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ABSTRACT

This paper is concerned with the development ofeéfitient
scheme for solving the finite difference Navier&ts and energy
equations using distributed parallel computer systeThe
numerical procedure is based on SIMPLE (Semi Intpliethod
for Pressure Link Equations) developed by Spaldifitne
governing equations are transformed into finitdfedénce forms
using the control volume approach. The hybrid sahevhich is
combination of the central difference and up wintesme is used
in obtaining a profile assumption for parameteiatéons between
the grids points. Parallelization method used ds thistributed
parallel computer system is Domain DecompositiontHde
(DDM). The accuracy of the parallelization methaddione by
comparing with a benchmark solution of a standadligroblem
related to the two dimensional buoyancy flow in gueare
enclosure. The results shown that the distributedlf®l computer
system will reduced an execution time to solvegtablem about
70% compared to the serial computer.

Keywords
SIMPLE algorithm, Parallel Algorithm, Domain Decoasgition
Method, Navier-Stokes Equations.

1. INTRODUCTION

The equations governing the fluid dynamics and gnélow have
been know for the most part for more than a cenamg yet have
continued to defy analytical solution. Instead tthegilutions have
largely been obtained by experimental simulations wind

tunnels, water tables and shock tubes [4]. Now withability of
advanced scientific computer such as distributedaligh
computer system, the equations can be solved tissngnethods
of computational fluid dynamic (CFD). Now, it suigng that,
fluid dynamics and heat transfer are contributmgrd benefiting
from current development in finite difference nuioaranalysis.

In recent years, several finite difference scherhase been
proposed and develop. Some methods have used itnéiver
variables, while some have solved the equatiotsrins of
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vorticity and stream function as the dependentatdes. The
governing equations are often transformed into then-
dimensional form. The advantage is that it is mmyavenient to
work with dimensionless variables. The characterigirameter
such as Reynold number, Prandt number and Raylmighber
can be varied independently. Furthermore, by
dimensionalising the equations, the flow parametsush as
velocity and temperature are normalized so thait thedues can
be adjusted to fall between certain prescribedtdinh number of
general purpose computer programs using finite edifice
methods have been developed. Some of these prograing
serial computer have relied on works of the ArgomNaional
Laboratory Group, lllinious, USA [5] and methodssed on the
works at Imperial College, London [8].

This paper deals with a development of an efficistieme for
solving the finite difference Navier-Stokes and rgyeequations
using distributed parallel computer system. The enical

procedure is based on SIMPLE (Semi Implicit Methfmt

Pressure Link Equations) developed by Spalding B§. we
know, the analysis of an incompressible flow becomere
complicated and need a high performance computeplie the
problem. One of the problem during to solve the plicated
problem on incompressible flow is time constraiiflore

complicated of the problem means more time shoeldgend to
solve the problem.

To overcome this problem, parallel computer wasduaed to
determine the performance of this parallel compantat the
corresponding parallel algorithms was developed iabdsed on
method of parallelization there is Domain Decomposs

Method. As the number of the nonlinear simultaneegsations
formed after discretisation of the modelling eqoiasi is large, an
iterative technique is used to update the flowaldgs. Control
volume approach is selected and the matrix fornsedi o solved
using matrix tri-diagonal solver. At the end ofstproject, the
result of simulation using distributed parallel quiter system are
in terms of how the parallel computer can reducedeecution
time compare with the serial computer are preseraed

discussed.
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2. NUMERICAL ANALYSIS

2.1 Governing egquations

Two-dimensional incompressible laminar constantsdgnflow
[7] and energy equation is governed by set of aladifferential
equations. The continuity, momentum and energy s in
their primitive form are shown in equation (1-4) eva the
equation for conservation of mass is given by:

6u+av:0
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The conservation of momentumrandy directions are governed
by theu-momentum equation expressed as:
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In the above equations,andv are the x and y components of the
velocity, p is the pressurp,andv are the density and viscosity
respectively.

2.2 Finite Difference Equations

In the development of the control volume approdich,governing
partial differential equations are first transfodriato divergence
force. Let the dependent variables (u, v, and &)denoted by,
the general differential equation can be written as

div(oug) = div (T gradg) + S
wherel is the diffusion coefficient, or:

div (oup-T gradg) = S

When the above finite difference scheme is appledeach
momentum equation, the final difference equaticars fwe written
as:
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a'PuuP = zanbunb + bu + %(PP - PE)yi (5)

©)

anVP = Z ananb + bv + ﬁ(PP - PN )Xi

The summations are over the four neighboring véexivherenb
in above equations denotes neighbors.

2.3 Correction Equation

In the SIMPLE method, the true pressure fidRj, which will
produce the true velocity fields satisfying the thamity equation
is given as:

P=P +P @
where P’ is the pressure correction. Similarly, the trudooity
fields are given by:

u=u"+u
v=v+v

®

whereu’ andv’ are the velocity corrections. Expressions for éhes
velocity corrections can be obtained from the maotmen
equations and they are of the forms:

U':%%(P'P_P'E) ©)
V':LL(PIP_PIE) 10
H a
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The true velocity fields are then obtained by addithe
intermediate velocity fields to the velocity corieas. For the
control volume shown the true velocity fields canvritten as:

up :upD+7 Y (P'P_P‘E) a5
ape
Vo :me+7 : (P‘P_PIN) (12)
pn
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We now turn to the task of deriving a differenceiaipn for the
pressure correction using the continuity equatiime integrated
continuity equation is given by:

F,-F,-F,-F.=0

Up Y, —U,Y; +V, X, —VX; =0 (15)



Substitute the expressions given in equations {@d1L4) for all
the velocity components into equation (15), we have

apP's = a:P'c+a, Py +a P’y tagP'ps tb (16)
where:
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2.4 Solution of the Differential Equation

When all the governing equations are transformed iimite
difference form, we have a set of algebraic equatiwhich can
be solved by any suitable method. For the presdoulations, we
have employed a line by line iteration method ostritiuted
parallel computer system. Parallelization methodduknown as
Domain Decomposition Method (DDM). Using this medha
grid line is chosen and the values @ffor the nodes along the
chosen line are assumed to be unknowns. Howewenalues of
@ for the nodes along the neighboring lines are rassuto be
known and these values are taken from previoustiter. The
equations for the grid points along the chosen direethen solved
using tridiagonal matrix algorithm (TDMA).

2.5 Solution Procedure of the SIMPLE Algorithm
The SIMPLE method proceeds by a cyclic series afsguand
correct operations. The important operations aserileed in the
following steps below. The flow chart of the algbm was
showed in Figure 1.

i Guess the pressure fielaf,

ii.  Solve the momentum equation to obtairand v*.

iii.  Solve the pressure correction equation to iolypa

iv.  Calculatep form equation “p = P* +p'” by addingp’
to p*.

V. Calculateu andv from their starred values using velocity
correction equation.

vi.  Solve the discretization equation for otlw&s (for this case,
we solve the energy equation to obtain temperatjre

vii. Treat the corrected pressure p as new guesseeturn to
step 2 and repeat the whole procedure until a cgede
solution is obtained.
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Figure 1. Flow chart of SIMPLE algorithm.

3. PARALLEL IMPLEMENTATION

A parallel implementation can provide a further uetibn in
computing time. Parallel implementation also malssdution
possible to problems that would require too muchmory to
solve on a single processor. During to solve thisbiem, the
parallel implementation is based on message pagdisgibuted
memory systems) using the PVM software. Portabi$itgnsured
because PVM is available on many types of paredielputers.

The implementation uses a layer of subroutinesopnof PVM,
symbolically denoted by;

= start start entire parallel application

= stop stop parallel application

= sendsend a message

=  receive receive a message

3.1 Communication Process

Communication process is the most important progegsrallel

implementation. As described above, the implementatises a
layer of subroutines on top of PVM, denoted bytststiop, send
and receive. For the send and receive subroutinesnsists of
communication process between a data or functian whll be

send or receive. According to the pseudo code isoluh Figure
2, the communication process occurs between the¢emasd
slave during to their sending and receiving the datfunction.




find out if | am MASTER or SLAVES

if |am MASTER
initialize array
send each SLAVES starting info and subarray

do until all SLAVES converge
gather from all SLAVES convergence data
broadcast to all SLAVES convergence signal
end do

receive results from each SLAVE

else if | am SLAVE
receive from MASTER starting info and subarray

do until solution converged
update time
send neighbors my border info
receive from neighbors their b order info

update my portion of solution array

determine if my solution has converged
send MASTER convergence data
receive from MASTER convergence signal
end do

send MASTER results
endif

Figure 2. Pseudo code solution.

3.2 Communication

Basically this finite difference problem is samehwihe solution
of the problem in this project. From top to bottofrthe Figure 3;
the one-dimensional vectoX, where N=4; the task structure,
showing the 4 tasks, each encapsulating a singke wédue and
connected to left and right neighbors via channelsd the
structure of a single task, showing its two inpaisl outports.

D ED | %X

] — 7 —> —>
O=0=E=0)

“lef” “ight”
— —
- -

Figure 3. A paralld algorithmsfor thefinite difference
problem.

We first consider a one-dimensional finite diffecterproblem, in
which we have a vectoX”of size N and must compul%m,
where;

Xl(t) +2XI(‘) + X[ﬂ(‘)

0<i<N-1 O<t<T :X,= .
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That is, we must repeatedly update each elemetq, @fith no
element being updated in stegl until its neighbors have been
updated in step A parallel algorithm for this problem creatids
tasks, one for each point M. The iy, task is given the value
X@and is responsible for computing, i steps, the
valuesx @ x @ x (0.

Hence, at step, it must obtain the values(i_l(t) and xi+l(‘)from

tasksi-1 and i+1. We specify this data transfer by defining
channels that link each task with “left” and “rimeighbors, as
shown in Figure 3, and requiring that at stepach task other
than task 0 and tad¥-1

i. sendsits dataxi(T)on its left and right outports,
i. receivesx _Wand x  from its left and right inports,

and
iii. use these values to compw((?(‘*l).

Notice that theN tasks can execute independently, with the only
constraint on execution order being the synchrainzeenforced
by the receive operations. This synchronizationueess that no
data value is updated at steépl until the data values in
neighboring tasks have been updated attstidence, execution is
deterministic.

C broadcast data to slaves

call pvmfinitsend (PVMDEFAULT, info)

call pvmfpack (INTEGER4, nproc, 1, 1, info)
call pvmfpack (INTEGERA4, tids, nproc, 1, )nfo
call pvmfpack (INTEGER4, n, 1, 1, info)

call pvmfpack (REALS, data, n, 1, info)
msgtype = 1

call pvymfmcast (nproc, tids, msgtype, info)

C wait for results from slaves

msgtype = 2

do 30i =1,nproc

call pvmfrecv (-1, msgtype, info)

call pvmfunpack (INTEGER4, who, 1, 1, info)

call pvmfunpack (REALS, result(who+1), 1info)

if (who.eq.0)

then

write (*,2000) result(who+1), who, (hroc-1)

else

write (*,2000) result(who+1), who, 2*(who-1)
30 continue

Figure 4. Algorithm master to send and receive data to and
from daves.



C receive data from master

msgtype = 1

call pvmfrecv (mtid, msgtype, info)

call pvmfunpack (INTEGER4, nproc, 1, 1, info)
call pvmfunpack (INTEGERA4, tids, nproc, fojn
call pvmfunpack (INTEGER4, n, 1, 1, info)

call pvmfunpack (REALS, data, n, 1, info)

C determine which slave I'm (0...nproc-1)
do 5i=0,nproc
if (tids(i).eq.mytid) me =i

5 continue

C do calculation with the data
result = work (me, n, data, tids, nproc)

C send the result to the master
call pvmfinitsend (PVMDEFAULT, info)
call pvmfpack (INTEGER4, me, 1, 1, info)
call pvmfpack (REALS, result, 1, 1, info)

msgtype = 2
call pvmfsend (mtid, msgtype, info)

Figure5. Algorithm slavesto receive and send data from and
to master.

Figure 4 and 5 above showed the algorithms forstreding and
receiving data from master and slaves.

4. DISCUSSION

4.1 Validation of the Results

Table 1 to 3 compared the results from the presiemilation with
the literature results obtained by de Vahl Davis The results of
de Vahl Davis are the standard against which akwotodes have
been evaluated. Maximum horizontal velocity on thextical
midplane of the cavityl,, maximum vertical velocity on the
horizontal midplane of the cavity,,., and an average of Nusselt
number was compared at Rayleigh numbers &f 1¢f, 1 and
10°. The comparison was done between the benchmatitses
obtained by de Vahl Davis which in serial procesaod the
present study that is simulation using serial pssoe and parallel
processor or parallel computer.

From the tables, it showed that all these resufltsim excellent
agreement with the benchmark results of de Vahl iDav
Percentage error for the three methods of solutdmelow than
3% compare with benchmark result. Besides thatrekalt that
was showed in the forms of contour maps of non-dsimnal
temperature and velocities also was compared Wihésults that
obtained by de Vahl Davis.
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Table 1. Comparison of the numerical result of present study

for Umax
Ra 16 10° 10° 10

G. de Vahl Davis 3.649 16.193 34.620 64.593
Present study:
i) Serial processor 3.652 16.163 34.871 65.812

% error 0.082% 0.185% 0.725% 1.880 %
ii)Parallel processor 3.592 16.376 34.852 65.847

% error 1560% 1.131% 0.670 % 1.941 %

Table 2. Comparison of the numerical result of present study

for Viax
Ra 16 10" 10° 1P

G. de Vahl Davis 3.697 19.167 68.590 216.360
Present study:
i) Serial processing 3.704 19.675 69.482 220.641

% error 0.189 % 2.650 % 1.300 % 1.978 %
ii)Parallel processing 3.715 19.642 69.680 221.282

% error 0.487 % 2.478 % 1.589 % 2.275%

Table 3. Comparison of the numerical result of present study for N—U

Ra 16 10 10° 10
G. de Vahl Davis 1.118 2.243 4.519 8.800
Present study:
i) Serial processing 1.120 2.282 4.583 8.983
% error 0.23 % 1.74 % 142 % 2.08 %
ii)Parallel processing 1.123 2.272 4.594 9.008
% error 0.47 % 1.31% 1.67 % 2.36 %

4.2 Paralle Computing Results

In order to achieve the objective of this projgetrallel execution
time was studied to determine the performance ef fhrallel
computations. Two methods of solution there areiaker
computation and parallel computation were usedngui® obtain
the results of the simulation. Table 4 showed #wraults for both
methods of computational solution in term of examuttime.
Table 5 was showed the tabulated results of cortipntd time
and communication time for parallel with domain ai®position
method.

Table 4. Execution time for three computational solutions

Ra Sequential time  Parallel time ;)
(tseq)

10° 328s 9.43s

10* 135.75 s 41.39s

10° 2040.26 s 612.06 s

1c° 163602.04 s 49080.61 s




Table 5. Computational and communication timefor parallel

computation

Ra teomp teomm t
10° 8.41s 1.02s 9.43 s
10* 34.62s 6.78 s 41.39s
10° 522.82's 89.24 s 612.06 s
10°  41923.02s 7157.60s  49080.61s

Other parameter that was used to measure a perioemaf

parallel computations is speed-up and efficienegntthe speed-
up, we know that how fast the parallel computervaslthe
problem under consideration. It is sometimes us@flinow how

long processors are being used on the computatibith can be
found from the efficiency. Table 6 below was shdwesult for

speed-up and efficiency for parallel methods. Fégér 7 and 8
showed graphically an execution time, speed-up effidiency

against number of processors for RatreBpectively.

Table 6. Resultsfor speed-up and efficiency

Ra Speed-Up Efficiency
10° 3.478 86.95 %
10* 3.279 81.97 %
10° 3.333 83.32 %
10° 3.333 83.32 %

4.3 Discussions
From the results that were obtained, we can seeetkecution
time for parallel computation was decrease compatith
sequential computation. By using sequential comjmuta total
execution time that we need to complete our siraratat
Rayleigh number 10is 163602.04 seconds or 2726.7 minutes or
45.45 hours. For parallel computation, we were ceduan
execution time for the simulation at Rayleigh numi€® to
49080.61 seconds or 818.01 minutes or 13.63 hQmspare for
both methods of simulations, we got the parallehpotation with
domain decomposition method is more successfukfive this
problem with reducing about 70% of execution time.

From the Figure 6 to 8, we can see an effect of barnof

processors in parallelization to the execution tisgeed-up and
efficiency. As we can see, the execution time dédctrease with
increasing of the number of processors. For thedp, it will

increase with the increasing of the number of pssces.

However, the efficiency of a simulation was deceeagith an

increasing of the number of processors.
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Figure 6. Execution time against no. of processors for Ra = 10°
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5. CONCLUSION

A parallel algorithm has been developed to simulate

incompressible flow for the problem of natural ceotion that
occurred in a square cavity with specified boundaopditions.
The simulations of the incompressible flow usingMBLE

method on parallel computer are agreement withbérechmark
result. Thus, the simulation is successful. Pesggnerrors for the
two computational solutions which are simulation d®rial and
parallel computer are below than 3% compare withcheark
result by de Vahl Davis.



Parallelization using distributed parallel compussistem with

domain decomposition method can reduce an exetia to

solve the problem about 70% by using 4 proces3drsrefore it

has proved that clustering personal computers hegetan

provide adequate computing power for large enginger
problems.
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