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Summary 
 
The aims of this study were to demonstrate the genomic architecture of quantitative traits 

using Illumina BovineSNP50 Beadchip as well as the identification of chromosomes or SNPs 

affecting multiple traits in German Holstein population. For this research, a total of 2333 

German Holstein bulls were genotyped for 54,001 SNPs. Only SNPs with less than 5% 

missing genotypes and minor allele frequency greater than 3% were used. Finally, among 

45181 SNPs distributed on 29 autosome and XY pseudo-autosomal chromosomes, 43,838 

known position SNPs were selected. Total additive genomic variance were calculated by 

sums of chromosomal variances and covariances between them or SNP variance and 

covariances between SNPs for milk, fat, protein yield and somatic cell score traits. 

Chromosomal genetic correlations were estimated for six categories of traits: production (3 

traits), udder health (1 trait), milkability (4 traits), fertility (6 traits), calving (4 traits) and 

body type (2 traits). SNP genetic correlations were calculated for fat and milk yield on 

BTA14 and BTA20 as well.  

All bovine chromosomes contribute to construct the total additive genetic variance. Sums of 

the chromosomal additive genetic variances and covariance between chromosomes were 

equal with total additive genetic variance as well as sums of SNP variances and covariance 

between SNPs along the genome. Chromosomal additive genetic variance explain 54.49 to 

69.9% of total additive genetic variance with higher additive genetic variance on BTA14 for 

milk and fat yields and BTA6 for protein yield and somatic cell score traits. Sum of SNPs 

variance explain 6.3 to 9.6% of total additive genetic variance with higher SNPs additive 

genetic variance on XY pseudo-autosomal. Results of chromosomal genetic correlations 

between analyzed traits showed negative and positive correlations between traits across 

chromosomes. e.g. BTA14 has strong negative correlation between fat with milk and protein 

yields. Higher positive correlations between milk, fat and protein yields with SCS have been 

seen on BTA26. In the other hand, correlations between traits across SNPs can exhibit 

chromosomal regions having positive or negative correlations for interested traits. It can help 

to design low density chip with high correlated SNPs for economical traits in genomic 

selection.  

 

Key words: Additive genetic variance, chromosomal genetic correlation, low density chip, 

German Holstein population 
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1. Introduction: 

Historically humans have tried to breed animals to increase their production value. 

Animal production is increased by improvement of environmental factors such as housing, 

feed composition, feed strategies, health status and farm management (Rauw et al., 1998); as 

well as, animals with adequate genetic capacity can improve the production level of 

interesting economical traits. This gene capacity is transferable to the next generation which is 

the main black box of animal breeding. Data collection from populations, computational 

progress, molecular genetic success and use of statistical formula provide main material to 

estimate accurate breeding values. The estimation of breeding values is an integral part of 

most breeding programs for genetic improvement. In population the genetic parameters, 

heritability, additive genetic variance and genetic correlation, are the base knowledge of 

selection in quantitative genetics (Dekkers and Hospital, 2002). Subsequently, mating 

assortment is a supplementary process with selection for genetic improvement in animals.  
 

Selection has been based on two traditional types of data, pedigree and phenotypes. Recently, 

a third type of data has been developed based on DNA markers (Hayes, 2008). The 

information of markers can be used early in life, by producing more offspring than required 

for testing in later life and by selecting progeny with the most favorable alleles at the 

quantitative trait loci (QTL). The later method combines with pedigree and phenotype 

information is called genomic selection. This can improve selection before phenotypic 

information from animal or its progeny arise and reduce the generational intervals. Since 

2001, this method has been replacing classical selection methods in dairy cattle industry. 

According to this method, single nucleotide polymorphism (SNP) effects are estimated using 

genotyped individuals that are phenotyped for quantitative traits, and then genomic estimated 

breeding value (GEBVs) are predicted for any individual by using only its SNP genotypes 

and estimated SNP effects (Meuwissen et al., 2001).  
 

In economic species the value of a potential replacement individual is usually a function of 

several quantitative characters (Rutledge et al., 1973). Selection for a certain trait can lead to 

genetic changes in other traits (Falconer, 1989) because traits in an organism are not isolated 

from each other. Individuals are made up of genetically, functionally, developmentally, and 

physiologically interconnected traits. To understand the genetics and for evaluating groups of 

traits, breeders use phenotypic, genetic, and environmental correlations among traits 

simultaneously. Knowledge of genetic correlations among important traits, permit the breeder 
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to predict what will happen to an indirect trait, if this trait is ignored completely and selection 

is performed for the direct trait.  
  
Dairy selection programs are now global and a key priority in breeding programs should be to 

identify those traits that really affect cost of production. Many traits that affect dairy cattle 

profit can be included in a selection index. More traits provide more information about profit, 

but too many could confuse breeders and distract attention away from those with highest 

value. It is important to identify SNP, QTL or genomic regions influencing two or more traits 

of interest and traits of secondary importance. Due to economical view of genomic selection 

policy, it is not justifiable for farmers to genotype all individuals using high density chips. 

Hence, it is a solution of designing small chip with high correlated SNPs for economical traits 

for widely usage. The aim of this study was to demonstrate the genomic architecture of 

quantitative traits using Illumina BovineSNP50 Beadchip. Moreover, the identification of 

chromosomes or SNPs affecting multiple traits in German Holstein population was part of the 

investigation. 
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2. Literature review:  

2.1. What is the correlation between traits? 

Correlation between two traits is the covariance normalized by the standard deviations 

of each trait; it has a range from 1 to -1. It is also necessary to have reliable estimates of the 

covariance components. At the genetic level, a covariance between traits is generated when 

alleles affecting both traits tend to be found within the same individual. Two causes of genetic 

covariance (and thus correlation) are pleiotropy and linkage disequilibrium (Falconer, 1989). 

Pleiotropy is defined as one locus affecting more than one trait. It is the main cause for the 

existence of a genetic correlation between traits in outbred population. Some pleiotropic 

genes can cause positive and others negative pleiotropy on investigated traits; the balance 

determines the genetic correlation of the two characters. In the other hand, linkage 

disequilibrium can cause genetic correlation between traits as well. It is defined as a non-

random relationship between the alleles present at two or more loci. Roughly in QTL level, 

Pleiotropic effects of QTL, or closely linked QTL, each affecting a different trait, can affect 

the value of individual QTL for marker assistant selection (MAS) (Schrooten et al., 2004). It 

is assumed that most eukaryotes have thousands of genes linked together in no more than 

several dozen chromosomes (Lande, 1980). Linkage between loci (or between genetic 

elements within genes), contribute to genetic correlations because these linked effects tend to 

be inherited together.  

The correlation between traits can be favorable or unfavorable; therefore consideration of 

correlated responses suggests that it might sometimes be possible to achieve more rapid 

progress under selection for a correlated response than from selection for the desired character 

itself. We call this indirect selection. Selection applied to some character other than the one it 

is desired to improve. Indirect selection cannot be expected to be better than direct selection 

unless the secondary character has a substantially higher heritability and the genetic 

correlation is high. There are practical considerations that may make indirect selection 

preferable. Three such practical matters are:  

1. If it is difficult to measure the direct trait. Due to this difficulty as the error of 

measurement increases the indirect selection becomes advantageous. 

2. If the desired trait is measurable in one sex only but the secondary trait is measurable 

in both, then a higher intensity of selection will be possible by indirect selection.  

3. The desired trait may be costly to measure, then it may be economically better to 

select for an easily measured correlated trait (Falconer, 1989). 
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 Recently, molecular genetic selection can lead to much higher genetic gains than traditional 

quantitative genetic selection, especially for traits with low heritability, phenotypes that are 

difficult to record, unfavorable genetic correlations, and genotype * environmental 

interactions (de Roos et al., 2007). Further information provided from denser markers and/or a 

larger number of generations may reveal the presence of linked loci or proof that correlation 

between traits is due to pleiotropy. It is shown that the covariance between contrasts from 

separate single trait regression analysis can be used to identify pleiotropic or closely linked 

QTL (Schrooten and Bovenhuis, 2002).  Estimation of genetic correlation between traits has 

done by availability of data from progeny-parent measures on both traits. This study tries to 

estimate genetic correlation between traits using SNP effects on each trait of individual’s 

genome.  

 

2.2. Genetic correlation between production traits with others: 

2.2.1. Production traits: 

There is an abundance of published evidence on the genetic correlation of milk 

production traits in the breeding of cattle. The main focus of dairy selection has been on 

increasing milk yield. Milk, fat and protein yields are the biological and main economical 

interesting traits in dairy cattle (Freyer et al., 2003). Different researches have shown that 

genetic correlations among yield traits were strongly positive, ranged from 0.49 to 0.92 

(Harris et al., 1992; Montaldo  et al., 2010). The highest genetic correlation is between milk 

and protein production (0.83 – 0.92), and the lowest is between milk and fat production  (0.80 

– 0.41) (Harris et al., 1992; Veerkamp et al., 2001). Though, genetic correlation for protein 

yield showed some lack of consistency between the beginning and the end of lactation 

(Silvestre et al., 2005). Correlation between milk and protein are more similar from study to 

study, than correlation between milk and fat (Van Vleck and Dong, 1988). This means, milk 

is more associated with protein than fat yield. Genetic correlation for milk and fat percentage 

and milk and protein percentage was negative, although it was positive for fat and protein 

percentage (Schutz et al., 1990).  

Genetic correlation across the parities showed variable result. Carlen et al., (2004) estimated 

genetic correlations between milk production traits in Swedish Holstein cows. They indicated 

that the strength correlations between production traits declined with increasing parity 

especially between milk and fat. Conversely, other study reported that genetic correlations 

between milk and fat and fat and protein yields increased from lactation one to lactation two 

and later lactations (Al-Seaf et al., 2007).  
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Identification of QTLs could help to better understand the structure of the genetic correlation. 

Thus, it is reasonable to assume that a QTL may often act on related traits. Several 

chromosomes, particularly bos taurus autosome (BTA) 3, 6, 9, 14, 20 and 23 have been 

reported to harbor QTLs with pleiotropic effects on multiple milk production traits (Khatkar 

et al., 2004). Study on US Holstein population revealed a significant marker effects for at 

least one QTL affecting fat percentage, protein yield and protein percentage in chromosome 3 

(Heyen et al., 1999). A multiple QTL mapping study in German Holstein population revealed 

significant pleiotropic QTL on 68 cM of BTA6. This QTL affects on fat and protein yield 

with correlation coefficient of 0.651 (P< 0.0001) (Freyer et al., 2003). Although, In 

Norwegian dairy cattle a QTL close to marker FBN9 in the middle of chromosome 6 

increases milk yield and reduces fat and protein percentages (Olsen et al., 2002). 

A polymorphism in the centromeric end of bovine chromosome 14 of gene Diacyglycerol 

acyltransferase (DGAT1) in German and Fleckvieh (Thaller et al., 2003), Duch and New 

Zealand (Grisart et al., 2002), Israeli (Weller et al., 2003) Holstein populations was 

investigated for genetic correlation effect on milk production traits. In these populations the 

DGAT1 allele with a lysine residue (denoted K), as opposed to alanine residue (denoted A), is 

associated with increased fat yield and fat and protein percent, and decreased milk and protein 

production. 

 

2.2.2. Production traits with somatic cell count:  

Somatic cell count (SCC) is routinely recorded in most milk recording systems. 

Although, information of SCC is easily available on a large scale (Koivula et al., 2005). 

Somatic cell count is used to monitor mastitis, and milk yield declines, even at relatively low 

levels of somatic cells (Schutz et al., 1990). High SCC in milk affects the price of milk in 

many payment systems that are based on milk quality (Rupp and Boichard, 1999). 

Somatic cell score (SCS), which is the log2 transformation of SCC [SCS= log2(SCC/100)+3], 

corrects the problem of SCC and has accepted as a standard recording scale for SCC (Da et 

al., 1992). Montaldo et al., (2010) showed that genetic correlation between production traits 

and SCS score were generally close to zero for three lactations ranged from 0.19 to -0.27.  Al-

Seaf et al. (2007) used three models to estimate correlation among yield traits and somatic sell 

score. This study showed that the estimate of genetic correlation between milk yield and SCS 

were small and negative (-0.03). But it was small and positive between fat and protein yield 

and SCS for all three models (0.02 – 0.12. Subsequent studies indicated that the estimate of 

genetic correlations between production traits and SCS in the first lactation was highest (0.17 
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to 0.31), and decreased to about 0.1 and 0.2 for SCS and milk or protein, respectively. The 

correlation for SCS and fat was close to zero (Carlen et al., 2004; Samore et al., 2008). Hence, 

grater protein yield is associated with smaller SCS (Samore et al., 2008). 

There are two opposing mechanisms that have been suggested to contribute to the genetic 

correlations between milk yield traits and SCC. First: cows with high milk yield may be more 

susceptible to mastitis resulting in a positive correlation in the first lactation. And then, 

mastitis causes high SCC and damage to the udder, which reduces the second lactation milk 

yield and causes a negative correlation (Koivula et al., 2005).  

 

2.2.3. Production with Fertility traits: 

Genetic correlations between production and fertility traits have been discussed 

intensively in the literature. Compared with the other trait groups, the fertility complex was 

considerably more heterogeneous in trait definition across countries (Liu et al., 2008). All in 

all, due to antagonistic correlation between production and fertility traits, selection for 

production traits have declined fertility in lasts decades (Rauw et al., 1998; Van Arendonk et 

al., 1989; Veerkamp et al., 2001). Thus a higher production is correlated with poorer fertility. 

Some studies (e.g., Hoekstra et al., 1994) revealed that genetic associations between fertility 

traits with milk yield were weaker than those with protein yield. Days open had a larger 

genetic correlation with production traits (ranging from 0.63 to 0.86) than interval calving 

(0.55). Days open is a widely used fertility traits in most of the countries. Greater antagonism 

between production and days open may be due to voluntary management decisions for high-

yielding cows, resulting in longer lactation lengths (Gonzalez-Recio et al., 2006). It has 

reported that high milk yield after calving is genetically correlated with a latter showing of the 

first heat. Genetic correlation between milk yield with NR56 and NR90 were -0.31 and -0.33 

respectively (Konig et al., 2008). Different studies report that no genetic correlation was 

found between 100-day protein yield and NR56,  (Van Arendonk et al., 1989) in virgin heifers 

but it was unfavorable in first lactation cows (-0.18) (Andersen-Ranberg et al., 2005).  

 

2.2.4. Production traits with body weight: 

The relationship between yield traits and body weight (BW) is complex largely 

dependent on both the frame size of a cow and BCS. It is stated that large cows give more 

milk than smaller cows (Harville and Henderson, 1966; Lin et al., 1985). So, there is a 

positive genetic correlation between size and production (Harville and Henderson, 1966). If 

there is positive correlation, then a cow’s BW can add little information about her breeding 
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value for milk and milk fat production. Conversely, some studies found unfavorable genetic 

relationship between weight at first calving and milk, fat and protein yields. They indicated 

that genetically heavier cows after calving produce less milk, fat and protein but conceive 

earlier than smaller cows (Abdallah and McDaniel, 2000; Moore et al., 1991). Others, found 

genetic correlation of the range near zero in the first lactation to moderate negative in the 

second lactation between BW and milk production traits (Berry et al., 2003b; Clark and 

Touchberry, 1962). Selection for milk yield has a negligible progress on the BW of animal 

(Berry et al., 2003b). However, still  potential exists to select animals with less BW loss at 

high levels of milk production, which is expected to improve cow health and reproductive 

performance (Toshniwal et al., 2008).   

  

2.3. Genetic correlation between somatic cell score and udder type traits: 

Mastitis is one of the most costly diseases in dairy industry which has a strong genetic 

correlation with somatic cell count. Thus, udder and teat confirmation traits, which have 

moderate to high heritability, and have the possibility to indirectly select for the incidence of 

mastitis (Chrystal et al., 1999; Seykora and McDaniel, 1986, 1985a). Estimated genetic 

parameters indicate a variable correlation between udder traits and SCC. It has been reported 

that teat-end shape was related to SCC. Cows with pointed teat ends have the lowest SCC and 

cows with flatter teat-ends have higher SCC (Seykora and McDaniel, 1985a, b), however 

result from Chrystal et. al., (2001 and 1999) did not support the previous research to find a 

relationship between SCS and teat-end shape. Several studies indicated that cows with higher 

udder, tighter fore-udder attachment, deeper cleft, and smaller teat diameter had lower 

lactation SCS and lower incidence clinical mastitis (Rogers et al., 1991; Rupp and Boichard, 

1999; Seykora and McDaniel, 1986, 1985a, b). These results suggest that selection for higher 

udder, teat placement, length of fore udder and udder depth (tight udder) would have a 

positive effect on reducing SCC (DeGroot et al., 2002; Lund et al., 1994; Monardes et al., 

1990). Genetic correlations between teat length and SCC were favorable. That means, longer 

teats were associated with higher SCC and clinical mastitis (Rogers et al., 1991; Rupp and 

Boichard, 1999). 

 

2.4. Genetic correlation between Functional traits with others:  

2.4.1. Longevity with locomotion type traits 

Longevity is one of the functional traits that considerably affects overall profitably in 

dairy cattle. This means longevity is an indicator of overall health of the cow and satisfaction 
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of the owner. With increased longevity, the mean production of the herd increases. Decision 

to culling a proportion of cows in herd depends on production level and the proportion of 

mature cows, which produce more milk than do young cows (Sewalem et al., 2005). Related 

study showed that genetic correlation among feet and leg’s, Foot angle, rear legs set were low 

(-0.10 to 0.05). They concluded that  cows with higher feet and leg’s scores and intermediate 

foot angle and rear legs set scores showed better performance in terms of production and 

longevity (Perez-Cabal et al., 2006).   

 

2.4.2. Body condition score and production traits: 

Body condition score (BCS) has been confirmed by the different literature as a 

management, visual or tactile evaluations tool for the farmers and breeders. Its main practical 

advantage is to assess the nutritional status and health status of producing cows during their 

productive cycle (Berry et al., 2003b; Domecq et al., 1997; Hady et al., 1994; Kadarmideen 

and Wegmann, 2003). BCS is an approximate way of judging the body lipid content of a live 

animal (Pryce and Harris, 2006) which is easy to measure on a large scale and accurate to 

indicate a major part of the variation in body reserves between the same breed of animals 

(Veerkamp et al., 2001). During each stage of the lactation cycle BCS should be optimal for 

maximal return. 

  

In general genetic correlations between BCS and 305-d milk, fat, and protein yields were 

negative and unfavorable (Dal Zotto et al., 2007; Kadarmideen and Wegmann, 2003; 

Veerkamp et al., 2001). A biological reason for the negative genetic correlation between BCS 

and milk production is the apparent relationship between BCS with energy balance and tissue 

mobilization. Body tissue may be used in part to fuel milk production, a moderate to strong 

antagonistic genetic correlation between BCS and milk production is therefore expected 

(Berry et al., 2003b). It has been reported that there are genetic correlations between BCS 

change in early lactation and milk production (Berry et al., 2003b). This means, genetic 

correlation between BCS in early lactation and 305-d lactation fat yield was smaller than for 

BCS in latter lactation (Veerkamp et al., 2001). Genetic correlations between BCS and fat and 

protein yields estimated using the multivariate models were close to zero, while, using the 

Random Regrassion model, genetic correlations between BCS and fat and protein yields were 

positive at d 1 of lactation (Pryce and Harris, 2006).  

 



European Master in Animal Breeding and Genetics 

 9 

Cows that are genetically superior milk producers tend to have genetically lower BCS in late 

lactation. If selection continues alone for high milk, fat and protein yields a genetic decline is 

to be expected in the long term selection program (Berry et al., 2002, 2003b; Dal Zotto et al., 

2007; Kadarmideen and Wegmann, 2003). Study by Veerkamp et al., (2001) have been 

agreed that selection for a high-lactation fat yield has less effect on BCS during early 

lactation, and selection for a high-lactation protein yield decreased BCS  especially at the end 

of lactation.  

 

2.4.3. Body condition score and fertility traits: 

Since, fertility traits have low heritability and are more difficult to record than BCS 

(Kadarmideen, 2004), results of different studies exhibit that BCS can serve as indicator for 

estimated breeding value for fertility traits (Berry et al., 2003a, b; Haas et al., 2007; 

Kadarmideen, 2004). 

  

BCS is used in dairy cattle to assess body composition and energy balance, and besides that, 

fertility in dairy cattle is affected by both extent and the duration of negative energy balance 

(Haas et al., 2007). Cows that are in negative energy balance, particularly in early lactation, 

may be yielding milk at the expense of reproduction. Thus, mobilization of body tissue plays 

a role in the genetic control of fertility (Pryce et al., 2000). Most studies reported a moderate 

genetic correlation between average BCS and fertility traits (Berry et al., 2003b; Dechow et 

al., 2001; Kadarmideen and Wegmann, 2003).  However, there is a tendency that BCS in mid 

lactation expressed the strongest genetic relationship with improve the fertility (Berry et al., 

2003b; Haas et al., 2007). Body condition score for calving interval and days to first service 

showed a range between -0.4 and -0.6 and during early lactation it showed a stronger 

association with First-service conception (FSC) than BCS in later lactation  (Veerkamp et al., 

2001). Genetic correlations suggest that increasing BCS levels will increase the genetic merit 

for fertility (Haas et al., 2007) and cows with good body condition after calving have a shorter 

interval to insemination. Or the other way around, cows with low BCS may lack sufficient 

energy reserves to activate ovarian function, and are more likely to have a longer calving 

interval or display estrus (Dal Zotto et al., 2007; Pryce et al., 2000).  

From a biological point of view, genetic correlation between BCS and fertility could lie 

through either 1) hormones such as insulin, growth hormone, and insulin like growth factors 

controlling intermediary metabolism having direct effect on ovarian function or 2) 

reproductive hormones regulating ovarian function having direct effects on intermediary 
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metabolism (Royal et al., 2002) or, genes associated with body tissue mobilization may have 

pleiotropic effects or be closely linked to genes controlling fertility in animals (Berry et al., 

2003b).  

 

2.4.4. Fertility traits: 

After a successful increase in production traits with direct selectio, recently, focus on 

functional traits such as reproduction traits have received increased. Fertility is an 

economically important trait in the dairy industry, because it affects direct reproduction and 

influences calving interval (Boichard et al., 1997; Ranberg et al., 1997). From the economical 

view, better fertility decreases cost for inseminations, calving intervals, veterinary cost and 

finally lowers the percentage of infertility culling (Miesenberger et al., 1998).  Fertility is 

based on both sexes which influences the process in different ways. Good cow fertility would 

be defined as an animal in lactation, which shows her heat in time and gets pregnant after the 

first insemination. The animal with these characters will have the desired calving interval. As 

a result, no waste of labour and semen occurred (De Jong, 1997). On the male side, dilution of 

semen before freezing, age of the sire when collected semen, and the Artificial Insemination 

(AI) technician all have large effects upon fertility as well as fertility on the female side 

(Jamrozik et al., 2005). Two aspects of the fertility complex are concerned with female 

fertility: First is the traits that the animal becomes pregnant as soon as possible after calving, 

that are calving interval, interval from calving to first or last insemination, intervals between 

first and last insemination and intervals between successive inseminations (Thaller, 1998). 

One of the most widely used interval traits is the interval from calving to first insemination, 

which describes the ability of a cow to show estrus after calving (Andersen-Ranberg et al., 

2005).  

Second is the ability of the animal to recycle after calving such as non-return rates, which are 

related to the capability of a heifer or a cow to conceive when inseminated. The advantages of 

the interval from calving to first insemination and 56-d non-return rate are that they are 

available earlier and are less biased because of selection than other fertility traits (Andersen-

Ranberg et al., 2005; Thaller, 1998; Wall et al., 2003).  

 

Heritability estimations are low for all fertility traits (Liu et al., 2008; Wall et al., 2003), but 

fertility can change with the age of the cow. Heifer fertility traits had higher heritability than 

cow traits (Jamrozik et al., 2005). Liu et al., (2008) reported high moderately genetic 

correlation between heifers and cows for the same traits non-return rate to 56 day (NR) or 
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interval from first to successful insemination (FS) in German Holstein population. They 

indicated a negative genetic correlation between NRc and FSc that exhibit a limited accuracy 

of using NR56 for projecting conception (Liu et al., 2008). There was shown a strong and 

favorable correlation of the calving interval (CI) with days to first service (DFS) and the 

number of inseminations per conception (INS) which suggests that improving 1 fertility trait 

would result in improving other correlated fertility traits (Wall et al., 2003). An unfavorable 

genetic trend was reported in Holstein German and United Kingdom for all fertility traits in 

recent years, thus  CI, DFS, and INS increased and NR56 decreased (Liu et al., 2008; Wall et 

al., 2003) 

 

2.4.5. Calving traits: 

Calving ease and stillbirth are important complex traits which affect calving deaths,  

profitability of heard, and aspect of animal welfare, which is becoming important for proper 

strategies for genetic improvement (Dekkers, 1994). Both, calving ease and stillbirth are 

mainly influenced by two factors, maternal and fetal (or direct). Maternal effects refers mainly 

to the pelvic dimension of the dam and direct calving ease refers to calf size (Dekkers, 1994; 

Hansen et al., 2004). From a clinical point of view, in most cases size of the calf exceeds the 

pelvic opening hearupon difficult births can be seen in such parturition (Gutierrez et al., 

2007). However, studies show three times higher calving difficulty and stillbirth in 

primiparous than multiparous dams (Carnier et al., 2000; Dekkers, 1994; Hansen et al., 2004), 

and that males calves were more likely to be stillborn (Cole et al., 2007). 

 

In most studies, estimated heritability for maternal and direct calving ease were low and a 

negative genetic relationship has been found between direct and maternal calving ease in 

dairy and beef cattle (Carnier et al., 2000; Cue and Hayes, 1985; Eaglen and Bijma, 2009; 

Gutierrez et al., 2007). This negative correlation reflects a genetic antagonism between direct 

and maternal calving ease effects. From a genetic point of view, female calves born more 

easily are expected to exhibit greater difficulties when giving birth as dams (Carnier et al., 

2000). However some studies (i.e., Luo, Boettcher et al. 2002) reported a positive genetic 

correlation between all combinations of one maternal and one direct genetic component of 

calving ease which is in contradiction with many other conclusions estimated in the literature. 

Carnier et, al., (2000) reported a strong genetic correlation between direct effects for first and 

second and for first and third parity, which suggests that the same genes are involved in the 
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control of direct calving ability of heifers and cows in piemontese population (Carnier et al., 

2000; Cue and Hayes, 1985). 

 

Estimated genetic correlations are varied between studies for stillbirth, some of them (e.i., 

Eriksson, Nasholm et al. 2004) estimated negative genetic correlation between direct and 

maternal stillbirth while some others found a small, close to zero genetic correlation between 

these two effects (Hansen et al., 2004; Heringstad et al., 2007). It would be expected that very 

few chromosome regions affect both direct and maternal effects of stillbirth. Following this 

hypothesis Thomasen et, al., (2008) reported a pleiotropic QTL on chromosome BTA12 and a 

two linkage QTL on chromosome BTA26 affecting both direct and maternal stillbirth. The 

later studies imply that selection on, e.g., the direct effect of stillbirth would not have an affect 

on maternal effects of stillbirth therefore it is recommended to evaluate bulls as sires and 

maternal grand sire to decrease stillbirth (Heringstad et al., 2007).  
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3. Materials and Methods: 

3.1. Genotyped animals and SNP Data: 

 In this project, DNA was extracted either from frozen semen, leukocyte pellets or full 

blood samples of 2333 German Holstein Friesian bulls. The BovineSNP50 Beadchip 

(Illumina, San Diego, CA) was used to genotype 54,001 SNPs distributed over the whole 

genome for all bulls. SNP effects were estimated for 44 traits by Vereinigte 

Informationssysteme Tierhaltung (VIT) which is responsible for genetic evaluations of dairy 

breeds in Germany. Only SNPs with less than 5% missing genotypes and minor allele 

frequency greater than 3% were used. Finally among 45181 SNPs distributed on 29 autosome 

and XY pseudo-autosomal chromosomes, 43,838 known position SNPs were selected for 

subsequent analysis. Maximum numbers of SNPs were detected on BTA1 and minimum on 

XY pseudo-autosomal chromosome. Numbers of SNPs per each chromosome are shown in 

table 1. 

 

 

Table 1: Distribution of numbers of SNPs per each chromosome  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chromosome Number of SNP 

1 2816 

2 2286 

3 2169 

4 2117 

5 1807 

6 2140 

7 1883 

8 1999 

9 1701 

10 1838 

11 1903 

12 1391 

13 1477 

14 1442 

15 1421 

 

Chromosome Number of SNP 

16 1342 

17 1355 

18 1141 

19 1154 

20 1363 

21 1147 

22 1076 

23 923 

24 1080 

25 845 

26 903 

27 840 

28 811 

29 890 

XY 578 
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3.2. Selected traits for analyze: 

In this research, twenty dairy traits were analyzed (Table 2). These traits are consisted 

of three production traits, somatic cell score, four milkability traits, six female fertility traits, 

four calving traits and two body type traits.  

 

Table 2: selected traits were used for genetic correlation. 

 Traits Abbreviation 

Production trait  Milk yield MKG 

  Fat yield FKG 

  Protein yield PKG 

Milkability  Milk flow rate MFR 

  Milking speed MSP 

  Milking temperament  MTP 

  RZD RZD 

Udder health  Somatic cell score SCS 

Reproduction traits   

Fertility  Non-return rate to 56 d heifer NRh 

  Interval from first to 

successful insemination heifer 

FSh 

  Non-return rate to 56 d cow NRc 

  Interval from first to 

successful insemination cow 

FSc 

  Interval from calving to first 

insemination cow 

CFc 

  Days open Doc 

Calving  Direct calving ease CEd 

  Maternal calving ease CEm 

  Direct stillbirth SBd 

  Maternal stillbirth SBm 

Body type traits  Rump angle RAN 

  Rump width RWI 
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3.3. Estimation of additive genetic variance: 

3.3.1. SNP additive genetic variance: 

Since allele’s frequency and SNP effects were provided for each SNP. Additive 

genetic variance for each SNP ( 2
SNPσ ) on the population was calculated using:  

 

 

Where 2
iSNPσ  is SNP additive genetic variance, pi is the frequency of the i th allele on a locus, 

and αi is the substitution effect of the i th allele on the locus. Total 2
SNPσ  for each trait was 

counted by the sum of individual SNP additive genetic variances along the genome. 

 

 3.3.2. Chromosomal additive genetic variance:  

There are two approaches to calculate chromosomal additive genetic variance on the 

population.  

First: chromosomal EBV (CEBV) was calculated as the sum of individual SNP effects on 

each chromosome for each bull. Then chromosomal additive genetic variance was constructed 

by calculate the variance between chromosomal EBV across the population.  
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Where 2
cgσ is chromosomal additive genetic variance, n is the number of animals which their 

chromosomal additive genetic variance were investigated, xi is CEBV of each animal and x is 

mean of each chromosome across population. 

Second: In the second approach it was calculated by sums of SNP additive genetic variance 

and covariances between SNPs on each chromosome across the population as  

  

 

 

Where 2
cgσ is chromosomal additive genetic variance, SNPn is the number of SNPs on each 

chromosome, 2
iSNPσ  is the genetic additive variance of i th SNP on chromosome, and 

),cov( ji SNPSNP  is the covariance between i th and j th SNP on the chromosome.  
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3.3.3. Total additive genomic variance: 

 To estimate the total additive genetic variance, three approaches were used. 

First: GEBV was calculated as the sum of individual SNP effects for each bull. Then total 

additive genetic variance was constructed by calculating the variance between EGBV across 

the population.  

 

∑
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Where 2
totGσ is total additive genetic variance, n is the number of investigated animals, xi is 

EGBV of each animal and  x  is the mean EGBV population.  

Second: Total additive genetic variance was calculated with sums of chromosomal additive 

genetic variance and all covariance combinations between chromosomes as  

 

 

 

Where 2
totGσ  is the total additive genetic variance, 2

igσ is the variance in the i th chromosome, 

),cov( ji gg is the covariance between i th and the j th chromosome and cn  is number of 

bovine chromosomes (29 autosomes and xy pseudo-autosomal chromosomes).  

Third: also it is possible to calculate total additive genetic variance with sums of SNP additive 

genetic variances and all covariance combinations between SNPs along the genome without 

pay attention to chromosomal divisions as  

 

 

 

Where 2
totGσ  is the total additive genetic variance, 2

iSNPσ is the variance in the i th SNP, SNPn  is 

the number of investigated SNP along the genome, and ),cov( ji SNPSNP is the covariance 

between i th and j th SNPs. Due to computational space limit, we were not able to calculate 

covariance between all SNPs simultaneously. 

 

∑∑∑
+=

−

==

+=
ccc

itot

n

ij
ji

n

i

n

i
gG gg

1

1

11

22 ),cov(2σσ

∑∑∑
+=

−

==

+=
SNPSNPSNP

itot

n

ij
ji

n

i

n

i
SNPG SNPSNP

1

1

11

22 ),cov(2σσ



European Master in Animal Breeding and Genetics 

 17 

 

3.4. Genetic correlation between traits: 

Estimation of genetic correlation between two traits in chromosomal level was 

calculated using CEBV for each trait and each bull. That means, correlation between two 

groups of data, one was the bull’s CEBV for trait one and second was the bull’s CEBV for 

trait two. The main formula for calculating correlation between traits is: 
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Where  
jigr ,
 is the genetic correlation between i th and j th trait, ),cov( ji tt  is the covariance 

between i th and j th trait, and 
ji tt σσ . are standard deviations for i th and j th trait respectively. 

In the chromosomal level the result was a matrix of numbers. On the matrix diagonal are 

correlations between traits on the same chromosomes and numbers above and below the 

diagonal are correlations between traits between of different chromosomes.  

After getting correlation matrices, results were plotted to illustrate the positive and negative 

genetic correlations between traits between chromosomes. Positive and negative correlations 

were displayed with green and red colors respectively. Moreover, correlations ranging from 

0.1 to -0.1 were shown in white. Genetic correlations were calculated between milk and fat 

for BTA14 and BTA20.  

Finally, genome wide correlations were calculated using bull’s EGBV between first and 

second traits as chromosomal genetic correlations.   

 

3.5. Software Use: 

 All manipulations, calculations and graphical displays in this research were performed 

by R version 2.10.0 (http://cran.r-project.org).  
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4. Results: 
4.1. Additive genetic variance: 

 Total chromosomal and SNP additive genetic variance were calculated for Milk, Fat, 

Protein yield and Somatic cell score. A summary of sums and percentages of 2
cgσ  and 2

SNPσ  

for selected traits were given in table 3. As it is shown, chromosomal genetic variance explain 

62.50%, 69.90%, 56.49%, and 63.26% of 2
totGσ for analyzed traits. Sums of 2

SNPσ were 

explained 9.5%, 9.6%, 9.0%, and 6.3% of 2
totGσ for analyzed traits respectively. Regarding to 

covered variance percentage by chromosomes and sums of SNP, covariance between 

chromosomes should explain a range of 30% to 43% and covariance between SNPs along the 

genome range of 90.4% to 93.7% of the 2
totGσ . 

 

Table 3: Total additive genetic variance ( 2
totGσ ), Sums and percentage of 2

cgσ , and sums and 

percentage of 2
SNPσ  

Trait 2
totGσ  Sums of  

2
cgσ  

Percentage of 
2

cgσ  

Sums of 
2
SNPσ  

Percentage of 
2
SNPσ  

Milk (kg) 306442.1 191540.3 62.5% 29092.25 9.5% 

Fat (kg) 445.31 311.28 69.9% 42.75 9.6% 

Protein (kg) 272.6143 153.98 56.49% 24.55 9.0% 

SCS 0.1581837 0.100062 63.26% 0.01 6.3% 
 

Furthermore, amount and percentage of additive genetic variance explained by each 

chromosome are shown in appendix I (Table 1-4). Sums and percentage of 2
SNPσ  expressed 

within each chromosome were reported as well. The results indicate that BTA14 can explain 

higher 2
cgσ in milk and fat yield compared to other chromosomes: while the minimum part of 

additive genetic variance is expressed by XY pseudo-autosomal and BTA29 for milk and fat 

yield, respectively. In protein yield and somatic cell score BTA6 explains more variance than 

other chromosomes. Minimum 2
cgσ were expressed by BTA27 and BTA25 for protein yield 

and somatic cell score, respectively. Notably, sums of 2
SNPσ within XY pseudo-autosomal are 

higher than the sums for other chromosomes in considered traits. While, sums of 2
SNPσ within 

BTA9 and 14 in milk and fat yield and BTA6 in protein yield and somatic cell score have 

minimum of 2
SNPσ within the chromosome.  
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4.2. Genetic correlation: 

 4.2.1. Production traits and somatic cell score: 

 Genome wide correlation among production traits and SCS were given in table 4. 

Estimate of genome wide correlations among milk production traits were positive. Estimates 

for milk with fat and protein were 0.41 and 0.86, respectively, and 0.61 for fat and protein 

yield. Genome wide correlations between production traits and SCS were positive 

(unfavorable) and generally close to zero ranging from 0.019 to 0.087.  
 

Table 4: Genome wide correlation between production traits and somatic cell score 

Trait Milk Fat Protein SCS 

Milk yield - 0.41 0.86 0.069 

Fat yield  - 0.61 0.019 

Protein yield   - 0.087 

SCS    - 

 

Results of chromosomal genetic correlations between production traits and SCS were 

illustrated in figure 1-6. Genetic correlations were positive for all same chromosomes 

between fat yield with milk and protein yields except BTA14 (figure 1 and 3). The BTA14 

has revealed strong to moderate negative correlations for fat with milk and protein yields (-

0.873 and -0.53, respectively). This unfavorable correlation confirms the effect of correlated 

QTLs for fat with milk and protein yield on BTA14. The maximum positive chromosomal 

genetic correlations were 0.836 and 0.91 in BTA28 for both combinations, respectively. 

However majority of the correlations between these traits in different chromosome 

combinations ranged from -0.1 to 0.1 (white) but there are still some correlations out of range. 

Chromosomal genetic correlations between milk and protein yield were positive in same the 

chromosomes (figure 2). Maximum positive correlations were 0.924 on BTA24. Some slight 

negative correlations were visible between fat and protein in different chromosome 

combinations. The lowest correlation revealed between BTA18 protein and BTA21 milk (-

0.14). Genome wide correlations revealed a slight positive and close to zero correlation 

between milk, fat, protein yields and somatic cell score. But in chromosomal level 

correlations between these traits were a range from -0.55 to 0.528. The BTA26 showed 

moderate positive correlation between milk, fat, and protein with SCS (0.388, 0.528, and 

0.462, respectively).  
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Conversely, BTA28 has moderate negative correlations, -0.434, -0.46, -0.55, between milk, 

fat, protein yields and SCS, respectively. Notably, BTA16 and BTA21 have shined positive 

and negative correlations for correlations between these three production traits and SCS. The 

numbers of same chromosomes with negative correlation between fat yield and SCS were 

more than other two traits.  

 

 4.2.1.1. BTA14, 20 milk and Fat yield  

 Particularly, genetic correlations between SNPs on BTA14 and BTA20 for fat and 

milk were shown in figure 7 and 8. In the chromosomal level BTA14 shows strong negative 

correlation between milk and fat production but BTA29 shows positive correlation. As it is 

inferred from these two figures, SNPs in the beginning of the chromosomes has fewer 

correlations from one trait with the SNPs in the end of chromosome for second trait. Some 

regions of the chromosomes are very green or very red, which are the locations of QTLs 

laying on the chromosome with the positive and negative correlations between these two 

traits.  
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4.2.2. Milkability traits and somatic cell score:  

 Estimate of genome wide correlation between milkability traits are positive between 

these traits (table 5). Strong genome wide correlations are between Milk flow rate (MFR), 

milking speed (MSP) and RZD (0.94 – 0.98). These three traits have shown positive close to 

zero correlations with milking temperament (MTR) (0.059 – 0.083). Estimation of genome 

wide correlation among MFR, MSP, RZD and SCS are moderately positive but unfavorable, 

ranging from 0.27 to 0.33. These correlations indicate that more milking flow rate and 

milking speed increase milk somatic cell score. As correlation between other traits with MTP, 

somatic cell score has showed positive but very low correlation with MTP as well.  

 

Table 5: Genome wide correlations between milkability traits and somatic cell score 

Trait1 MFR MSP RZD MTP SCS 

MFR - 0.94 0.98 0.059 0.33 

MSP  - 0.98 0.083 0.27 

RZD   - 0.073 0.31 

MTP    - 0.019 

SCS     - 

1: MFR= Milk flow rate, MSP= Milking speed, MTP= Milking temperament 
 

Chromosomal genetic correlation among RZD with MFR and MTP were shown in figure (9 

and 10). Since RZD is a trait combined of MFR and MSP, chromosomal genetic correlation 

between them shows similar patterns. We did not show plots of MTP with MFR and RZD. 

Maximum chromosomal genetic correlations, close to unity, between MFR, MSP and RZD 

were on BTA19 (0.98, 0.99 and 0.995, respectively) (figure 9). Correlation between BTA7 

MFR and BTA18 MSP and RZD has lower negative chromosomal genetic correlation (-

0.149). Correlation among BTA18 MSP and BTA25 RZD was negative between these two 

traits. Chromosomal genetic correlations among MFR, MSP and RZD with MTP have similar 

patterns ranging from -0.383 to 0.430 (correlation between RZD and MTP was shown in 

figure 10). The lower negative chromosomal genetic correlation between those three traits and 

MTP were seen in BTA29 (-0,383, -0.295 and -0.366, respectively). On the other hand, BTA2 

revealed maximum positive correlation between MSP, RZD and MTP (0.43 and 0.373, 

respectively) and BTA5 for MFR and MTP (0.381).  
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Chromosomal genetic correlations between MFR, MTP and SCS were illustrated in figure 11 

and 12. We did not show the plots of correlations between MSP and RZD with SCS, since 

they have similar patterns as MFR and SCS. Lowest negative chromosomal genetic 

correlations between MTP, MSP, RZA and SCS revealed by BTA28 (-0.3, -0.321, -0.306, 

respectively). The BTA16 has positive chromosomal genetic correlations between these 

combinations (0.606, 0.622 and 0.629). Chromosomal genetic correlation between MTP and 

SCS (Figure 12) ranging between -0.376 to 0.431. The lower negative correlation between 

these two traits were showed by BTA29 (-0.376) as combination between MFR, MSP, RZD 

and MTP. Conversely, BTA22 has more positive chromosomal genetic correlation for MTP 

and SCS.   
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 4.2.3. Fertility traits: 

 Estimate of genome wide correlations were shown in table 6. Genome wide 

correlation was moderately high between heifers and cows for the same trait FS (0.44) or NR 

(0.78). The FS traits and NR were found to have negative correlation, however the correlation 

between FSh with NRh and NRc is more negative (-0.68 and -0.53 respectively) than 

correlation between FSc with NRh and NRc (-0.31 and -0.40). Genome wide correlations 

between CFc with NRh and NRc were positive but low (0.10 and 0.22). Genome wide 

correlation between DOc and NR56 in heifers and cows were moderately negative but DOc 

with FS and CF traits revealed a positive correlation.  
 

Table 6: Genome wide correlation among fertility traits 

Traits1 FSh NRh CFc NRc FSc DOc 

FSh - -0.68 0.26 -0.53 0.44 0.56 

NRh  - 0.10 0.78 -0.31 -0.21 

CFc   - 0.22 0.28 0.86 

NRc    - -0.40 -0.23 

FSc     - 0.51 

DOc      - 

1. FSh and FSc= interval from first to successful insemination in heifer and cow respectively, 
NRh and NRc= nun-return rate to 56 in heifer and cows respectively, CFc= interval from 
calving to first insemination cow, DOc= Days open. 
 

Chromosomal genetic correlation were illustrated between heifers’ fertility traits, FSh and 

NRh, (Figure 13) and cow’s fertility traits, FSc, NRc, and CFc (Figure 14-16). The majority 

of correlation combinations between FS and NR traits in heifers and cows were negative. 

Heifer’s chromosomal genetic correlation between FS and NR is stronger than the cow’s 

correlations do. Thus, BTA17 explains the strong negative correlation in heifers but negligible 

correlation in cows. The strong negative correlation between these two traits were on BTA6 (-

0.812) for heifers and BTA10 (-0.71) for cows. Chromosomal genetic correlation between 

CFc and NRc (figure 15) were slight positive with maximum correlation in BTA26 (0.66). 

There are some negative correlations close to zero between combinations of chromosomes 

and traits. Similar patterns have been seen for CFc and FSc with moderately high positive 

correlation on BTA18 (0.79) (Figure 16).  
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Chromosomal genetic correlation between heifers and cows fertility traits were illustrated in 

figures 17-22. Chromosomal genetic correlation between FSh and NRh with CFc revealed a 

major positive correlation between chromosomes and traits. Maximum correlations were in 

BTA18 (0.626) and BTA23 (0.556) for FSh and NRh with CFc respectively. The correlations 

between same trait of NR and FS in heifers and cows were strongly positive (figure 19 and 

20). Maximum chromosomal correlations were 0.923 (BTA25) for NRh with NRc and 0.894 

(BTA9) for FSh with FSc. Conversely, chromosomal genetic correlation between FS and NR 

were shown as negative genetic correlation in the majority of chromosomal combinations 

(figure 21 and 22). Lower negative chromosomal correlations were -0.726 (BTA9) for FSh 

with NRc, and -0.68 (BTA10) for NRh with FSc.   
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Combinations of chromosomal genetic correlations between days open and other fertility 

traits in cows and heifers were illustrated in figures 23-26. Chromosomal genetic correlations 

between DOc with FSh and FSc (figures 23 and 24) show similar patterns with strong positive 

correlations in the same chromosome. Maximum positive correlations between both 

combinations were on BTA18 (0.74 for Doc and FSh, 0.92 for Doc and FSc). The 

chromosomal genetic correlations between DOc with NR traits in heifers and cows (figures 

25 and 26) showed that all chromosomes do not contribute on genetic correlation. Lower 

chromosomal genetic correlation could be seen on BTA14 (-0.35) and BTA5 (-0.40) between 

DOc with NRh and NRc, respectively. 
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 4.2.4. Calving traits with rump angle and rump width: 

Genome wide correlations between calving traits with rump angle and rump width 

were shown in table 7. Genome wide correlations among these traits were somewhat close to 

zero, except correlation between direct and maternal calving ease with direct and maternal 

stillbirth (0.371 and 0.39), respectively. Correlations between maternal and direct for same 

traits indicated that selection for direct of these traits can not help to progress of maternal 

traits and vice versa. There were slight negative (-0.0018, -0.0027) correlations between rump 

angle with direct and maternal calving ease.  

 

Table 7: Genome wide correlation among calving traits with rump angle and rump width 

Trait1 CEd CEm SBd SBm RAN RWI 

CEd - -0.0233 0.371 0.07 -0.0018 -0.16 

CEm  - 0.085 0.39 -0.0027 0.086 

SBd   - 0.07 0.0075 0.115 

SBm    - -0.011 0.082 

RAN     - 0.04 

RWI      - 

1: CEd= Calving ease direct, CEm= Calving ease maternal, SBd= Stillbirth direct, SBm= 
Stillbirth maternal, RAN= Rump angle, and RWI= Rump width  
 

Chromosomal genetic correlation between calving ease (CEd) with direct stillbirth (SBd) and 

calving ease (CEm) with maternal stillbirth (SBm) were illustrated in figure 27 and 28. 

Majority of correlations between these traits in the same chromosomes were positive. 

Maximum positive correlation between CEd and SBd were shown on BTA18 (0.83) and that 

for CEm and SBm showed by BTA23 (0.723). Illustration of chromosomal genetic correlation 

between rump angle (RAN) with CEd and SBd were shown in figure 29 and 30. However, 

gnome wide correlations between these combinations were not high but BTA18 and BTA27 

show moderate positive (0.64 and 0.6) and negative (-0.35 and -0.40) correlations between 

RAN with CEd and SBd respectively. Chromosomal genetic correlations between rump width 

(RWI) with CEd and SBd were comparable (figure 31 and 32). BTA18 has a lower negative 

chromosomal genetic correlation for both of the combinations. The correlation between RWI 

and CEd explained by BTA18 was -0.53 and -0.50 for RWI and SBd, respectively. Maximum 

positive correlations between these two combinations were calculated for BTA21 (0.23 and 

0.29, respectively). 
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5. Discussion:  

5.1. Additive genetic variance: 

In this study we have shown that all chromosomes contribute to construct the total additive 

genetic variance for milk, fat, protein yields and SCS traits. We have reported that sum of 

chromosomal additive genetic variances and covariance between chromosomes is equal with 

total additive genetic variance. Moreover, we have shown that in a high-density genome scan, 

SNP’s variances adding with covariances between SNPs along the genome can construct total 

additive genetic variance. Sums of variance of SNPs within chromosomes count ranging from 

5.41 to 32.07% of chromosomal additive genetic variance. The rest of the chromosomal 

variance is covered by covariance between SNPs. As a result, summation of SNPs variance 

can not be a good measure to explain the 2
totGσ . It can only count 6.27 to 9.6% of 2

totGσ in milk, 

fat, protein yields and somatic cell score. 

It was expected that proportions of genetic variance for each trait accounted for by SNP on a 

chromosome were calculated based on chromosomal lengths, assumed that all markers had 

equal effects (Cole et al., 2009). BTA1, 2, 3, 5, 6, 14 and 20 explain more 2
cgσ than other 

chromosomes for milk, fat, and protein yield (appendix I table 1-4). Notably, milk and fat 

yield chromosomal additive genetic variance of BTA14 (16.5%, 16.41%) is almost 2.5 times 

higher than other chromosomes which show more additive genetic variance. This result 

confirms the existence of some QTLs on reported chromosomes. These QTLs are associated 

with milk and fat production traits in dairy cattle (Grisart et al. 2002). There are different 

reports of association between QTLs on BTA14 with fat, protein and milk yield (Wibowo et 

al., 2008).  Regarding to review by Khatkar et al., (2004) QTL affecting milk yield have been 

identified on 20 of the 29 bovine chromosomes. Significant QTL for fat yield have been 

reported on BTA14, 3, 5, 6, 9, 20 and 26. There is an abundance of studies (e.g. Olsen et al., 

2002) have been detecting QTL related to milk, fat and protein yield on BTA6 and BTA5.  

 In the case of SCS, maximum chromosomal genetic variance was found on BTA6, 3 and 20. 

A study on five chromosome confirmed that QTL on BTA9, 11, 14 and 18 were affected SCS 

in Finish Ayrshire, Swedish Red and White and Danish Red cattle breeds (Lund et al., 2007). 

Danish Holstein cattle exhibited of some regions affect SCS on chromosomes 5, 6, 8, 13, 22, 

23, 24, and 25 (Lund et al., 2008). Markedly, in the four analyzed traits, chromosomes which 

show more 2
cgσ  have fewer sums of 2

SNPσ within chromosomes. Conversely, XY pseudo-

autosomal shows maximum sums of 2
SNPσ within the chromosomes than others.  
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5.2. Genetic correlation: 

 5.2.1. Production traits and somatic cell score: 

 Positive genome wide correlations between production traits were exhibited in table 4. 

The correlation between milk and protein yield and fat and protein yield were higher than 

correlation between milk and fat yield (0.81, 0.61 and 0.41, respectively). These results agree 

with estimates reported for production traits of first lactation in Mexican Holstein cows 

(Montaldo  et al., 2010), Black-and-White cows that had at least 50% Holstein genes 

(Veerkamp et al., 2001) and Swedish Holstein cows (Carlen et al., 2004). But the results are 

lower than the estimate reported by Van Vleck and Dong, (1988) and Harris et al., (1992).  

Genome wide correlations between production traits and SCS were positive which indicate 

unfavorable relationship (0.069, 0.019 and 0.087 for milk, fat and protein yields with SCS 

respectively) (Table 4). The sign of our result agree but the values were lower than estimates 

reported by Rupp and Boichard, (1999) (0.15, 0.11, and 0.27 for fat and protein yields with 

SCS respectively) and Carlen et al., (2004) for three lactation of Swedish Holstein cow.  The 

results of this study were inconsistent with result in second and third lactation of Mexican 

Holstein cows (Montaldo  et al., 2010). Schutz et al., 1990 reported positive estimated genetic 

correlation between production traits with SCS in first lactation (0.13, 0.13, 0.29), but 

moderate negative correlation for second lactation (-0.21, -0.31 and -0.14 for fat and protein 

yields with SCS, respectively). 

 Chromosomal genetic correlations between production traits (figures 1-3) confirm positive 

genome wide correlations between these traits. As it was exhibited in figure 1 and 3, BTA14 

has negative correlation between fat with milk and protein yields. Therefore, it would be the 

reason which genome wide correlations between these two combinations are fewer than 

correlation between milk and protein yields.  Identification of a locus on the centromeric end 

of bovine chromosome 14 was reported with increasing milk and protein yield and decreasing 

fat production (Coppieters et al., 1998). This is consistent with study by Thaller et al., (2003) 

where the lysine-encoding variant of DGAT1 on chromosome 14 has favorable effect on milk 

and protein yields and unfavorable effect on fat yield in Fleckvieh and German Holstein 

populations. In particular case as it was shown in figure 7. Clear negative correlation between 

milk and fat yield was shown in the centromeric end of BTA14. Several chromosomes, 

particularly BTA3, 6, 9, 14, 20 and 23 have been reported to harbor QTL with pleiotropic 

effects on multiple milk production traits (Khatkar et al., 2004). QTL mapping in Fleckvieh 

breed confirmed a QTL located on BTA5 which increases milk, fat and protein yields (Awad 

et al., 2010). The multivariate analysis of three bivariate trait combinations supported the 
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presence of a significant pleiotropic QTL for fat and protein yields on BTA6 in German 

Holstein population (Freyer et al., 2003). SNP genetic correlations explain positive correlation 

between milk and fat yield ob BTA20 (Figure 8). Attempt of researchers on BTA20 found a 

phenylalanine to tyrosine substitution in the transmembrane domain of the growth hormone 

receptor gene associated with effect on fat percentage and modest influence on the yield traits 

(Blott et al., 2003).  

According to figures 4-6, correlations between production traits and SCS on BTA3, 22 and 28 

are more negative than other chromosomes which show negative correlation. As well as 

correlation in BTA20 and 26 are positive between production traits and SCS than other 

chromosomes. Regarding our knowledge, no reports of pleiotropic or close linkage between 

QTLs for production traits and SCS on BTA3, 20, 22, 26 and 28 were found in the literature. 

Two QTLs affecting SCS were reported at opposite ends of BTA26 in US Holstein (Ashwell 

et al., 2004). QTLs affecting SCS reported by Lund et al., (2008) mapped on BTA5, 6, 8, 13, 

22, 23, 24, and 25 in Danish Holstein population. Also in other study (Lund et al., 2007) they 

confirmed QTLs affecting SCS on BTA9, 11, 14, and 18 in Finish Ayrshire, Swedish Red and 

White and Danish Red cattle breeds.  

 

5.2.2. Milkability traits and somatic cell score:  

 Positive close to unity genome wide correlation between MFR, MSP and RZD (table 

5) indicate that there are no differences between these traits. Actually, both traits MFR and 

MSP are combined into one MSP index with equal weights for one genetic standard 

deviation. This index is called RZD a relative breeding value with average 100 and a genetic 

standard deviation of 12 (Rensing and Ruten, 2005). Estimated genetic correlations between 

milk flow rate, maximum milk flow and milking time in a research farm were near unity with 

rg= 0.98 between average and maximum milk flow, rg= -0.89 between average milk flow and 

milking time and rg= -0.86 between maximum milk flow and milking time (Gäde, 2006). 

Genome wide correlations between MFR, MSP and RZD with MTP were favorable positive 

but close to zero (0.059, 0.083 and 0.073). it was reported that milking speed and milk 

temperament are completely independent traits with genetic correlation close to zero (Rensing 

and Ruten, 2005). Conversely, genetic correlation between temperament and ease milking 

estimated slightly high (0.56) in Irish Holstein-Friesian cows (Berry et al., 2004). Genome 

correlations between MFR, MSP, RZD and MTP with SCS are unfavorable positive. 

Although correlation among MTP and SCS is lower than other combination and close to zero 

(0.019). It was reported that faster milking is associated with increased SCS (Boettcher et al., 
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1998). Genetic correlation between milking speed and SCS was 0.41 and 0.25 first and 

second lactations of their study.  Unfavorable genetic correlation (0.44) was found between 

milking ease and SCS in French Holstein population (Rupp and Boichard, 1999). In a study 

by Gäde, (2006), genetic correlation between average milk flow rate, maximum milk flow, 

and milking time with SCS estimated as 0.35, 0.38, and -0.24 respectively. Genetic 

correlation was estimated to be slightly positive (0.27) between SCC and milking speed in 

Danish Holsteins (Lund et al., 1994). An unfavorable genetic correlation (0.23) was reported 

between RZD and relative EBV SCS in the study of Rensing and Ruten, (2005). Also, Berry 

et al., (2004) estimated a negative genetic correlation (-0.42) between temperament and SCC 

that may be attributed to elevated levels of blood cortisol. 

The chromosomal genetic correlations between MFR, MSP, and RAZ emphasize the definite 

similarity between them. Chromosomal genetic correlation between these three traits and 

MTR show a strong negative correlation between them on BTA29 and strong positive genetic 

correlation on BTA2 and BTA5 compare to other chromosomes. Analysis of chromosomal 

genetics correlation between MFR, MSP and RZD with SCS showed more negative 

correlation on BTA28 and conversely BTA16, 20, 26 and 29 have more positive correlation 

between these traits than other chromosomes. When it comes for correlation between MTR 

and SCS, BTA2, 14 and 22 have more positive and BTA9, 16, 21 and 29 have more negative 

genetic correlation than other chromosomes. In a QTL mapping study for behavior in cattle 

QTL for temperament on BTA29 exceeded the experiment-wise significant threshold at the 

5% level and for milking speed approached at the 10% significant level (Hiendleder et al., 

2003). They showed QTLs with correlations between temperament and milking speed on 

BTA5 at 136/136 cM, on BTA18 at 105/109 cM, on BTA29 at 20/20 cM, and on 

chromosome X/Y at 9/9 in German Holstein population. Schrooten et al., (2004) reported 

positive correlations between milking speed with udder confirmations and fat percentage 

(0.44 to 0.56) and negative correlation with milk yield (-0.46) on BTA14. In resent research, 

they detected seven SNP with significant effects on milking speed at chromosome-wise level 

(p<0.05) on BTA1, 10, 19, 24, 26 and 27 (Kolbehdari et al., 2008). Also, they detected 9 SNP 

with a significant effect on milking temperament at the chromosome-wise level (p< 0.05) on 

BTA4, 13, 19, 22, 23, 26 and 29.  

 

 5.2.3. Fertility traits: 

 Favorable positive genome wide correlations between same fertility traits, FS (0.44) 

and NR56 (0.78), in heifers and cows (table 6) indicated that NR56 are more correlated 
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genetically than FS traits in heifers and cows. Liu et al., (2008) reported same estimation for 

FS (0.48) traits but a little bit lower genetic correlation for NR56 (063). Definite genome wide 

negative correlation between FS traits and NR56 combinations in heifers and cows (table 10) 

indicated that cows with long interval from first to successful insemination need more 

insemination service after 56 days of showing heat. However, genome wide correlation 

between NRc and FSC (-0.39) is similar with correspondence combination in research by Liu 

et, al., (2008), but correlations between FSh with NRc (-0.56) and FSc with NRh (-0.31) in 

our study are twice the correspondence in Liu et al., (2008) (-0.25 and -0.15 respectively). 

Lower positive genome wide correlations were seen between CFc and other traits which 

agreed with the results of other studies in German and Spanish Holstein populations 

(Gonzalez-Recio and Alenda, 2005; Liu et al., 2008).    

Days open has negative correlations with NR56 traits and positive correlations with FS traits 

in cows and heifers. These results are not agreed with the result estimated by Liu et al., 

(2008). They estimated positive genetic correlations for DOc with NRh (0.09) and lower 

genetic correlation between DOc and NRc (-0.18).  Maximum correlation among fertility 

traits were seen between CFc and Doc (0.86) which was similar with the estimated result by 

Liu et al., (2008) and Gonzalez-Recio and Alenda, (2005). Due to farm management farmers 

like to inseminate cows with high production milk later, and that cause longer days open in 

the genetic correlation estimate.  

Chromosomal genetic correlation between FS and NR56 were showed negative genetic 

correlations in all chromosomes in heifers and cows (figures 13, 14, 21 and 22). Notably, 

except correlation between FSh and NRh, BTA17 has negligible, close to zero correlations 

between NR and FS traits in heifer and cows. Chromosomal genetic correlations between FS 

and NR56 traits indicated that negative correlations between these traits distributed on all 

chromosomes except BTA17 for the mentioned traits and also BTA14 for FSh and NRc. 

Lower negative chromosomal genetic correlation between FSh with NRc and FSc expressed 

by BTA9 and that for FSh and NRh expressed by BTA6.  A highly significant QTL were 

reported for length in day of interval from first to last inseminations in heifers and cows that 

is correspond with FS (Hoglund et al., 2009a; Hoglund et al., 2009b). Markedly, BTA18 

showed maximum chromosomal genetic correlation between Doc with FSh and FSc and also 

between CFc and FSc and FSh. BTA26 has maximum positive correlations between NRc with 

DOc and CFc and also between NRh and DOc. Minimum chromosomal negative correlations 

between NRh with CFc and DOc is on BTA14. Attempts to find QTLs affecting fertility traits 

have exhibited of QTLs for NRc on BTA1, 2, 11, 12, 15, 18, 20 and 29 (Hoglund et al., 
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2009a; Hoglund et al., 2009b; Holmberg and Andersson-Eklund, 2006). Different study (e.g, 

Holmberg and Andersson-Eklund, 2006) found QTLs on BTA2, 9, 19, 22, 25 and 26 which 

influencing NRh. Hoglund et al., (2009a and b) detected QTLs on BTA4, 9, 10 and 26 in 

Danish and Swedish Holstein cattle that affecting FSh. QTLs reported to affect CFc  is 

located on BTA1, 2, 3, 6, 10, 11, 13, 15, 24, 25 and 29 (Daetwyler et al., 2008; Hoglund et al., 

2009a). Finally, QTLs affecting DOc are located on BTA1, 2, 5, 12, 20, 25 and 29 in finish 

Ayrshire cattle (Schulman et al., 2008).  

 

 5.2.4. Calving traits with rump angle and rump width: 

 Genome wide correlation between direct and maternal calving ease was negative (-

0.0233) (Table 7). However, our result agreed in sign with the estimated results by Eaglen and 

Bijma, (2009) (ranging from -0.4 trough -0.44), Cue and Hayes, (1985) (-0.40), and Carnier et 

al., (2000) (-0.219) but lower than reported estimates. Estimation of maternal and direct 

calving ease genetic correlation were negative (-0.16) in Canadian Holstein cattle (Luo et al., 

1999). Genome wide correlations were definitely against direct and maternal calving ease 

correlation estimated (ranging between 0.24 to 0.40) in different parities of Canadian Holstein 

(Luo et al., 2002). Genome wide correlation among sire (SCE) and daughter (DCE) calving 

ease in US Holstein were 0.58 (Cole et al., 2009). 

Genome wide correlation between direct and maternal stillbirth was positive but close to zero 

(0.007). This result is in agreement with result of Hansen et al., (2004) (0.03-0.06).  

Heringstad et al., (2007) estimated close to zero (-0.02) correlation between maternal and 

direct stillbirth. Our result is strongly against estimated results by Eriksson, Nasholm et al. 

(2004) (-0.58 to -0.60) and Luo et al., (1999) (-0.24). A correlation close to zero implies that 

selection on e.g., the direct effect of stillbirth or calving ease would not influence the maternal 

effect of stillbirth or calving ease. Positive genome wide correlations between direct and 

maternal SB and CE are given in table 7. Moderate positive correlation between direct CE and 

direct SB (0.371) and between maternal CE and maternal SB (0.39) state that selection for 

one of the traits would result in a favorable response for the second trait. However sign of our 

result are in agreement with the estimated result in Norwegian Red cows (Heringstad et al., 

2007), but these result are lower than reported estimations. Luo et al., (1999) estimated 

negative genetic correlation between CEd and SBd (-0.59) and CEm with SBm (-0.34) that 

were inconsistent with result of this study. Instead, genetic correlations between CEd and 

SBm (0.06) and between CEm and SBd (0.4) were close to the results of this study. 

Chromosomal genetic correlation between CEd and SBd and between CEm and SBm (figures 
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27 and 28) showed the contribution of positive correlation of all chromosome between CE 

and SB. Maximum positive chromosomal genetic correlation between CEd and SBd were 

expressed by BTA18. It was located a QTL on BTA18  with a pleiotropic effect on the direct 

calving traits and linked to maternal stillbirth in Danish Holstein cattle (Thomasen et al., 

2008).  

Genome wise correlations between rump angle with SB and CE, which were given in table 7, 

were negative except RAN and SBd, and close to zero. Therefore, selection for rump angle 

has no such effect on SB and CE. Genome wide correlations between RAN with CEd and 

SBd (figure 29 and 30) revealed maximum positive correlation on BTA18. Minimum 

negative genetic correlation between RAN and CEd expressed on BTA27 and 28. Also, 

BTA14, 27 and 29 showed minimum negative correlations between RAN and SBd.  

Genome wide correlations between rump wide with CE and SB (table 7) were positive except 

RWI and CEd. Correlations between RWI with CEd and SBd were grater than others 

combinations (-0.16 and 0.115 respectively). Opposite to correlations between RAN with CEd 

and SBd, BTA18 express lower negative correlations between RWI with CEd and SBd. 

Conversely, BTA21 express more positive chromosomal genetic correlations between RWI 

with CEd and SBd.  Attempt to find QTLs along cattle genome have been undertaken to 

identify the genomic regions that affect CE and SB. Study on German Holstein indicated QTL 

affecting calving traits on BTA7 and BTA10 and fertility traits on BTA7 (Seidenspinner et 

al., 2010). Subsequent study confirmed microsatellite marker DIK4234 in telomeric region on 

BTA18 was associated with SBm, CEd and body depth (Brand et al., 2010).  Although, 

Hiendleder et al., (2003) found QTLs on BTA1, 6, 22 and xy affecting rump wide and on 

BTA17 that affecting rump angle in German Holstein population. Kolbehdari D. et al.(2008) 

detected 13 SNPs on BTA3, 6, 7, 8, 11, 18, 25 and 27 with significant effect on overall rump, 

nine SNPs on BTA4, 6, 8, 11, 18, 21 and 23 with significant effect on direct calving ease, and 

seven SNPs on BTA7, 9, 23, 24, 28, and 29 with significant effect on maternal calving ease. It 

was reported that putative QTL on BTA18 is associated with calf growth rate (Cole et al., 

2009). They emphasized that the QTL on BTA18 affects calf size and that selection for 

extreme confirmation (larger body size) has resulted in large calves and increased rate of 

dystocia. Therefore this QTL reported to has largest effect on both sire and daughter stillbirth 

(Cole et al., 2009).     
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7. Appendix I 
Amount and percentage of additive genetic variance counted by each chromosome are shown 

 
Table 1: Milk chromosomal and percentage of additive genetic variance ( 2

cgσ ), sums and 

percentage of 2
SNPσ expressed within each chromosome 

Chromosome 2
cgσ  Percent of  

2
cgσ  

2
SNPσ  Percentage of 

2
SNPσ  

1 9757.52 5.09 1383.526 14.18 
2 6012.97 3.14 1124.119 18.69 
3 8338.273 4.35 1355.789 16.26 
4 6152.125 3.21 1134.262 18.44 
5 11384.40 5.94 1446.566 12.71 
6 9996.718 5.22 1288.470 12.89 
7 5761.67 3.01 1121.617 19.46 
8 4261.267 2.22 965.1052 22.65 
9 6328.077 3.31 581.5525 9.19 
10 5687.913 2.96 1054.485 18.54 
11 6533.386 3.41 1071.605 16.41 
12 4024.352 2.10 845.0949 20.99 
13 6348.78 3.31 989.7921 15.60 
14 31599.46 16.50 2999.746 9.49 
15 6969.279 3.63 944.6438 13.55 
16 4327.211 2.26 699.4584 16.16 
17 4813.991 2.51 803.2739 16.68 
18 5721.751 2.99 1026.823 17.95 
19 5753.997 3.01 873.2733 15.18 
20 8137.122 4.25 913.4082 11.23 
21 3351.891 1.74 676.6149 20.19 
22 3470.976 1.82 680.2853 19.60 
23 3665.096 1.92 609.8235 16.64 
24 4048.368 2.11 664.5529 16.42 
25 3876.383 2.02 694.1646 17.91 
26 3035.746 1.59 536.6591 17.68 
27 2102.544 1.10 523.9326 24.92 
28 4297.804 2.25 782.5752 18.21 
29 3661.435 1.92 621.1561 16.97 
XY 2119.775 1.11 679.868 32.07 
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Table 2: Fat chromosomal and percentage of additive genetic variance ( 2
cgσ ), sums and 

percentage of 2
SNPσ  expressed within each chromosome 

Chromosome 2
cgσ  Percent of 2

cgσ  2
SNPσ  Percentage of 

2
SNPσ  

1 14.06284 4.52 1.994684 14.18 
2 13.20165 4.24 1.794792 13.60 

3 9.371772 3.01 1.774379 18.94 

4 11.28458 3.62 1.653388 14.65 

5 21.72584 6.98 2.643351 12.17 

6 12.47554 4.01 1.56327 12.53 

7 11.56252 3.71 1.464759 12.67 

8 9.389346 3.02 1.449006 15.43 

9 8.25256 2.65 1.365630 16.55 

10 8.76557 2.82 1.434334 16.36 

11 9.945134 3.20 1.663785 16.73 

12 11.42976 3.67 1.515648 13.26 

13 6.718333 2.16 1.280168 19.06 

14 51.05667 16.41 4.354778 8.53 

15 13.19053 4.24 1.480277 11.22 

16 8.751384 2.81 1.180264 13.49 

17 6.087822 1.96 1.143690 18.79 

18 11.28000 3.62 1.352571 11.99 

19 8.974364 2.88 1.413476 15.75 

20 8.572196 2.75 1.109344 12.94 

21 5.01132 1.61 0.9598125 19.15 

22 5.202495 1.67 0.9253598 17.79 

23 4.716164 1.52 0.8606213 18.25 

24 4.436556 1.42 0.8413257 18.96 

25 6.103289 1.96 0.9783203 16.03 

26 8.543983 2.75 0.8635952 10.11 

27 5.357839 1.72 0.825753 15.41 

28 7.080685 2.28 1.090555 15.40 

29 3.909375 1.26 0.7834589 20.04 

XY 4.813877 1.54 0.979849 20.35 
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Table 3: Protein chromosomal and percentage of additive genetic variance ( 2
cgσ ), sums and 

percentage of 2
SNPσ expressed within each chromosome 

Chromosome 2
cgσ  Percent of 2

cgσ  2
SNPσ  Percentage of 

2
SNPσ  

1 8.98865 5.84 1.179961 13.13 
2 5.106877 3.32 1.012998 19.84 

3 6.401327 4.16 1.191580 18.62 

4 6.62821 4.31 1.027538 15.50 

5 7.538214 4.90 1.191888 15.81 

6 10.11632 6.57 1.128052 11.15 

7 5.782684 3.75 0.9692023 16.76 

8 3.988066 2.60 0.8318364 20.86 

9 5.100123 3.31 0.8483167 16.63 

10 6.164268 4.01 0.940984 15.26 

11 5.044164 3.27 0.9158102 18.16 

12 4.426609 2.88 0.8176056 18.47 

13 5.350124 3.47 0.9104773 17.02 

14 8.485574 5.51 1.082657 12.76 

15 4.666248 3.03 0.7854665 16.84 

16 4.900984 3.18 0.6702795 13.68 

17 4.699632 3.05 0.7288164 15.51 

18 7.263619 4.72 1.019984 14.04 

19 4.345813 2.81 0.7380958 16.98 

20 5.942631 3.86 0.7117459 11.98 

21 3.762512 2.45 0.6199674 16.48 

22 3.54912 2.30 0.6297366 17.74 

23 2.618043 1.70 0.5159798 19.71 

24 3.796364 2.47 0.5853532 15.42 

25 4.088137 2.66 0.6451231 15.78 

26 3.530347 2.29 0.4945047 14.01 

27 2.069806 1.34 0.4806208 23.22 

28 4.645391 3.01 0.7338024 15.79 

29 2.818290 1.83 0.5348858 18.98 

XY 2.155577 1.40 0.6066958 28.15 
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Table 4: Somatic cell score chromosomal and percentage of additive genetic variance ( 2
cgσ ), 

sums and percentage of 2
SNPσ expressed within each chromosome 

Chromosome 2
cgσ  Percent of 2

cgσ  2
SNPσ  Percentage of 

2
SNPσ  

1 0.00430646 4.30 4.303804 10.87 
2 0.004187921 4.18 4.185338 9.71 

3 0.005375831 5.37 5.372517 9.55 

4 0.003624394 3.62 3.622159 11.60 

5 0.004442316 4.44 4.439576 10.01 

6 0.008729612 8.72 8.724229 5.78 

7 0.002808845 2.81 2.807113 12.55 

8 0.003084699 3.08 3.082797 10.93 

9 0.003505704 3.51 3.503542 10.29 

10 0.004138860 4.13 4.136308 10.15 

11 0.004055539 4.04 4.053038 10.36 

12 0.003768344 3.77 3.76602 8.99 

13 0.0032816 3.28 3.279576 9.95 

14 0.00471315 4.71 4.710243 8.01 

15 0.003633785 3.63 3.631544 9.51 

16 0.004515698 4.52 4.512914 5.41 

17 0.001848014 1.85 1.846874 15.56 

18 0.003104134 3.10 3.102220 10.78 

19 0.003416055 3.42 3.413949 11.82 

20 0.005039948 5.04 5.03684 6.24 

21 0.002203862 2.22 2.202503 13.02 

22 0.001995208 1.99 1.993977 10.93 

23 0.002767947 2.76 2.766240 9.25 

24 0.002655585 2.66 2.653948 10.15 

25 0.00127388 1.27 1.273094 16.25 

26 0.001694897 1.70 1.693852 10.84 

27 0.001586212 1.59 1.585234 12.70 

28 0.0012938 1.29 1.293002 14.86 

29 0.001447378 1.45 1.446485 14.61 

XY 0.001562063 1.56 1.5611 17.44 
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