IMPROVEMENT OF SCREW PRESS PRODUCTION IN PALM OIL MILL USING FUZZY LOGIC SYSTEM

WAN ZULKARNAIN BIN OTHMAN

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

·

.

UNIVERSITI TUN	IUSSEIN ONN MALAYSIA			
PENGESAH	IAN STATUS TESIS			
IMPROVEMENT OF S	IMPROVEMENT OF SCREW PRESS PRODUCTION IN			
PALM OIL MILL US	SING FUZZY LOGIC SYSTEM			
SESI PEN	GAJIAN : 2008/2009			
Saya WAN ZULKARNAIN BIN OTHMAI Perpustakaan dengan syarat-syarat kegunaan s	N-mengaku membenarkan Tesis Sarjana ini disimpan di - seperti berikut:			
 Tesis adalah hakmilik Universiti Tun Perpustakaan dibenarkan membuat sa Perpustakaan dibenarkan membuat sa pengajian tinggi. ** Sila tandakan (√) 	i Hussein Onn Malaysia. alinan untok tujuan pengajian sabaja. alinan tesis ini sebagai bahan pertukaran antara institusi			
SULIT	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)			
TERHAD	(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)			
TIDAK TERHAD				
(TANDATANGAN PENULIS)	Disahkan Oleh 			
Alamat Tetap : 11051 Taman Sri Jaya 3, Gong Pauh, 24000 Chukai Kema Terengganu	PROF. DR. SYLAMMAN BIN HASSAN			
Tarikh: 30/6/2008	Tarikh : 30/6/2008			

CATATAN:

••

Jika tesis sarjana ini SULIT atau TERHAD, sila lampirkan surat daripada piliak berkuasa'organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu di kelaskan sebagai SULIT atau TERHAD "I hereby declare that I have read this thesis and in my opinion this thesis in terms of content and quality requirements fulfills the purpose for the award of the Degree of Master of Mechanical Engineering"

	Alibar J.
Signature	
Name of Supervisor	: PROF. DR. SULAIMAN BIN HASSAN
Date	30/6/2008

IMPROVEMENT OF SCREW PRESS PRODUCTION IN PALM OIL MILL USING FUZZY LOGIC SYSTEM

WAN ZULKARNAIN BIN OTHMAN

A thesis submitted in fulfillment of the requirement for the award of the Degree of Master of Mechanical Engineering

Faculty of Mechanical and Manufacturing Engineering Universiti Tun Hussein Onn Malaysia

JUNE, 2008

I hereby declare that the works in this thesis is my own except for quotations and summaries which have been duly acknowledged.

Signature	:	BAI
Name of Author	:	WAN ZULKARNAIN BIN OTHMAN
Date	:	20/6/2008

Dedicated to my beloved wife and children

ACKNOWLEDGMENT

Bismillaahirrahmaanirrahiim...

Praise be all to Allah SWT, the Most Gracious, the Most Merciful. Shalawat and salam be to Rasulullah Muhammad saw. By the grace of Allah SWT, this thesis is finally completed and submitted to Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, to full fill the requirements for the Degree of Master of Mechanical Engineering.

I would like to take this great opportunity to express my warmest gratitude to my supervisor Professor Dr. Sulaiman bin Hassan and co-supervisor Assoc. Professor Dr. Mohd Nor bin Mohd Than for their guidance, concern and strong support throughout the completion of this thesis. Their enthusiasm has been a great source of inspiration to me and it gives me a great sense of honour to be under their wings.

Great thanks to my friends who have assisted in making this thesis a wonderful one and finally to those who have contributed to the success of this thesis, especially Kumpulan Kilang Sawit RISDA Bhd. Without them this thesis would not have been possible.

ABSTRACT

A screw press machine is used to compress the fruit mash between the main screw and the travelling cones to extract the palm oil. The position of the cones against the discharge end of the press cage determines the pressure. The pressure controller is an important factor in determining the oil loss and nut breakages. A conventional control system which is the band control system, uses a kilowatt meter as a controller in adjusting the press cage pressure. However, the screw press machine can be improved in order to reduce the oil loss and nut breakages. Not much researches has been conducted on reducing the nut breakages as well as oil loss. Therefore, the objective of this study is to minimise the oil loss and broken nuts. The objective can be achieved through upgrading the screw press machine and the use of fuzzy control system. During the course of this research project, the hydraulic system of the screw press machine was upgraded by utilising the proportional pressure relief valve. A current transducer was used to measure the motor current load. A ladder diagram program and fuzzy logic algorithm were written and downloaded into the programmable logic control to regulate the press cage pressure. For comparison purposes, a band control system and fuzzy control system were implemented in the control environment. The performances of both systems were compared in a number of tests. The first test was the oscillation of motor current load with the performance of fuzzy control system that was stabilised at 8.33mA. This is due to the reaction of fuzzy pressure controller in regulating the proportional pressure relief valve. The fuzzy control system is able to reduce 1.20% of oil loss compared to the band control system. The percentage of the broken nuts of the fuzzy control system was reduced by 3.55%. This implies that the objective to reduce the breakages is achieved. Thus, the screw press machine with a fuzzy control system is found to be significantly more efficient than the band control system.

ABSTRAK

Mesin penekan skru digunakan untuk memampatkan lecekan buah antara skru utama dan kon penggerak bagi tujuan mengekstrak minyak sawit. Kedudukan kon di hujung keluaran sangkar pemerah menghasilkan tekanan. Pengawal tekanan merupakan satu faktor yang utama terhadap kehilangan minyak dan biji pecah. Sistem kawalan lazim yang sedia ada iaitu sistem kawalan jalur, menggunakan kilowatt meter sebagai pengawal bagi tujuan melaras tekanan di dalam sangkar pemerah. Oleh yang demikian, prestasi pemprosesan mesin pemerah skru ini, berpotensi untuk dimajukan bagi mengurangkan lagi kehilangan minyak dan biji pecah. Tidak banyak penyelidikan yang telah dijalankan dalam mengurangkan kehilangan minyak dan biji pecah. Oleh itu, objektif kajian ini adalah untuk mengurangkan kehilangan minyak dan biji pecah. Objektif kajian ini boleh dicapai dengan menaik taraf mesin penekan skru dan penggunaan sistem kawalan kabur. Sepanjang projek penyelidikan ini, sistem hidraulik mesin penekan skru telah dinaik taraf dengan menggunakan injap pelega tekanan berkadar. Pencerap arus elektrik telah digunakan untuk mengukur muatan arus elektrik motor. Aturcara PLC dan algoritma logik kabur telah ditulis dan di muat turun ke PLC bertujuan untuk mengawal tekanan sangkar pemerah. Perbandingan antara sistem kawalan jalur dan sistem kawalan kabur telah dilaksanakan dengan mengadakan beberapa ujian. Ujian pertama adalah ayunan muatan arus elektrik motor dan didapati prestasi sistem kawalan kabur adalah stabil pada 8.33mA. Ini adalah disebabkan oleh tindakan pengawal tekanan kabur dalam mengatur injap pelega tekanan berkadar. Sistem kawalan kabur didapati mampu mengurangkan 1.20% kehilangan minyak berbandingan sistem kawalan jalur dan peratusan biji pecah sistem kawalan kabur adalah lebih baik dengan perbezaan sebanyak 3.55%. Ini menunjukkan, objektif kajian iaitu untuk mengurangkan kehilangan minyak dan biji pecah telah dicapai. Oleh itu, mesin penekan skru dengan sistem kawalan kabur adalah lebih baik berbanding dengan sistem kawalan jalur.

TABLE OF CONTENTS

CHAPTER TITLE

PAGE

TESTIMONIAL	ii
DEDICATION	iii
ACKNOWLEDGMENT	iv
ABSTRACT	v
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLE	xi
LIST OF FIGURE	xii
NOMENCLATURE	xiv
ABBREVIATIONS	xv
LIST OF APPENDIX	xvi

I PALM OIL SCREW PRESS

1.1	Introduction	1
1.2	State of The Art in Palm Oil Mill	
	Screw Press	3
1.3	Problem Statement	4
1.4	Objectives	5
1.5	Thesis Outline	5

H LITERATURE REVIEW

2.1	Introduc	ction	6
2.2	History of Palm Oil Extraction		
2.3	Screw Press Power Consumption		
2.4	Basic P	rinciples of the Screw Press	9
2.5	Screw F	Press Conventional Control	
	System		10
	2.5.1	Band Control System	11
	2.5.2	Proportional Control System	11
2.6	Compar	rison of the Performance	
	betweer	n the Band and the Proportional	
	Control	ler	12
2.7	Fuzzy C	Control	14
	2.7.1	Fuzzy Sets	15
	2.7.2	Fuzzy Set Membership	
		Functions	16
	2.7.3	Fuzzy Set Operations	17
	2.7,4	Union or Max	17
	2.7.5	Intersection or Min	17
	2.7.6	Fuzzy Logic Controller	18
	2.7.7	Knowledge Base	18
	2.7.8	Fuzzy Set Variables	19
	2.7.9	Inference Rules	19
	2.7.10	Fuzzification	20
	2.7.11	Defuzzification	21
2.8	Review	s of Fuzzy Logic Controller	
	Applica	ation	23
2.9	Applica	ation of Fuzzy Logic in PLC	25
2.10	Conclusion		

III	SCR	EW PRE	SS FUZZY LOGIC	
	CON	TROLL	ER DESIGN	
	3.1	Introdu	iction	30
	3.2	Screw	Press System Development	31
	3.3	Fuzzy	Logic Control System	
		Develo	pment	35
		3.3.1	Fuzzy Pressure Controller	37
	3.4	Fuzzy	Pressure Controller Development	38
	3.5	Fuzzy	Logic PLC Programming	
		Develo	pment	48
		3.5.1	Assigning of Inputs and	
			Outputs	49
	3.6	PLC P	rogram	50
	3.7	Conclu	ision	50
IV	EOU	HPMEN	r setup	
1	4.1	Introdu	action	51
	4.2	Curren	t Transducer (CT)	55
	4.3	Propor	tional Pressure Relief Valve	
		(PPRV)	56
	4.4	Fuzzy	, Logic PLC	57
	4.5	Compl	ete Equipment Setup	60
	4.6	Conclu	ision	61
V	EXP	ERIME	NTAL RESULTS	67
	5.1	Introdu	iction	62
	5.2	Oil Lo	ss and Broken Nuts versus PPRV	<i>(</i>)
	_	Comm	and Value	63
	5.3	Regres	sion Analysis of Screw Press	

	Motor Current Load	64
5.4	Simulation Studies	65
5.5	The Performance of the Fuzzy Pressure	
	Controller	68
5.6	Comparison of Oscillation Current Load	70
5.7	Comparison of Power Consumption	71
5.8	Process Performance	72
5.9	Financial Implication of Oil and Free	
	Kernel Loss	75
5.10	Conclusion	76

VI CONCLUSION AND SUGGESTION	VI	CONCLUSION AND SUGGESTION
------------------------------	----	---------------------------

6.1	Conclusion	77
6.2	Contribution and Future Research	78

REFERENCES	80
APPENDIXES	85

LIST OF TABLE

TABLE TITLE

PAGE

2.1	Comparative press trial between the band	
	control and proportional control system	
	(Ong and Yong, 1987)	13
2.2	Example of rule matrix for two input and single	
	output system	20
2.3	Inferred fuzzy output sets	21
3.1	The linguistic variable and the magnitude of	
	input error	39
3.2	Fuzzy rules	42
3.3	Fuzzy rules application	46
3.4	Fuzzy control output	47
3.5	I/O words	49
3.6	I/O bit	49
5.1	Summary of press cake results	73
5.2	Financial implication of oil and free kernel loss	75

LIST OF FIGURE

FIGURE	TITLE	PAGE
1.1	Palm oil processing	1
1.2	The operation of screw press	2
1.3	Schematic diagram of the hydraulic system for	
	the band control system (Bosh Rexroth,2000)	4
2.1	Relative distance of the travelling cone, d,	8
2.2	Reaction of the travelling cone at variance with	
	the force	9
2.3	Fuzzy membership	16
2.4	Block diagram of a fuzzy logic controller	18
2.5	Fuzzy input membership	19
2.6	Fuzzy input sets	20
2.7	Fuzzy output sets	22
3.1	Overview screw press fuzzy logic controller	
	design work flow	31
3.2	Screw press system schematic diagram	32
3.3	Parts of screw press system: (a) press	
	mechanism; (b) hydraulic system; and (c) fuzzy	
	logic control system	33
3.4	The structure of a fuzzy logic control system	35
3.5	The structure of a fuzzy pressure controller	37
3.6	Input membership functions for current	
	error (i_e) and current error variance (Δi_e)	40
3.7	Fuzzy output membership function	41
3.8	The degree of membership function for i_e	
	and Δi_e	45
3.9	Fuzzy output control surface	47
3.10	Control flow of pressure control	48

4.1	Band control system setup	51
4.2	Fuzzy logic control system setup	52
4.3	Fuzzy logic control system configuration	53
4.4	Wiring connection	54
4.5	Current transducer (CT)	55
4.6	The installed proportional pressure relief valve	
	(PPRV) on the hydraulic system	56
4.7	Detailed schematic of the proportional pressure	
	relief valve (PPRV), (Bosch Rexroth, 2002)	57
4.8	Programmable logic controller (PLC) with	
	fuzzy logic unit	58
4.9	Overall schematic of the implementation	
	equipment setup	58
4.10	Linear analogue output characteristic of the	
	analogue output unit	59
4.11	Complete equipment setup for the screw press	
	fuzzy control system	60
5.1	The effect of PPRV command value to the oil	
	loss and broken nut	63
5.2	Command values and current load data fitted to	
	a regression model	64
5.3	Fuzzy logic control system	65
5.4	The increment and decrement of hydraulic	
	cylinder pressure were determined by fuzzy	
	output variable, u	67
5.5	Current error (i_e) performance test	68
5.6	Current error variance (Δi_e) performance test	69
5.7	Fuzzy output (u) performance test	69
5.8	Comparison of signal level between band	
	control system and fuzzy control system	70
5.9	Power consumption between band control system and fuzzy control system	71

xiii

NOMENCLATURE

.

SYMBOL DESCRIPTION

А	Ampere
A_1	Rod side piston area
A_2	Piston surface area
d	Relative distance
F	Force
i _a	Actual current
ie	Current error
<i>i</i> _r	Desired current load
mA	Milliampere
P_1	Pressure acting on the rod side of the hydraulic piston
P_2	Pressure acting on hydraulic piston surface
P_{pc}	Press cage pressure
P_r	Hydraulic pressure
и	Output of Fuzzy Controller
Δi_e	Current error change
Δp_f	Fuzzy output variable
Δp_r	Hydraulic pressure output variable
$\mu(c_j)$	Membership grade of the j th
μ_z	Membership grade of the <i>i</i> th

ABBREVIATIONS

A/D	Analogue to Digital
AC	Alternate Current
COG	Centre of Gravity
CPU	Central Processing Unit
CT	Current Transducer
D/A	Digital to Analogue
DC	Direct Current
DM	Data Memory
FFB	Fresh Fruit Bunch
FSS	Fuzzy Support Software
HMPB	Harrisons Malaysian Plantations Berhad
I/O	Input/Output
IR	Internal Relay
KW	Kilowatt
MPD	Mass Passing to Digester
NL	Negative Large
NM	Negative Medium
NS	Negative Small
PD	Proportional-Derivative
PI	Proportional-Intergral
PID	Proportional, integral and derivative
PL	Positive Large
PLC	Programmable Logic Controller
РМ	Positive Medium
PPRV	Proportional Pressure Relief Valve
PS	Positive Small
rpm	revolutions per minute
SBB	Binary Subtraction
ZR	Zero

LIST OF APPENDIX

APPENDIX TITLE

PAGE

А	Flow Chart	86
В	PLC Ladder Diagram	100
С	The Operation of PLC Program	108
D	Simulation of Screw Press Fuzzy Logic Controller	112

CHAPTER I

PALM OIL SCREW PRESS

1.1 Introduction

The palm oil mill processes is shown in Figure 1.1. On the arrival of the fresh fruit bunch (FFB), the FFB are steam sterilised where the fruits soften and easily detached from the stalk. These detached fruits are further softened with steam in digesters. The digester mash is then passed to the screw press where the oil and the nut are extracted.

Figure 1.1: Palm oil processing

There are various types of screw presses used for the extraction of palm oil. The earliest was introduced to the palm oil industry in the early 1960's. This type of machine had been developed for a multitude of applications, both for extraction and extruding (Sivalingam, 1999).

The concept of the screw press is to compress the fruit mash between the main screw and the travelling cones to extract the palm oil. The position of the cones, as shown in Figure 1.2, against the discharge end of the press cage determines the pressure maintained on the mash i.e. smaller slot between cone and press cage will result in higher pressure and vice versa.

Figure 1.2: The operation of screw press

In the screw press, the stability of the press cage pressure is an important factor in determining the oil loss and nut breakage in the press cake. A high pressure causes a better recovery of the oil but unfortunately produce a higher nut breakage.

The effectiveness of the screw press is very critical in optimising the oil extraction. Ineffective press will result in oil loss and nut breakage and also high maintenance cost of the machine. Engineers and researches have always tried to optimise the oil press operation and this research is studying one method of achieving this. Therefore a fuzzy logic system has been chosen in this research to stabilise the pressure in the press cage.

Fuzzy logic system has been successfully used for a wide number of applications dealing with complex and non-linear processes, wherein they are proved to be robust and less sensitive to parametric variations and noise than conventional controllers (Roger Jang and Gulley, 1997). In addition, fuzzy logic system has been proven to reduce the oscillations, smoothing the output as far as the error decreases. This nonlinear characteristic of the controller is a great advantage and was not possible by a linear Proportional-Derivative (PD) controller (Corbet and Lawrence, 1996).

1.2 State of The Art in Palm Oil Mill Screw Press

The screw press system is one of the least understood processes in a palm oil mill even though it is one of the most important. Hence, very little progress in the quantitative understanding of screw presses has been achieved even though they have been used in palm oil mills for the past fifty years. In view of the oil losses improvement, the extraction method has gone through some evolution in term of method of extraction, design and control (Sivasothy, 1993).

One method of controlling the press cone is utilising kilowatt set point. The press cone movement depends on the kilowatt set point. When the measurement is less than set point, the press cone will move in and vice-versa (Yee, et. al., 1987). These conventional pressure control systems are used extensively in the palm oil industry. This controller is sometime referred to as band control system. However, these controllers do not take the interaction effect into consideration and the design and adjustment are difficult despite of their high performance (Burhan Sidek, 1988).

The pressure inside the cage must be measured accurately to ensure effective control. Thus the method of measuring the pressure is therefore very important. Pressure can be measured indirectly by the measurement of the power consumed by the screw press. In general, the pressure can be controlled and it relies on the precision of the instrument and the screw press condition (Sivasothy, 1993).

To summarise, an extensive review of the literature have shown that there are limited number of published papers on the topic of palm oil mill screw press control system. As such, that this will remains as an area in which substantive research needs to be conducted. This research project will attempt to introduce another mean of controlling pressure in the palm oil mill screw press.

1.3 Problem Statement

In conventional screw press control system, as shown in Figure 1.3, the press cage pressure is measured via the screw press motor current load by using the current transducer. If the level is rises, the travelling cone will move away from the press cage opening. By doing this, the pressure inside the press cage will be reduced. However the regulating pressure in the press cage efficiency is relatively poor and produces a fluctuation pressure. The fluctuation press cage pressure cause the increment of oil losses and nut breakage.

Figure 1.3: Schematic diagram of the hydraulic system for the band control system (Bosch Rexroth, 2000)