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ABSTRACT 

The advent of development in three-dimensional (3-D) imaging modalities have 

generated a massive amount of volumetric data in 3-D images such as magnetic 

resonance imaging (MRI), computed tomography (CT), positron emission 

tomography (PET), and ultrasound (US).  Existing survey reveals the presence of a 

huge gap for further research in exploiting reconfigurable computing for 3-D medical 

image compression.  This research proposes an FPGA based co-processing solution 

to accelerate the mentioned medical imaging system.  The HWT block implemented 

on the sbRIO-9632 FPGA board is Spartan 3 (XC3S2000) chip prototyping board.  

Analysis and performance evaluation of the 3-D images were been conducted.  

Furthermore, a novel architecture of context-based adaptive binary arithmetic coder 

(CABAC) is the advanced entropy coding tool employed by main and higher profiles 

of H.264/AVC.   This research focuses on GPU implementation of CABAC and 

comparative study of discrete wavelet transform (DWT) and without DWT for 3-D 

medical image compression systems.  Implementation results on MRI and CT 

images, showing GPU significantly outperforming single-threaded CPU 

implementation.  Overall, CT and MRI modalities with DWT outperform in term of 

compression ratio, peak signal to noise ratio (PSNR) and latency compared with 

images without DWT process.  For heterogeneous computing, MRI images with 

various sizes and format, such as JPEG and DICOM was implemented.  Evaluation 

results are shown for each memory iteration, transfer sizes from GPU to CPU 

consuming more bandwidth or throughput.  For size 786, 486 bytes JPEG format, 

both directions consumed bandwidth tend to balance.  Bandwidth is relative to the 

transfer size, the larger sizing will take more latency and throughput.  Next, OpenCL 

implementation for concurrent task via dedicated FPGA.  Finding from 

implementation reveals, OpenCL on batch procession mode with AOC techniques 

offers substantial results where the amount of logic, area, register and memory 

increased proportionally to the number of batch.  It is because of the kernel will copy 
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the kernel block refer to batch number. Therefore memory bank increased 

periodically related to kernel block.  It was found through comparative study that the 

tree balance and unroll loop architecture provides better achievement, in term of 

local memory, latency and throughput. 
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ABSTRAK 

Kemunculan pembangunan imej perubatan pencitraan tiga dimensi (3-D) telah 

menghasilkan sejumlah besar data volumetrik dalam bentuk imej 3-D seperti 

perubatan resonan magnet (MRI), kiraan tomografi (CT), pancaran pesitron 

tomografi (PET), dan bunyi ultra (US).  Kajian tinjauan menunjukkan kewujudan 

jurang yang besar untuk penyelidikan lanjut dalam mengeksploitasi pengkomputeran 

yang dapat dikonfigurasi untuk pemampatan imej perubatan 3-D.  Projek ini 

mencadangkan penyelesaian berasaskan FPGA untuk mempercepat sistem 

pengimejan perubatan tersebut.  Blok HWT yang telah dipasangkan pada papan 

sbRIO-9632 FPGA adalah papan prototaip cip Spartan 3 (XC3S2000).  Analisa dan 

penilaian prestasi imej 3-D telah dijalankan.  Selain itu, binaan unggul Binary 

Arithmetic Coder Adaptif Berasaskan Konteks (CABAC) adalah alat pengekod 

entropi canggih yang digunakan oleh H.264/AVC yang utama dan berprofil lebih 

tinggi.  Untuk menyingkatkan masa pelaksanaan, unit pemprosesan grafik (GPU) 

NVIDIA GeForce 820M telah digunakan.  Kajian ini memberi tumpuan kepada 

penggunaan GPU pada CABAC dan kajian perbandingan Transformasi Wavelet 

Diskrit (DWT) dan tanpa DWT untuk sistem 3-D.  Hasil pelaksanaan pada imej MRI 

dan CT menggunakan GPU dan unit pemproses berpusat (CPU) dibentangkan, 

menunjukkan GPU jauh melebihi prestasi CPU.    Keseluruhannya, modaliti CT dan 

MRI dengan DWT mengatasi prestasi nisbah mampatan, Nisbah Puncak kepada 

Nisbah Kebisingan (PSNR) dan latensi berbanding dengan imej tanpa proses DWT.  

Pada pengkomputeran heterogen, imej MRI dengan pelbagai saiz dan format, seperti 

JPEG dan DICOM diterapkan.  Hasil penilaian menunjukkan untuk setiap lelaran 

memori, saiz pemindahan dari GPU ke CPU menggunakan lebih banyak lebar jalur.  

Untuk saiz 786, 486 bytes JPEG format, kedua-dua arah menggunakan jalur lebar 

yang hampir seimbang.  Jalur lebar relatif dengan saiz pemindahan, saiz yang lebih 

besar akan mengambil lebih banyak pendaman dan daya pemprosesan.  Seterusnya, 

pelaksanaan OpenCL untuk tugas selari melalui FPGA yang terpilih. Dapatan 
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membuktikan, OpenCL pada proses perarakan kumpulan dengan teknik AOC 

menawarkan dapatan yang lebih baik di mana jumlah logik, ruang, daftar dan 

memori meningkat secara berkadaran kepada bilangan kumpulan.  Ini kerana kernel 

menyalin blok kernel merujuk kepada nombor batch.  Selari dengan bank memori 

meningkat secara berkala berkadaran dengan blok kernel. Kajian perbandingan 

mendapati keseimbangan rajah dan seni bina gelung unroll memberikan pencapaian 

yang lebih baik, dari segi memori tempatan, pendaman dan daya pemprosesan. 
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1CHAPTER 1 

 INTRODUCTION 

 

 

Recently, the impact of tremendous development in three-dimensional (3-D) imaging 

modalities, has produced enormous measure of volumetric information such as 

computed tomography (CT), positron emission tomography (PET), magnetic 

resonance imaging (MRI), and ultrasound (US).  Spin-off from this scenario has 

created different applications, specifically, for telemedicine and teleradiology.         

In line with these issues, effective capacity or storage and transmission of 

information through high data transfer capacity using computerized correspondence 

lines are significant in medical image compression  [1], [2]. 

1.1 Overview 

Most of the 3-D medical imaging algorithms with matrix transformation and popular 

fundamental operation are involved in the transform-based methods.  Therefore, 

high-performance systems are really needed while keeping the architectures flexible 

to allow for quick upgradeability with real-time applications [3].  Next, an efficient 

implementation of these operations is of significant importance, in order to obtain 

efficient solutions for large medical volumes data. 

Previous work is more focused on fundamental actions matrix or vector 

operation of the algorithms used in real-time medical image processing [1], [4].   

Normally, most of these operations are matrix transforms including discrete wavelet 

transforms (DWT), fast Fourier transform (FFT) and some recently developed 

transforms such as curvelet, finite Radon, and ridgelet transforms which are used in 

two-dimensional (2-D) or 3-D medical imaging.  
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Distinctively, wavelets are localized waves.  DWT permits a signal to be 

localized in each time and frequency [5].  The time-frequency representation of the 

signal is provided by wavelet transform.  The development of DWT is to tackle 

problems of the disadvantage in the short-time Fourier transform (STFT), which may 

even be accustomed to analyze non-stationary signals.  They have their energy 

concentrated in time or space and are suited for analysis of transient signals.  Fourier 

transform and STFT utilize waves to analyze signals, whereas wavelet transform 

uses wavelets of finite energy.  The wavelet transform, at high frequencies, gives 

good time resolution and poor frequency resolution, while at low frequencies, the 

wavelet transform gives good frequency resolution and poor time resolution.  

  Presently, other approaches such as a network of computers have been 

implemented in 3-D transforms, but a chip devoted to this change will give 

tremendous results.  Despite its intricacy, there has been an interest in 3-D DWT 

implementation on plenty of platforms.  Existing survey exhibits that the research 

can be classified into three (3) categories: architecture development [6], architecture 

with field programmable gate array (FPGA) implementation [7], and finally 

architecture that has been implemented on other silicon platforms [8]. 

As can be seen from the existing research [8], there is still remaining research 

gap for additional exploration in reconfigurable computing for 3-D medical image 

compression and two (2) major restrictions can be distinguished as : 

i. Medical image compression has not been radical in using the current 3-D 

DWT implementation.  The Daubechies filter has been broadly utilized in 

several implementations [6], [9], while Haar, Symlet, Coifflet and 

Biorthogonal filters remain open for further experimentation; and 

ii. Image compression is one of the well-established research areas.  However, 

medical image compression especially those dealing with 3-D modalities are 

considered as an immature research range.  Moreover, plenty of new 

compressions are proposed but very minimal hardware implementation of    

3-D medical image compression is explored [1], [3]. 

Based on the existing work limitations, this project is concerned with having 

an efficient architecture for 3-D DWT that will be used in a reconfigurable 

environment for adaptive medical image compression systems.   
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