
332

Domain Decomposition Method for Solving
Incompressible Fluid Flow and Energy Equations using

Distributed Parallel Computer System

Bukhari bin Manshoor
Lecturer

Faculty of Mechanical & Manufacturing Engineering
University Tun Hussein Onn Malaysia

+607-4537828

bukhari@uthm.edu.my

ABSTRACT
This paper is concerned with the development of an efficient
scheme for solving the finite difference Navier-Stokes and energy
equations using distributed parallel computer system. The
numerical procedure is based on SIMPLE (Semi Implicit Method
for Pressure Link Equations) developed by Spalding. The
governing equations are transformed into finite difference forms
using the control volume approach. The hybrid scheme which is
combination of the central difference and up wind scheme is used
in obtaining a profile assumption for parameter variations between
the grids points. Parallelization method used on this distributed
parallel computer system is Domain Decomposition Method
(DDM). The accuracy of the parallelization method is done by
comparing with a benchmark solution of a standardized problem
related to the two dimensional buoyancy flow in a square
enclosure. The results shown that the distributed parallel computer
system will reduced an execution time to solve the problem about
70% compared to the serial computer.

Keywords
SIMPLE algorithm, Parallel Algorithm, Domain Decomposition
Method, Navier-Stokes Equations.

1. INTRODUCTION
The equations governing the fluid dynamics and energy flow have
been know for the most part for more than a century and yet have
continued to defy analytical solution. Instead their solutions have
largely been obtained by experimental simulations in wind
tunnels, water tables and shock tubes [4]. Now with the ability of
advanced scientific computer such as distributed parallel
computer system, the equations can be solved using the methods
of computational fluid dynamic (CFD). Now, it surprising that,
fluid dynamics and heat transfer are contributing to and benefiting
from current development in finite difference numerical analysis.

In recent years, several finite difference schemes have been
proposed and develop. Some methods have used the primitive
variables, while some have solved the equations in terms of

vorticity and stream function as the dependent variables. The
governing equations are often transformed into the non-
dimensional form. The advantage is that it is more convenient to
work with dimensionless variables. The characteristic parameter
such as Reynold number, Prandt number and Rayleigh number
can be varied independently. Furthermore, by non-
dimensionalising the equations, the flow parameters such as
velocity and temperature are normalized so that their values can
be adjusted to fall between certain prescribed limits. A number of
general purpose computer programs using finite difference
methods have been developed. Some of these programs using
serial computer have relied on works of the Argonne National
Laboratory Group, Illinious, USA [5] and methods based on the
works at Imperial College, London [8].

This paper deals with a development of an efficient scheme for
solving the finite difference Navier-Stokes and energy equations
using distributed parallel computer system. The numerical
procedure is based on SIMPLE (Semi Implicit Method for
Pressure Link Equations) developed by Spalding [2]. As we
know, the analysis of an incompressible flow become more
complicated and need a high performance computer to solve the
problem. One of the problem during to solve the complicated
problem on incompressible flow is time constraint. More
complicated of the problem means more time should be spend to
solve the problem.

To overcome this problem, parallel computer was used and to
determine the performance of this parallel computations, the
corresponding parallel algorithms was developed and it based on
method of parallelization there is Domain Decompositions
Method. As the number of the nonlinear simultaneous equations
formed after discretisation of the modelling equations is large, an
iterative technique is used to update the flow variables. Control
volume approach is selected and the matrix formed used to solved
using matrix tri-diagonal solver. At the end of this project, the
result of simulation using distributed parallel computer system are
in terms of how the parallel computer can reduced an execution
time compare with the serial computer are presented and
discussed.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UTHM Institutional Repository

https://core.ac.uk/display/12005553?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

333

2. NUMERICAL ANALYSIS
2.1 Governing equations
Two-dimensional incompressible laminar constant-density flow
[7] and energy equation is governed by set of partial differential
equations. The continuity, momentum and energy equations in
their primitive form are shown in equation (1-4) where the
equation for conservation of mass is given by:

 0=
∂
∂+

∂
∂

y

v

x

u (1)

The conservation of momentum in x and y directions are governed
by the u-momentum equation expressed as:

() () ()

()
x

k

L

H

y

u

H

L
Ra

x

p

L

H

x

u

L

H
Ra

y

uv

x

uu

t

t

∂
∂−+

∂
∂+

∂
∂−

+
∂
∂=

∂
∂+

∂
∂

−

−

3

2
1Pr

1Pr

2

2
4/1

2

2
4/1

ν

ν
 (2)

as well as the v-momentum equation:

() () ()

() TRa
L

H

y

k

H

L

y

v

H

L
Ra

y

p

H

L

x

v

L

H
Ra

y

vv

x

uv

t

t

2/1
2

2
4/1

2

2
4/1

Pr
3

2
1Pr

1Pr

+
∂
∂−+

∂
∂

+
∂
∂−+

∂
∂=

∂
∂+

∂
∂

−

−

ν

ν
(3)

The conservation of energy will express as:

() ()

+

∂
∂

+

∂
∂=

∂
∂+

∂
∂

−

−

t
T

T
T

y

T

H

L
Ra

x

T

L

H
Ra

y

vT

x

uT

ν
σ

ν
σ

Pr
1

Pr
1

2

2
4/1

2

2
4/1

 (4)

In the above equations, u and v are the x and y components of the
velocity, p is the pressure, ρ and ν are the density and viscosity
respectively.

2.2 Finite Difference Equations
In the development of the control volume approach, the governing
partial differential equations are first transformed into divergence
force. Let the dependent variables (u, v, and T) are denoted by Ø,
the general differential equation can be written as:

 () () Sgraddivudiv +Γ= φφρ

where Γ is the diffusion coefficient, or:

 () Sgradudiv =Γ− φφρ

When the above finite difference scheme is applied to each
momentum equation, the final difference equations can be written
as:

 ()∑ −++= iEPunbnbPPu yPP
L

H
buaua (5)

 ()∑ −++= jNPvnbnbPPv xPP
H

L
bvava (6)

The summations are over the four neighboring velocities where nb
in above equations denotes neighbors.

2.3 Correction Equation
In the SIMPLE method, the true pressure field, P, which will
produce the true velocity fields satisfying the continuity equation
is given as:

 'PPP += ∗ (7)

where P’ is the pressure correction. Similarly, the true velocity
fields are given by:

'
'

vvv
uuu

+=
+=

∗

∗ (8)

where u’ and v’ are the velocity corrections. Expressions for these
velocity corrections can be obtained from the momentum
equations and they are of the forms:

 ()EP
Pu

i PP
a

y

L

H
u ''' −= (9)

 ()EP
Pv

j PP
a

x

H

L
v ''' −= (10)

The true velocity fields are then obtained by adding the
intermediate velocity fields to the velocity corrections. For the
control volume shown the true velocity fields can be written as:

 ()EP
pe

i
pp PP

a

y

L

H
uu '' −+= ∗ (11)

 ()NP
pn

j
pp PP

a

x

H

L
vv '' −+= ∗ (12)

 ()PW
pw

i
ww PP

a

y

L

H
uu '' −+= ∗ (13)

 ()PS
ps

j
ss PP

a

x

H

L
vv '' −+= ∗ (14)

We now turn to the task of deriving a difference equation for the
pressure correction using the continuity equation. The integrated
continuity equation is given by:

 0=−−− snwe FFFF

or:

 0=−+− jsjpiwip xvxvyuyu (15)

334

Substitute the expressions given in equations (11) to (14) for all
the velocity components into equation (15), we have:

 bPaPaPaPaPa PSSNNWWEPP ++++= ''''' E
 (16)

where:

pe

i
E a

y

L

H
a

2

=

pw

i
W a

y

L

H
a

2

=

pn

j
N a

x

H

L
a

2

=

ps

j
S a

x

H

L
a

2

=

SNWEP aaaaa +++=

jpjsipiw xvxvyuyub ∗∗∗∗ ++−=

2.4 Solution of the Differential Equation
When all the governing equations are transformed into finite
difference form, we have a set of algebraic equations which can
be solved by any suitable method. For the present calculations, we
have employed a line by line iteration method on distributed
parallel computer system. Parallelization method used known as
Domain Decomposition Method (DDM). Using this method, a
grid line is chosen and the values of Ø for the nodes along the
chosen line are assumed to be unknowns. However, the values of
Ø for the nodes along the neighboring lines are assumed to be
known and these values are taken from previous iteration. The
equations for the grid points along the chosen line are then solved
using tridiagonal matrix algorithm (TDMA).

2.5 Solution Procedure of the SIMPLE Algorithm
The SIMPLE method proceeds by a cyclic series of guess and
correct operations. The important operations are described in the
following steps below. The flow chart of the algorithm was
showed in Figure 1.

i. Guess the pressure field, p*.
ii. Solve the momentum equation to obtain u* and v*.
iii. Solve the pressure correction equation to obtain p’.

iv. Calculate p form equation “ '* ppp += ” by adding p’

to p*.
v. Calculate u and v from their starred values using velocity

correction equation.
vi. Solve the discretization equation for other ø’s (for this case,

we solve the energy equation to obtain temperature T)
vii. Treat the corrected pressure p as new guessed p*, return to

step 2 and repeat the whole procedure until a converged
solution is obtained.

Figure 1. Flow chart of SIMPLE algorithm.

3. PARALLEL IMPLEMENTATION
A parallel implementation can provide a further reduction in
computing time. Parallel implementation also makes solution
possible to problems that would require too much memory to
solve on a single processor. During to solve this problem, the
parallel implementation is based on message passing (distributed
memory systems) using the PVM software. Portability is ensured
because PVM is available on many types of parallel computers.

The implementation uses a layer of subroutines on top of PVM,
symbolically denoted by;

� start: start entire parallel application
� stop: stop parallel application
� send: send a message
� receive: receive a message

3.1 Communication Process
Communication process is the most important process in parallel
implementation. As described above, the implementation uses a
layer of subroutines on top of PVM, denoted by start, stop, send
and receive. For the send and receive subroutines, it consists of
communication process between a data or function that will be
send or receive. According to the pseudo code solution in Figure
2, the communication process occurs between the master and
slave during to their sending and receiving the data or function.

335

find out if I am MASTER or SLAVES

if I am MASTER
 initialize array
 send each SLAVES starting info and subarray

 do until all SLAVES converge
 gather from all SLAVES convergence data
 broadcast to all SLAVES convergence signal
 end do

 receive results from each SLAVE

else if I am SLAVE
 receive from MASTER starting info and subarray

 do until solution converged
 update time
 send neighbors my border info
 receive from neighbors their b order info

 update my portion of solution array

 determine if my solution has converged
 send MASTER convergence data
 receive from MASTER convergence signal
 end do

 send MASTER results
endif

 Figure 2. Pseudo code solution.

3.2 Communication
Basically this finite difference problem is same with the solution
of the problem in this project. From top to bottom of the Figure 3;
the one-dimensional vector X, where N=4; the task structure,
showing the 4 tasks, each encapsulating a single data value and
connected to left and right neighbors via channels; and the
structure of a single task, showing its two inports and outports.

Figure 3. A parallel algorithms for the finite difference
problem.

We first consider a one-dimensional finite difference problem, in

which we have a vector
()0X of size N and must compute

()TX ,
where;

 ()
() () ()

4

2
:0,10 11

t
i

t
i

t
it

i

XXX
XTtNi ++ ++

=<≤−<<

That is, we must repeatedly update each element of X, with no
element being updated in step t+1 until its neighbors have been
updated in step t. A parallel algorithm for this problem creates N
tasks, one for each point in X. The i th task is given the value

()0X and is responsible for computing, in T steps, the
values () () ()T

iii XXX ...,,, 21 .

Hence, at step t, it must obtain the values ()t
iX 1− and ()t

iX 1+
from

tasks i-1 and i+1 . We specify this data transfer by defining
channels that link each task with “left” and “right” neighbors, as
shown in Figure 3, and requiring that at step t, each task i other
than task 0 and task N-1

i. sends its data ()T
iX on its left and right outports,

ii. receives ()t
iX 1−

and ()t
iX 1+

 from its left and right inports,

and
iii. use these values to compute ()1+t

iX .

Notice that the N tasks can execute independently, with the only
constraint on execution order being the synchronization enforced
by the receive operations. This synchronization ensures that no
data value is updated at step t+1 until the data values in
neighboring tasks have been updated at step t. Hence, execution is
deterministic.

C broadcast data to slaves

 call pvmfinitsend (PVMDEFAULT, info)
 call pvmfpack (INTEGER4, nproc, 1, 1, info)
 call pvmfpack (INTEGER4, tids, nproc, 1, info)
 call pvmfpack (INTEGER4, n, 1, 1, info)
 call pvmfpack (REAL8, data, n, 1, info)
 msgtype = 1
 call pvmfmcast (nproc, tids, msgtype, info)

C wait for results from slaves

 msgtype = 2
 do 30 i = 1,nproc
 call pvmfrecv (-1, msgtype, info)
 call pvmfunpack (INTEGER4, who, 1, 1, info)
 call pvmfunpack (REAL8, result(who+1), 1, 1, info)
 if (who.eq.0)
 then
 write (*,1000) result(who+1), who, (nroc-1)
 else
 write (*,1000) result(who+1), who, 2*(who-1)
30 continue

Figure 4. Algorithm master to send and receive data to and
from slaves.

336

C receive data from master

 msgtype = 1
 call pvmfrecv (mtid, msgtype, info)
 call pvmfunpack (INTEGER4, nproc, 1, 1, info)
 call pvmfunpack (INTEGER4, tids, nproc, 1, info)
 call pvmfunpack (INTEGER4, n, 1, 1, info)
 call pvmfunpack (REAL8, data, n, 1, info)

C determine which slave I'm (0...nproc-1)

 do 5 i = 0,nproc
 if (tids(i).eq.mytid) me = i
5 continue

C do calculation with the data

 result = work (me, n, data, tids, nproc)

C send the result to the master

 call pvmfinitsend (PVMDEFAULT, info)
 call pvmfpack (INTEGER4, me, 1, 1, info)
 call pvmfpack (REAL8, result, 1, 1, info)
 msgtype = 2
 call pvmfsend (mtid, msgtype, info)

Figure 5. Algorithm slaves to receive and send data from and
to master.

Figure 4 and 5 above showed the algorithms for the sending and
receiving data from master and slaves.

4. DISCUSSION
4.1 Validation of the Results
Table 1 to 3 compared the results from the present simulation with
the literature results obtained by de Vahl Davis [2]. The results of
de Vahl Davis are the standard against which all other codes have
been evaluated. Maximum horizontal velocity on the vertical
midplane of the cavity, Umax, maximum vertical velocity on the
horizontal midplane of the cavity, Vmax, and an average of Nusselt
number was compared at Rayleigh numbers of 103, 104, 105 and
106. The comparison was done between the benchmark results
obtained by de Vahl Davis which in serial processor and the
present study that is simulation using serial processor and parallel
processor or parallel computer.

From the tables, it showed that all these results are in excellent
agreement with the benchmark results of de Vahl Davis.
Percentage error for the three methods of solution is below than
3% compare with benchmark result. Besides that, the result that
was showed in the forms of contour maps of non-dimensional
temperature and velocities also was compared with the results that
obtained by de Vahl Davis.

Table 1. Comparison of the numerical result of present study
for Umax

 Ra 103 104 105 106

G. de Vahl Davis 3.649 16.193 34.620 64.593

Present study:

i) Serial processor 3.652 16.163 34.871 65.812

 % error 0.082 % 0.185 % 0.725 % 1.880 %

ii)Parallel processor 3.592 16.376 34.852 65.847

 % error 1.560 % 1.131 % 0.670 % 1.941 %

Table 2. Comparison of the numerical result of present study
for Vmax

 Ra 103 104 105 106

G. de Vahl Davis 3.697 19.167 68.590 216.360

Present study:

i) Serial processing 3.704 19.675 69.482 220.641

 % error 0.189 % 2.650 % 1.300 % 1.978 %

ii)Parallel processing 3.715 19.642 69.680 221.282

 % error 0.487 % 2.478 % 1.589 % 2.275 %

Table 3. Comparison of the numerical result of present study for

Nu

 Ra 103 104 105 106

G. de Vahl Davis 1.118 2.243 4.519 8.800

Present study:

 i) Serial processing 1.120 2.282 4.583 8.983

 % error 0.23 % 1.74 % 1.42 % 2.08 %

 ii)Parallel processing 1.123 2.272 4.594 9.008

 % error 0.47 % 1.31 % 1.67 % 2.36 %

4.2 Parallel Computing Results
In order to achieve the objective of this project, parallel execution
time was studied to determine the performance of the parallel
computations. Two methods of solution there are serial
computation and parallel computation were used during to obtain
the results of the simulation. Table 4 showed the results for both
methods of computational solution in term of execution time.
Table 5 was showed the tabulated results of computational time
and communication time for parallel with domain decomposition
method.

Table 4. Execution time for three computational solutions

Ra Sequential time
(tseq)

Parallel time (tp)

103 32.8 s 9.43 s

104 135.75 s 41.39 s

105 2040.26 s 612.06 s

106 163602.04 s 49080.61 s

337

Table 5. Computational and communication time for parallel
computation

Ra tcomp tcomm tp

103 8.41 s 1.02 s 9.43 s

104 34.62 s 6.78 s 41.39 s

105 522.82 s 89.24 s 612.06 s

106 41923.02 s 7157.60 s 49080.61 s

Other parameter that was used to measure a performance of
parallel computations is speed-up and efficiency. From the speed-
up, we know that how fast the parallel computer solves the
problem under consideration. It is sometimes useful to know how
long processors are being used on the computation, which can be
found from the efficiency. Table 6 below was showed result for
speed-up and efficiency for parallel methods. Figure 6, 7 and 8
showed graphically an execution time, speed-up and efficiency
against number of processors for Ra=103 respectively.

Table 6. Results for speed-up and efficiency

Ra Speed-Up Efficiency

103 3.478 86.95 %

104 3.279 81.97 %

105 3.333 83.32 %

106 3.333 83.32 %

4.3 Discussions
From the results that were obtained, we can see that execution
time for parallel computation was decrease compare with
sequential computation. By using sequential computation, total
execution time that we need to complete our simulation at
Rayleigh number 106 is 163602.04 seconds or 2726.7 minutes or
45.45 hours. For parallel computation, we were reduced an
execution time for the simulation at Rayleigh number 106 to
49080.61 seconds or 818.01 minutes or 13.63 hours. Compare for
both methods of simulations, we got the parallel computation with
domain decomposition method is more successful for solve this
problem with reducing about 70% of execution time.

From the Figure 6 to 8, we can see an effect of number of
processors in parallelization to the execution time, speed-up and
efficiency. As we can see, the execution time will decrease with
increasing of the number of processors. For the speed-up, it will
increase with the increasing of the number of processors.
However, the efficiency of a simulation was decrease with an
increasing of the number of processors.

0

5

10

15

20

25

30

35

0 1 2 3 4 5
No. of Processors

E
xe

cu
tio

n
tim

e
(s

)

Figure 6. Execution time against no. of processors for Ra = 103

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

No. of Processors

S
pe

ed
-u

p

Figure 7. Speed-Up against no. of processors for Ra = 103

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

No. of Processors

E
ffi

ci
en

cy

Figure 8. Efficiency against no. of processors for Ra = 103

5. CONCLUSION
A parallel algorithm has been developed to simulate an
incompressible flow for the problem of natural convection that
occurred in a square cavity with specified boundary conditions.
The simulations of the incompressible flow using SIMPLE
method on parallel computer are agreement with the benchmark
result. Thus, the simulation is successful. Percentage errors for the
two computational solutions which are simulation by serial and
parallel computer are below than 3% compare with benchmark
result by de Vahl Davis.

338

Parallelization using distributed parallel computer system with
domain decomposition method can reduce an exection time to
solve the problem about 70% by using 4 processors. Therefore it
has proved that clustering personal computers together can
provide adequate computing power for large engineering
problems.

6. ACKNOWLEDGMENTS
Thanks to Faculty of Science, UTM for allowing us to using their
Parallel Computer Lab and also to each and everyone who have in
any way contributed to this project.

7. REFERENCES
[1] A. W. Date (1985). “Numerical Prediction of Natural

Convection Heat Transfer in Horizontal Annulus”. Int. J.
Heat Mass Transfer.

[2] Davis G. de Vahl (1983). “Natural convection of air in a
square cavity: a benchmark numerical solution”. Int. Journal
Numerical Mech. Fluid (3): 249-264.

[3] D. B. Spalding (1972). “A Novel Finite Difference
Formulation for Differential Expressions Involving Both
First and Second Derivatives.” Int. J. Num. Methods Eng.
(3): 551-559.

[4] A. Hayati (1990). “Convective Heat Transfer in Building
Energy Analysis”, M. Eng Thesis, Faculty of Mech.
Engineering, UTM.

[5] S. P. Vanka, G. K. Leaf (1983). “Fully-Coupled Solution of
Pressure-Linked Fluid Flow Equations” Argonne National
Laboratory, Argonne, Illinois.

[6] H. K. Versteeg and W. Malalasekera. (1995). “An
Introduction to Computational Fluid Dynamics.” Pearson,
Prentice Hall.

[7] M. C. Melaaen (1993). “Nonstaggered Calculation of
Laminar and Turbulent Flows using Nonorthogonal
Coordinates.” Int. J. Num. Heat Transfer: 375-392.

[8] S. V. Patankar (1980). “Numerical Heat Transfer and Fluid
Flow.” McGraw-Hill Inc, New York.

[9] S. V. Patankar and D. B. Spalding (1972). “A Calculation
Procedure for Heat, Mass and Momentum Transfer in 3-
Dimensional Parabolic Flows.” Int. J. Heat Mass Trasfer.

[10] Dongarra, J. & Eijkhout, U. (2000). “Numerical linear
algebra algorithms and software.” Journal of Computational
and Applied mathematics. 123 (2):489-514.

[11] Geist, A. et al. (1994). “PVM: Parallel Virtual Machine. A
Users’ Guide and Tutorial for Networked Parallel
Computing”. Massachusetts: The MIT Press.

