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ABSTRACT 

 

 

 

 

Engine conversion process from any diesel vehicle to a diesel-CNG dual fuel system 

requires additional fuel management. The need for an engine monitoring is vital to 

ensure the dual fuel operation run smoothly without excessive knocking, which may 

shorten the life of the engine. Knock and air-fuel ratio (AFR) sensors are commonly 

used for engine monitoring during fuel management setup. However, the engine output 

characteristics has been overlooked during the monitoring process. This study is aimed 

to explore a statistical approach by predicting the relationship between fuel 

management and engine output characteristics of diesel-CNG dual fuel engine using 

Response Surface Methodology (RSM). Two inputs which are CNG substitution rate 

and engine speed were used to predict the engine output characteristics in terms of 

engine performance, exhaust emissions, combustion pattern and combustion stability. 

Within the investigation, a statistical method was proposed to analyse the vibro-

acoustic signal generated by a knock sensor installed at the outer cylinder wall of the 

engine. The frequency distribution analysis was applied to interpret the high variability 

of the vibro-acoustic signal. The results were used as the input for combustion stability 

in RSM analysis. It also provided useful information with regards to the engine 

stability. The response surface analysis showed that the CNG substitution rate and its 

properties significantly influenced the engine output characteristics. This study also 

describes the methodology to determine the accuracy and the significance of the 

developed prediction models. The prediction models were validated using 

confirmation test and showed good predictability within 95% confidence interval. 

Thus, it is concluded that RSM provide models that predict the engine characteristics 

with significant accuracy, which contributes to the effectiveness of diesel-CNG dual 

fuel engine conversion process. 
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ABSTRAK 

 

 

 

 

Proses penukaran enjin dari mana-mana kenderaan diesel kepada sistem dwi bahan 

bakar diesel-CNG memerlukan pengurusan bahan bakar tambahan. Keperluan 

pemantauan enjin adalah penting untuk memastikan operasi dwi bahan api berjalan 

dengan lancar tanpa knocking yang berlebihan, yang boleh memendekkan jangka hayat 

enjin. Sensor bagi knock dan udara-bahan api (AFR) biasanya digunakan untuk 

pemantauan enjin semasa persediaan pengurusan bahan api. Walau bagaimanapun, 

ciri-ciri output enjin telah diabaikan semasa proses pemantauan. Kajian ini bertujuan 

untuk meneroka pendekatan statistik dengan meramalkan hubungan antara pengurusan 

bahan api dan ciri-ciri output enjin diesel-CNG dwi bahan api menggunakan 

Metodologi Permukaan Respon (RSM). Dua input iaitu kadar penggantian CNG dan 

kelajuan enjin digunakan untuk meramalkan ciri output enjin dari segi prestasi enjin, 

pelepasan ekzos, corak pembakaran dan kestabilan pembakaran. Semasa siasatan, 

kaedah statistik dicadangkan untuk menganalisis isyarat vibro-akustik yang dihasilkan 

oleh sensor knock yang dipasang di luar dinding silinder enjin. Analisis taburan 

frekuensi digunakan untuk menafsirkan kebolehubahan tinggi isyarat vibro-akustik. 

Hasilnya digunakan sebagai input untuk kestabilan pembakaran dalam analisis RSM. 

Ia juga menyediakan maklumat berguna berkaitan dengan kestabilan enjin. Analisis 

respon permukaan menunjukkan bahawa kadar penggantian CNG dan sifatnya telah 

mempengaruhi ciri output enjin. Kajian ini juga menerangkan metodologi untuk 

menentukan ketepatan dan kepentingan model ramalan yang telah dibangunkan. 

Model ramalan telah disahkan menggunakan ujian pengesahan dan menunjukkan 

ramalan yang baik dalam lingkungan 95% selang keyakinan. Oleh itu, disimpulkan 

bahawa RSM menyediakan model ramalan yang mengawasi ciri-ciri enjin dengan 

ketepatan yang signifikan, yang menyumbang kepada keberkesanan proses 

pengubahan enjin dwi bahan bakar diesel-CNG. 
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INTRODUCTION 

 

 

 

 

1.1 Background of research 

 

 

Natural gas is an alternative fuel derived from non-renewable energy source. It has the 

lowest Greenhouse Gas (GHG) emissions compared to other fossil fuel. According to 

F. Kӧnigsson, natural gas offers 20% reduction in GHG emissions compared to 

gasoline and diesel because its chemical properties of methane that are larger in 

hydrogen to carbon ratio [1]. Furthermore, it is inexpensive compared to other fuel and 

its abundant resource which is sufficient for upcoming decades has appeared as a 

priority for fossil fuel replacements. 

 Natural gas can be utilized as Compressed Natural Gas (CNG), Liquefied 

Natural Gas (LNG) or Renewable Natural Gas (RNG) using retrofitted kits. Retrofitted 

kits are additional components such as CNG tanks, Electronics Control Unit (ECU), 

pressure gas regulator, gas injectors and wire harness. These are commonly used for 

engine conversion into Natural Gas Vehicle (NGV). 

 Most CNG conversion kits systems for NGV are illustrated in Figure 1.1, 

which it depends on engine type. For spark ignition engine, it can be converted into 

either mono-fuel or bi-fuel systems. Meanwhile, for compression ignition engine, 

either mono-fuel or dual fuel system can be utilized. For mono-fuel systems, the NGV 

uses 100% CNG, while for bi-fuel systems; the NGV can alternately use 100% CNG 

or 100% gasoline. In the case of a dual fuel system, α% of CNG is mixed with β% of 

diesel fuel in the combustion chamber. The CNG is injected through intake manifold; 

either using the sequential port injection or by the fumigation method. Then it is mixed 

with air as a homogeneous charge. The homogeneous charge between air and CNG is 

ignited as it is initiated by diesel fuel combustion during the compression stroke. 
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Figure 1.1: CNG fuel system for NGV conversion 

 

  According to NGV Global, there is existed about 23 million of NGVs in the 

world and may exceed 30 million by 2024 [2]. The NGV’s market is dominated by 

passenger cars and its quantity is low compared to gasoline or diesel vehicle. In 

Europe, the NGV’s market is low as 3% [3]. Meanwhile, in Malaysia, the registered 

NGVs are about 77 thousand compared to 14.68 million for other registered vehicles 

(cars, public service vehicles, and goods vehicles). This is less than 1% [4, 5]. Despite 

many efforts have been established in the development of CNG in road transport 

applications, there is still a barrier need to be addressed in order to enhance the NGV’s 

market [6, 7].  

 The major obstacle for NGV development is the engine conversion, where it 

should be the main focus in this research because the availability of the conversion kits 

is feasible. However, the deployment into the existing vehicles is the key factor [8]. A 

survey has been conducted to get expert opinions on the NGV’s research needed for 

energy policy development [9]. From the survey, it is noted that the short-term priority 

for NGV development is on the NGV and refuelling infrastructure. It means that the 

integration and test of the CNG conversion kits for different vehicle’s engine would 

seek public intention towards the use of NGVs. Besides that, the other barriers for 

NGV’s market penetration are vehicle availability, after-market conversion, refuelling 

stations, and government policies [10, 11]. 

NGV Conversion 

Spark Ignition Engine Compression Ignition Engine 

Mono-fuel System Bi-fuel System Dual Fuel System 

100% CNG 
100% CNG or 

Gasoline 
α% CNG and β% 

Diesel 
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 In Malaysia, most of NGVs are converted into either mono-fuel or bi-fuel 

system; that are dominant by public transport service such as taxi. From Department 

of Road Transport Malaysia (JPJ), most NGVs for logistics vehicles use a mono-fuel 

system for their diesel engines. However, based on Malaysia’s CNG infrastructure 

facilities, the dual fuel systems is the good option because its offer fuel flexibility 

where the engine can operates with 100% diesel if the CNG supply is not available 

[12]. In addition, typical diesel engine comes with common rail fuel injection system 

where possess great potential for diesel dual fuel (DDF) system due to its flexibility in 

controlling fuel injection for diesel fuel replacement.  

 

 

1.2 Problem statement  

 

 

The conversion kits or retrofitted kits for diesel dual fuel (DDF) systems are additional 

components installed to run dual fuels in diesel engine. It requires integration process 

to adopt the DDF components to the diesel engine. Even though no major modification 

is needed and is mostly add-on components, the configuration setup to operate the dual 

fuels requires accurate tuning process and it is challenging in order to ensure that the 

engine has comparable performance and stability. In addition, the exhaust emission 

aspect should take into account due to stringent emission regulation. For example, in 

United State, the conversion kits must comply with the Environmental Protection 

Agency (EPA) requirement to meet the standard emission regulation [13].  

 Normally, the tuning process for the DDF system involves fuel management 

setting to reduce the diesel fuel quantity and replace with the CNG fuel. The fuel 

management setting usually is based on the fuel quantity for both fuels. The CNG 

substitution rate is dependent on diesel engine installed with dual fuel systems. 

Therefore, the DDF systems installer uses additional instrumentations such as knock 

sensor and air-fuel ratio (AFR) sensor during the tuning process for measurement and 

monitoring purposes. Both inputs from these two sensors are used as the guidance for 

the DDF systems tuner to verify the dual fuel system operation limitation. This means 

that the dual fuel engine should have a similar air-fuel ratio compared to diesel mode 

without any knock event. The efficiency of this tuning method become questionable 

due to several aspects that might overlook during the tuning process such as actual 

engine performance, fuel consumption, exhaust emissions and its stability. 
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 Furthermore, the conventional method for measuring engine stability is by 

observing several consecutive combustion pressures. Generally, the in-cylinder 

pressure sensor is implemented to measure the combustion pressure where it a suitable 

instrumentation to provide accurate information. Unfortunately, it is not a practical 

approach for commercial purpose since it is costly. 

 The Response Surface Methodology (RSM) has the capability to provide the 

relation between fuel substitution rate and engine output characteristics through its 

statistical approach. This approach may help DDF tuner to understand the 

characteristics of the engine installed with the dual fuel conversion kits. The design of 

experiment using RSM could provide an experimental technique for predicting the 

responses of engine performances, exhaust emissions, combustion patterns and 

combustion stability. In addition, these response characteristics can be presented 

graphically through its contour plot and response surface profile, which are useful for 

establishing responses values and operating condition as required. The modelling 

methodologies are capable to predict the untested conditions with significant accuracy 

as per reported by [14–16]. 

 The functionality of the commercial knock sensor that provides knock 

detection indicator can be utilized to provide information regard to engine stability. 

However, the vibro-acoustic signal from the knock sensor has large variability due to 

different background noises comes from an engine. A statistical method can be 

introduced to eliminate the background noises and provides the vibration intensity 

index. Thus, it can display the distribution of the vibration intensity index that shows 

the stability of the engine. 

 

 

1.3 Research questions 

 

 

The research questions for this study as follows: 

i. What statistical approach can be utilized to overcome the high variability of 

the acoustic index data for combustion stability data in Response Surface 

Methodology (RSM) analysis? 

ii. What can be achieved by assessing the responses of designed experiments for 

predicting the engine’s output characteristics, i.e. engine performance, exhaust 
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emissions, combustion patterns and combustion stability using RSM? In 

addition, how significant is the prediction models developed using RSM. 

iii. What relationships can be established between fuel management and engine 

output characteristics for diesel-CNG dual fuel engine using RSM? 

 

 

1.4 Objectives  

 

 

The objectives of the research are as follows: 

i. To propose a novel statistical approach for vibro-acoustic signal analysis 

method via the offline mode to overcome the high variability of the acoustic 

index data as the input for combustion stability analysis. 

ii. To develop the significant prediction models of engine output characteristics 

using Response Surface Methodology (RSM) and validate through the 

confirmation test against the experimental values. 

iii. To predict the relationship between fuel management and engine output 

characteristics of diesel-CNG dual fuel engine using RSM. 

 

 

1.5 Scopes of study  

 

 

The scopes of this research are as follows: 

i. The investigation is based on diesel-CNG dual fuel system conversion kits 

(brand: GI GASITALY) is installed in Toyota Hilux 2.5L common rail direct 

injection diesel engine (engine model: 2KD-FTV) with no modification on the 

stock ECU. 

ii. The study is focused on the fumigated CNG dual fuel system. 

iii. The dual fuel set ratios are targeted at 10%, 20%, 30% and 40% of diesel 

replacement in term of mass ratio within the operating range of 1500 to 3500 

rpm engine speeds. 

iv. The steady-state dynamometer testing is considered for this study by using 

chassis dynamometer. 
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