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Abstract This paper reports several findings on forced solitons solution gen-
erated by the forced Korteweg-de Vries-Burgers equation (fKdVB),

Ut + εUUx − νUxx + µUxxx = f(x), a ≤ x ≤ b.

The fKdVB equation is a nonlinear evolution equation that combines several ef-
fects such as forcing; f(x), nonlinearity; εUUx, dissipation; νUxx and dispersion;
µUxxx. The forcing term breaks those symmetries associated with the unforced
systems. Thus, the traditional analytical method such as inverse scattering
method and Bäcklund transformation do not work on forcing system anymore.
Approximate and numerical solution seem to be the ways to solve the fKdVB
equation. The semi-implicit pseudo-spectral method is used to develop a nu-
merical scheme to solve the fKdVB equation with arbitrary forcing. A software
package,(BURSO) that has user friendly graphical interface is developed using
Matlab 7.0 to implement the above numerical scheme. Numerical simulation
proves that it is very flexible since it can solve free and force system such as the
KdV, Burgers, KdVB and fKdV equations efficiently. Thus it is able to solve the
fKdVB equation faithfully. Our future research would sought the approximate
solution of the fKdVB equation.

Keywords Korteweg-de Vries, Burgers, semi-implicit pseudo-spectral method,
soliton.

Abstrak Kertas kerja ini melaporkan beberapa dapatan tentang penyelesaian
soliton paksaan yang dijanakan oleh persamaan paksaan Korteweg-de Vries-
Burgers (fKdVB),

Ut + εUUx − νUxx + µUxxx = f(x), a ≤ x ≤ b.
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Persamaan fKdVB adalah satu persamaan evolusi tak linear yang menggabung-
kan beberapa kesan seperti paksaan; f(x), tak linear; εUUx, disipasi; νUxx dan
penyerakan; µUxxx. Kesan paksaan ini memecahkan sifat simetri yang berkaitan
dengan sistem bebas paksaan. Justeru itu, secara tradisi kaedah analitik seperti
kaedah penyerakan songsang dan Kaedah Trasformasi Bäcklund tidak boleh di-
gunakan lagi ke atas suatu sistem paksaan. Kaedah berangka dan penyelesa-
ian hampir merupakan cara yang mampu digunakan untuk menyelesaikan per-
samaan fKdVB. Kaedah semi-implicit pseudo-spectral digunakan untuk mem-
bangunkan skim berangka bagi menyelesaikan persamaan fKdVB dengan pak-
saan abitrari. Satu perisian (BURSO) yang mempunyai antaramuka grafik yang
mesra pengguna telah dibangunkan dengan Matlab 7.0 untuk melaksanakan
skim berangka tersebut. Simulasi berangka ini menunjukkan skim berangka
ini fleksibel kerana ia boleh menyelesaikan sistem bebas dan paksaan seperti
persamaan KdV, Burgers, KdVB dan fKdV dengan cekap. Justeru itu skim
berangka ini boleh menyelesaikan persamaan fKdVB dengan jayanya. Penye-
lidikan masa depan adalah untuk mencari penyelesaian hampir bagi persamaan
fKdVB.

Katakunci Korteweg-de Vries, Burgers, kaedah semi-implicit pseudo-spectral,
dan soliton.

1 Introduction

The fKdVB equation is a nonlinear evolution equation that combines several effects such
as forcing; f(x), nonlinearity; εUUx, dissipation; νUxx and dispersion; µUxxx. terms. The
unforced system has been studied intensively during the past 30 years. The forcing term
breaks those symmetries associated with the unforced systems. Thus, the traditional ana-
lytical method such as inverse scattering method and Bäcklund transformation do not work
on forced system anymore. Approximate and numerical solution seem to be the method to
solve the fKdVB equation. In this paper, we solve the fKdVB equation numerically using
semi-implicit pseudo-spectral method.

2 The Governing Equation

In this paper, the governing equations for nonlinear evolution equations is given by fKdVB
equation,

Ut + εUUx − νUxx + µUxxx = f(x). (1)

where ε, ν, µ are positive parameters. The parameter ε controls the nonlinearity effect, ν
gives the effect of dissipation, the dispersion effect is controlled by µ whereas f(x) gives the
effect of forcing. By manipulating the values of these parameters, we will see a few cases as
below.
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Case 1

When f(x) and ν both equal to zeros, we have the Korteweg-de Vries equation (KdV),

Ut + εUUx + µUxxx = 0. (2)

Its analytical solution is given by [6] as

U(ξ) =
3c

ε
sech2

√
c

4µ
ξ. (3)

Case 2

When f(x) and µ both equal to zeros, we have the Burgers equation given by

Ut + εUUx − νUxx = 0. (4)

Its solution is given by [3] as

U(ξ) =
u−∞ + u∞

2
− u−∞ − u∞

2
tanh

(
ε(u−∞ − u∞)ξ

4ν

)
. (5)

Case 3

When f(x) is zero, we will get the Korteweg-de Vries-Burgers equations (KdVB) given
by

Ut + εUUx − νUxx + µUxxx = 0. (6)

Its dispersion-dominant solution is given by [8] as

U(ξ) =


u−∞ + exp

(
νξ

2µ

)A cos

√
ε(u−∞ − u∞)

2µ
−

(
ν

2µ

)2

ξ

 ξ < 0

3(u−∞ − u∞)
2

sech2

√
ε(u−∞ − u∞)

8µ
ξ ξ > 0

where

ξ = x − ct. (7)

Case 4

When ν is zero, we will have the forced Korteweg-de Vries equation (fKdV) given by

Ut + εUUx + µUxxx = f(x). (8)

Since this is a forced system, we will only see approximate and numerical solution as
given by [10].
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3 Semi-implicit Pseudo-Spectral Method

Nouri and Sloan [9] studied six Fourier pseudo-spectral methods that solve the
KdV equation numerically namely leap-frog scheme of Fornberg and Witham, semi-implicit
scheme of Chan and Kerhoven, modified basis function scheme of Chan and Kerhoven,
split-step scheme based on Taylor expansion, split-step scheme based on characteristics and
quasi-Newton implicit method. They found that the semi-implicit scheme of Chan and
Kerhoven [4] to be the most efficient of the methods tested. Chan and Kerhoven integrated
the KdV equation in time in Fourier space using two Fast Fourier Transform (FFT) per time
step. They also used Crank-Nicolson method for the linear term and a leap-frog method
for the nonlinear term.

Here, we extend the Chan and Kerkhoven [4] scheme for Equation (1) which is
integrated in time by the leapfrog finite difference scheme in the spectral space. The infinite
interval is replaced by −L < x < L with L sufficiently large such that the periodicity
assumptions holds

U(−L, t) = U(L, t) = 0.

When we apply the Chan-Kerkhoven scheme, the “noise” propagation problem
due to the numerical scheme does not appear to be serious when L is large enough and a
proper time step �t is chosen.

By introducing ξ = sx + π where s =
π

L
we will transform U(x, t) into V (ξ, t). By

taking f(x) = γ
2 δx(x), thus Equation (1) will be transformed into

Vt + εsV Vξ − νs2Vξξ + µs3Vξξξ =
γ

2
s

d

dξ
δ(

ξ

s
− L) (9)

By letting W (ξ, t) = 1
2sV 2, then the nonlinear term εsV Vξ can be written as εWξ,

so Equation (9) will becomes

Vt + εWξ − νs2Vξξ + µs3Vξξξ =
γ

2
s

d

dξ
δ(

ξ

s
− L) (10)

For the numerical solution of Equation (10), we discretize the interval [0, 2π] by

N + 1 equidistant points. We let ξ0 = 0, ξ1, ξ2, ..., ξN = 2π, so that �ξ =
2π

N
. In this case,

N will always be even and is to be a power of two. So we let m =
N

2
. The Discrete Fourier

Transform (DFT) of V (ξj , t) for j = 0, 1, 2, ..., N − 1 is denoted by V̂ (p, t) is given by:-

V̂ (p, t) =
1√
N

N−1∑
j=0

V (ξj , t)e−( 2πjp
N )i

where p = −m,−m + 1,−m + 2, ...,m − 1
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whereas the inverse Fourier Transform of V̂ (p, t) for p = −m,−m + 1,−m + 2, ...,m − 1 is
denoted by V (ξj , t) written as

V (ξj , t) =
1√
N

m−1∑
p=−m

V̂ (p, t)e( 2πjp
N )i

where j = 0, 1, 2, ..., N − 1

and i =
√−1 is the imaginary number. The DFT of Equation (10) with respect to ξ gives

V̂t(p, t) + iεpŴ (p, t) + νp2s2V̂ (p, t) − iµp3s3V̂ (p, t) = i
γ

2
sp

√
N

2L
e−iπp (11)

By using the following approximation,

V̂t(p, t) ≈ V̂ (p, t + �t) − V̂ (p, t −�t)
2�t

(12)

V̂ (p, t) ≈
[

V̂ (p, t + �t) + V̂ (p, t −�t)
2

]
(13)

(14)

and denote V̂ (p, t + �t) by V̂pt, V̂ (p, t − �t),by V̂mt and V̂ (p, t) by V̂t, so Equation (11)
becomes,

V̂pt − V̂mt

2�t
+ iεpŴ (p, t) + νs2p2

[
V̂pt + V̂mt

2

]

−iµs3p3

[
V̂pt + V̂mt

2

]
= i

γ

2
sp

√
N

2L
e−iπp (15)

By multiplying Equation (15) with 2�t, we get

V̂pt − V̂mt + 2iεp�tŴ (p, t) + νs2p2�t(V̂pt + V̂mt)

−iµs3p3�t(V̂pt + V̂mt) = iγsp�t

√
N

2L
e−iπp (16)

Collecting the terms in Equation (16) will gives us

(1 + νs2p2�t − iµs3p3�t)V̂pt = (1 − νs2p2�t + iµs3p3�t)V̂mt

−2iεp�tŴ (p, t) + iγsp�t

√
N

2L
e−iπp (17)

Then, Equation (18) will be our forward scheme given by,

V̂pt =
1

1 + νs2p2�t − iµs3p3�t

[
V̂mt(1 − νs2p2�t + iµs3p3�t)

−2iεp�tŴ (p, t) + iγsp�t

√
N

2L
e−iπp

]
(18)
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4 Numerical Simulation

Figure (1) shows the graphical user interface, BURSO built using the Matlab 7.0 software.
With BURSO, we just need to input the relevant data, select appropriate initial condition
and lastly click the plot button to see the desired numerical simulation of the fKdVB
equation. This is indeed user friendly since we can just change those parameters and redo
the process again and again so fast that this numerical simulation tends to be our virtual
laboratories in solving the fKdVB equation. With BURSO, we are able to generate graphical
outputs for the KdV, Burgers, KdVB, fKdV and fKdVB and it is done so efficiently.

Figure 1: The Graphical User Interface

In our numerical simulation, we will show all the solutions of five nonlinear evolution
equations using BURSO. By choosing the appropriate values for the parameters, we will
solve each of these equations given as follow:
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A The Korteweg-de Vries (KdV) Equation
By considering Equation (2) and we input the following set of data into BURSO to
get the 3-soliton solution for the KdV equation.

Set L N M �t ε ν µ Initial Condition
K1 50 1024 1000 0.001 6 0 1 12 sech2x

The BURSO can reduce Equation (1) to the KdV equation and accurately yields the
3-soliton solution. The result is shown in Figure (2).
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Figure 2: The 3-soliton solution

B The Burgers Equation
To get the Burgers type solution, we will then input the following set of data into
BURSO. We actual reduce Equation (1) to the Burgers equation.

Set L N M �t ε ν µ Initial Condition
B1 50 256 1000 0.01 1 1 0 sech2x

B2 50 256 1000 0.01 1 2 0 sech2x

B3 50 256 1000 0.01 1 0.1 0 sech2x

B4 50 1024 1000 0.01 1 0.01 0 sech2x

Figure (3-6) show the 2D-plot of the Burgers solution for time t = 0 − 10 with
ε = 1 and ν = 1, 2, 0.1, 0.01 respectively. The top curve is at time t = 0 and the
bottom curve at time t = 10 with an increment of one. All four figures show that
the amplitude of the initial wave is slowly diminishing with time due to the effect
of the viscosity which damps the amplitude of the initial wave. Comparing Figure
(3) and (4), we notice that when we increased the viscosity effect from 1 to 2, the
amplitude of the wave damps much faster. On the other hand, when we reduced
the viscosity effect tends to zero (from 0.1 to 0.01) in Figure (5) and (6), we observe
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that the wave front becomes steeper. In fact, all four figures of Burgers solution that
we get is same as [1], [2], [5] and [11] . On top of that, when ν tends to zero , we
have nonlinear equation Ut + εUUx = 0. The solution of the nonlinear equation is
U(x, t) = f(x − εUt). Comparing with the linear equation Ut + cUx = 0 which has
solution of U(x, t) = f(x − ct). We now see εU itself is the velocity. Thus, the
nonlinearity effect (εUUx) will make higher value of U , that is the top wave (crest)
move faster than bottom wave (trough). As a result, the wave front will get steeper
and tends to turn over and then break. Consequently, we can conclude that the
numerical scheme indeed can reduce Equation (1) to the Burgers equation and later
solve it accurately.
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Figure 3: The Burgers type solution with ε = 1; ν = 1 for time t = 0 − 10
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Figure 4: The Burgers type solution with ε = 1; ν = 2 for time t = 0 − 10
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Figure 5: The Burgers type solution with ε = 1; ν = 0.1 for time t = 0 − 10
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Figure 6: The Burgers type solution with ε = 1; ν = 0.01 for time t = 0 − 10

C The Korteweg-de Vries-Burgers (KdVB) Equation
To obtain the KdVB type solution, we consider Equation (6). Then, we input the
following set of data into BURSO.

Set L N M �t ε ν µ Initial Condition

KdVB1 150 512 800 0.05 2 0.0001 0.1 1 − tanh
|x| − 25

5
KdVB2 150 512 800 0.05 2 1 0.0001 1 − tanh

|x| − 25
5

The KdVB equation is a nonlinear evolution equation that involves of nonlinearity,
dissipation and dispersion. If ν tends to zero, we should get the KdVB equation tends
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to behave like the KdV equation. Whereas, if we let µ tends to zero, we should get the
KdVB equation tends to behave like the Burgers equation. Figure (7) shows the graph
of a tangent hyperbolic function as in [2] and [11]. In order to achieve the KdV type
solution from the KdVB equation, we will let the viscosity so small (ν = 0.0001) as in
[2]. From Figure (8), we observe that a train of 10 solitons is generated. The number
of solitons generated and its amplitude are exactly the same as in [2], [11] and [5]. In
fact, the solution in Figure (8) is indistinguishable with the KdV type solution using
identical parameters given by [7]. Next, we will obtain the Burgers type solution from
the KdVB equation. So, we let the dispersion so small (µ = 0.0001) . We notice that
a triangular wave is generated in Figure (9). In fact Figure (9) is indistinguishable
with the Burgers type solution obtained in previous section. Thus, we can conclude
that BURSO can reduce Equation (1) to the KdVB equation and solve it faithfully.
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Figure 7: Initial tangent hyperbolic function
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Figure 8: The KdVB type solution with ε = 2; ν = 0.0001; µ = 1 at time t = 40
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Figure 9: The KdVB type solution with ε = 2; ν = 1; µ = 0.0001 at time t = 40

D The forced Korteweg-de Vries (fKdV) Equation
By considering Equation (8), we will have the fKdV equation which describes the
free surface profile of the water flows over bump on the bottom of a two dimensional
channel [10]. Then, we input the following set of data into BURSO.

Set L N M �t ε ν µ γ
fKdV1 100 512 4000 0.01 -1.5 0 − 1

6 1

A 3D-plot of the forced solitons genererated by Equation (8) is given in Figure (10).
From Figure (11), we observe at time t = 40s, 7 matured solitons and 1 almost
matured soliton are generated at upstream. Besides, a depression zone is generated
immediately behind the disturbance followed by a train of cnoidal like waves gradually
attenuating in the far field downstream. In fact, the figure produced is the same as
[10]. Thus, we can say that BURSO can reduce Equation (1) to the fKdV equation
and solve it effectively.
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Figure 10: A 3D-plot of the solution of the fKdV equation with Dirac-Delta forcing
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Figure 11: The solution of the FKdV equation with Dirac-Delta forcing at time t = 40

E The forced Korteweg-de Vries-Burgers (fKdVB) Equation
By considering Equation (1) and letting , f(x) = γ

2 δx(x) which is a Dirac-Delta
forcing. We then input the following set of data into BURSO.

Set L N M �t ε ν µ γ
A1 150 512 6400 0.01 6 0.01 1 1

We do observe that the forced uniform solitons are generated at downstream, a de-
pression zone is seen immediately to the left of the forcing site and some wakes moving
upstream. A 3D-plot of forced uniform solitons generated by Dirac-Delta forcing of
fKdVB is shown in Figure (12).
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Figure 12: 3D plot of the fKdVB solution with Dirac-Delta forcing
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At specific times t = 16, t = 32 and t = 48 the forced uniform solitons generated
by Equation (1) under Dirac-Delta forcing are given by Figure (13), Figure (14) and
Figure (15) respectively. We notice that at time t = 16, one matured and one almost
matured solitons are generated. When time is doubled, at time t = 32, the number of
solitons generated is doubled. Now 3 matured and one almost matured solitons are
generated. And lastly when time is tripled, at time t = 32, the number of solitons
generated is tripled. Now 5 matured and one almost matured solitons are generated.
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Figure 13: The fKdVB solution with Dirac-Delta forcing at time t = 16
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Figure 14: The fKdVB solution with Dirac-Delta forcing at time t = 32
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Figure 15: The fKdVB solution with Dirac-Delta forcing at time t = 48

5 Conclusion

The forcing term in the fKdVB equation causes the lost of group symmetries. Thus, tradi-
tional group-theoretical approach can no longer generate analytical solution. Consequently,
the ways to solve for the fKdVB equation is through approximate and numerical method.
In this paper, we have set up our numerical scheme using semi-implicit pseudo-spectral
method. A user friendly graphical user interface (BURSO) has been develop to implement
the numerical scheme using Matlab 7.0 software. Numerical simulation proved that BURSO
is very flexible since it can solve free and force system such as the KdV, Burgers, KdVB,
fKdV and fKDVB efficiently. In our future attempt, we will look for approximate solution
to Equation (1) and later compare the results with those we have obtained numerically.
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