is the activation energy. 

E 

The derivation of equation (1.2) from general principles is accounted in the 

comprehensive work by Frank and Kamenetskii in year 1955, who are interested 

in what happens when combustible medium is placed in a vessel whose walls are 

maintained at a fixed temperature. Intuitively, they expected that for a large 

value of A, the reaction term will dominate and drive the temperature to infinity 

(explosion) whereas for smaller /\ , the steady state might be possible. 

Boyd (1986) developed a pseudo spectral method to generate approxiIllate 

solutions to the classical two-dimensional planar Bratu problem 

( 1.3) 

on 

{(x,y) E -1:S x:S 1, -1:S y:S I}, 

with lL = 0 on the boundary of the square. The basic idea is that the uJlkJlO\\"ll 

solution u(x, y) can be completely represented as an infinite series of Sj)('ct ml 
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basis functions 

N 

u(x,y) L ak¢k(X, V)· (1.4 ) 
k=l 

The basis functions ¢k(X, y) are chosen so that they obey the boundary condit.ions 

and have the property that the more terms of the series are kept, the more 

accurate the representation of the solution u(x, y) is. In other words, as N ~ 

00 the error diminishes to zero. For finite N, the series expansion in (1.4) is 

substituted into (1.3) to produce the residual R. The residual function will depend 

on the spatial variables x, y, the unknown coefficients ak and the parameter /\. 

The goal of Boyd's pseudo spectral method is to find ak so that the residual 

function R is zero at N collocation points. The collocation points are usually 

chosen to be the roots of orthogonal polynomials that fall into the same family 

as the basis functions ¢k(X, V). Boyd (1986) uses the Gegenbauer polynomials 

to define the collocation points. The Gegenbauer polynomials are orthogonal on 

the interval [-1,1] with respect to the weight nmction w(x) = (1 - X2)b where 

b = - ~ corresponds to the Chebyshev polynomials and b = 1 is the choice Boyd 
2 

(1986) uses. The second order Gegenbauer polynomial is 

3 2 -(5x - 1) 2' , -1 ~ x ~ 1. 

Using a I-point collocation method at the point Xl = (1 _1_) and the choice v'5'v'5 
of ¢1(X,y) = (1 - x2)(1 - y2), Boyd is able to obtain an approximation to the 

value of /\c with a relative error of 8%. Note that this choice for 0] (x, y) satisfies 

the boundary conditions since ¢(1, y) = ¢( -1, y) = 0(X, -1) = 0(X, 1) = O. The 

solution produced by Boyd's pseudo spectral does not have the deficiency of being 

wlable Lo converge to both solutions of the Bratu problem for /\ < /\c. 



The Bratu problem in one-dimensional planar coordinates is also of tell 

used as a benchmarking tool for numerical methods. The one-dimensional of this 

problem is 

ul/(X) + Aeu(x) O,O:S;x:S;l, (l.5) 

with the boundary conditions 

u(O) 0 and u(l) = o. 

The nonlinear eigenvalue problem (1.5) has two known bifurcated exact solutions 

for values of A < Ac, no solutions for A > Ac and a unique solution when /\ = /\, 

where Ac = 3.513830719 is denoted as the critical value (Buckmire, 2003). 

In Aregbesola (1996), the method of weighted residuals was used to solve 

the Bratu problem (l.5). The idea is to approximate the solution with a polyno-

mial involving a set of parameters. The polynomial is of the form 

N 

V(x) = <I>o(x) + L A;<I>i(X), 
i=l 

where <I>o(x) satisfies the given boundary conditions and each <I>i(X) satisfies the 

homogenous form of the boundary conditions. The function V(x) is then used as 

an approximation to the exact solution in the equation 

L(U(x)) Q(x) 

to give 

R(x) L(U(x)) - Q(x). 

where the function R(x) is the residual. The alIn is to make R(x) as small 

as possible. One of the methods of minimizing R(x) is the collocation method 
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where R(x) is set to zero at some points in the interval. The system of the 

resulting nonlinear equations is then solved to determine the parameters Ai. The 

polynomial V(x) is then considered as the approximate solution. The weighted 

residual method provides accurate results and was found suitable for bifurcation 

problems. 

The availability of the exact solution of the Bratu problem (1.5) together 

with universal applicability of the standard finite difference method, provides 

an important application of the nonstandard finite difference method. Solving 

a boundary value problem using the standard and nonstandard finite difFerence 

methods involve replacing each of the derivatives by an appropriate difference-

quotient approximation. The interval [a, bJ is divided into N equal subintervals 

where 

a = Xo < Xl < X2 < ... < Xj < ... < XN = b. 

1 
For a uniform subintervals, the step size h is constant and h = N with Xi = a+ih 

for i = 0,1,2, ... , N. The approximation of the second derivative by using the 

centered-difference formula is 

(1.6) 

However in the nonstandard finite difference method, the denominator of (1.6), 

11,2 is replaced by the denominator function ¢(h). Therefore, the nonstandard 

fmite difference method for the second derivative is 

" 11i+l - 211i + 11i-1 
11 ~ ¢(h) (1. 7) 

where the denominator function ¢(h) has the property that ¢(h) = h2 + 0(h2). 

Buckmire (2003) has employed the standard finite difference method and the 
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nonstandard finite difference method for solving the Bratu problem (1.5). Using 

the standard finite difference method, the discrete version of the Bratu problem 

(1.5) is 

U'i+l - 2U'i + Ui-l \ Ui - 0 h2 + /\e - , i = 1,2, ... ,N - 1. (1.8) 

The nonstandard finite difference method for solving the Bratu problem (1.5) is 

Ui+l - 2Ui + Ui-l A U 

21n[cosh(h)] + e' = 0, i = 1,2, ... ,N - 1, (1.9) 

where the denominator function, ¢(h) = 21n[cosh(h)] = h2 + O(h2). Thus, ill the 

limit as h --+ 0, the standard finite difference method (1.8) and the nonstandard 

finite difference method (1.9) will be identical. 

Buckmire extended his research in the application of nonstandard finite 

difference scheme to the cylindrical Bratu-Gelfand problem. The cylindrical 

Bratu-Gelfand is a particular boundary value problem related to the classical 

Bratu problem (1.1), with cylindrical radial operator. Jacobsen and Schmitt 

(2002) considered the nature of solutions to a version of the classical Bratu prob-

lem (1.1) generalized to more complicated operators in more dimensions that 

they called the Liouville-Bratu-Gelfand problem. The Liouville-Bratu-Gelfand 

problem for the class of quasilinear elliptic equations is defined by 

0, 0 < T < 1, 

U > 0, (1.10) 

1[.'(0) = u(l) 0, 
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where the inequalities a ::; 0, 1+ 1 > 0: and (3 + 1 > 0 hold. The Bratu-Gelfand 

problem to be considered by Buckmire (2003) is the special case when 0: = 1, 

(3 = 0, 1=1 : 

1 ( ')' ,11 - ru + /\e 
r 0, 0 < r < 1, 

u > 0, 

u'(O) u(l) o. 

(1.11) 

The assumption has been made that u = u(r) in order to the other derivatives in 

Laplacian can be ignored. In his previous works (Buckmire (1996) and (2003)), 

he has shown that the usefulness in applying a particular nonstandard finite 

difference scheme to boundary value problems in cylindrical coordinates that 

contain the expression of r (~~). The expression r (~~) is then approximated by 

the forward difference formula, 

du Uk+l - Uk 
r-~rk----

dr rk+l - rk 
(1.12) 

However, the following nonstandard finite difference scheme has been shown 

(Buckmire, 2003) to be a superior method, especially for singular problems where 

r --t 0: 

(1.13) 

Using the approximation in (1.12), the Bratu-Gelfand problem (1.11) will be 

(1.14) 

The nonstandard version finite difference scheme (1.13) for problem (1.11) will 

be 

o. (1.15) 




