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ABSTRACT 
This paper is concerned with the development of an efficient 
scheme for solving the finite difference Navier-Stokes and energy 
equations using distributed parallel computer system. The 
numerical procedure is based on SIMPLE (Semi Implicit Method 
for Pressure Link Equations) developed by Spalding. The 
governing equations are transformed into finite difference forms 
using the control volume approach. The hybrid scheme which is 
combination of the central difference and up wind scheme is used 
in obtaining a profile assumption for parameter variations between 
the grids points. Parallelization method used on this distributed 
parallel computer system is Domain Decomposition Method 
(DDM). The accuracy of the parallelization method is done by 
comparing with a benchmark solution of a standardized problem 
related to the two dimensional buoyancy flow in a square 
enclosure. The results shown that the distributed parallel computer 
system will reduced an execution time to solve the problem about 
70% compared to the serial computer.  

Keywords 
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1. INTRODUCTION 
The equations governing the fluid dynamics and energy flow have 
been know for the most part for more than a century and yet have 
continued to defy analytical solution. Instead their solutions have 
largely been obtained by experimental simulations in wind 
tunnels, water tables and shock tubes [4]. Now with the ability of 
advanced scientific computer such as distributed parallel 
computer system, the equations can be solved using the methods 
of computational fluid dynamic (CFD). Now, it surprising that, 
fluid dynamics and heat transfer are contributing to and benefiting 
from current development in finite difference numerical analysis.   
 

In recent years, several finite difference schemes have been 
proposed and develop. Some methods have used the primitive 
variables, while some have solved the equations in terms of  
 
 
 
 
 

 
vorticity and stream function as the dependent variables. The 
governing equations are often transformed into the non-
dimensional form. The advantage is that it is more convenient to 
work with dimensionless variables. The characteristic parameter  
such as Reynold number, Prandt number and Rayleigh number 
can be varied independently. Furthermore, by non-
dimensionalising the equations, the flow parameters such as 
velocity and temperature are normalized so that their values can 
be adjusted to fall between certain prescribed limits. A number of 
general purpose computer programs using finite difference 
methods have been developed. Some of these programs using 
serial computer have relied on works of the Argonne National 
Laboratory Group, Illinious, USA [5] and methods based on the 
works at Imperial College, London [8].   
 

This paper deals with a development of an efficient scheme for 
solving the finite difference Navier-Stokes and energy equations 
using distributed parallel computer system. The numerical 
procedure is based on SIMPLE (Semi Implicit Method for 
Pressure Link Equations) developed by Spalding [2]. As we 
know, the analysis of an incompressible flow become more 
complicated and need a high performance computer to solve the 
problem. One of the problem during to solve the complicated 
problem on incompressible flow is time constraint. More 
complicated of the problem means more time should be spend to 
solve the problem. 
 

To overcome this problem, parallel computer was used and to 
determine the performance of this parallel computations, the 
corresponding parallel algorithms was developed and it based on 
method of parallelization there is Domain Decompositions 
Method. As the number of the nonlinear simultaneous equations 
formed after discretisation of the modelling equations is large, an 
iterative technique is used to update the flow variables. Control 
volume approach is selected and the matrix formed used to solved 
using matrix tri-diagonal solver. At the end of this project, the 
result of simulation using distributed parallel computer system are 
in terms of how the parallel computer can reduced an execution 
time compare with the serial computer are presented and 
discussed. 
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2. NUMERICAL ANALYSIS 
2.1 Governing equations 
Two-dimensional incompressible laminar constant-density flow 
[7] and energy equation is governed by set of partial differential 
equations. The continuity, momentum and energy equations in 
their primitive form are shown in equation (1-4) where the 
equation for conservation of mass is given by: 
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The conservation of momentum in x and y directions are governed 
by the u-momentum equation expressed as: 
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as well as the v-momentum equation: 
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The conservation of energy will express as: 
 

       

( ) ( )









+

∂
∂









+

∂
∂=

∂
∂+

∂
∂

−

−

t
T

T
T

y

T

H

L
Ra

x

T

L

H
Ra

y

vT

x

uT

ν
σ

ν
σ

Pr
1

Pr
1

2

2
4/1

2

2
4/1

 (4) 

 

In the above equations, u and v are the x and y components of the 
velocity, p is the pressure, ρ and ν are the density and viscosity 
respectively.  
 

2.2 Finite Difference Equations 
In the development of the control volume approach, the governing 
partial differential equations are first transformed into divergence 
force. Let the dependent variables (u, v, and T) are denoted by Ø, 
the general differential equation can be written as: 
 

       ( ) ( ) Sgraddivudiv +Γ= φφρ     

where Γ is the diffusion coefficient, or: 

       ( ) Sgradudiv =Γ− φφρ  

 

When the above finite difference scheme is applied to each 
momentum equation, the final difference equations can be written 
as: 
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The summations are over the four neighboring velocities where nb 
in above equations denotes neighbors. 
 

2.3 Correction Equation 
In the SIMPLE method, the true pressure field, P, which will 
produce the true velocity fields satisfying the continuity equation 
is given as: 
 

       'PPP += ∗       (7) 

where P’ is the pressure correction. Similarly, the true velocity 
fields are given by: 
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where u’ and v’ are the velocity corrections. Expressions for these 
velocity corrections can be obtained from the momentum 
equations and they are of the forms: 
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The true velocity fields are then obtained by adding the 
intermediate velocity fields to the velocity corrections. For the 
control volume shown the true velocity fields can be written as:  
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We now turn to the task of deriving a difference equation for the 
pressure correction using the continuity equation. The integrated 
continuity equation is given by: 
 

       0=−−− snwe FFFF  

or: 

       0=−+− jsjpiwip xvxvyuyu     (15) 
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Substitute the expressions given in equations (11) to (14) for all 
the velocity components into equation (15), we have:  
 

       bPaPaPaPaPa PSSNNWWEPP ++++= ''''' E
   (16) 

where: 
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2.4 Solution of the Differential Equation 
When all the governing equations are transformed into finite 
difference form, we have a set of algebraic equations which can 
be solved by any suitable method. For the present calculations, we 
have employed a line by line iteration method on distributed 
parallel computer system. Parallelization method used known as 
Domain Decomposition Method (DDM). Using this method, a 
grid line is chosen and the values of Ø for the nodes along the 
chosen line are assumed to be unknowns. However, the values of 
Ø for the nodes along the neighboring lines are assumed to be 
known and these values are taken from previous iteration. The 
equations for the grid points along the chosen line are then solved 
using tridiagonal matrix algorithm (TDMA). 

  

2.5 Solution Procedure of the SIMPLE Algorithm 
The SIMPLE method proceeds by a cyclic series of guess and 
correct operations. The important operations are described in the 
following steps below. The flow chart of the algorithm was 
showed in Figure 1.    
 

i. Guess the pressure field, p*. 
ii. Solve the momentum equation to obtain u* and v*. 
iii. Solve the pressure correction equation to obtain p’. 

iv. Calculate p form equation “ '* ppp += ” by adding p’ 

to p*. 
v. Calculate u and v from their starred values using velocity 

correction equation. 
vi. Solve the discretization equation for other ø’s (for this case, 

we solve the energy equation to obtain temperature T) 
vii. Treat the corrected pressure p as new guessed p*, return to 

step 2 and repeat the whole procedure until a converged 
solution is obtained. 

 

Figure 1. Flow chart of SIMPLE algorithm. 
 

3. PARALLEL IMPLEMENTATION 
A parallel implementation can provide a further reduction in 
computing time. Parallel implementation also makes solution 
possible to problems that would require too much memory to 
solve on a single processor. During to solve this problem, the 
parallel implementation is based on message passing (distributed 
memory systems) using the PVM software. Portability is ensured 
because PVM is available on many types of parallel computers.  
 

The implementation uses a layer of subroutines on top of PVM, 
symbolically denoted by; 

� start: start entire parallel application 
� stop: stop parallel application 
� send: send a message 
� receive: receive a message 

 

3.1 Communication Process 
Communication process is the most important process in parallel 
implementation. As described above, the implementation uses a 
layer of subroutines on top of PVM, denoted by start, stop, send 
and receive. For the send and receive subroutines, it consists of 
communication process between a data or function that will be 
send or receive. According to the pseudo code solution in Figure 
2, the communication process occurs between the master and 
slave during to their sending and receiving the data or function. 
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find out if I am MASTER or SLAVES 
 
if I am MASTER 
     initialize array 
     send each SLAVES starting info and subarray 
    
  do until all SLAVES converge 
       gather from all SLAVES convergence data 
       broadcast to all SLAVES convergence signal 
  end do 
 
  receive results from each SLAVE 
 
else if I am SLAVE 
     receive from MASTER starting info and subarray 
 
  do until solution converged 
      update time 
      send neighbors my border info 
      receive from neighbors their b order info 
  
    update my portion of solution array 
      
    determine if my solution has converged 
        send MASTER convergence data 
        receive from MASTER convergence signal 
  end do 
  
  send MASTER results 
endif 

                 Figure 2. Pseudo code solution. 
 

3.2 Communication 
Basically this finite difference problem is same with the solution 
of the problem in this project. From top to bottom of the Figure 3; 
the one-dimensional vector X, where N=4; the task structure, 
showing the 4 tasks, each encapsulating a single data value and 
connected to left and right neighbors via channels; and the 
structure of a single task, showing its two inports and outports. 
 

 

Figure 3. A parallel algorithms for the finite difference 
problem. 

 

We first consider a one-dimensional finite difference problem, in 

which we have a vector 
( )0X of size N and must compute

( )TX , 
where; 

       ( )
( ) ( ) ( )

4

2
:0,10 11

t
i

t
i

t
it

i

XXX
XTtNi ++ ++

=<≤−<<   

That is, we must repeatedly update each element of X, with no 
element being updated in step t+1 until its neighbors have been 
updated in step t. A parallel algorithm for this problem creates N 
tasks, one for each point in X. The i th task is given the value 

( )0X and is responsible for computing, in T steps, the 
values ( ) ( ) ( )T

iii XXX ...,,, 21 . 

Hence, at step t, it must obtain the values ( )t
iX 1−  and ( )t

iX 1+
from 

tasks i-1 and i+1 . We specify this data transfer by defining 
channels that link each task with “left” and “right” neighbors, as 
shown in Figure 3, and requiring that at step t, each task i other 
than task 0 and task N-1  

i. sends its data ( )T
iX on its left and right outports,  

ii. receives ( )t
iX 1−

and ( )t
iX 1+

 from its left and right inports, 

and  
iii. use these values to compute ( )1+t

iX .  

Notice that the N tasks can execute independently, with the only   
constraint on execution order being the synchronization enforced 
by the receive operations. This synchronization ensures that no 
data value is updated at step t+1 until the data values in 
neighboring tasks have been updated at step t. Hence, execution is 
deterministic. 

C     broadcast data to slaves 
 
      call pvmfinitsend  (PVMDEFAULT, info) 
      call pvmfpack (INTEGER4, nproc, 1, 1, info) 
      call pvmfpack (INTEGER4, tids, nproc, 1, info) 
      call pvmfpack (INTEGER4, n, 1, 1, info) 
      call pvmfpack (REAL8, data, n, 1, info) 
      msgtype = 1 
      call pvmfmcast (nproc, tids, msgtype, info) 
       
C     wait for results from slaves 
 
      msgtype = 2 
      do 30 i = 1,nproc 
      call pvmfrecv (-1, msgtype, info) 
      call pvmfunpack (INTEGER4, who, 1, 1, info) 
      call pvmfunpack (REAL8, result(who+1), 1, 1, info) 
      if (who.eq.0) 
      then 
      write (*,1000) result(who+1), who, (nroc-1) 
      else 
      write (*,1000) result(who+1), who, 2*(who-1) 
30    continue 
 

Figure 4. Algorithm master to send and receive data to and 
from slaves. 
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C     receive data from master 
 
      msgtype = 1 
      call pvmfrecv  (mtid, msgtype, info) 
      call pvmfunpack (INTEGER4, nproc, 1, 1, info) 
      call pvmfunpack (INTEGER4, tids, nproc, 1, info) 
      call pvmfunpack (INTEGER4, n, 1, 1, info) 
      call pvmfunpack (REAL8, data, n, 1, info) 
 
C     determine which slave I'm (0...nproc-1) 
 
      do 5 i = 0,nproc 
      if (tids(i).eq.mytid) me = i 
5     continue 
 
C     do calculation with the data 
 
      result = work (me, n, data, tids, nproc) 
       
C     send the result to the master 
 
      call pvmfinitsend (PVMDEFAULT, info) 
      call pvmfpack (INTEGER4, me, 1, 1, info) 
      call pvmfpack (REAL8, result, 1, 1, info) 
      msgtype = 2 
      call pvmfsend (mtid, msgtype, info) 
 
 

Figure 5. Algorithm slaves to receive and send data from and 
to master. 

Figure 4 and 5 above showed the algorithms for the sending and 
receiving data from master and slaves. 
 

4. DISCUSSION 
4.1 Validation of the Results 
Table 1 to 3 compared the results from the present simulation with 
the literature results obtained by de Vahl Davis [2]. The results of 
de Vahl Davis are the standard against which all other codes have 
been evaluated. Maximum horizontal velocity on the vertical 
midplane of the cavity, Umax, maximum vertical velocity on the 
horizontal midplane of the cavity, Vmax, and an average of Nusselt 
number was compared at Rayleigh numbers of 103, 104, 105 and 
106. The comparison was done between the benchmark results 
obtained by de Vahl Davis which in serial processor and the 
present study that is simulation using serial processor and parallel 
processor or parallel computer.  

 

From the tables, it showed that all these results are in excellent 
agreement with the benchmark results of de Vahl Davis. 
Percentage error for the three methods of solution is below than 
3% compare with benchmark result. Besides that, the result that 
was showed in the forms of contour maps of non-dimensional 
temperature and velocities also was compared with the results that 
obtained by de Vahl Davis. 

 

 

 

 

 

 

Table 1. Comparison of the numerical result of present study 
for Umax  

 Ra 103 104 105 106 

G. de Vahl Davis  3.649 16.193 34.620 64.593 

Present study:      

i) Serial processor  3.652 16.163 34.871 65.812 

        % error  0.082 %  0.185 %  0.725 %  1.880 %  

ii)Parallel processor  3.592 16.376 34.852 65.847 

        % error  1.560 %  1.131 %  0.670 %  1.941 %  

 

Table 2. Comparison of the numerical result of present study 
for Vmax  

 Ra 103 104 105 106 

G. de Vahl Davis  3.697 19.167 68.590 216.360 

Present study:      

i) Serial processing  3.704 19.675 69.482 220.641 

        % error  0.189 % 2.650 % 1.300 % 1.978 % 

ii)Parallel processing  3.715 19.642 69.680 221.282 

        % error  0.487 % 2.478 % 1.589 % 2.275 % 

Table 3. Comparison of the numerical result of present study for 
____

Nu  

 Ra 103 104 105 106 

G. de Vahl Davis  1.118 2.243 4.519 8.800 

Present study:      

 i) Serial processing  1.120 2.282 4.583 8.983 

        % error  0.23 % 1.74 % 1.42 % 2.08 % 

 ii)Parallel processing  1.123 2.272 4.594 9.008 

        % error  0.47 % 1.31 % 1.67 % 2.36 % 

 

4.2 Parallel Computing Results 
In order to achieve the objective of this project, parallel execution 
time was studied to determine the performance of the parallel 
computations. Two methods of solution there are serial 
computation and parallel computation were used during to obtain 
the results of the simulation. Table 4 showed the results for both 
methods of computational solution in term of execution time. 
Table 5 was showed the tabulated results of computational time 
and communication time for parallel with domain decomposition 
method. 
 

Table 4. Execution time for three computational solutions 

Ra Sequential time 
(tseq) 

Parallel time (tp) 

103 32.8 s 9.43 s 

104 135.75 s 41.39 s 

105 2040.26 s 612.06 s 

106 163602.04 s 49080.61 s 
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Table 5. Computational and communication time for parallel 
computation 

Ra tcomp tcomm tp 

103 8.41 s 1.02 s 9.43 s 

104 34.62 s 6.78 s 41.39 s 

105 522.82 s 89.24 s 612.06 s 

106 41923.02 s 7157.60 s 49080.61 s 
 

Other parameter that was used to measure a performance of 
parallel computations is speed-up and efficiency. From the speed-
up, we know that how fast the parallel computer solves the 
problem under consideration. It is sometimes useful to know how 
long processors are being used on the computation, which can be 
found from the efficiency.  Table 6 below was showed result for 
speed-up and efficiency for parallel methods. Figure 6, 7 and 8 
showed graphically an execution time, speed-up and efficiency 
against number of processors for Ra=103 respectively. 

 

Table 6. Results for speed-up and efficiency 

Ra Speed-Up Efficiency 

103 3.478 86.95 % 

104 3.279 81.97 % 

105 3.333 83.32 % 

106 3.333 83.32 % 
 

4.3 Discussions 
From the results that were obtained, we can see that execution 
time for parallel computation was decrease compare with 
sequential computation. By using sequential computation, total 
execution time that we need to complete our simulation at 
Rayleigh number 106 is 163602.04 seconds or 2726.7 minutes or 
45.45 hours. For parallel computation, we were reduced an 
execution time for the simulation at Rayleigh number 106 to 
49080.61 seconds or 818.01 minutes or 13.63 hours. Compare for 
both methods of simulations, we got the parallel computation with 
domain decomposition method is more successful for solve this 
problem with reducing about 70% of execution time.  

 

From the Figure 6 to 8, we can see an effect of number of 
processors in parallelization to the execution time, speed-up and 
efficiency. As we can see, the execution time will decrease with 
increasing of the number of processors. For the speed-up, it will 
increase with the increasing of the number of processors. 
However, the efficiency of a simulation was decrease with an 
increasing of the number of processors.   
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Figure 6. Execution time against no. of processors for Ra = 103 
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Figure 7. Speed-Up against no. of processors for Ra = 103 
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Figure 8. Efficiency against no. of processors for Ra = 103 

 

5. CONCLUSION 
A parallel algorithm has been developed to simulate an 
incompressible flow for the problem of natural convection that 
occurred in a square cavity with specified boundary conditions. 
The simulations of the incompressible flow using SIMPLE 
method on parallel computer are agreement with the benchmark 
result. Thus, the simulation is successful. Percentage errors for the 
two computational solutions which are simulation by serial and 
parallel computer are below than 3% compare with benchmark 
result by de Vahl Davis. 
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Parallelization using distributed parallel computer system with 
domain decomposition method can reduce an exection time to 
solve the problem about 70% by using 4 processors. Therefore it 
has proved that clustering personal computers together can 
provide adequate computing power for large engineering 
problems. 
 

6. ACKNOWLEDGMENTS 
Thanks to Faculty of Science, UTM for allowing us to using their 
Parallel Computer Lab and also to each and everyone who have in 
any way contributed to this project. 
 

7. REFERENCES 
[1] A. W. Date (1985). “Numerical Prediction of Natural 

Convection Heat Transfer in Horizontal Annulus”. Int. J. 
Heat Mass Transfer. 

[2] Davis G. de Vahl (1983). “Natural convection of air in a 
square cavity: a benchmark numerical solution”. Int. Journal 
Numerical Mech. Fluid (3): 249-264. 

[3] D. B. Spalding (1972). “A Novel Finite Difference 
Formulation for Differential Expressions Involving Both 
First and Second Derivatives.” Int. J. Num. Methods Eng. 
(3): 551-559. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[4] A. Hayati (1990). “Convective Heat Transfer in Building 
Energy Analysis”, M. Eng Thesis, Faculty of Mech. 
Engineering, UTM. 

[5] S. P. Vanka, G. K. Leaf (1983). “Fully-Coupled Solution of 
Pressure-Linked Fluid Flow Equations” Argonne National 
Laboratory, Argonne, Illinois. 

[6] H. K. Versteeg and W. Malalasekera. (1995). “An 
Introduction to Computational Fluid Dynamics.” Pearson, 
Prentice Hall. 

[7] M. C. Melaaen (1993). “Nonstaggered Calculation of 
Laminar and Turbulent Flows using Nonorthogonal 
Coordinates.” Int. J. Num. Heat Transfer: 375-392. 

[8] S. V. Patankar (1980). “Numerical Heat Transfer and Fluid 
Flow.” McGraw-Hill Inc, New York. 

[9] S. V. Patankar and D. B. Spalding (1972). “A Calculation 
Procedure for Heat, Mass and Momentum Transfer in 3-
Dimensional Parabolic Flows.” Int. J. Heat Mass Trasfer. 

[10] Dongarra, J. & Eijkhout, U. (2000). “Numerical linear 
algebra algorithms and software.” Journal of Computational 
and Applied mathematics. 123 (2):489-514. 

[11] Geist, A. et al. (1994). “PVM: Parallel Virtual Machine. A 
Users’ Guide and Tutorial for Networked Parallel 
Computing”. Massachusetts: The MIT Press. 

 


