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Abstract 

The number of horses in Sweden has increased in recent decades, reaching over 

300,000 in 2009. The horses are kept on 300,000 ha representing 10% of total 

agricultural land in Sweden. This study characterised the potential risk of phosphorus 

(P) losses from a heavy clay soil used for horse grazing and feeding (paddock) and 

compared the losses with nearby arable land managed conventionally and losses from 

ungrazed pasture. Water-soluble phosphorus (WSP) concentration in surface soil (0-

10 cm) from the paddock areas (mean 0.62 mg 100 g
-1

 soil) did not differ significantly 

from that in arable land, but differed very significantly (p<0.001) from reference areas 

with ungrazed pasture. Phosphorus extracted in acid lactate (P-AL value) in the 

topsoil of paddock (mean 14.7 mg 100 g
-1

 soil) differed significantly both from arable 

land and ungrazed pasture (p=0.031 and 0.033, respectively). Total phosphorus 

extracted with nitric acid (P-HNO3) in topsoil of paddock areas (mean 117.3 mg 100 

g
-1

 soil) did not differ significantly from arable land (p=0.08) but was significantly 

higher (p<0.001) than in ungrazed pasture. Paddock soils with high levels of different 

P forms, thus, pose a high risk of P losses. Aluminium and iron content in acid extract 

(Al-AL and Fe-AL) were found to be highly correlated to P-AL (r=0.76, p<0.001; 

r=0.75, p<0.001, respectively), indicating no significant difference for the dominance 

of Al over Fe for P availability in the fields studied. No good correlation was found 

with Ca (r=0.26, p=0.03) but soil C content was found to be correlated with P-AL 

(r=0.46, p<0.001). In the past 8 years, high P concentrations (up to 1.5 mg L
-1

), 

mainly in dissolved reactive form, have been recorded in drainage water from the 

catchment (30 ha). Therefore, we concluded that horse grazing at high stocking rates 

(>2.5 livestock units ha
-1

) may pose a risk of high P losses to nearby water bodies.  

 

 

Key words: phosphorus, surface water, horse paddock, animal grazing, clay soil, 
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1. Introduction  
Phosphorus (P) is one of the most important nutrients for plant growth and is therefore 

frequently used by farmers as a fertiliser to increase crop yields (Steegen et al., 2001). 

Pasture also receives significant amounts of P through direct manure deposition by 

grazing animals (Parkyn and Wilcock, 2004). There is strong evidence of P losses 

from agricultural land throughout the world, but few developed countries have studied 

grazing land and compared the risk of P losses with those from arable land (Hart et 

al., 2004). While P is regarded as the key limiting factor for eutrophication in most 

lakes, rivers and freshwater bodies (Schindler, 1977), and grazing land has higher P 

inputs (Nash et al., 2000) and P losses (Ebeling et al., 2002), grazing land may also 

contribute to deterioration of surface water quality.  

In agricultural systems, especially grazing systems, P may come from fertilisers 

(inorganic and/or organic), plants, animal waste, and from soil. Atmospheric 

deposition (dry deposition or via rainfall) also contributes 1-2 kg ha
-1 

yr
-1

 (Greenhill et 

al., 1983b). Different sources of P and their contribution to P losses from intensively 

grazed pasture are quite large (Dougherty et al., 2004). The proportion of P lost from 

an intensively managed grazed land is reported to be 10-15% from fertiliser, 15-20% 

from plants, 25-30% from dung, and 30-40% from the soil itself (McDowell et al., 

2007). 

Regarding the P load from grazed lands to streams and lakes, different factors have 

been identified, such as different sources and transport pathways of P (Gburek et al., 

2000; Sharpley and Tunney, 2000). Like other nutrients, P can be lost in water as 

soluble forms and as suspended soil (as P is attached to eroding soil particles) (Nash 

and Halliwell, 1999). Heathwaite et al. (1997) found that almost 50% of organic P 

was lost through subsurface drainage pathways. He also found that organic P losses 

though surface runoff accounted for at least 33% of total P losses. A recent study by 

Dougherty et al. (2008) showed that most P losses from grazed land occurred as 

water-soluble P (around 90%) and only 10% as particulate P. The main form of P in 

cattle manure is orthophosphate (>80%) (McDowell and Stewart, 2005b) that can be 

bound to colloidal particles and loss through runoff. About 10% of the P in manure 

may end up in sediments and increase the amount of P lost as water-soluble P during 

the rainy season (McDowell, 2006).  
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The topography of the landscape and water movement on the soil surface or within 

the soil profile influence the load of P lost from grazed catchments to water courses. 

The solubility of P and the detachability of P-containing sediments from aggregates to 

soil solution are the mechanisms linking sources and P transport (McDowell et al., 

2001) as P is transported from soil in both dissolved and particulate forms (Haygarth 

and Sharpley, 2000). Particulate-bound P is associated with soil minerals and organic 

matter. Organic P generally accounts for 20-80% of total P in topsoil (0-20 cm depth), 

which amounts to about 5-20 kg P ha
-1 

yr
-1

, and is readily transformed and adsorbed 

by plants (Brady and Weil, 2002). Problems arise if dissolved P and particulate-bound 

P are transported from the grazing system to water courses and P is released from the 

suspended particles. 

The proportion of dissolved reactive P (DRP) and particulate-bound P (PP) in runoff 

water from grazing land varies depending on the nature of the animal manure (time of 

deposition, i.e. fresh or dry, and type of livestock), soil texture and structure, 

dominant clay mineral in the soil and hydrological conditions (Jordan and Smith, 

1985; Hooda et al., 1999; Simard et al., 2000; Uusitalo et al., 2001; McDowell, 

2006). Losses are exacerbated during intensive precipitation with fresh dung on the 

field and higher clay content in soils.  

In Sweden, 300,000 ha, or about 10% of total agricultural land are used for around 

300,000 horses (6.3% of total grazing animals) (Hedberg, 2009). The total number of 

grazing animals other than horses is 4,500,000 (Swedish Agricultural Board, 2009). 

These include cows, heifers, bulls, steers, calves, sheep, and different types of pigs.  

A few studies conducted in Sweden on nutrient losses from grazing land have focused 

on N as the main nutrient, ignoring P or making it a lower priority (Dahlin and 

Johansson, 2008). However, both P and N losses must be considered if Sweden is to 

achieve its goal of zero eutrophication by 2015. 

The aims of this study were to determine the potential risk of P leaching from small 

areas intensively grazed and trampled by horses through i) characterising the 

important P forms in terms of P leaching and erosion compared with ungrazed 

pasture; and ii) comparing P concentrations in drainage water from areas with horses 

with those in drainage water from ungrazed arable land. 
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2. Materials and Methods 

2.1 Site description 

 The investigation was carried out in an agricultural area 30 km south of Stockholm 

(coordinates as 59°14'2.47"N, 17°42'44.82"E), close to Lake Bornsjön (Figure 1). The 

area comprised 7.2 ha, of which 4.43 ha was arable land, 0.09 ha was ungrazed 

meadow with grass and the rest (2.67 ha) was used as exercise and grazing for horses 

(paddock). The horse paddock has been managed for the past 30 years and had a mean 

livestock density of 3.75 animal units per hectare receiving 15 kg P ha
-1

 yr
-1 

after 

deposition of fresh faeces and urine.  The arable land has P imports of P 12 kg ha
-1

 yr
-

1
 either as mineral fertiliser or as manure. The farmer usually broadcasts the fertiliser 

or manure at some time during May. Several long, narrow horse paddocks that are not 

grazed continuously year around but provide rotational grazing during the growing 

season receive no inputs of P other than horse manure deposition.  

 

Figure 1. Location of the study site (published with permission of Swedish Land 

Surveyor Gävle 1 2010/0050). Black dots on the right-hand picture are the sampling 

points. 

 

http://maps.google.com/maps?q=59.234020,+17.712450&num=1&t=h&vps=1&jsv=242c&sll=37.0625,-95.677068&sspn=48.555061,78.662109&hl=en&ie=UTF8&geocode=FeTWhwMdQkUOAQ&split=0
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Another important source of P import to grazing land is year-around feed supply to 

horses (especially during winter). One of the paddocks was not used for horse-

keeping in recent years and covered by uncut meadow-grass, was used as a reference 

area for the study and referred to as ungrazed pasture. The topsoil texture at the site 

was a heavy clay classified as a Eutric Cambisol (Ule´n & Persson, 1999) under the 

FAO Soil Classification. The slope of the study area was ca. 5%. Drainage water is 

collected in a culvert that runs directly to Lake Bornsjön, 50 m from the lowest horse 

paddock. 

2.2 Soil sample collection and preparation 

Soil samples were collected in grids with similar sampling density (i.e. samples per 

ha) used for the grazing folds and the ungrazed pastures. The arable land was 

represented by just a few samples because the variation in soil P concentration was 

found to be smaller (<15%) (B. Ule´n, pers. comm.). At each sampling point, eight 

sub-samples were collected by augur, mixed thoroughly and prepared as one bulk 

sample. The total number of samples taken in the grazing paddock, arable land and 

ungrazed pasture (reference land) was 69, 5 and 2, respectively. Samples were oven-

dried at 60
0
C within 24 h, milled and sieved through a 2-mm mesh. Soil particles that 

passed through the sieve were taken for further analysis. Fresh samples were used for 

determination of WSP. 

2.3 Soil analysis 

Water Soluble Phosphorus (WSP) from fresh and dry soil: To measure the water-

soluble phosphorus content, 6 g fresh sample were dispersed in 18 ml distilled water 

in a plastic centrifuge tube. The suspension was shaken for one minute and then 

centrifuged for 20 minutes at 3000 rpm. The filtrate was extracted and analysed 

colorimetrically (Murphy and Riley, 1962) by atomic absorption spectrophotometer 

(AAS). In order to evaluate the effect of drying the soil, WSP was also analysed on 

dry samples. In that case the WSP was determined by the same method as for fresh 

soil, but the shaking time was 20 hours. 

Phosphorus Sorption Index (PSI): Phosphorus concentration in the soil solution 

(which was also determined both colorimetrically and with inductively coupled 

plasma-atomic emission spectrophotometer, ICP-AES) and calculation of PSI were 

carried out as described by Bache and Williams (1971) and Börling et al. (2001) using 
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the equation PSI = X / log CP, where X represents the amount of P adsorbed by the 

soil (mmol kg
-1

 soil) and CP the P concentration in the solution (µmol L
-1). Here, the 

ratio (w/v) of soil to extractant (0.01 M CaCl2 containing 50 mmol P kg
-1

 soil) was 

1:10. KH2PO4 was used as the source of phosphorus. The shaking and centrifuging 

procedure used was the same as for determination of water-extractable P in dry soil.  

Ammonium acetate lactate (AL) extraction: Plant available P, aluminium (Al), iron 

(Fe) and calcium (Ca) were extracted with ammonium acetate lactate (Egne´r et al., 

1960) at pH 3.75 and analysed by ICP-AES.  

Acid Oxalate Extraction (pH 3) of P, Fe and Al:  These were determined according to 

Reeuwijk (1995). The ratio of soil to extractant (a mixture of 0.2 M (NH4)2C2O4*H2O 

and 0.2 M H2C2O4* H2O by 1:4 ratio) used here was 1:50. The concentrations of Fe 

and Al were analysed by ICP-AES.  

Carbon and Nitrogen:  The amount of carbon and nitrogen was determined according 

to LECO Cooperation (2003). In brief, 1 g dry soil was combusted at 1050 C for 5 

minutes and the percentage of C and N in the vapour was measured using a LECO 

CN2000 analyser.  

Degree of Phosphorus Saturation (DPS): DPS for both ammonium lactate (DPS-AL) 

and oxalate (DPS-OX) was calculated as a ratio on a molar basis. The equation used 

for this calculation was DPS = (P / Fe + Al)*100 (Börling, 2003). The concentrations 

of P, Fe and Al were expressed as mmol kg
-1

 soil.  

 

Soil pH:  Soil pH was determined on dry soil samples mixed with distilled water at a 

ratio (w/v) of 1:5. The suspension was shaken for 5 minutes, left overnight and again 

shaken for 5 minutes. After shaking, the sample was left for a few minutes to resettle 

the sediments and finally the pH in the water phase was measured with a pH meter. 

 

Total P: Soil samples were digested with 7 M HNO3 and P was determined with ICP-

AES in accordance with Swedish Standards-028311 (SIS, 1997) by a commercial soil 

laboratory.  
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Data on nutrient concentrations in drainage water were obtained from manual water 

sampling at the end of the culvert and from regular flow-proportional water sampling 

of a reference 4.4 ha arable field carried out by Stockholm Water Company. Analyses 

(dissolved reactive phosphorus, DRP and total phosphorus) were carried out at the 

Water Laboratory of Stockholm Water and at the Department of Soil and 

Environment, SLU. Drainage discharge data and the corresponding P concentrations 

were taken from Ulén (pers. commun). Based on measurements on a few occasions, 

relative discharge from the culvert and horse-grazed area was found to be similar to 

water discharge from the reference field. 

2.4 Statistical analysis 

Comparisons of P contents between different land uses were performed by two 

sample (unpaired) t-tests. Correlations between different P forms and their 

characteristic element were determined by Pearson correlation (R) test. Linear 

regression was used to determine the existence of relationships. Comparisons between 

different extraction methods were made by pair-wise simple regression. The level of 

significance () for all cases was set to 0.05. All statistical analyses were performed 

by MINITAB 15, but standard deviation was calculated from EXCEL 2003. 

3. Results  

3.1 Different soil P forms and their distribution  

Table 1 gives an overview of the different forms of P, PSI and DPS that were found in 

different types of land studied. Water-soluble phosphorus (WSP) from fresh soil, the 

main constituent of environmental risk assessment, was highest for grazed land (0.62 

m 100 g
-1

 soil), followed by arable land (0.52 m 100 g
-1

 soil), and was very low in 

ungrazed pasture (0.04 mg 100 g
-1

 soil). Similar trends were found for dry soil 

samples. High variability was observed between different sampling points (see 

Appendix I) for both fresh and dry soil from grazed plots, probably the effect of 

uneven distribution of P-rich dung patches. The results were statistically analysed by 

t-test (CI-95%) to determine whether the differences were significant. Although the 

numerical value of WSP for grazed land (n=69) and arable land (n=5) differed, with 

difference was not statistically significant (p=0.69). However, WSP in grazed land 

and ungrazed pasture (n=2) differed significantly (p<0.001). Concentrations of P-AL, 

P-HNO3 and DPS-AL values were generally higher for grazed land and very low for 
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ungrazed pasture and arable land being intermediate. Analysis by two-sample t-test 

revealed that the P-AL value of grazed land were significantly higher than from both 

of the arable land and ungrazed pasture (p=0.031 and p=0.033, respectively). 

Concentrations of P-HNO3 in grazed land did not differ significantly from arable land 

(p=0.08), but were significantly higher than in the ungrazed pasture (p<0.001). 

In the case of P-OX and DPS-OX, the values for grazed land were also high.  

Phosphorus sorption index (PSI) values were lowest for grazed land (4.6), 

intermediate for ungrazed pasture (5.3) and highest for arable land (5.6) (Table 1).  

Table 1. Characterisation of soil P in different land uses (arithmetic mean ± standard 

deviations). Water-soluble P (WSP); ammonium lactate (AL) extractable P; acid 

oxalate (OX) extractable P; nitric acid (HNO3) digested P; P sorption index (PSI); and 

degree of P saturation (DPS)  

 

WSP 

fresh soil  

WSP 

dry soil  P-AL P-OX P-HNO3  PSI DPS-AL DPS-OX 

Land use   mg 100g
-1

   mmol kg
-1

 

           

%  

Grazed 

land  

0.62 

(±0.5) 

0.43  

(±0.4) 

14.7 

(±12.3) 

19.2 

(±5.1) 

117.3 

(±25.4) 4.6 (±0.6) 

7.4 

(±4.7) 

7.4 

(±2.02) 

Arable 

land 

0.52  

(±0.2) 

0.37  

(±0.3) 8.6 (±4.1) 

13.7 

(±5.6) 

106.7 

(±9.2) 5.6  (±0.8) 

4.9 

(±1.6) 

4.8 

(±1.5) 

Ungrazed 

pasture 

0.04  

(±0.03) 

0.04  

(±0.01) 6.6 (±2.1) 18.7 

98.2 

(±2.2) 5.3  (±0.1) 

2.6 

(±0.4) 6.4 

 

 

3.2 Distribution of characteristic components of soil P sorption  

Elements that are closely associated with soil P are listed with their quantities and 

land use type in Table 2. Here, the values were not as clearly distributed as for P. 

Carbon (C) and nitrogen (N) content were highest for grazed land (an indication of 

higher organic matter), calcium (Ca) was highest for arable land and iron (Fe) was 

highest for ungrazed pasture. Depending on the extraction method used, Al content 

was highest in arable land (Al-OX) or ungrazed pasture (Al-AL). 

 

3.3 Total soil P content 

Based on a bulk density of 1.35 g cm
-3

, which is common for most mineral soils 

(Brady and Weil, 2002), total P in different forms for the surface soil layer (0-10 cm) 

was calculated (Table 3). Since fresh soil more closely resembles natural conditions, 

WSP determined in fresh soil samples was considered for this calculation. 
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Table 2. Characteristic components of soil P analysed for different land uses 

(arithmetic mean ± standard deviations). Aluminium, iron and calcium in ammonium 

lactate extract (Al-AL, Fe-AL and Ca-AL); aluminium and iron acid oxalate extract 

(Al-OX and Fe-OX); total organic carbon (C) and nitrogen (N)  

Land use pH Tot-C  Tot-N   Ca-AL Al-AL Al-OX Fe-AL Fe-OX 

   % C/N   mg 100g
-1

    

Grazed 

land  

6.1 

(±0.3) 

3.6 

(±1.2) 

0.4 

(±0.1) 

10.2 

(±0.6) 

350 

(±60.3) 

37.6 

(±5.4) 50 (±8.2) 

84.2 

(±21.4) 

120.4 

(±15.8) 

Arable 

land 

6.3 

(±0.1) 

2.6 

(±1.7) 

0.3 

(±0.2) 

10.4 

(±0.1) 

434.7 

(±56.7) 

46.4 

(±7.6) 

72.8 

(±0.4) 

72.4 

(±16.1) 

119.6 

(±17.9) 

Ungrazed 

pasture 

5.9 

(±0.2) 3.3 0.3 10.1 

289.5 

(±104.2) 

51.4 

(±5.7) 51.1 

115.3 

(±22.9) 137.6 

 

Grazed land had a significantly higher P content than arable land, with an additional 

1.5 kg WSP, 85 kg P-AL and 125 kg P-HNO3 per hectare. These values increased to 8 

kg, 110 kg and 250 kg per hectare, respectively, when grazed land was compared with 

ungrazed pasture. 

 

Table 3. Phosphorus content in soil for the surface layer (0-10 cm)  

under the three different types of land use studied 

 
                                                                     

 

 

 

 

3.4 Total (Tot-P) and dissolved reactive phosphorus (DRP) in drainage water from 

catchment with horses and from a reference arable field  

Drainage water from the culvert in the 2.67 ha horse grazing area was attributed to the 

whole 7.2 ha study area. Phosphorus concentrations (both total P and DRP) in 

drainage water from the site were found to be very high during summer and autumn, 

reaching over 0.5 mg L
-1

 during the study (Figure 2). However total P and DRP in the 

drainage water from the horse paddocks reached over 2 mg L
-1

 on some occasions 

during the study years. These very high concentrations pose real risks of water quality 

degradation through eutrophication because summer is the best time for the growth of 

organisms, especially algae, if sufficient quantities of P are supplied. 

 

 
WSP 

fresh soil P-AL P-HNO3 

Land Use  kg ha
-1

  

Grazed land 8.5 200 1575 
Arable land 7.0 115 1450 

Ungrazed pasture 0.5 90 1325 
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Figure 2. Phosphorus concentration (mg L
-1

) in drainage water (a) total P and (b) 

dissolved reactive P (DRP) from two different types of land use systems. 

 

3.5 Distribution of different P forms and parameters important for P sorption among 

the  grazed plots                             

Soil data from the different paddock plots are shown in Table 4. Generally, the plots 

were rich in the elements analysed and except for WSP (in fresh soil) and pH, there 

were significant variations. One notable finding was that samples from the plots 

nearer the stable had higher P and organic C content than those farther away. Horses 

are often kept in the paddock area closest to the stable for ease of management, which 

caused higher P and C content there. For example, extractable P values in plots B and 

C close to the stable (21 and 23 mg P 100 g
-1

 soil, respectively) were significantly 

higher (P < 0.001) than those in remote plots E, F, G, I and J (10, 9, 11, 8 and 7 mg P 

100 g
-1

 soil, respectively). 

3.6 Relationship between forms of P and other soil parameters                            

Water soluble P (analysed from dry soil) was highly correlated with DPS-AL (r=0.77, 

p<0.001) but had no significant correlation with DPS-OX (r=0.09, p=0.5). Degree of P 

saturation in AL extract was highly correlated with P-HNO3 (r=0.93, p<0.001) 

compared with DPS-OX (r=0.37, p=0.005). Concentrations of P-AL showed a higher 

correlation (r=0.96, p<0.001) with P-HNO3 than with P-OX (r=0.61, p=0.005). 

Furthermore, WSP was found to be correlated with P-AL (r=0.78, p<0.001) and had no 

correlation with P-OX (r=0.02, p=0.6) but with Al-AL. Schematic presentations of 

these findings are given in Figure 3. These results clearly show that WSP is highly 

correlated with P-AL and also show the superiority of ammonium lactate (AL) 

extractant over oxalate extractant (OX) for environmental risk assessment of P losses.  
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Table 4. Mean concentration of soil P forms and other soil characteristics of the grazed paddocks: ‘n’ 

is the number of samples; water-soluble P (WSP); ammonium lactate extract (AL), phosphorus (P), 

aluminium (Al), iron (Fe) and calcium (Ca); nitric acid (HNO3) digested P; P sorption index (PSI); 

degree of P saturation (DPS); total organic carbon (C) and nitrogen (N). Means that do not share the 

same letter are significantly different (p<0.05) 

 
Distance 

from 
stable, 

WSP 
      

 

AL extractable 

fresh 
soil 

dry soil P-AL 
HNO3- 

P 
PSI 

DPS-
AL 

Organic 
C 

Total N Al Fe Ca 

Plots m mg 100g
-1 

mmol kg
-1 

% pH mg 100g
-1 

A 
(n=7) 

31 0.5a 0.6ab 20ab 129abc 4.5ab 8.9ab 4.0ab 0.4bc 6.1a 35b 99a 319bc 

B 
(n=7) 

44 0.5a 0.4ab 21a 123abc 4.9a 7.9ab 3.7ab 0.4ab 6.1a 34b 93ab 338abc 

C 
(n=7) 

45 0.8a 0.7a 23a 146a 4.1b 11.1a 4.8a 0.5a 6.0a 36ab 95ab 405a 

D 
(n=7) 

52 0.9a 0.6a 20ab 129abc 4.6ab 10.46a 3.6ab 0.4bc 6.3a 35b 89ab 361ab 

E 
(n=7) 

70 0.7a 0.3ab 10bc 102c 4.6ab 5.7ab 3.3abc 0.3bc 6.2a 41ab 72ab 377ab 

F 
(n=7) 

76 0.4a 0.1b 9c 100c 4.7ab 5.7ab 2.9bc 0.3bc 6.3a 39ab 69ab 351abc 

G 
(n=7) 

77 0.4a 0.6ab 11bc 121abc 4.9a 5.2b 2.1c 0.3c 6.0a 40ab 96ab 275c 

H 
(n=7) 

78 0.5a 0.3ab 14abc 115bc 4.8ab 7.3ab 3.2abc 0.4bc 6.2a 38ab 77ab 363ab 

I 
(n=7) 

79 0.5a 0.4ab 8c 105c 4.7ab 4.7b 2.9bc 0.3c 5.9a 43a 74ab 338abc 

J 
(n=6) 

134 0.9a 0.5ab 7c 98c 4.7ab 4.5b 3.0bc 0.3bc 6.0a 40ab 68b 339abc 

In terms of the element in soil minerals responsible for P binding at exchangeable 

sites, the results showed that P-AL was correlated with Al-AL (r=0.76, p<0.001) and 

Fe-AL (r=0.75, p<0.001) in contrast to Ca (r=0.26, p=0.03) (Figure 3b). This indicates 

the dominance of both Al and Fe in determining the availability of P in the fields 

studied, while Ca has a negligible effect in non-calcareous soil. P-AL was also found 

to be highly correlated with soil C content (r=0.46, p<0.001), which was higher in 

grazed land (mean 3.6%) than in the other two land uses studied here (2.6% in arable 

land and 3.3% in ungrazed pasture). 

4. Discussion 

The grazed land in the study area has been grazed for at least the last 30 years and has 

received almost 220 tons of horse manure, which has enriched the soil P pools. 

Russell et al. (2008) found that one horse excretes 4.8 kg P per year, which would 

amount to 1.4 tons of P for 10 horses over 30 years. Assuming that half of this (P) 

value had been deposited on the grazing sites, they were enriched with 0.7 tons of P  
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Figure 3a. Regression plots for selected soil parameters and phosphorus indices (a) 

water-soluble P (WSP) vs ammonium lactate (AL) extractable P, (b) WSP vs AL 

extractable aluminium (Al), (c) WSP vs total organic carbon (Tot-C), and (d) WSP vs 

Al-AL & Tot-C. 

over the 30-year period. The WSP content in such soil is directly associated with the 

solubility of organic P (Shober and Sims, 2007). Available soil P content tends to 

increase by two folds within 2 years having an animal density of 3.13 ha
-1

 yr
-1

 

(Roquette et al., 1973). Sharpley et al. (2004) reported that soils receiving animal 

manure have higher P and organic C content. Furthermore, Hart et al. (2004) reported 

that P losses from grazed land are even higher than those from intensively managed 

paddy fields. Figure 4 shows how different fractions of P from different land uses 

contributed to the total and highlight the fact that the grazed land had a higher P 

content than arable land and/or ungrazed pasture.  

Concentration of P in the horse manure at the study site was 3.7 g P-AL and 6.25 g P-

HNO3 per kg of total solids (Ulén, pers. comm.). Another study by Caselles et al. 

(2002) found the tot-P content (P-HNO3) of horse manure to be 7.6 (range 6.1-9.3) g 

kg
-1

 (dry weight basis), while that of sheep and cattle manure was 5.7 (4.2-7.9) and 

3.1 (1.2-4.1) g kg
-1

 dw, respectively. Thus the manure deposited by horses at the study 
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site has higher potential for P input and subsequent losses compared with manure 

from sheep or cattle.  

Djodjic et al. (2004) found no good correlation between leaching losses of P and soil 

test P for agricultural soils, which was explained by the subsoil making a great 

difference. However, the form in which mobilised P is present (as dissolved 

inorganic, organic or particle-bound P) is important for leaching (Haygarth and 

Sharpley, 2002), but their proportions vary, mainly with soil texture and hydrological 

characteristics (He et al., 2006). A study on grazed plot lysimeters by Heathwaite et 

al. (1997) revealed that soluble (<0.45 µm) inorganic forms of P are the dominant 

form of P lost by leaching from pasture. Other forms are organic and particulate P, 

which also contribute significantly to losses through subsurface drainage.  

 

  

          
 

Figure 3b.  Regression plots for selected soil parameters and phosphorus indices (a) 

ammonium lactate (AL) extractable P vs AL extractable aluminium (Al), (b) P-AL vs 

AL extractable iron (Fe), (c) P-AL vs total organic carbon (Tot-C), and (d) P-AL vs 

AL extractable calcium (Ca). 
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Figure 4. Different fractions of P and their comparative distribution (%) for the three 

different land uses studied.  

A study by Kleinman et al. (2005) identified WSP in manure as the main form of P 

losses through runoff from grazed land. It is therefore important to have an idea about 

the threshold limit of WSP value concerning P losses. Recent studies by Pöthig et al. 

(2010), based on different types of soils in Germany and Switzerland, concluded that 

soils with WSP concentrations exceeding 0.5 mg 100 g
-1

 soil can be regarded as 

having a high risk of P losses from soil to water. The mean values of WSP for our 

study area were 0.62, 0.52 and 0.04 mg 100 g
-1

 soil for grazed land, arable land and 

ungrazed pasture, respectively, indicating that grazed land has the highest potential 

risk of P losses, followed by arable land. Based on analyses of dry soil the difference 

between the three land uses was less, 0.43, 0.37 and 0.04 mg 100 g
-1

 soil respectively. 

Ungrazed pasture has a negligible risk of P losses. Casson et al. (2006) also found 

soils that exceeded WSP of 1 mg L
-1

 had a potential risk of P losses from the system, 

meaning that our grazed plot had a higher risk of P losses than arable land (Figure 2).  

The different forms of P in animal manure vary between animal species (Sharpley and 

Moyer, 2000; Kleinman et al., 2002a; Vadas et al., 2004), but there is very little 

variation for the same animal species even when the dietary composition is changed 
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(Leytem et al., 2004). Animal manure has a low N:P ratio (almost 1:1) but common 

agricultural plants absorb N and P in a ratio of 8:1, leaving 7 units of P to the soil 

system per unit taken up in plants and making manure a potential source of P losses 

(Zhang et al., 2009). Higher soil OM results in more water-soluble complex C, which 

can reduce the soil adsorption and/or absorption sites for P and result in more P losses 

from the profile. On the other hand, P associated with OM may be lost through soil 

macropores and cracks to the drainage system by means of preferential flow 

(Tarkalson and Leytem, 2009). Inversely, soil organic matter is responsible for higher 

P sorption within the profile by means of complex formation (Bloom, 1981; 

Niskanen, 1990a; Börling et al., 2001) and by favouring the formation of amorphous 

hydroxides, which subsequently increase P sorption (Borggaard et al., 1990; 

Niskanen, 1990a). Aluminium, which is strongly associated with soil organic matter, 

has a pronounced effect on the formation of amorphous Al oxides, which in turn 

favours higher P sorption capacity (Niskanen, 1990b; Lookman et al., 1996; Börling 

et al., 2001). This could be the cause of the higher WSP and P-AL in grazed land. 

Dissolved P concentration in drainage water is significantly related to the P 

concentration of the surface soil (Sharply et al., 1986). Therefore, higher P content in 

the topsoil carries a risk of higher P losses (Börling et al., 2004). However, when 

considering leaching losses we need to know the fate of the P forms that travel 

through the soil (Djodjic et al., 2004). Even at low concentrations, long-term 

application of P reduces the capacity of the soil to adsorb additional P and therefore 

the P level can cross the threshold limit for losses (Sharpley, 1995). This was 

probably the cause of the higher P concentration (both WSP and P-AL) in our grazed 

field. 

Because of its saturation of negative charges on the clay surface, soil with higher DPS 

shows a lower affinity for P (Ulén, 2006) and releases more desorbed P to the soil 

solution, resulting in higher P losses (Beauchemin and Simard, 1999). Sorption and 

desorption of P is mainly attributed to the saturation of oxides and hydroxides of Al 

and Fe (Uusitalo and Tuhkanen, 2000; Börling, 2003; Leytem et al., 2005; Mamo and 

Wortmann, 2009). Our results show that both Fe and Al have a good correlation with 

soil P content but that Al has a significantly stronger relationship compared with Fe 

which suggests that Al-oxides and hydroxides probably have better influence on 
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excess P losses to the aquatic environment. Our findings confirm those of Borggaard 

et al. (1990), who found higher specific surface for Al-oxides than Fe-oxides, 

resulting in higher P sorption to Al. Soil clay particles often tend to be coated by a 

thin film of Al-hydroxides, whereas Fe-oxides and hydroxides occur as patches, 

giving Al more opportunities for P sorption than Fe (Ulén, 2006). Phosphorus 

solubility increases in more reducing chemical conditions (Zhang et al., 2010).  

Since the soil at our study site is of heavy clay type, it probably has a higher potential 

of P losses to the receiving lake. Concentration of soil P and characteristics of surface 

soil are important parameters for understanding of P losses from topsoil of a clay soil 

through vertical flow or by surface runoff (Djodjic, 2001). Along with macropores, 

continuous cracks through the soil column caused by drying events enable deeper root 

penetration in drained clay (Kirchmann, 1991), making more openings through the 

profile. Such macropores and cracks reduces the contact time between runoff water 

and the P adsorbing surfaces. This results in higher P losses, despite the high 

adsorbing capacity of the subsoil (Djodjic et al., 2004).  

Higher P sorption capacity in non-calcareous soil is well documented for the presence 

of amorphous Al-oxide and hydroxide (Bloom, 1981; Borggaard et al., 1990; 

Niskanen, 1990a; Börling et al., 2001; Zhang et al., 2009). A study by Djodjic et al. 

(2002) showed that P losses from clay soils strongly increased, from 0.16 to 0.91 kg 

ha
-1

, with an increase in clay content from 46.5 to 60.6%, even though the soil had 

low DPS. Our study area has a clay content of 61.25% (Ulen et al., 2001), making this 

area at higher risk of P losses.  

Based on the extraction methods of WSP, P-AL, P-OX and P-HNO3, land intensively 

grazed by horses was found to have higher P content of all forms compared with 

arable land, and both grazed land and arable land had higher P content than ungrazed 

pasture. The higher P content in grazed land put this land use ahead of the other two 

land uses studied for potential risk of P losses. These losses are attributed to WSP and 

P-AL content of topsoil for the clay soil, since losses by surface runoff and 

preferential flow through cracks and macropores were evident. The higher P in grazed 

land is probably because of direct deposition of large quantities of horse manure over 

the years. Both Fe and Al are regulating factors in soil P release, with Al having a 

greater impact on P solubility at our study site. Animal manure favours the formation 
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of amorphous Al and Fe oxides and hydroxides, thereby increasing P sorption. 

However, coating clay particles with organic matter reduces adsorption sites during 

subsurface flow and could cause higher P losses to drainage water.  

5. Summary and conclusions  

This study revealed potentially high losses of P from grazing land for horses, which 

represents only 10% of Swedish agricultural land. Detailed investigations are needed 

on different grazing animals before grazing land (as a whole) can be identified as a 

potential hotspot for high P losses. In parallel to research on arable land, research on P 

losses from grazing systems and remedial measures for these should be introduced 

before it is too late. Possible remedial measures include decreased animal density per 

hectare, no imported feed inside grazing fields, fencing animals away from streams, 

daily removal of manure from outdoor animal grazing areas, construction of wetlands 

downslope from the grazing field to remove excess nutrients, etc. To have safe, non-

polluted surface water, we must decrease P losses from catchments putting grazing 

land for horses above arable land for any remediation measures. 
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Appendix I 

 

Soil Analyses data- water-soluble P (WSP); ammonium lactate (AL) extractable phosphorus 

(P), aluminium (Al), iron (Fe) and calcium (Ca); nitric acid (HNO3) digested P; P sorption 

index (PSI); degree of P saturation (DPS) 

Date of analysis: 2009/06/23                 

Sample 
No pH 

WSP*, fresh 
soil 

WSP*, 
dry soil P-AL* Ca-AL* Al-AL* Fe-AL* PSI*** 

DPS-
AL** 

P-
HNO3* 

A1 6.00 0.34 0.18 12.76 308.40 35.67 90.83 3.65 6.55 117.6 

A2 5.60 0.03 0.07 3.71 254.80 42.58 90.67 5.12 1.85 95.94 

A3 5.70 0.46 0.10 9.30 347.00 35.97 75.50 4.70 5.55 113 

A4 6.00 0.18 1.06 8.61 455.60 40.58 64.72 4.55 5.66 98.9 

A5 6.30 2.07 1.02 42.18 484.80 32.93 83.33 3.34 23.57 171.2 

A6 6.00 0.30 0.11 8.84 461.00 43.93 73.58 5.02 5.17 114.8 

A7 6.20 0.93 0.33 27.04 422.40 34.43 99.67 3.02 12.90 154.2 

A8 6.40 2.18 1.07 44.00 433.00 27.07 132.50 2.78 16.76 186 

A9 6.30 1.06 1.04 53.82 406.40 26.60 151.50 4.53 18.16 190 

A10 5.90 0.77 0.63 18.64 472.00 41.00 82.98 4.55 10.06 140.6 

B1 5.80 0.03 0.09 3.62 255.40 41.92 69.52 4.67 2.23 92.74 

B2 5.90 0.03 0.11 4.92 244.00 42.25 79.53 4.91 2.73 101.2 

B3 5.80 0.28 0.11 4.59 331.60 34.57 66.30 4.33 3.07 98.34 

B4 6.10 0.18 0.16 7.54 332.20 37.17 84.33 4.64 4.09 111 

B5 6.30 0.37 0.17 11.00 439.20 38.00 69.82 4.73 6.92 103.6 

B6 6.10 0.27 0.20 13.42 373.40 34.05 90.83 4.40 6.94 123.8 

B7 6.50 1.65 0.70 32.30 401.60 27.10 94.17 4.35 16.70 137.6 

B8 6.30 1.18 0.74 29.14 307.60 26.25 126.50 7.45 11.61 149 

B9 6.30 0.65 0.99 49.98 353.40 23.97 152.33 4.62 16.91 177.4 

C1 5.50 0.01 0.04 3.47 198.40 46.68 97.17 5.52 1.61 87.38 

C2 5.60 0.00 0.06 3.64 219.80 44.87 85.83 5.47 1.88 86.18 

C3 5.80 0.09 0.25 13.42 224.80 36.67 116.50 4.90 5.55 122 

C4 6.00 0.17 0.18 8.67 312.40 35.70 83.28 4.41 4.78 113.6 

C5 6.20 0.36 0.29 14.98 338.00 30.02 81.92 4.00 8.62 119.8 

C6 6.10 0.49 0.47 20.88 390.40 32.43 88.00 4.03 11.17 133 

C7 6.20 0.49 0.14 13.16 443.40 40.60 82.58 4.79 7.14 131 

C8 6.20 1.20 0.85 21.54 352.80 32.43 96.33 4.29 10.67 137.6 

C9 6.40 0.93 1.14 37.10 346.20 29.10 126.67 4.28 14.62 173.6 

C10 6.60 1.59 2.34 58.04 365.00 23.40 130.83 3.54 22.65 187 

D1 6.10 0.02 0.03 5.04 363.20 47.45 99.17 5.35 2.29 96.66 

D2 5.80 0.07 0.05 8.06 215.80 55.45 131.50 5.26 2.82 99.78 

E1 5.90 0.64 0.87 22.32 369.40 30.10 88.67 4.48 11.99 131.8 

E2 6.10 0.24 0.19 7.71 363.40 37.50 61.95 4.60 5.34 108.6 

E3 6.20 1.25 0.77 22.80 389.20 34.38 95.67 4.58 11.26 131.8 

E4 6.50 0.70 0.22 17.82 382.60 41.87 76.52 4.32 10.22 121.4 

E5 6.40 1.15 0.86 23.82 332.20 34.78 94.17 4.96 11.91 136.2 

E6 6.50 1.14 0.78 27.56 338.60 31.95 115.17 4.57 11.70 141.8 

F1 6.10 0.36 0.17 10.64 345.40 35.12 68.70 4.52 6.89 112 

F2 6.00 0.28 0.11 7.38 374.60 40.67 58.57 4.96 5.23 100.6 

F3 6.30 0.42 0.15 12.38 407.80 41.38 67.95 4.98 7.81 118.2 

F4 6.20 0.35 0.45 15.62 330.20 38.42 93.33 4.76 7.74 118.6 

F5 6.50 0.83 0.39 19.38 311.40 34.95 102.83 4.63 8.98 121.4 

G1 6.50 0.20 0.04 5.29 357.40 37.62 71.97 5.05 3.26 92.98 

G2 6.20 0.48 0.11 6.78 309.60 38.12 67.30 4.73 4.39 92.1 

G3 6.30 0.61 0.12 11.86 389.20 37.10 61.75 4.39 8.26 106.6 

G4 6.00 0.24 0.30 7.15 327.40 39.42 64.87 4.51 4.73 95.94 
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G5 6.30 0.45 0.10 12.60 394.20 40.73 66.55 5.08 8.10 108.8 

G6 6.20 0.64 0.17 9.55 328.20 40.42 82.22 4.63 5.20 106.2 

H1 5.80 0.41 0.39 5.31 339.80 39.35 59.05 4.68 3.78 89.7 

H2 6.20 1.23 0.36 11.86 346.40 40.18 73.53 4.58 7.08 113.6 

H3 6.10 0.54 0.14 6.23 400.60 45.92 72.18 3.30 3.66 88.82 

H4 6.30 0.69 0.22 14.60 444.00 39.13 74.32 5.42 8.69 110 

H5 6.10 0.51 0.15 6.45 399.80 45.65 70.72 4.89 3.86 101.8 

H6 6.40 0.59 0.43 13.96 331.80 38.02 89.33 4.89 7.19 111.8 

I1 5.70 0.61 0.52 7.53 373.00 41.32 60.15 4.60 5.22 102 

I2 6.00 0.37 0.23 5.46 377.20 45.75 71.77 4.74 3.23 97.22 

I3 6.10 0.32 0.39 7.63 317.80 43.38 83.02 4.94 4.07 111.6 

I4 5.90 0.49 0.50 11.48 283.40 40.32 80.22 4.30 6.39 108.8 

J1 6.20 0.33 0.54 12.90 295.00 36.55 101.17 4.66 6.02 122.6 

J2 5.80 0.35 0.56 10.34 267.60 44.08 94.83 5.10 4.94 125.6 

J3 6.00 0.42 0.71 9.02 263.40 39.32 91.67 4.82 4.52 113.4 

K1 5.50 1.22 0.29 6.03 393.40 42.70 67.02 5.02 3.81 87.38 

K2 6.30 0.92 0.59 9.60 340.60 40.95 69.80 4.63 5.95 104.6 

K3 6.20 0.92 0.60 10.02 323.40 43.35 77.05 4.21 5.67 101.8 

K4 5.70 0.99 0.37 5.49 347.40 44.48 81.90 4.86 2.94 103.4 

K5 6.10 0.90 0.31 7.50 369.20 38.75 62.95 4.50 5.09 98.82 

K6 5.90 0.54 0.60 6.73 341.20 37.45 55.17 4.37 5.09 102.6 

K7 6.00 0.88 0.45 5.71 345.00 38.50 62.32 4.57 3.91 99.14 

K8 6.40 1.04 0.17 6.50 325.80 40.62 74.38 5.18 3.83 91.7 

K9 5.80 1.15 0.53 4.11 309.20 39.98 62.43 5.15 2.79 83.22 

K10 6.20 0.57 0.63 8.15 291.20 36.78 65.73 4.73 5.41 107.8 

L1 6.20 0.57 0.81 15.66 342.00 33.80 100.50 4.35 7.43 121.6 

L2 6.10 0.39 0.21 4.97 424.20 48.45 60.05 6.67 3.30 98.34 

L3 6.40 0.78 0.26 7.49 468.20 51.62 64.82 5.48 4.63 109.2 

L4 6.30 0.34 0.12 6.83 486.60 52.82 68.92 5.80 4.01 101.6 

L5 6.30 0.53 0.45 8.03 452.60 45.57 67.72 5.86 4.96 102.8 

* mg 100 g
-1

 soil; **  % (molar weight basis) 
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Appendix II 

Soil analysis data- acid oxalate (OX) extractable phosphorus (P), aluminium (Al), 

and iron (Fe); degree of P saturation (DPS); total organic carbon (C) and nitrogen (N) 

 
Date of analysis: 2010/03/16           

Sample No 
P-
OX* 

Al-
OX* Fe-OX* 

DPS-
OX** Tot-C % Tot-N % C/N 

A1 17.12 44.12 116.23 6.90 3.52 0.33 10.63 

A2 14.12 45.73 121.96 5.44 2.75 0.27 10.19 

A3 12.73 46.72 113.81 5.18 2.31 0.23 9.87 

A4 14.90 53.58 106.05 6.26 3.72 0.37 10.00 

A5     7.24 0.63 11.47 

A6 17.18 61.48 111.41 6.75 4.52 0.47 9.58 

A7 21.99 52.34 123.99 8.17 4.30 0.43 10.08 

A8 29.06 36.46 109.43 12.69 6.56 0.62 10.61 

A9 36.64 35.19 137.46 13.16 6.44 0.59 10.97 

A10 20.25 42.42 93.69 9.83 6.64 0.60 11.10 

B1 12.21 42.75 101.52 5.54 2.46 0.23 10.51 

B2 15.05 45.89 115.13 6.08 2.44 0.24 10.31 

B3 13.49 45.33 114.75 5.47 3.07 0.29 10.78 

B4 14.64 42.64 106.56 6.39 3.41 0.32 10.55 

B5 16.44 53.91 101.75 7.13 3.83 0.38 10.01 

B6 19.29 52.04 116.71 7.54 4.46 0.44 10.24 

B7 23.32 45.36 110.78 9.75 4.95 0.48 10.42 

B9 34.58 35.99 138.74 12.29 5.08 0.48 10.69 

C1 10.91 35.82 91.42 5.57 2.88 0.29 9.92 

C2     3.60 0.33 11.00 

C3 21.10 42.37 126.56 7.96 3.45 0.33 10.54 

C4 19.91 51.73 140.18 6.68 3.33 0.32 10.47 

C5 21.30 49.78 137.42 7.31 4.81 0.45 10.68 

C6 23.57 49.44 118.43 9.19 4.35 0.43 10.24 

C7     5.19 0.47 11.07 

C10 23.77 21.19 85.53 13.76 4.70 0.41 11.44 

D1 18.70 51.13 137.61 6.39 3.33 0.33 10.12 

E1 16.12 48.64 115.95 6.41    

E2     4.69 0.46 10.24 

E3     3.86 0.39 9.93 

E4 19.71 49.58 99.77 8.83 2.80 0.30 9.25 

E6 30.15 46.00 142.92 10.13 2.99 0.29 10.34 

F1 19.55 53.02 141.32 6.50 3.01 0.30 10.10 

F2 16.31 55.60 117.82 6.25 3.85 0.40 9.68 

F3 19.74 56.00 107.98 8.11 3.90 0.38 10.18 

F4 19.25 47.70 102.74 8.49 3.23 0.34 9.43 

F5 23.01 48.71 126.41 8.51 2.26 0.22 10.44 

G1 14.72 50.02 125.12 5.47 2.79 0.27 10.21 

G2 17.59 52.84 141.55 5.84 3.79 0.39 9.79 

G3 18.92 53.49 127.76 6.83 2.16 0.24 9.09 

G4     3.77 0.37 10.10 

G5 20.51 58.34 115.65 7.91 3.54 0.36 9.72 

G6 19.00 52.50 121.08 7.20 1.87 0.19 9.74 

H1 12.85 57.08 109.59 5.20 2.64 0.27 9.80 

H2 16.60 59.43 117.98 6.28 3.53 0.35 10.16 

H3 17.20 62.95 124.07 6.18 3.41 0.36 9.52 

H4 19.62 58.97 119.93 7.33 3.84 0.39 9.83 
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H5 18.61 64.77 127.06 6.52 3.58 0.38 9.50 

H6 23.03 58.50 149.09 7.20 3.15 0.32 9.91 

I1 16.55 57.53 118.67 6.27 3.39 0.34 10.10 

I2     2.84 0.31 9.27 

I3 21.66 65.22 157.14 6.37 3.19 0.27 12.00 

I4 21.56 52.23 153.03 6.71 2.56 0.27 9.43 

J1 19.42 47.29 135.29 6.81    

J2 21.09 51.51 141.88 7.01 2.49 0.26 9.76 

J3 17.06 48.11 131.90 6.10 2.23 0.22 9.95 

K1  13.55 56.67 106.89 5.60 3.22 0.29 11.11 

K2 16.11 54.86 114.53 6.34 2.81 0.26 10.83 

K3 16.19 49.32 106.42 6.89 3.31 0.31 10.64 

K4 16.56 52.76 120.74 6.28 2.70 0.27 10.09 

L2  9.69 73.09 106.99 3.78 1.44 0.14 10.43 

L3 17.63 72.56 132.29 5.84 3.79 0.37 10.30 

* mg 100 g
-1

 soil; **  % (molar weight basis) 
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