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1 ABSTRACT 
 
The Atlantic herring is one of the most abundant fish species in the Northern hemisphere 
especially in the Northeast Atlantic. There are various stocks of this fish due to their spawning 
time and their vast distribution. Many studies have tried to characterize herring populations and 
these efforts can be combined with massively parallel sequencing technologies to develop genetic 
resources. The transcriptome is a repertoire of RNAs in cells produced by transcription and 
messenger RNAs (mRNAs) are responsible for gene expression. This repertoire may change 
during different life stages and environmental conditions. Transcriptome studies have been 
mainly dependent on a reference genome and developed tools are not applicable for non-model 
organisms for which the reference genome is missing or only partially available. In this study we 
present a de novo transcriptome assembly by using different strategies and one specific 
transcriptome assembler, Trinity. The RNA was collected from muscle of a male spring spawning 
herring and then sequenced with an Illumina Hiseq 2000 machine. After trimming for low quality 
nucleotides and possible contaminations, the assembly resulted in 131,788 contigs with a total 
size of 40 million nucleotides (Mnts). The transcriptome generated by Trinity was compared with 
other assemblies, assembled by a genome assembler (SOAPdenovo), Inchworm, SSPACE, and 
CAP3. The results showed that Trinity developed a more reliable assembly. We validated almost 
47% of all contigs by comparison to available databases such as nr and other vertebrate 
transcripts. Also, we quantified the relative expression of transcripts by counting the number of 
aligned reads per kilobase per million mapped reads (RPKM). Furthermore, we preformed in-
depth studies of two genes. We identified two copies of Glucose 6-phosphate isomerase (GPI) on 
draft genome assembly. Our results showed that the sampled fish was heterozygous at the GPIb 
locus. Among the alpha actin isoforms, we identified the alpha actin b transcript (ACTA1b) in 
fast muscle corresponding to spring spawning herring fish characteristics. 



 

 2 

1. INTRODUCTION 

The Atlantic herring (“sill” in Swedish) is found among the 140 native fish species in Sweden 
and close countries in northeast Atlantic Ocean and together with sardines, 
capelin, anchovies, menhaden, and small mackerels, it makes up more than one quarter of all 
saltwater landings (Encyclopædia Britannica). Herring is globally among the most abundantly 
caught fish and it is important for Swedish economy. The global herring capture production 
reached to 4 million tons in 1960s and dropped to 887,553 tons during 1980s when Sweden had 
the highest capture in global production (~13%) (Figures 1 and 2). Also, it is an important food 
source being 15% of all herring captures allocated for human consumption and it has played a 
main role in Swedish cuisine since the Middle age. Herring is served pickled at Midsummer and 
Christmas, and also the fermented herring is popular in northern part of Sweden (Swedish fish 
database). 
 

 
Figure 1- Worldwide Herring capture production  
between 1950 and 2004 (FAO fishery statistics). 

 

 
Figure 2- Sweden and worldwide herring capture production  

between 1950 and 2004 (FAO fishery statistics) 
 
From an evolutionary point of view, herring belongs to Teleost infraclass, which is one of the 
most important diversifications (see table 1 for taxonomy information). Most of the living fish are 
part of this infraclass, which includes near 29,000 species with around 200 species in the 
Clupidae family and the Atlantic herring (Clupea harengus) is one of them. Hox gene family 
studies, molecular, and paleontological data suggested that the herring diverged from other teleost 
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fish like zebrafish, medaka, stickleback, tetradon, and fugu between 147 and 314 million years 
ago (mya) (Moyle et al., 1992 and Peng et al., 2009). Teleosts fish have gone through a whole 
genome duplication approximately 420 mya, based on gene family studies and large scale 
genomic analyses (Figure 3; reviewed in Sundström 2010).  
 

Table 1- Taxonomy information  
of Atlantic Herring (NCBI). 

Kingdom: Animalia 

Phylum: Chordata 

Subphylum: Vertebrata 
Superclass: Osteichthyes 
Class: Actinopterygii 
Subclass: Neopterygii 
Infraclass: Teleostei 
Order: Clupeiformes 
Family: Clupeidae 
Subfamily: Clupeinae 
Genus: Clupea 
Species: harengus 

 
Figure 3- Chordate evolution and time points for whole genome duplication. Time scale is in million of years 

(Sundström, 2010).  

Herring is a bony fish, schooling in coastal waters where the light is intense and they use it for 
controlling their vertical distribution. Schooling, fast movement, and their silvery body, reflecting 
light, act as anti-predator device (FishBase). The prey of herring is dependent on location, season, 
and age but mainly uses small planktons and copepods when it is adult. They can grow until 45 
cm and their usual length is 20-30 cm with a maximum weight of 1,050 g (FishBase). The 
lifespan is quite variable, ranging between 4 to 20 years and they enter sexual maturity in 3-9 
years of age (FishBase and HerringNetwork). Herring is a diploid organism with 52 
chromosomes and males are heterogametic (Doucette and Fitzsimons 1982). However, unlike 
mammals and birds, teleost fish have diversity in sex-determination systems influenced by 
multiple autosomal genes and some environmental factors e.g. temperature (Volff, 2002). 
 
Herring has a wide distribution at both sides of the Atlantic Ocean and within each region they 
are grouped by spawning time. Figure 4 shows various populations with different spawning time 
in the northeast Atlantic. There is at least one herring stock spawning any month of the year. The 
female lays 30,000 eggs on average, ranging from 20,000 to 40,000, on the seabed, on beds of 
algae, or stones (HerringNetwork and FishBase).  
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Figure 4- Left) Herring distribution in the worldwide classified in 5 stocks. Right) Herring distribution in northeast 

Atlantic according to their spawning time (HerringNetwork). 

Herrings have been classified as species, sub-species, and stocks ecologically and 
morphologically apart from their genetic differences and reproductive isolations (Ryman et al., 
1984). Although many studies have suggested that these differences among herring stocks are due 
to environmental effect, some researchers have tried to monitor the variation by comparing 
markers in different population. For instance, Ryman et al. (1984) reported 54 alleles for 17 loci 
indicating a large effective population size, gene flow between different populations, or a recent 
colonization that have not yet gone into genetic drift. However, the overall variation within and 
between populations could not be addressed thoroughly by this limited set of genes since the 
analysed loci may not have undergone selection and consequently did not represent the correct 
picture of polymorphisms present in each population. The massively parallel sequencing 
technologies have revolutionized biology and computer sciences by generating high amount of 
information in short time and lower costs. This information enables us to identify variation at a 
single-base resolution either in DNA (genome) or RNA (transcriptome). The aim of this study 
was to generate a muscle transcriptome of the Atlantic herring and it is a part of major effort to 
characterize genetic differentiation of whole genome. 

1.1 What is Transcriptome? 
A transcriptome is a set of synthesized RNA molecules from both coding and non-coding regions 
of DNA in one cell (Brown, 2002). There are different RNA molecules that have specific roles in 
biological process. Transcription is the process generating the transcriptome and proteins are 
synthesized by transcriptome translation into amino acid polymers (Figure 5) (Brown, 2002). 
RNA synthesis is subject to strong spatial and temporal regulation, with some RNAs being 
exclusive to some cell types or time points, while other RNAs are continuously expressed 
(Brown, 2002 and Alberts et al., 2007).  
 
 
 
 
 
 
 
 

Figure 5-Genome, Transcriptome, and Proteome. 
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RNAs can be classified into two main categories (Figure 6): coding and non-coding. It has been 
shown in eukaryotes, bacteria, and archaea that 4% of the cellular RNAs are coding RNA or 
messenger RNA (mRNA). They are transcribed as complementary sequence of DNA that will be 
translated into protein by help of transfer RNA (tRNA) leading amino acids to their location in 
peptides corresponding to their codon on mRNAs (Brown, 2002).  
 
Ribosomal RNAs (rRNAs) are the most abundantly synthetized non-coding RNAs (80 to 90%) 
and vital component of ribosomes, the engines of RNA translation into amino acid chain. Other 
kinds of RNAs are present in limited numbers and participate in regulation of RNA expression 
(Wilhelm and Landry 2009, Brown, 2002).  
 
Eukaryotes, have other kinds of non-coding RNAs such as small nuclear RNA (snRNA) involved 
in mRNA processing, small nucleolar RNA (snoRNA) which has a key role in rRNA processing, 
and small cytoplasmic RNA (scRNA) which functions are unclear (Brown, 2002). Micro RNAs 
(miRNA) are another class of non-coding RNAs that plays an important role in the regulation of 
gene expression especially in organogenesis and development (He and Hannon, 2004). In bacteria 
and archaea, there are some non-coding RNAs other than the mentioned classes such as transfer-
messenger RNA (tmRNA). tmRNA acts as tRNA and attaches short peptide fragments onto 
synthesized proteins that ease their degradation (Muto et al., 1982). 

 
Figure 6- The RNA classification. mRNA: messenger RNA, rRNA: ribosomal RNA, tRNA: transfer RNA, snRNA: 
small nuclear RNA, snoRNA: small nucleolar RNA, scRNA: small cytoplasmic RNA, tmRNA: transfer-messenger 

RNA (Genomes 2, 2002). 
 
Eukaryotic protein-coding genes include untranslated regions at ends of gene (5´-UTR and 3´ 
UTR), coding (exons), and non-coding (intron) sequences (Figure 7). Also, in the upstream 
regions there are regulatory elements controlling the level of expression and transcription 
initiation, so-called promoters, which facilitate the transcription.  

 
Figure 7- Eukaryotic protein-coding gene structure. 

 
In the transcription reaction the gene is completely transcribed including UTR, exons, and introns 
but only exons are finally translated into proteins. Therefore, introns should be removed through 
a process so-called intron splicing (Figure 8). snRNAs and a protein called spliceosome play key 
roles in this biochemical reaction (Brown, 2002). 
 



 

 6 

 
 

 
 
 
 
 

1.1.1 One gene, many proteins 
“One gene one protein” theory was valid up until the discovery of the splicing pathway in the 
1980s. This discovery showed that each gene generates various alternate transcripts (isoforms) by 
using alternative initiation, splicing, or poly-adenylation sites. Consequently, one gene can 
produce many proteins; in other word, each gene can be expressed differently, producing the so-
called alternative expression (Black, 2000 and Brown, 2002). Figure 9 shows different patterns of 
pre-mRNA processing and final transcripts.  

 
Figure 9- Alternative-splicing classification. 

1.2  Transcriptome analysis 
High throughput transcriptome analysis started with microarray technique by monitoring 
expression level of annotated genes. Later on, tiling arrays, the following generation of 
microarray, was used as a new tool to detect un-annotated genes. In this method, designed probes 
interrogating a genome, regardless of any gene annotation, were used. Although experiments 
using tiling arrays revealed that the transcriptome complexity had been underestimated, the 
resolution was low due to a limitation of designed probes to cover the genome properly. Also, 
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Figure 8- Intron splicing. 
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this technique is highly affected by the amount of input RNA influencing the sensitivity, 
specificity and splice event detection (Mortazavi et al., 2008, Lister et al., 2009, Marguerat et al., 
2009, and Marguerat and Bähler 2010).  
 
Another approach taken was expressed sequence tag (EST) sequencing of complementary DNA 
(cDNAs). This approach has been used as a main method for transcriptome discovery in model 
organisms. However, there are some constraints in this method. For instance, a part of 
transcriptome is usually covered with low capability in quantifying the expression (Mortazavi et 
al., 2008).   
 
There are other known methods for transcriptome analysis such as serial analysis of gene 
expression (SAGE) and massively parallel signature sequencing (MPSS) which are based on 
using cDNA libraries and sequencing (Marguerat and Bähler 2010). These methods were 
dependent on chain termination sequencing that Fredrick Sanger invented in 1977. 
 
In the beginning the aim of Sanger technique was genomic sequencing but in the 1990s scientists 
used it to sequence cDNA (Scheibye-Alsinga et al., 2009). After the sequencing technology 
development and industrialization of massively parallel sequencing technologies (so-called Next 
Generation Sequencing or Now Generation Sequencing- NGS) the cost of sequencing per base 
has remarkably decreased (Figure 10) (Lister et al., 2009).  

 
Figure 10- DNA sequencing cost from 1990 to 2010 (http://www.synthesis.cc/2010/08/ 

recent-dna-cost-and-productivity-figures-from-the-economist.html). 
 
The main difference between NGS and Sanger sequencing output is the shorter lengths of the 
sequence reads obtained by three main NGS platforms: 454 Life Sciences (a Roche company), 
the Illumina Genome Analyser (formerly called Solexa), and AB SOLiD system (owned currently 
by Life technologies) (Table 2) (Marguerat et al., 2009, Scheibye-Alsinga et al., 2009, Marguerat 
and Bähler 2010). The main challenge in using the NGS products is their assembly which needs 
complicated algorithms that are computationally intensive (Pop 2009, Marguerat et al., 2009, 
Scheibye-Alsinga et al., 2009).  

Table 2- NGS generated reads’ length (Marguerat and Bähler 2010). 
Technology Read length (nts) Year of invention 
454-pyrosequencing# 200-600 2005 
Illumine/Solexa¶ 35-100 2006 
SOLiD 25-50 2007 

# With the GS FLX Titanium series in 2008, the sequencing length increased to 400-
600 nts.  
 ¶ Hiseq 2000 system can produce reads with the length of 100 nts.  
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By evolving broad applications of NGS, the RNA-Seq approach was born; RNA-Seq has been 
used to detect alternative splicing, novel genes and transcripts, and genomic structural variations. 
RNA-Seq can measure and quantify the expression level with a higher sensitivity than other 
aforesaid methods by counting the number of reads hitting a transcript or the average number of 
hits per base (Marguerat et al., 2009). There are two parameters for expression measurement: 
reads per kilo base per million mapped reads (RPKM) (Mortazavi et al., 2008) and fragments per 
kilobase per million mapped reads (FPKM) (Trapnell et al., 2010). For calculation of these 
parameters, first, reads are realigned to transcripts and then the coverage is normalized by number 
of aligned reads -relative to all mappable reads- and length of transcripts. In FPKM, the number 
of paired reads is calculated while in RPKM single reads are considered. These estimations of 
transcript expression are in good agreement with acquired results from microarrays provided 
adequate depth of sequencing (Mortazavi et al., 2008).  
 
In addition, RNA-Seq overcomes some shortcomings of microarray transcription detection such 
as probe cross-hybridization, low sensitivity and specificity (especially for low expressed genes), 
dye-based detection issues, and probe designing constraints that limit the RNA splice detections 
and unmapped genes. Another benefit of RNA-Seq is its ability to recognize paralogous genes 
and quantifying their level of expression by read count. In addition to the advantages mentioned 
above, RNA-Seq also makes it possible to identify polymorphisms, alternative expression, and it 
is independent of a reference genome (Lister et al., 2009). 
 
As mentioned before one of the drawbacks of NGS is the short read length. Therefore, the main 
challenge in this method is its application to assembly (Mortazavi et al., 2008 and Marguerat et 
al., 2009). Hence, a read length increase would likely enable us to detect splice patterns more 
efficiently and develop de novo assembly of transcriptomes in cases that the reference genome is 
not available (Lister et al., 2009).  

1.3 RNA-Seq methodology 
RNA-Seq basically follows the DNA sequencing approach and it is applicable for all organisms 
provided that enough RNA is available. Also, it is dependent on sequencing technology. In the 
first step, it is crucial to extract mRNAs and remove the rest of RNAs especially rRNA, since 
more than 90% of RNAs in cell are in ribosomal form. There are three different methods applied 
for rRNA removal (Wilhelm and Landry 2009): 

1- The rRNA depletion kits such as RiboMinus (Invitrogen). In this method antisense 
sequence of ribosomal transcripts conjugating to either biotinylated or magnetic beads are 
used. 

2- In the poly-A enrichment, the same kind of beads as previous method is used with this 
difference that they carry oligo dT and the RNA molecules with poly-A tails will attach to 
them.  

3- Using enzymes degrading uncapped RNAs  

 
After mRNA purification, they are fragmented by either chemical or physical approaches to 
generate fragments of 200-300 nts. These fragments go through amplification by reverse 
transcriptase using random primer to generate cDNAs (Mortazavi et al., 2008, Marguerat and 
Bähler 2010).  Next, adapters are attached to cDNAs and cDNA libraries are sequenced by NGS 
technologies.  
 
The library preparation is highly important for RNA-seq as this step dictates how well the cDNA 
sequence data will mirror the complexity of the original sampled RNA. In the original protocol, 
which is specific for genomic DNA, adapters are added to double stranded DNA (dsDNA) 
fragments while the transcript is a single stranded molecule and the information on transcriptional 
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direction will be lost. Consequently, two different protocols were introduced: strand-specific and 
double-stranded.  
 
With the strand-specific protocol, the purified mRNAs are marked by different methods such as 
pre-treating with sodium bisulphate to detect the original transcript. With the double stranded, the 
original transcript is not known (Lister et al., 2009, Marguerat and Bähler 2010). 
 
After sequencing, different approaches are applied to use this information depending on genome 
availability of the organism. For model organisms, reads are usually mapped to the genome by 
software such as Bowtie and then the aligned reads are quantified by Cufflinks or ERANGE 
(Enhanced Read Analysis of Gene Expression) (Mortazavi et al., 2008). However, in non-model 
organisms (species without assembled genome), the transcriptome must be assembled de novo 
(see Appendix 8.1 for assembly approaches and some terminologies). 
 
There are some specific genomic assembly tools that have been used in different transcriptome 
analyses. For instance, SOAPdenovo software has been used for tea and whitefly de novo 
transcriptome assemblies (Wang et al., 2010 and Shi et al., 2011). However, there are some 
barriers in their application for transcriptome assembly. First, the transcriptome coverage is 
highly dependent on expression level and regular genome assembly parameters cannot be applied. 
Second, various splice variants per locus can complicate the assembly. Third, as there are 
repetitive sequences in a genome shared features in form of protein domains add ambiguity to the 
process in a transcriptome assembly (Birol et al., 2009). Hence, new assembly tools have been 
developed specifically for transcriptome assembly such as Trinity (Grabherr et al., 2011) that we 
used for muscle transcriptome assembly of an Atlantic herring individual. As a result, the 
objectives of this study are: 

1- De novo transcriptome assembly of an Atlantic herring using Illumina reads from 
mRNA captured libraries. 

2- Validation of the Trinity software by comparison to other common assembly tools. 
3- Find variation in annotated genes.  
4- Find copies of two specific genes (alpha actin and GPI). 

 
In addition to genome annotation we will provide information about gene models that will be 
mapped onto the genome. Also, it could assist the genome assembly by providing links between 
genomic contigs.  
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2 MATERIALS AND METHODS 

Figure 11 shows the flowchart followed in the C. harengus de novo transcriptome assembly 
process implemented in this study. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 11- Flowchart of the C. harengus de novo transcriptome assembly. 
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2.1 Data 
A male spring spawning herring was caught in June 2010, in the archipelago of Stockholm. The 
RNA was extracted from muscle tissue and rRNAs were depleted. The RNA preparation, library 
generation, and sequencing were done at the Science for Life laboratory in Stockholm.  
 
For the assembly of the transcriptome, we received raw reads sequenced at an Illumina HiSeq-
2000 machine as paired end reads with length of 101 nts in two fastq files: read1 and read2 (see 
Appendix 8.2 for fastq). The average insert size was 240 nts deviated between 180 and 400 nts. 
All lanes were spiked with 1% of phiX control library.  
 
Before assembly it is necessary to trim the raw reads for possible errors emerging during either 
sequencing or cloning that can affect the efficiency and reliability of assembly. The implemented 
trimming strategy was based on average quality value.  We chose a value of 30 representing 0.1% 
sequencing error (Appendix 8.2) that covers 25 nucleotides at 3’ end of reads. After removing 
these nucleotides we generated a new dataset of reads with a length of 76 nts.  
 

2.2 Contamination checking 
NGS products must be checked for probable contaminations that may have been introduced 
during library preparation, cloning, or sequencing. Thus, reads are aligned to the sequences from 
the vectors, primers, and adaptors that are used in library preparation and sequencing process. 
UniVec (ftp://ftp.ncbi.nih.gov/pub/UniVec/ downloaded 28th of March 2011) is a database that 
includes this information and it was used as a reference to check the raw reads with the SeqClean 
software (released 22nd of February 2011) (http://sourceforge.net/projects/seqclean/) from The 
Genome Institute (TGI).  

2.3 Transcriptome assembly tools 
For the transcriptome assembly we used the program Inchworm (released 20th of January 2011) 
(http://sourceforge.net/projects/inchworm/files/) individually first and later also combined with 
Chrysalis and Butterfly in a complete software package called Trinity (released 13th of March 
2011) (http://sourceforge.net/projects/trinityrnaseq/files/). All of the modules in Trinity are based 
on the de Bruijn graph algorithm, one of the most common and efficient approaches for assembly 
of next generation sequences (Appendix 8.1).  
 
We used Inchworm with k-mer equal to 21 as the optimum value, after comparing assemblies 
with different k-mers ranging from 19-29 and also based on our analysis for optimal k-mer 
estimation (Appendix 8.3). Based on the results that we had obtained from Inchworm we used k-
mer 21 as the best value to assemble the transcriptome in Trinity. 
 
The Inchworm assembly were further analyzed by merging contigs with overlapping similarities 
between generated contigs; CAP3 (released in 1999) (http://seq.cs.iastate.edu/cap3.html) is a 
software that does this job using overlap-layout-consensus (OLC) approach (Appendix 8.1). Also, 
we used a stand-alone program for scaffolding pre-assembled contigs (SSPACE), which extends 
contigs and converts them to scaffold using paired reads information. SSPACE has been 
generated for CLC-BIO assembly package by BASECLEAR Institute (released in 2010) 
(http://www.baseclear.com/sequencing/data-analysis/bioinformatics-tools/sspace/). After 
generating final assembly, we tried to remove redundant sequences by two programs: CD-HIT 
(version 4.5.4 released on 11th of March 2011 
http://www.bioinformatics.org/project/filelist.php?group_id=350) and UCLUSTAL (version 4.0 
released in 2010 http://www.drive5.com/usearch/nonprofit_form.html). 
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2.4 Assembly validation 
The number of generated contigs, their length distribution, and total assembled transcriptome 
such as N50 and N90 (Appendix 8.4) were calculated using in-house scripts (Appendix 8.5.1). 
Also, we calculated the average read depth of the assembly by this formula: 
 

                                                                                        ! = !.!
!

                                                          F 1 

where N is the number of reads, L is the length of reads, and T is the size of transcriptome. 
 
Trinity was specifically developed for de novo transcriptome assemblies and for its validation we 
used a genome assembly software, SOAPdenovo (version 1.05, released on the 14th of February 
2011) (http://soap.genomics.org.cn/soapdenovo.html), with the same k-mer of 21 to have a 
symmetrical comparison. Also, we used jellyfish (version 1.1 released 23rd of April 2011) 
(http://www.cbcb.umd.edu/software/jellyfish/) a tool for fast and memory-efficient counting of k-
mers, to retrieve the number of unique k-mer after the transcriptome assemblies were completed 
by aforesaid assemblers. 
 
One of the common analyses for assembly validation is realigning the input reads on the 
generated contigs to quantify the amount of used reads. Also, the results of such alignments can 
be used to identify genetic variation such as single nucleotide polymorphisms (SNPs) and indels. 
Software used for these tasks included: for read alignment, Mosaik (version 1.0.1388, released on 
1st February 2010) (http://bioinformatics.bc.edu/marthlab/Mosaik) and SOAPaligner (version 
2.2.0, released on 13th of August 2009) (http://soap.genomics.org.cn/), for detection of genetic 
variation we used samtools (version 0.1.7a and 0.1.12, released on 16th of November 2009 and 5th 
of November 2010, respectively) (http://sourceforge.net/projects/samtools/files/samtools/) and 
VarScan (version 2.2.5, released on 28th April 2011) 
(http://sourceforge.net/projects/varscan/files/).  
 
Moreover, we aligned the transcriptome on a draft version of the herring genome that had been 
assembled by our group using SOAPdenovo. For this alignment we used the regular nucleotide 
basic local alignment tool (BLAST) (version 2.2.25, released 31st of March 2011 2.2.25) 
(ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/). 
 
Furthermore, for some of the statistical analyses we used Excel 2010 and R (version 2.12.2, 
released 25th of February 2011). 

2.5 Gene annotation 
Gene annotation of the assemblies were performed by comparing our transcriptome with other 
database resources, such as the non-redundant (nr) protein database (set of all non-redundant 
GenBank CDS translations + PDB + SwissProt + PIR + PRF), the conserved domain database 
(CDD), and available mRNA sequences of C. harengus released by the National Centre for 
Biotechnology Information (NCBI) (ftp://ftp.ncbi.nih.gov/blast/db/). The significant hits have 
been filtered by an E-value threshold of 10-5. Two BLAST programs were used to align contigs to 
these databases: BLASTX for protein sequences and BLASTN for alignment on nucleotide 
sequences. 
 
For detailed analysis on some specific genes we retrieved genes/transcripts/ESTs of some 
organisms (medaka, stickleback, zebrafish, chicken, mouse, and human) from NCBI 
(ftp://ftp.ncbi.nlm.nih.gov/blast/db/) and the Ensembl genome browser 
(http://www.ensembl.org/info/data/ftp/index.html, downloaded 12th of April 2011). Moreover, 
for non-coding RNA analyses we used available eukaryotic tRNAs on Genomic tRNA database 
(http://gtrnadb.ucsc.edu/download.html, downloaded on 17th of June 2011). In addition to these 
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databases, for individual alignment comparisons we used the UCSC genome browser 
(http://genome.ucsc.edu/). 

2.6 Finding full length sequences  
Full-Lengther is a web tool to discover 5´ and 3´ sites of transcripts by using BLAST against 
UniProt. It considers a contig as a full-length sequence when there is a start codon before the 
alignment on protein (Figure 12a). When a contig starts after the protein with a distance of 15 aa 
from the beginning, it is called a putative full-length sequence (Figure 12b). We used this tool to 
detect those contigs that did not have significant alignment on other databases. 

 
Figure 12- (a) The query (contig/EST) starts before subject. (b) The query (contig/EST) starts after subject. Grey box 

shows the alignment region (Lara et al.).  

2.7 Gene expression 
For quantification of transcripts expression, we used FPKM and RPKM estimations. Trinity 
reported the FPKM values in the header of each transcript in final assembly and for RPKM 
calculation we used this formula: 

                                             ! = !"!!
!"

    (Mortazavi et al., 2008)                                        F 2 

 
where C is the number of aligned reads on contig, N is the total number of mappable reads, and L 
is the length of the contig. 

2.8 Multiple sequence alignment (MSA) 
Clustalx (version 2.0.10, released 10th of January 2011) (http://www.clustal.org/) were used to 
perform MSA for protein sequences. The herring contigs were translated using a web tool called 
open reading frame finder (ORF-finder; http://www.ncbi.nlm.nih.gov/projects/gorf/).  
 
All  our analyses were performed at the computer clusters at the Uppsala Multidisciplinary Centre 
for Advanced Computational Science (UPPMAX) located at Uppsala University. There are three 
main clusters in UPPMAX and we used kalkyl cluster equipped with 2.784 64-bit processor 
cores, 9.504 GB of memory, and 113 TB of disk space. (http://www.uppmax.uu.se). 
 



   

 14 

3 RESULTS 

3.1 Data trimming 
In order to assemble the Herring transcriptome, we performed a preliminary analysis on 
sequenced reads. Figure S1-4 show the average quality value of sequenced nucleotides and their 
distribution on raw reads.  

Table 3- Library information before and after trimming. 
	
  	
   Original	
  data	
   End-­‐trimmed	
  data	
   SeqClean	
  end-­‐trimmed	
  data	
  

	
  	
   Length	
  
(nts)	
  

Number	
   Total	
  length	
  
(nts)	
  

Length	
  
(nts)	
  

Number	
   Total	
  length	
  
(nts)	
  

Length	
  
(nts)	
  

Number	
   Total	
  length	
  
(nts)	
  

Read1	
   101	
   58,033,226	
   5,861,355,826	
   76	
   58,033,226	
   4,410,525,176	
   76	
   49,059,606	
   3,728,530,056	
  
Read2	
   101	
   58,033,226	
   5,861,355,826	
   76	
   58,033,226	
   4,410,525,176	
   76	
   49,121,812	
   3,733,257,712	
  
Total	
   	
   116,066,452	
   11,722,711,652	
   	
   116,066,452	
   8,821,050,352	
   	
   98,181,418	
   7,461,787,768	
  

 
From the plotted distribution of the four nucleotides per position in the reads (Figure S3 and S4) 
we observed a deviation from the random distribution (25% per nucleotide) at positions 1-12. 
This region represents the site 
 that was primed by random hexamers used in the reverse transcription process during sample 
preparation. 

3.2 Transcriptome assembly 
The first assembly attempt was done with Inchworm (Appendix 8.6.2) with differently sized k-
mers and using end-trimmed reads. By increasing the k-mer value, the number of generated 
contigs grew and the total size of the assembly showed an upward trend reaching to 79 million 
nucleotides (Mnts) in the k-mer 29 analyses (Figure 13). 

  
Figure 13- The number of contigs and total length of assembly using  

Inchworm with k-mers varied from 19 to 29. 
 
The highest N50 was observed with the k-mer 21. Also, the maximum length value between the 
assembled contigs was lowest in the assembly with k-mer 21 (21,413 nts). Based on this 
statistics, the assembly with k equal to 21 (hereafter called Inch-21) was chosen as the best 
assembly to improve in following steps. Moreover, our optimal k-mer calculation showed that a 
k-mer of 21 produces the highest number of unique k-mers -with lower computational costs and 
time- compared to other k-mers (Appendix 8.3). 
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In order to improve Inch-21, we implemented two approaches: (1) scaffolding, using SSPACE 
and (2) merging contigs with similar overlapping ends by CAP3. SSPACE used paired end 
information to bridge between related contigs (Appendix 8.6.3) but did not show any significant 
improvement and padded unknown nucleotides (Ns) in the resulting contigs because of the 
scaffolding process. CAP3 could merge contigs with identical overlapping sequences using 
default parameters (Appendix 8.6.4) and improve the Inch-21 assembly to a higher N50 value 
(385 nts) and lowered the number of contigs from 283,113 to 233,732 contigs and singletons1 
together, the total length of the CAP3 assembly decreased by seven Mnts, approximately.  
 
Since CAP3 appeared to improve the Inch-21 assembly, we concatenated all the contigs from 
different assemblies (Inch-19 to Inch-29) together in a file and used it as an input for CAP3. The 
results of this new merged assembly were promising because N50 increased to 941 nts and the 
total size was almost the same size of assembled transcriptome with k-mer 29 (79 Mnts). 
However, the assembly contained a considerable amount of chimeric structures, putting different 
genes in one sequence especially in large contigs. Posterior clustering efforts, in order to remove 
and separate these artefacts, were not successful. Also, in our contigs we detected some unrelated 
sequences including vectors, primers, and adaptors (Additional file 1). These sequences should be 
removed before using the reads for the transcriptome assembly. Thus, we decided to trim these 
sequencing features off the raw reads with SeqClean (Appendix 8.6.1) using the UniVec database 
(Table 3). While this analysis took place, Trinity was released (released 13th of March 2011). 
 
We ran two new assemblies with Trinity and a k-mer size of 21, the first using end-trimmed reads 
and another with SeqClean end-trimmed reads (Table 3) (see appendix 8.6.5 for Trinity 
command). The numbers of contigs as well as the total length of the assembly decreased 
dramatically compared to CAP3-Inch-21 assembly (Figure 14). In addition to number of contigs, 
The N50 length increased from 385 nts to 421 nts for end-trimmed read assembly and to 419 nts 
for SeqClean end-trimmed read assembly. Trinity removed the chimeric contigs consisting of two 
different transcripts but the lengths of the largest contigs were almost halved and the 
transcriptome size decreased to 40 Mnts with a read depth of approximately 142x. As a result, 
Trinity produced a better assembly by using paired end information based on the added modules 
(Chrysalis and Butterfly).  

 
Figure 14- Number of contigs and total length of different assemblies. 

 
Before specific transcriptome assembly software had been developed, genome assemblers were 
used for most transcriptome assembly studies. In order to compare how genome assemblers 
would perform compared to Inchworm and Trinity, we assembled the herring transcriptome with 
SOAPdenovo, a genomic assembler (Appendix 8.6.6). Table 4 shows statistics of this assembly 
                                                   
1	
   In assemblers with de Bruijn graph algorithm, the singletons are referred to contigs that were not merged 
together to build scaffolds due to lack of supporting paired end information whereas in assemblers with OLC 
algorithm, the singletons are contigs without any overlapping similarities.	
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beside all our other assemblies and their improvements after post-processing steps with SSPACE 
and CAP3.   
 
 

Table 4- Transcriptome assemblies with different k-mer size and software. 
Input	
   K-­‐mer	
   #Contigs	
   Sum	
   N50	
   N90	
   Min	
   Median	
   Mean	
   Max	
   GC%	
   #N	
  

End-­‐
Trimmed	
  

Inch-­‐19	
   290,416	
   71,741,440	
   287	
   117	
   100	
   151	
   246	
   40,461	
   51.21	
   0	
  

CAP3-­‐Inch-­‐19	
   272,390	
   69,209,528	
   304	
   118	
   100	
   153	
   254	
   40,461	
   51.10	
   0	
  

Inch-­‐21	
   283,117	
   73,343,165	
   319	
   117	
   100	
   149	
   259	
   21,413	
   51.13	
   0	
  

SSPACE-­‐inch-­‐21	
   280,460	
   73,344,103	
   326	
   117	
   100	
   148	
   261	
   21,413	
   51.13	
   8,335	
  

CAP3-­‐Inch-­‐21	
   233,732	
   66,012,398	
   385	
   120	
   84	
   155	
   282	
   21,413	
   50.82	
   0	
  

SSPACE-­‐CAP3-­‐inch-­‐21	
   231,365	
   66,085,706	
   397	
   120	
   100	
   155	
   285	
   21,413	
   50.82	
   8,832	
  

Inch-­‐23	
   293,123	
   74,709,284	
   309	
   116	
   100	
   146	
   254	
   35,818	
   51.13	
   0	
  

CAP3-­‐Inch-­‐23	
   226,666	
   64,741,183	
   399	
   120	
   92	
   153	
   285	
   35,818	
   50.70	
   0	
  

Inch-­‐25	
   304,666	
   75,919,293	
   293	
   115	
   100	
   144	
   249	
   63,566	
   51.15	
   0	
  

CAP3-­‐Inch-­‐25	
   226,392	
   64,164,454	
   396	
   119	
   100	
   152	
   283	
   63,566	
   50.65	
   0	
  

Inch-­‐27	
   321,484	
   77,610,121	
   274	
   114	
   100	
   142	
   241	
   44,562	
   51.23	
   0	
  

CAP3-­‐Inch-­‐27	
   225,062	
   63,375,072	
   392	
   119	
   73	
   151	
   281	
   44,562	
   50.63	
   0	
  

Inch-­‐29	
   337,270	
   78,880,555	
   257	
   112	
   100	
   139	
   233	
   59,175	
   51.26	
   0	
  

CAP3-­‐Inch29	
   225,769	
   62,731,667	
   380	
   118	
   87	
   150	
   277	
   59,175	
   50.63	
   0	
  

All-­‐cap3	
   165,676	
   78,938,639	
   941	
   173	
   75	
   221	
   476	
   23,593	
   50.52	
   0	
  

SOAPdenovo-­‐21	
   168,311	
   41,720,868	
   308	
   121	
   100	
   161	
   247	
   5,128	
   49.42	
   531,798	
  

Trinity-­‐21	
   137,708	
   42,379,085	
   421	
   132	
   100	
   177	
   307	
   9,497	
   49.77	
   0	
  

SeqClean	
  
SOAPdenovo-­‐21	
   85,575	
   29,084,678	
   477	
   142	
   100	
   215	
   339	
   7,141	
   50.70	
   135,437	
  

Trinity-­‐21	
   131,788	
   40,342,038	
   414	
   132	
   100	
   178	
   306	
   10,762	
   49.94	
   0	
  

 
SOAPdenovo generated a lower number of contigs than Inchworm and higher than Trinity using 
end-trimmed data. On the other hand, when using SeqClean reads, SOAPdenovo assembled a 
lower number of contigs. In both cases the assembled transcriptome size was almost half of that 
obtained with Trinity, including considerable amount of unknown nucleotides (N). Also, the 
largest contig measured showed a remarkable difference compared to both Inchworm and Trinity 
outputs. Hence, we conclude that Trinity generated a more reliable assembly.  
 
Also, we compared the assembler performance based on the unique k-mer frequency using 
jellyfish software (Appendix 8.6.7). The results of this analysis showed that the generated 
transcriptome by Trinity and Inchworm have the maximum unique k-mer (100%) or the least 
repetitive sequences in assembly while SOAPdenovo transcriptome included more repetitive 
sequences. 
 
In order to assess the single-base accuracy of the assembled transcriptome, we realigned all reads 
on the assembled transcriptome by SOAPaligner (Appendix 8.6.8). Between 73.53% and 77.24% 
of reads were aligned with the maximum proportion of reads (77.24%) being aligned to the 
Trinity-SeqClean-21 assembly (Figure 15). In comparison to other assemblies, most aligned reads 
on Trinity-SeqClean-21 assembly were single end.  
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Figure 15- The proportion of aligned reads on contig using SOAPaligner. 

  
As a control in sequencing, all Illumina lanes were spiked with phiX, a circular genome with the 
length of 5.4 kb. In a successful assembly, the phiX genome should be assembled in one contig. 
Trinity assembled the phiX genome in one contig (comp82_c0) while Inchworm, SSPACE, and 
CAP3 had partially assembled this genome in different contigs.  
 
A high number of contigs in our assembly (57.10%) were smaller than 200 nts and we needed to 
remove redundant sequences. For this aim, two different clustering software were used: CD-HIT 
(Appendix 8.6.9) and UCLUSTAL (Appendix 8.6.10). Trinity also clusters similar sequences 
based on the de Bruijn graph and puts them together into one component. The number of 
components was 118,411 while the two other programs did not show any clustering performed 
(131,788 contigs).  The multi-contig components represent transcripts from duplicated 
(paralogous) genes, splice variants, or redundancy. The number of members within clusters of 
Trinity varied between 1 and 8. However, still the number of components is considerably high 
and despite the fact that the clustered members should have similarities, comparisons on 
components with 8 members did not show any significant similarities among them and some of 
them had hits to different genes. Nonetheless, annotation results could help to validate a 
proportion of assembled contigs without any redundancy. 

3.3 Gene annotation 
For this part we used BLAST (Appendix 8.6.11) to align assembled contigs from Trinity-
SeqClean-21 to various databases. 

3.3.1 BLAST on available herring genes 
Among 66 non-mitochondrial genes available at the NCBI database, 41 subjects had alignment 
with transcriptome contigs with average identity of 94.59% showing proper assembly. However, 
among these subjects, 4 genes were unexpectedly aligned to different rRNA subunits.  
 
One of the transcripts (comp20_c0) had almost complete alignment to 18s rRNA (X98845.1) 
with 98.62% identity and another to 28s rRNA (c1, D1, and c2 Domain) with 99% identity 
covering 98% of this query. In addition, two other contigs had partial alignment to 28s rRNA (c1, 
D1, D2, and c2 Domain). The rest of hits were related to muscle specific genes such as alpha 
actin (GQ455648 for fast myotomal muscle and EF495203.2 for slow myotomal muscle) with 
identity of 99.74% and 87.23%, respectively (Additional file 2).  
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Also, we checked the quality of our transcriptome assembly by comparing our contigs to 
mitochondrial protein-coding genes available in GeneBank. There are 13 mitochondrial genes 
that were assembled in five contigs and this fusion is because of the compact structure of 
mitochondrial genome (Table 5). 

Table 5- Contigs that covered all 13 mitochondrial protein-coding genes. 
Contig	
   Gene	
  Name	
   GeneID|Acc_ID	
   Identity%	
  
comp212_c0_seq1	
   NADH	
  dehydrogenase	
  subunit	
  1	
   gi|148762521|dbj|BAF63971.1|	
   96.91	
  
comp212_c0_seq1	
   NADH	
  dehydrogenase	
  subunit	
  2	
   gi|148762522|dbj|BAF63972.1|	
   94.10	
  
comp30_c0_seq1	
   Cytochrome	
  c	
  subunit	
  1	
   gi|148762523|dbj|BAF63973.1|	
   95.54	
  
comp30_c0_seq1	
   Cytochrome	
  c	
  subunit	
  2	
   gi|148762524|dbj|BAF63974.1|	
   95.22	
  
comp38_c0_seq1	
   NADH	
  dehydrogenase	
  subunit	
  6	
   gi|148762532|dbj|BAF63982.1|	
   97.63	
  
comp38_c0_seq1	
   NADH	
  dehydrogenase	
  subunit	
  5	
   gi|148762531|dbj|BAF63981.1|	
   95.52	
  
comp38_c0_seq1	
   Cytochrome	
  c	
  subunit	
  b	
   gi|148762533|dbj|BAF63983.1|	
   94.74	
  
comp40_c0_seq1	
   NADH	
  dehydrogenase	
  subunit	
  4L	
   gi|148762529|dbj|BAF63979.1|	
   96.94	
  
comp40_c0_seq1	
   Cytochrome	
  c	
  subunit	
  3	
   gi|148762527|dbj|BAF63977.1|	
   95.02	
  
comp40_c0_seq1	
   NADH	
  dehydrogenase	
  subunit	
  4	
   gi|148762530|dbj|BAF63980.1|	
   94.46	
  
comp40_c0_seq1	
   NADH	
  dehydrogenase	
  subunit	
  3	
   gi|148762528|dbj|BAF63978.1|	
   92.55	
  
comp85_c0_seq1	
   ATPase	
  subunit	
  6	
   gi|148762526|dbj|BAF63976.1|	
   96.44	
  
comp85_c0_seq1	
   ATPase	
  subunit	
  8	
   gi|148762525|dbj|BAF63975.1|	
   90.91	
  

3.3.2 BLAST on non redundant (nr) protein database 
Transcriptome contigs were aligned to the nr database of protein sequences by BLASTX and 
returned 43,081 (32.69% of all contigs) unique hits with E-value less than 1.0E-5. 33.88% of the 
hits had strong homology (E-value < 1.0E-50) and the rest had a homology varying between 
1.0E-5 and 1.0E-50. The unique hits, with identity score ranging from 16% to 100%, 
corresponded to 24,669 subjects in nr database and 13.85% of them had an identity bigger than 
90%. 16,750 subjects were represented by single contig and 7,919 had hits with more than one 
contig. The most frequent hit (67) was related to the Titin (TTN) protein (XP_001923800) from 
zebrafish. TTN is a giant protein with 360 exons coding for 32,757 aa and it is responsible for 
passive elasticity of muscle (Steffen et al., 2007). This protein has more than 300 repeated 
conserved domains where the immunoglobulin domain is the most frequent and conserved one 
(Garcia et al., 2009).  
 
Because of the short length of queries and lack of genomic information, most contigs did not have 
any significant hit. The query length was crucial in alignment on nr subjects. As shown in figure 
16 only 26.66% of queries shorter than 500 had significant hit while this value increased 
considerably to more than 90% in contigs larger than 1,500 nts.  
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Figure 16- Effect of query length on percentage of matches with cut-off value of 1,0E-5. 

 
Most of the best hits (74%) were from other fish and among them zebrafish had the highest 
proportion (43.58%) of similar transcripts to Atlantic herring transcripts (Figure 17). On average, 
aligned regions covered 59.81% of contigs´ length consisting of 27.7% with coverage less than 
60% and 72.3% with coverage more than 60%.  
 

 
Figure 17- Bar chart) Species distribution of the best hits  

from nr database. Pie chart) species distribution among fish. 

3.3.3 BLASTX against conserved domain database (CDD) 
Alignment on CDD resulted in 159,320 hits with E-value less than 1.0E-5 from which, 12.90% of 
our contigs had similarity to 5,988 conserved domains in CDD (Additional file 3). The most 
frequent domain was cd00204, ankyrin (ANK) repeat. Ankyrin is a 33 amino acids tandem repeat 
occurring in diverse proteins in eukaryotes and involves in protein-protein interactions (SMART). 
Muscle ankyrin protein family (MARP) has key role in muscle function and structure, however 
the activity of this family is not accurately known. MARPs affect gene expression program of 
skeletal muscle, particularly in response to stimuli and injuries (Barash et al., 2007). 
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3.3.4 BLASTN on Oryzias latipes (medaka) UniGene and Danio rerio (zebrafish) 
muscle ESTs 

43,081 contigs had an alignment to the nr database but all genes have not been annotated and 
included in this database. Therefore, we aligned the rest of our contigs (88,707) to medaka ESTs 
and zebrafish muscle ESTs. In alignment against medaka ESTs, we received 15,002 significant 
hits with E-value less than 1.0E-5 from which 770 contigs had unique hits with average identity 
of 90.81% ranged from 79 to 100%. For zebrafish, among 12,542 significant hits, 827 contigs had 
unique hits with average identity of 91% varied between 80% and 100%. In total, 1,597 contigs 
had non-redundant hit on these datasets that was not present among any nr hits before.   

3.3.5 Finding full length sequences 
We used a web tool, Full-Lengther, to detect contigs corresponding to 5´ and 3´ sites of a protein 
from un-annotated contigs. This analysis resulted in 16.8% full-length and 1.48% putative length 
from un-annotated contigs. In total, with other unique hits from other sources, 47.09% of all 
contigs were reliable (Table 6).  
 

Table 6- Reliable number of contigs and their proportion resulted from 
BLAST against nr, medaka ESTs, zebrafish ESTs, and Full-Lengther.  
Source #Contigs Proportion of contigs (%) 

nr (protein) 43,081 32.69 
Full-lengther  (Full-Length/Putative) 17,391 13.20 
medaka (EST) 770 0.58 
zebrafish muscle (EST) 827 0.62 
Total 62,069 47.09 

3.3.6 Alignment on eukaryotic tRNAs 
In total 62,069 contigs were collected as reliable transcripts. In order to check the efficiency of 
mRNA purification we aligned remained contigs (61,719) against eukaryotic tRNAs. The 
outcome of this alignment was 17 contigs with average identity of 96%.  

3.4 Gene expression 
FPKM and RPKM are parameters representing the relative expression of each contig/transcript 
among all the generated contigs/transcripts in the final assembly. FPKM is based on paired reads 
alignment but as we only received 0.14% of total reads in paired end alignment when realigning 
the reads on Trinity-SeqClean-21 assembly. Therefore, we calculated RPKM for each contig by 
formula 1. Figure 18 shows the contigs length and the RPKM values distribution (in logarithmic 
scale) that ranged between 0.06 and 43,394.54 with average of 6.66.  
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Figure 18- log10 (RPKM) values versus length of contigs.  

 
The information of highly expressed transcripts (log (RPKM) ≥4) along their significant hit on nr 
and their annotations are summarized in table 7.  
 

Table 7- Highly expressed transcripts and their information from BLASTX on nr.  
 

Contig RPKM Length 
(nts) 

nr hit 

Comp0_c0 43,394.54 483 mCG146230 [Mus musculus] 
Comp1_c0 39,100.59 1,545 actin§ [Danio rerio] 
Comp2_c1 38,669.11 453 muscle creatine kinase b [Danio rerio] 
Comp3_c0 37,306.62 1,512 Fructose-bisphosphate aldolase A 

[Dicentrarchus labrax] 
Comp0_c3 36,905.84 1,104 muscle-type creatine kinase CKM1 

[Pagrus major] 
Comp4_c0 36,344.59 716 creatine kinase [Salmo salar] 
Comp5_c1 26,436.65 6,013 myosin heavy chain 4 [Danio rerio] 
Comp7_c0 23,885.42 3,253 Sarcoplasmic/endoplasmic reticulum 

calcium ATPase 1 [Makaira nigricans] 
Comp6_c0 22,567.10 281 Ckmb protein [Danio rerio] 
Comp11_c0 19,790.14 1,341 glyceraldehyde 3-phosphate 

dehydrogenase [Oncorhynchus mykiss] 
Comp15_c0 10,888.38 1,016 fast mytomal muscle troponin T 

isoform b (TNNTb) [Salmo salar] 
Comp9_c0 10,782.95 1,746 Tropomyosin [Epinephelus coioides] 

 

 § Find the explanation about actin in section 3.6. 
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3.5 Glucose 6-phosphate isomerase (GPI) 
A previous study showed that herrings are polymorphic at GPI locus (Andersson et al., 1981). 
Therefore, we chose to study this gene in order to detect possible variations. In fish, one to five 
loci code this gene but mostly two genes are responsible for GPI production (reviewed in Henry 
and Ferguson 1987). These genes are GPIa (553 aa) and GPIb (553 aa) in teleost fish. In 
zebrafish, pairwise comparison between GPIa and GPIb showed 77.6% identity on nucleotide 
level and 82.4% on peptide (Lin et al., 2009).  We found a contig (comp86_c0_seq1: 2,106 nts 
long) with 79.67% identity to zebrafish GPIa (ensemble acc-id: ENSDART00000022437). In 
order to identify whether our contig is GPIa or GPIb we performed a MSA among teleost fish and 
some other organisms with Clustalx. We translated comp86_c0 to amino acid sequence with 
ORF-finder resulting in a protein sequence with a length of 553 amino acids (ORF+3). We 
retrieved other proteins from the Ensemble genome browsers (Find accession IDs in additional 
file 4). 
 
MSA revealed that most teleost fish encode proteins with a length of 553 aa, with the exception 
of fugu GPIb and European eel GPIa having a deletion at position 553. Lin and colleagues  (Lin 
et al., 2009) had reported this deletion in fugu GPIa and smelt GPIb. Among all amino acid sites, 
325 sites (58.77%) were identical and all of active sites were evolutionary conserved across all 
species including residues interacting with phosphate substrate binding (Ser159, Ser209, Lys210, 
Thr211, and Thr214) and residues participating in catalytic activity (Glu216, Arg272, His388, 
and Lys518) (Additional file 5). The phylogenetic analysis showed that GPIa and GPIb were 
clustered separately and highlights the gene duplication occurred in teleost fish as compared to 
mammals. The contig comp86_c0 clustered with GPIbs with high bootstrapping value (990), 
meaning that herring transcript assembled is evolutionary close to GPIbs (Figure 19).  

 
Figure 19- Phylogenetic tree of GPI amino acid sequences. Bootstrap values greater than  

50% have been indicated next to their branches. Red: GPIb, Purple: GPIa, Green: Comp86_c0 ORF (+3). 
 
We realigned reads on comp86_c0 by MosaicAligner (Appendix 8.6.12) and made a pileup file 
using samtools (Appendix 8.6.13). Afterward, we called SNPs/indels by VarScan software 
(Appendix 8.6.14). Since the transcriptome was generated from a single fish we expected to find 
about 50% of the reads from each allele at heterozygous positions. Therefore, we focused on 
frequencies close to this value and p-value less than 0.05. Based on these cut-off values, we 
detected four SNPs on this contig (Table 8). Two of them were located in the ORF region and one 
of them represented a non-synonymous substitution at position 351 that replaced Asparagine (N) 
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by Aspartic acid (D). Other variations were located in 5´ (position 53) and 3´ (position 2,082) 
UTRs.  
 

Table 8- Detected SNPs in comp86_c0 (herring GPIb). 
 

 Position Ref Reads1 Reads2 VarFreq Pvalue VarAllele Original (+3) Variant (+3) 

comp86_c0 53 A 1,630 1,158 41.54% 0 C NOT IN ORF NOT IN ORF 
comp86_c0 351 A 3,842 3,357 46.63% 0 G AAC(N) GAC(D) 
comp86_c0 686 C 3,360 2,983 47.03% 0 T TTC(F) TTT(F) 
comp86_c0 2,082 G 375 274 42.22% 2.95E-99 A NOT IN ORF NOT IN ORF 

  

3.6 Alpha actin 
Contig comp1_c0 had almost complete identity with the already annotated herring alpha actin in 
fast myotomal muscle (GQ455648.1) and high identity with slow myotomal alpha actin 
(EF495203.2). By ORF-finder we found an ORF (-3) with a length of 377 aa. We used this 
sequence with alpha-skeletal actins (ACTAs) and alpha-cardiac actins (ACTCs) from human, 
zebrafish, nematode, snake, mouse, and chicken for MSA. Surprisingly, the MSA analyses with 
zebrafish actins showed identical alignment with alpha-cardiac actin (cfk, AAO38846.1 and 
ACTC, CAQ15402.1). We compared these genes in Ensembl and NCBI and observed that they 
differ in two residues, 239 and 351. Therefore, we performed another MSA with a new set of 
sequences (for accession IDs see additional file 4) resulted in identical alignment with zebrafish 
ACTA1b. 
 
Alpha actin has three conserved domains: ATP binding with six active sites, Gelsolin with nine 
active sites, and Profilin with 11 active sites. The MSA showed that all of these active sites have 
been conserved across all species.  
 
As GPI we realigned reads on contig comp1_c0 with the same pipeline and parameters to find 
SNPs. Results showed five synonymous mutations in the ORF region and a three nucleotides 
deletion in the beginning of the contig corresponding to 3´ UTR region of this gene (Table 9).  

Table 9- Detected SNPs/indel in comp1_c0. 
Chrom Position Ref Reads1 Reads2 VarFreq Pvalue VarAllele Original (-3) Variant (-3) 
Comp1_C0 371 G 3,999 3,995 49.97% 0 A GAC(D) GAT(D) 
Comp1_C0 374 G 3,993 3,992 49.99% 0 A TAC(Y) TAT(Y) 
Comp1_C0 893 C 4,618 3,377 42.24% 0 G CTG(L) CTC(L) 
Comp1_C0 1,130 C 3,813 4,180 52.30% 0 G CTG(L) CTC(L) 
Comp1_C0 1,133 G 3,745 4,242 53.11% 0 T CCC(P) CCA(P) 
Comp1_C0 157 T 7,032 2,672 38.00% 0 -CAA NOT IN ORF NOT IN ORF 

4 DISCUSSION 

RNA-Seq is an efficient and cost-effective approach to characterize a transcriptome, 
especially in non-model organisms. This is the first attempt to study the transcriptome of 
Atlantic herring fish using NGS technology. Previous studies have been mainly based on a 
set of genes to characterize the population structure in different stocks of herring. In this 
study the herring transcriptome was assembled in parallel to the genome assembly, with the 
purpose of obtaining concise information about this sequenced individual. These results will 
be used for quantification of variation in pools of herring from different regions, based on 
former studies by Andersson and colleagues (1981) and Ryman and colleagues (1984).  
 
We received 116,066,452 reads with total length of 11,722,711,652 nts produced by Illumina 
Hiseq 2000. 25 nucleotides in the end of the reads had low quality was therefore trimmed. 
Furthermore, the first 12 nucleotides at 5´ ends indicated a biased distribution compared to 
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other positions along reads (Figure S3 and S4). There are two possible reasons for this 
feature: first, this length corresponds to the random primer that is used in sequencing and 
these primers are either pseudorandom or have some favoured sites. Second, RNAs form a 
secondary structure at room temperature inhibiting the priming (Mortazavi et al., 2008). 
Although this distribution deviated from the random distribution, it contained some biological 
information of transcripts. Therefore, we used reads without trimming their 5´ ends. 
 
Our data had some contaminations of vectors, adaptors, and primers that are possibly due to 
introduced errors during library preparation or sequencing. The presence of primers in raw 
data is because of primer dimer formation. Consequently, suspicious reads were filtered out 
and we used cleaned reads to assembly.  
 
We applied various strategies using new tools to generate transcriptome assembly. Initial 
results from Inchworm and the study on optimal k-mer showed that the best size is 21; hence 
posterior assemblies were performed by this value1. However, large contigs in Inchworm 
assemblies was found to consist of several unrelated transcripts. Two new modules in Trinity 
(Chrysalis and Butterfly) resolved afterwards these chimeric contigs by using paired end 
information.  
 
The number of unique k-mer is an indicative of the quality of the assembly; the higher 
proportion the better assembly. In other word, this value shows how many times a k-mer has 
occurred in transcriptome/genome. Trinity and Inchworm showed that all of the possible k-
mers in assembly are unique while SOAPdenovo had lower proportion of unique k-mers.  
 
There are some evidences that highly support the good quality of our transcriptome assembly, 
including assembly of all mitochondrial genes, contigs alignment on 70% of previously annotated 
herring genes in NCBI with average identity of 94%, and assembly of phiX genome in one 
contig. Additionally, 32.7% of contigs had unique hit to nr database that is close to annotated 
proportion of other fish transcriptome studies (European eel, Southern platyfish and guppy) 
(Coppe et al., 2010, Zhang et al., 2001, and Fraser et al., 2011). The coverage that we have in this 
study is remarkably higher than other de novo transcriptome studies such as those for viviparous 
eelpout, lake sturgeon, rainbow trout, guppy, and European eel (Kristiansson et al., 2009, Coppe 
et al., 2010, salem et al., 2010, and Fraser et al., 2011). One reason for this difference is that 
Illumina sequencing technology generates high number of reads while in aforesaid studies 454 
technology were used that generates longer reads but less number compared to Illumina. 
 
The result of alignments on eukaryotic tRNA resulted in a few number of contigs but with higher 
average read depth than the whole transcriptome. Most of these hits were mitochondrial tRNAs 
and assembly of them together with other mitochondrial transcripts is because of the compact 
structure of mitochondrial genome. To confirm the efficiency of ploy-A selection of our sample, 
further studies are required for other kinds of non-coding RNAs. 
 
In general, 47.09% of our contigs have been annotated or validated, based on their comparison to 
nr, medaka ESTs, zebrafish muscle ESTs, and contigs that were reported by Full-Lengther (this 
set matching is hereafter called known). Table 10 lists the information about these contigs and the 
other group without any reliable result from alignment against aforesaid databases (so-called 
unknown).  

                                                   
1 Study on optimal K-mer showed that k-mer size is correlated to genome/transcriptome size. However, 
following studies is demanding by taking sequencing depth into account. 
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Table 10- validated and non-validated contigs from Trinity-SeqClean-21 assembly. 
Subset #Contigs Sum N50 N90 Min Median Mean Max GC%	
   Coverage 
Known 62,069 27,665,725 685 183 100 264 445 10,762 51.50	
   201.5 
Unknown 69,719 12,676,313 178 116 100 147 181 3,648 46.58	
   15.5 
 
The known contigs subset has higher N50, N90, mean, and total size compared to the unknown 
subset. Also, the GC content is significantly lower in the unknown subset indicating these contigs 
possibly have a higher proportion of non-coding sequences. Comparison between cold-blooded 
and warm-blooded vertebrate on mosaic structure revealed that GC content in introns is 
significantly lower than exons (Melodelima and Gautier 2008 and Fortes et al., 2007). As a result, 
these contigs can be introns due to either retained intron features or they are from pre-mRNA 
before removing introns by spliceosome (Brown, 2002). Also, all the genes have not been 
annotated and some of these contigs could be novel transcripts.  
 
In addition, unknown contigs can be UTRs of transcripts since the alignment between unknown 
and known subsets resulted in some significant hits showing some overlaps between contigs. 
There are two explanations why UTRs may have not been combined with the rest of related 
transcripts in known subset. First, after trimming we lost some part of our data containing paired 
information between reads and due to lack of this information, related contigs could possibly not 
combine together. Also, this is supported by the low proportion of paired end alignments 
contained in Trinity-SeqClean-21 compared to other assemblies (Figure 14). Second, although we 
modified the k-mer size from 25 to 21 for Inchworm, it seems that next modules (Chrysalis and 
Butterfly) continue by k-mer size of 25 as a default value and in these steps a minimum alignment 
size of 25 is required while the assembly was performed by a k-mer size of 21.  
 
Nonetheless, the improvement in transcriptome assembly by Trinity was remarkable, in terms of 
better N50 (414 nts) and total size (40 Mnts). All available teleost fish transcriptome are whole 
body transcriptome and their size is larger compared to our assembly but the total size of herring 
muscle transcriptome is in vicinity to medaka and stickleback and almost half compared to 
zebrafish and fugu (Table 11). The transcriptome is larger in the highly duplicated genome of 
zebrafish and the alternative splicing events (AS) are less than other teleost fish, i.e. AS number 
show an inverse correlation to the zebrafish genome size. For instance, alternative splices per 
gene is 17% in zebrafish while in medaka and fugu it is 31,2% and 43,2%, respectively (Lu et al., 
2010).  

Table 11- Transcriptome assembly of some teleost fish. 
 #Contigs Transcriptome 

size (nts) 
N50 
(nts) 

Maximum 
(nts) 

GC% 

Zebrafisha 47,138 87,699,104 2,518 93,957 46.26 
Medakaa 24,662 38,241,640 1,883 78,426 49.63 
Sticklebacka 27,628 45,677,827 1,933 78,390 55.03 
Fugua 48,003 91,869,840 2,370 65,562 53.95 
Guppya 54,987 25,534,864 846 3,571 NAb 

Atlantic herringc  131,788 40,342,038 414 10,762 51.50 
a Whole body transcriptome 
b Not available 
c Muscle transcriptome 

 
Butterfly can identify isoforms of transcripts but in our assembly it failed to detect any of them. It 
can be due to the k-mer setting previously described. One of the complementary modules 
developed by M. Grabherr (Broad Institute) can detect these features, though it has not been 
released till now.  
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RNA-seq enable us to quantify the expression of a gene more precisely than microarrays. In this 
study we used RPKM parameter for this quantification resulted in some genes that are highly 
expressed in muscles (Table 7). Among these transcripts we had hit to mCG146230, a sequence 
from the mouse whole genome shotgun sequencing project that had partial similarity to human 
creatine kinase, one of the key enzymes in skeletal muscle (CKM) and other tissues that consume 
ATP rapidly. This gene family is responsible for transferring phosphate from creatine 
phosphokinase to ADP (Wallimann et al., 1992). There are at least four genes in this family: 
cytoplasmic, skeletal muscle, cardiac muscle, and brain specific (reviewed in Harder and 
McGowan 2001). In total, five contigs (comp0_c0, comp0_c3, comp2_c1, comp4_c0, and 
comp6_c0) had significant alignment on CKM (Table 7). We aligned all of these contigs on 
zebrafish genome at UCSC genome browser and found hits for CKMa (comp0_c0, comp0_c3, 
comp2_c1, comp4_c0, and comp6_c0) located on chromosome five and CKMb (comp0_c0, 
comp0_c3, comp4_c0, and comp6_c0) located on chromosome 15 (Figure S5). 
 
The reason that these contigs were not combined in one contig might be due to different copies of 
this gene and that they are possibly representing different isoforms of CKM. Another explanation 
for the broad distributed sequence of CKM in multiple contigs is the lack of paired end 
information after trimming by SeqClean, since contaminated reads were removed from raw data. 
In other word, reads that built these contigs are mainly single rather than paired and it was also 
indicated in read realigning on all the contigs (Figure 14).  
 
Fructose-bisphosphate aldolase was also mong nr subjects that had high similarity (88%) with a 
transcript (comp3_c0) with high RPKM value (37,306.62). This gene is a class of three aldolase 
classes and is responsible of converting fructose into dihydroxyacetone-phosphate and is one of 
the key enzymes in glycolysis and actin dynamics (St-Jean et l., 2007).  
 
Likewise, myosin heavy chain belongs to a conserved multigene family and it provides energy 
sources for diverse motile activities including muscle contraction. It is found abundantly in 
skeletal muscle generating energy for muscle movement by ATP hydrolysis and its ATPase 
activity depends on speed of contraction  (reviewed in Weiss et al., 1999). Contig comp5_c1 had 
high similarity (83%) with this gene. 
 
Ca+2 is a crucial ion for muscle activity and many other cellular processes. 
Sarcoplasmic/endoplasmic reticulum calcium ATPase 1 mediates the sequestration of calcium for 
skeletal muscle relaxation (Adachi et al., 2004) and contig comp7_c0 with high RPKM value 
(23,885.42) showed high similarity (85%) to this gene. 
 
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a housekeeping gene involved in basic 
cell maintenance biological function and contig comp7_c0 was highly similar (92%) to this gene. 
This enzyme participates in glycolysis path that breaks down glucose for energy (Casadei et al., 
2011).  
 
Actin, tropomyosin, and troponin are core components of muscle contraction. Troponin t (TNNT) 
is one of the troponin complex subunits, which regulates muscle contraction by mediating Ca2+-
dependent interaction between actin and myosin (Ferrante et al., 2011). TNNT is 
differentially expressed in cardiac, slow, and fast skeletal muscle but its main role is anchoring 
the complex to actin filament by tropomyosin (Fu et al., 2009 and Ferrante et al., 2011). Three 
transcripts (comp1_c0, comp15_c0, and comp9_c0) with large RPKM values showed high 
similarities to these genes (Table 7).  
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To summarize, all these transcripts with high RPKM values, corresponds to specific genes 
expressed in muscles makes perfect sense for a muscle transcriptome. 
 
GPI is a key enzyme in glycolysis catalysing the conversion of glucose-6-phosphate into fructose-
6-phosphate. Beside this intracellular metabolic role it also has extracellular activities (reviewed 
in Lin et al., 2009). For instance, it acts as neurotropic factor when secreted by T-cells during 
embryonic development and it is a vital enzyme for embryo survival (Gurney 1986, Chaput et al., 
1988). In phylogenetic analysis the herring transcript clustered with GPIbs. Also, GPIb is highly 
expressed in skeletal and cardiac muscle. It explains that our transcript is GPIb while GPIa is 
mainly expressed during embryo development (Lin et al., 2009).  
 
One of the detected SNPs in GPIb indicated a non-synonymous mutation caused substitution of 
Asparagine by Aspartic acid. This mutation affects the isoelectric point (pI) of the protein, a 
parameter that had been previously used by Andersson et al. (1981) to detect different variant of 
GPI in herring fish by starch gel electrophoresis of tissue extracts. 
 
We expect to find gene paralogs on different locations of genome. Although the genome 
assembly is not complete yet, we aligned transcripts corresponding to GPIb and actin on draft 
version of genome assembly by BLASTN. For GPIb, we found significant hits on two scaffolds 
(scaffold176474 and scaffold69157) and partial alignments on some singletons. The aligned 
region on scaffolds covered 33% and 41.12% of transcriptome contig, respectively. This low 
coverage is because of the high number of Ns in genomic scaffolds: 34.7% in scaffold176474 and 
61.41% in scaffold69157. The alignment on some singletons were identical, in regions that 
scaffolds had Ns. Therefore, it indicates that we not only can identify the gene copies on the 
genome but also this kind of alignments may assist the genome assembly. As a result, the 
alignment on two different scaffolds corresponds to copies of this gene. We did the same for 
other transcript that had a high similarity to alpha actin but the result was not as informative as 
for GPI. After the genome assembly is completed we can address this issue about actin and other 
gene families.  
 
Actin is a multigene family with six members: alpha-skeletal, alpha-cardiac, alpha-smooth 
muscle, gamma-smooth muscle, beta-cytoplasmic, and gamma-cytoplasmic. Actins are important 
for cell motility, cytoskeleton and muscle contraction (Bertola et al., 2008) and this family is one 
of the most well conserved families in vertebrates (Vandekerckhove et al., 1981). Our 
comparisons between zebrafish ACTA1bs annotations from Ensembl and NCBI indicated two 
mutations at positions 239 E>G and 351 L>P. The E substitution by G can affect the structure and 
isoelectric charge of the protein. Since G is the smallest amino acid a change to that amino acid 
may cause turns and breaks in the secondary structure. It is also a neutral amino acid while E is a 
hydrophilic amino acid and sits in helices (Murray et al., 2003). Therefore, based on this 
explanation and description of this entry on NCBI, we think it might be an erroneous annotation 
but we need to do further investigations.  
 
The contig comp1_c0 representing the alpha actin had two significant hits in the NCBI database 
on two annotated alpha actins in herring that both of them had a length of 377 aa but their 
nucleotide sequence were different. This transcript was identical with GQ455648 (fast myotomal 
muscle) and MSA analysis showed that this contig is identical with zebrafish skeletal alpha actin 
isomerase b (ACTA1b).  
 
The spawning time affects the muscle development in embryonic stage and the temperature 
regime during this period can have a long-term effect on skeletal muscle growth in adults 
(Johnston 2006). Spring spawning embryos experience higher temperature and studies have 
shown that the density of myofibrils in the fast fibers is greater in these fish (Johnston et al., 
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1997). Our sample is a spring spawning herring and therefore the transcript of alpha actin is 
identical to annotated fast muscle alpha actin. 

5 CONCLUSION 

The growing of genomic and transcriptomic resources of various species has opened doors to 
address fundamental questions about population structure, evolution, and adaptation. In this study 
we used high throughput Illumina Hiseq 2000 sequencing to assemble the Atlantic herring 
transcriptome by using Trinity, a specific transcriptome assembler. The results are not equally 
good to other de novo assembled transcriptomes by Trinity reported by Grabherr and colleagues 
(2011). There are some doubts about efficiency of mRNA preparation and sequencing but for at 
least 47% of the contigs we have high reliability based on comparison with available databases. 
In comparison to other de novo assemblies of fish transcriptomes, we found almost the same 
proportion of contigs with significant hits on annotated proteins. To obtain better assembly we 
suggest reassembling the transcriptome with Trinity and the default k-mer (25) or using the latest 
released version of Trinity (released 13th May 2011) in which we can run Trinity steps separately 
by setting the k-mer size independently.  
 
In order to complete the annotation, we suggest performing functional annotation and detecting 
alternative splicing events. For functional annotation we recommend BLAST2GO and for AS 
detection there is a specific teleost fish AS database that can be used called ASpipe. We believe 
that after removing bottlenecks in this study, it has the potential to be considered as a unique 
approach for transcriptome assembly and genome annotation using NGS and finally setup a 
standard protocol for experiments dealing with Illumina data.  
 
The result of this study would help in the further investigations of the following issues. First, 
revealing the true structure of the Atlantic herring population in the Baltic Sea. The primary 
analysis in 1980s by Ryman and colleagues presented differences between morphological and 
genetic classification (Ryman et al., 1984). Discovering the population structure of herring and 
associated markers to the different schools in the Baltic Sea would be helpful in governing 
herring fishing to control the population size and avoid overfishing. 
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8 APPENDIX  

8.1 Genome/Transcriptome assembly 
Assembly is the process in which the original genome/transcriptome is reconstructed by merging 
reads that overlap. Overlapping reads are merged together to form several islands, or contiguous 
sequences termed contigs (Figure 20, b). Then paired end information is used to link contigs 
together and generate supercontigs or scaffolds  (Figure 20, c) (Kasahara and Morishita, 2006).  

 
Figure 20- Genome/Transcriptome assembly process. a) Paired-end reads. b) Merged reads that made 

islands known as contigs. c) Scaffolding by paired-end information. 
 
In assembling, challenges are sequencing errors and other errors and biases introduced by cloning 
technologies. Before a genome assembly is conducted it is necessary to trim low-quality reads to 
avoid introducing possible errors in the process. 
 
There are different assembly algorithms: greedy, overlap-layout-consensus (OLC), and de Bruijn 
graph (Pop 2004 and Pop 2009). These approaches are applied according to sequencing 
technologies (Table 12). The first two algorithms are based on reads overlap.  

Table 12- Genome assembly software, their algorithm and the derived data from different sequencing 
technologies 

Software Algorithm Sequencing Technology 
Arachne OLC Sanger 
Celera Assembler OLC Illumina, 454, SOLiD 
Newbler assembler OLC Reads with average length of 300nts 
SHARCGSs Modified-Greedy Sanger, SOLiD, Illumina, 454 
SSAKE Modified-Greedy Illumina 
VCAKE Modified-Greedy Illumina 
CAP3 Greedy Sanger 
Edena Greedy Illumina  
Phrap Greedy Sanger, 454 
TIGR Greedy Sanger 

ABySS de Bruijn graph Illumina, SOLiD 
SOAPdenovo de Bruijn graph Illumina  
Velvet de Bruijn graph Sanger, SOLiD, Illumina, 454 
ALLPATHS de Bruijn graph Illumina, SOLiD 
EULER-SR de Bruijn graph 454, Illumina 
Trinity (Inchworm) de Bruijn graph Illumina GA 

 
Greedy algorithms typically perform a pairwise alignment between overlapping reads. Multiple 
alignments are built up iteratively by adding new reads at a time (Figure 21). After the multiple 
alignment step, a consensus sequence is generated (Pop, 2009 and Scheibye-Alsinga et al., 2009). 
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The quality of overlap depends on the length of the overlap and the level of identity in the 
overlapping region (Pop, 2009). 
 

 
Figure 21- Greedy assembly for four reads. Numbers  

show the length of alignment (Pop, 2009). 
 

OLC is the most widely used approach, pioneered by Pletola et al. in 1984 (Pop, 2009). This 
approach breaks the assembly into three distinct steps in order to enable a global analysis for all 
relationships between reads rather than localised approach in greedy algorithm. The first step 
(overlap) is the same as for greedy approach. This information is then used to construct an 
overlap graph. This graph contains nodes that represent reads and an edge that connects two reads 
(nodes) with an overlap (Pop, 2009). In the layout stage, the overlap graph is analyzed in order to 
find the paths through the graph that correspond to segments of the genome. The final step is to 
find a unique path that covers each node in the overlap graph once, this path is known as the 
Hamiltonian path (Pop, 2009 and Scheibye-Alsing et al, 2009). Most de novo assemblers for 
Sanger reads follow the OLC algorithm (Chaisson et al., 2009). However, OLC is an unsuitable 
approach for very short reads, because it is hard to distinguish the correct assembly due to 
repetitive sequences and the very short overlaps between these short reads (Li et al., 2010b). 

 
Figure 22- Overlap graph for a bacterial genome. The right figure shows the correct layout of the reads. The 

remaining edges represent false overlaps induced by repeats (exemplified by the red lines in the figure on the right) 
(CBCB). 

The de Bruijn graph is a solution to overcome the difficulties of short reads assembly. This 
method generates a hash table of k-mers (equal short fragments of a read) in reads and produces a 
graph with the following characteristics. The graph contains nodes that represent k-mers in the 
shotgun reads, where unit of k varies according to the software limitation. For instance, k-mer 
limitation in SOAP3 is 13 to 31 and in Inchworm is 19 to 29. For every k-mer an edge from its (k-
1)-mer prefix to its (k-1)-mer suffix is added to a node (Figure 23, A) (Kasahara and Morishita, 
2006). The condensed de Bruijn graph replaces all paths containing non-branching edges by a 
single edge labelled by the sequence that generated the path (Figure 23, B).   

                                                   
3	
  Short	
  Oligo-­‐nucleotide	
  Analysis	
  Package.	
  It	
  is	
  noteworthy	
  that	
  the	
  new	
  version	
  of	
  this	
  software	
  only	
  accepts	
  K-­‐
mers	
  between	
  13-­‐61	
  (odds	
  number).	
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Figure 23- de Bruijn graph structure with nodes and edges that have been produced from a short read with the length 
of 20 nts. A) The de Bruijn graph that contain nodes and edges for every K-mer. B) Condensed de Bruijn graph that 

contain a labelled sequence after finding the path (Chaisson et al., 2009). 

8.2 Quality of sequenced reads 
DNA sequencers determine bases according to either waves on electropherogram (Sanger 
method) or images (Next-generation sequencing technologies) and convert them to one of the 
nucleotides, i.e., A, C, G, and T. This conversion is called base calling, which is often 
accomplished by computer programs (PHRED for Sanger, Bustard for Illumina, and etc.) 
(Scheibye-Alsing et al, 2009). 
 
The outputs of the software are nucleotide sequences and quality values (QV). A logarithmic scale 
is used to calculate QVs with the following formula where P is the error probability per base: 

!" = −!"!"#!"! 
 
QV is assigned to each base, indicating the probability of an error at that base. In table 13 the 
accuracy of base calling and corresponding QV is shown. 

Table 13- The error probability of base calling and the QV of Illumina and Phred. 
Phred Quality 

Score 
Illumina 
Quality 
Score§ 

Probability of incorrect 
base call 

Base call accuracy 

10 10.41 1 in 10 90 % 
20 20.04 1 in 100 99 % 
30 30.00 1 in 1000 99.9 % 
40 40.00 1 in 10000 99.99 % 
50 50.00 1 in 100000 99.999 % 

            §Q Solexa / Illumina =  
 
As final output, sequencers create a file with the nucleotide sequence and the ASCII encoded 
quality values in a format called fastq (Figure 24). 

 
Figure 24- fastq format. 

 
The QVs differ depending on sequencing technology; in table 14 you can see the difference in 
QVs within different sequencing technologies. 
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Table 14- ASCII characters and the range of quality values  
in different sequencing technologies. (Cock et al., 2009) 

 
 

8.3 Determining optimal k-mer  
In order to find optimal k-mer for transcriptome assembly, we used jellyfish software that counts 
the number of unique k-mers in transcriptome/genome assemblies. We performed this analysis on 
three fish species: medaka, zebrafish, and fugu. Figure 25 shows the trend of unique k-mer 
frequencies by increasing the value but it comes to a plateau on value of 20/21 in zebrafish and 
medaka while the plateau appeared in k-mer size of 18 for fugu. As a result based on this analysis 
and individual assemblies that we did by Inchworm and different k-mer size we chose k-mer 21 as 
optimal value. 

 
Figure 25- Unique k-mr frequency in medaka (blue), zebrafish (red), and fugu (green) transcriptome. 

8.4 N50 and N90 calculation 
N50 and N90 are most common statistics for comparison of assembled genomes/transcriptome. 
N50 is the shortest sequence in a set of sequences that together cover 50% of the total length of all 
assembled sequences. The calculation starts by ranking sequences according to their length in 
descendant order. If the cumulative length of sequences covers 50% of the total length of the 
transcriptome, then the order and the length of the last contig sequence in that group shows the 
result of the N50 statistic. The N90 calculation is the same but for contigs that cover 90% of total 
length of all sequences. Table 15 shows an example of N50 and N90 calculation. I generated a 
script in the programming language Perl for calculation of N50/N90 (Appendix 5.5.1). 
 
 
 

Table 15- N50 and N90 calculation. 
 Length Sorted Cumulative 

length 
 4 9 9 
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 8 8 17 
 6 8 25 
 5 7 32 
 5 6 38 
 1 5 43 
 1 5 48 
 3 5 53 
 4 5 58 
 3 4 62 
 3 4 66 
 5 4 70 
 9 4 74 
 5 3 77 
 4 3 80 
 7 3 83 
 4 2 85 
 1 1 86 
 8 1 87 
 2 1 88 
Total 88   
50% 44   
90% 79   
N50 5   
N90 3   

 

8.5 Scripts 

8.5.1 N50 and N90 
#!/usr/bin/perl  
use strict; 
#this module calculates the N50 and N90 of a set of contigs. 
# ./contig-summary FILENAME (in fasta format) 
#Nima Rafati 
 
my $fileName=""; 
my $input=""; 
my $contigLn=0; 
my $cntr=0; 
my $cntrTotal=0; 
my $contigSum=0; 
my $min=0; 
my $max=0; 
my $mean=0; 
my $nN50; 
my @N50; 
my @N90; 
my $nN90; 
my @contigArr; 
my $contig=0; 
my $matchS; 
my $N50Sum; 
my $N90Sum; 
my $median; 
my @scafflength; 
my $seq; 
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my $seqLength; 
$fileName= $ARGV[0]; 
if ($fileName eq "") 
{ 
 print " please insert the name of the file after the script\n"; 
 exit; 
} 
open ("infile", $fileName) || die " I couldn't find the $fileName \n"; 
while (<infile>) 
{ 
    $input=$_; 
 if (/^\>/) 
 { 
  chomp($seq); 
  $seqLength=length($seq); 
  $seq=""; 
  if ( $seqLength != 0) 
  { 
   push @contigArr, $seqLength; 
   $contigSum+=$seqLength; 
   $seq=""; 
   $seqLength=""; 
   $cntrTotal++; 
  } 
 } 
 else 
 { 
  $input=~ s/\n//g; 
  $seq.=$input; 
 } 
 
} 
    $seqLength=length($seq); 
    push @contigArr, $seqLength; 
    $contigSum+=$seqLength;      
    $seqLength=length($seq); 
 
close ("infile"); 
@contigArr= sort {$a <=> $b} @contigArr; 
@N50=@contigArr; 
@N90=@contigArr; 
$contig=@contigArr; 
$min=$contigArr[0]; 
if ($contig % 2) 
{ 
  $median= $contigArr[$contig/2]; 
} 
else 
{ 
  $median=($contigArr[$contig/2]+$contigArr [$contig/2-1])/2; 
} 
$mean=int($contigSum/$contig); 
$max=$contigArr[$contig-1]; 
print "min: $min\t max: $max\t median: $median\t Number: $contig\t sum: $contigSum\t Average: 
$mean \n"; 
while ( $N50Sum < $contigSum * 0.5 ) 
{ 
  $contigLn = pop @contigArr; 
  $nN50++; 
  $N50Sum+= $contigLn; 
} 
print "N50: $contigLn\tnN50: $nN50\tSum of N50: $N50Sum\n"; 
$contigLn=0; 
while ( $N90Sum < $contigSum * 0.9 ) 
{ 
  $contigLn = pop @N90; 
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  $nN90++; 
  $N90Sum += $contigLn; 
} 
print "N90: $contigLn\tnN90: $nN90\tSum of N90: $N90Sum\n"; 
exit 0; 

8.6 Software commands 
 

8.6.1 SeqClean 
 
The seqclean program trims reads/contigs by a database like UniVec: 
>seqclean /bubo/proj/b2010051/private/INBOX/20110126A_hiseq2000/end-
trimming/End_2_110126_A816HRABXX_1.fasta –c 8 –o cleaned-End-1.fasta –l 76 –s 
UniVec.fasta 

8.6.2 Inchworm 
 
Before running Inchworm it is necessary to modify reads. First, reads should be in fasta format. 
Second, since our data was not strand-specific we had to convert sequences in one of the files into 
reverse complementary format. Third, all of the files should be merged in one unique file 
(Inchworm). There are some handy scripts in Inchworm package that do these modifications: 
>util/fastQ_to_fastA.pl -I left.fq -a 1 --rev > left.fq.fa 
>util/fastQ_to_fastA.pl -I right.fq -a 2 > right.fq.fa 
>cat left.fq.fa right.fq.fa > both.senseOriented.fa 
 
After input file preparation we used following command to assemble our data with a k-mer size of 
21 and minimum length of 100 nts: 
>inchworm --reads /bubo/proj/b2010051/private/INBOX/20110126A_hiseq2000/end-
trimming/End_1_and_Rev.fasta --run_inchworm --DS monitor 2 –coverage_outfile coverage.txt  -
-K 21 –L 100  

8.6.3 SSPACE 
SSPACE needs a library file describing the input data.  
Library file example: 
lib1 
/proj/end-trimming/End_2_110126_A816HRABXX_1.fastq  
/proj/end-trimming/End_2_110126_A816HRABXX_2.fastq 240 0,5 0 
240: insert size. 
0,5: deviation of insert size. 
 
 
 
 
For extension of our contigs we used this command: 
 
>perl (path_to_SSPACE)/SSPACE_v1-1.pl -l libraries.txt -s 
/bubo/proj/b2010051/private/UserDirectories/nima/Herring-Transcriptome/Results/inchworm-K-
21/inchworm-k-21.fasta  -x 1 -b SSPACE-inchworm-k-21 
 

8.6.4 CAP3 
 
We used default values of CAP3 with following command: 
>Cap3 /bubo/proj/b2010051/private/UserDirectories/nima/Herring-
Transcriptome/Results/inchworm-K-21/inchworm-k-21.fasta   
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8.6.5 Trinity 
 
Despite of Inchworm, Trinity does not need any modification of files before running the program. 
 
>../Trinity.pl --seqType fa --left 
/bubo/proj/b2010051/private/INBOX/20110126A_hiseq2000/end-trimming/cleaned-
End_2_110126_A816HRABXX_1.fasta --right 
/bubo/proj/b2010051/private/INBOX/20110126A_hiseq2000/end-trimming/cleaned-
End_2_110126_A816HRABXX_2.fasta --min_contig_length 100 --paired_fragment_length 240 -
-run_butterfly --num_butterfly_CPU 2 --output SeqClean-21 
 
Final assembly paths: 

1- Trinirty-SeqClean-21-All: 
/bubo/proj/b2010051/private/UserDirectories/nima/Herring-
Transcriptome/Results/Trinity-Seq-Clean-21/FASTA/Trinity.fasta 

2- Known subset: 

/bubo/proj/b2010051/private/UserDirectories/nima/Herring-Transcriptome/Results/Trinity-
Seq-Clean-21/FASTA/Trinity-ORF-Putative-medaka-muscle-zebrafish-nr/Trinity-ORF-
Putative-medaka-muscle-zebrafish-nr.fasta 

3- Unknown subset: 

/bubo/proj/b2010051/private/UserDirectories/nima/Herring-Transcriptome/Results/Trinity-
Seq-Clean-21/FASTA/Trinity-NON/Trinity-NON-ORF-Putative-medaka-muscle-zebrafish-
nr.fasta 

8.6.6 SOAPdenovo and GapCloser 
SOAPdenovo 
Before running the software we have to prepare a configuration file. In this file you can set the 
settings for (SOAP): 

1- Generating contigs. 
2- Generating scaffolds. 
3- Generating contigs and scaffold together. 
4- Intra-scaffolding. 

Below you can find a sample of configure file  
#maximum read length. 
max_rd_len=76  
#First library 
[LIB] 
#average insert size. 
avg_ins=240 
#For paired end reverse_seq=0 and for mate-pair this value is equal to 1. 
reverse_seq=0 
# for contig generation (1), scaffold (2), contig and scaffold (3), and intra-scaffolding (4). 
asm_flags=3 
#rank of the library. 
rank=1 
#input file path: for FASTA format (f1/2) and for FASTQ format (q1/2). 
f1=/bubo/proj/b2010051/private/INBOX/20110126A_hiseq2000/end-
trimming/End_2_110126_A816HRABXX_1.fasta 
f2=/bubo/proj/b2010051/private/INBOX/20110126A_hiseq2000/end-
trimming/End_2_110126_A816HRABXX_1.fasta 
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......( and for other libraries). 
 

ü Please note that you have to make the configure file according to your assembly 
strategy. 

SOAPdenovo can be performed either step by step or all steps together: 
For making contigs and scaffolds at one run we can use: 
>SOAPdenovo all –s Config.txt –K 314 –o graph_prefix –R yes –p 15 
 
For step by step we have to follow commands in below: 
>soapdenovo pregraph –s config_file –K 31 –p 15 –o graph_prefix 
>soapdenovo contig –g graph_prefix  
>soapdenovo map –s config_file –g graph_prefix –p 15 
>soapdenovo scaff –g graph_prefix  –F yes 
 
GapCloser (Intra-Scaffolding)  
>GapCloser –b config_file –a graph_prefix –o output_file –p 31 –t 15 
Input files are: 
Generated scaffold file with the extension of scafseq by SOAPdenovo.  
Config.txt file that was used as an input for SOAPdenovo  
Output files:   
There are two files: Scaffolds and singletons’ sequences after filling the sequence gaps5 with the 
extension of Gap. 
The descriptions of filled gaps are saved in a file with the extension of fill. 

8.6.7 Jellyfish 
 
Jellyfish software count the number of k-mers by this command: 
>jellyfish count -m $j -o $dirName -s 100000000 $genomeSeqfile 
we used different values for k-mer ($j=15 to 25). 

8.6.8 SOAPaligner 
By this program we can align either one read library or paired-end libraries on contigs/scaffolds. 
In first case there is only one output while in second case there are two outputs including paried-
end aligned reads and unpaired aligned reads. The input read files can be in fasta or fastq format 
(SOAP). 
 
>soap –a /bubo/proj/b2010051/private/INBOX/20110126A_hiseq2000/end-
trimming/End_2_110126_A816HRABXX_1.fasta –b 
/bubo/proj/b2010051/private/INBOX/20110126A_hiseq2000/end-
trimming/End_2_110126_A816HRABXX_2.fasta –o output.soap -2 Unpaired.soap -u 
Unmapped.soap –m 180 –x 400 -p 8  

8.6.9 CD-HIT 
 
>cd-hit -i ../FASTA/Trinity.fasta -o Trinity100.fasta.node -c 0.9 -n 5 -T 8 

8.6.10 UCLUSTAL 
UCLUSTAL remove artefacts in two steps: 

                                                   
4	
  This	
  number	
  must	
  be	
  odd	
  number.	
  New	
  version	
  of	
  this	
  software	
  accepts	
  K-­‐mer	
  to	
  61.	
  

5	
   	
   These	
   gaps	
   are	
   between	
   contigs	
   in	
   one	
   scaffold.	
   These	
   gaps	
   are	
   different	
   from	
   physical	
   gaps	
   that	
   exist	
  
between	
  scaffolds	
  and	
  the	
  length	
  of	
  them	
  is	
  unknown.	
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1- Sorting contigs by their length: 
>usearch --sort /bubo/proj/b2010051/private/UserDirectories/nima/Herring-
Transcriptome/Results/Trinity-Seq-Clean-21/FASTA/Trinity.fasta --out Sorted-
Trinity.fasta --maxlen 12000 --log sort.log 

2- Removing artefacts: 
>usearch --cluster Sorted-Trinity.fasta --id 0.97 --seedsout clustered.fasta --uc  
results.uc --log cluster.log --maxlen 12000 

8.6.11 BLAST 
We used BLAST to align our transcriptome contigs against available databases. For proteins we 
used BLASTX and for nucleotides we used BLASTN. BLAST uses specific format of database 
that is prepared by formatdb. 
For protein: 
>formatdb –p T –n nr-formatdb –i nr.fasta 
For neucleotide: 
>formatdb –p F –n nt-formatdb –I nt.fasta 
Transcriptome alignment on protein database: 
>blastall –p blastx –d nr-formatdb –e 0.00001 –m 8 –a 8 –W 3 –i Trinity.fasta –out Trinity-
nr.blast 
Transcriptome alignment on nucleotide database: 
>blastall –p blast –d nt-formatdb –e 0.00001 –m 8 –a 8 –W 11 –i Trinity.fasta –out Trinity-
nt.blast 

8.6.12 Mosaik 
 
In first step, reads and reference sequences are converted to binary files: 
>MosaikBuild –fr Trinity-SeqClean-21.fasta –oa   Trinity-SeqClean-21.dat 
>MosaikBuild –f /bubo/proj/b2010051/private/INBOX/20110126A_hiseq2000/end-trimming/ 
cleaned-End_2_110126_A816HRABXX_1.fasta –f2 
/bubo/proj/b2010051/private/INBOX/20110126A_hiseq2000/end-trimming/ cleaned-
End_2_110126_A816HRABXX_2.fasta –out reads.dat –st illumina –p 8 
 
After making binary files we performed the alignment by this command: 
 
>MosaikAligner –in reads.dat –ia Trinity-SeqClean-21.dat –out reads-on-Trinity-SeqClean-21.dat 
–p 8  
Then we sorted the output of MosaikAligner by: 
>MosaikSort –in reads-on-Trinity-SeqClean-21.dat –out reads-on-Trinity-SeqClean-21-sorted.dat 
By MosaikSort we converted our outputs from MosaikSort to SAM/BAM file by MosaikText: 
>MosaikText –in reads-on-Trinity-SeqClean-21-sorted.dat [–bam reads-on-Trinity-SeqClean-
21.bam| -sam reads-on-Trinity-SeqClean-21-sorted.sam] 

8.6.13 Samtools 
 
In order to find SNPs and indels we prepared pileup file by using samtools with following 
commands: 
 
>samtools view –bT Trinity.fasta Trinity-SeqClean-21.sam >Trinity-SeqClean-21.bam 
>samtools sort Trinity-SeqClean-21.bam Trinity-SeqClean-21.bam.sort 
>samtools index Trinity-SeqClean-21.bam.sort.bam  
>samtools pileup –f Trinity.fasta Trinity-SeqClean-21.bam.sort.bam  

8.6.14 VarScan 
VarScan is a program that calls SNPs and indels by using pileup files: 
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>java -jar VarScan.v2.2.3.jar pileup2cns 
/bubo/proj/b2010051/private/UserDirectories/nima/Herring-Transcriptome/Results/Trinity-Seq-
Clean-21/FASTA/Trinity-ORF-Putative-medaka-muscle-zebrafish-nr/PE-SE-ORF-Putative-
medaka-muscle-zebrafish-nr.bam.sort.bam.f --min-coverage 8 --min-avg-qual 20 --minvar-freq 
0.2 --p-value 0.05 
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