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ABSTRACT 
Selective breeding programmes for desired phenotypes in animals provide a good resource for 
researchers to understand the genetic basis underlying those phenotypes. Most traits of economic 
importance in animals are quantitative traits, which are controlled by genetic as well as 
environmental factors. Previous studies have shown that the mapping of the genomic regions 
containing genetic factors, which control the diverse phenotypes in complex traits of interest, 
resulted in the successful identification of causative mutations. The same forward genetics 
approach, which endeavours to identify the genetic basis of phenotypic diversity, was followed in 
this study. To identify and functionally evaluate the mutations controlling diverse phenotypic 
differences between the High-weight and Low-weight chicken lines, the previously fine mapped 
interacting quantitative trait loci (QTL) for growth in chicken were scanned for the presence of 
genes. Gene databases (Ensembl, RefSeq) and gene prediction tools (Genscan and N-Scan) were 
used to reveal as many genes as possible. To identify candidate genes for growth, the conservation 
pattern of those genes was studied using the phastCons programme in the PHAST package. The 
genes most conserved in evolution were identified and selected for further analysis. The evidence 
based, well-supported and annotated Ensemble conserved genes were identified as candidate 
genes for growth in general. Gene ontology terms for the candidate genes were obtained from the 
Gene Ontology (GO) database to study the molecular and biological functions of those candidate 
genes. KEGG biological pathways were mapped for the presence of identified candidate genes. 
The candidate genes were found having roles in many biological pathways. The biological 
pathways that contained candidate genes from multiple interacting QTL were identified as 
candidate pathways. Major candidate pathways include the Mitogen Activated Protein Kinase 
(MAPK) signalling pathway, which affects growth in general, and Adipocytokine signalling 
pathway, which imparts its anorectic effect through the leptin hormone. Further studies are 
required to analyse the functional effects of those candidate genes and pathways and eventually to 
identify the mutations affecting growth. 
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INTRODUCTION 
Animal breeding for traits of interest has a proven potential to achieve large phenotypic effects in 
a very short time frame from an evolutionary perspective. This does not only offer great 
possibilities to transform the animal phenotype in the direction desired but also provide means for 
biological research to understand the genetics behind those traits. Most of the traits of economic 
importance in animals are complex in nature. Those traits are often controlled by genetic factors 
as well as by environmental factors. Genetic factors involve variation in one or more genes 
causing variation in phenotype whereas environmental factors include other factors with effect on 
the phenotype. Genes impart their additive effects on the phenotype but do not explain all the 
phenotypic variation. Inter-locus interactions, known as epistasis, play a vital part in explaining 
the phenotypic variation in many complex traits. 
 
Chicken is a vertebrate animal model for the study of human biology and medicine and is the first 
avian species to have its genome sequenced. It is a main source of human food and protein. 
Chicken is also useful for genetic mapping and QTL analysis due to its relatively short generation 
interval and high fertility, which means that it is possible to relatively rapidly breed several 
generations of large families. 
 
Chickens have typically been under selection for complex trait of growth to increase meat 
production and/or for egg production and quality. The commercial populations provide a resource 
also for genetic studies. However, to study the selection process itself, the phenotypic effects and 
biological differences between selected populations might also be the main purpose of a breeding 
program. In 1957, Paul Siegel in USA started a breeding program with bi-directional selection in 
chicken for body weight at 56 days of age (Dunnington and Siegel, 1996). The base chicken 
population was developed from crosses between seven partially inbred lines of White Plymouth 
Rock. The selection during more than 40 generations has resulted in two divergent chicken lines 
namely the High-Weight (High-Line) and the Low-Weight (Low-Line). The average body weight 
at 56 days of the base population was 793 grams (Figure 1). In contrast, the average weights of 
the High-Line and Low-Line after 40 generations were 1412 grams and 170 grams, respectively, 
at 56 days (Carlborg et al, 2006). Several differences in physiological parameters and metabolic 
traits between these two lines can contribute to the observed differences in body weights. The 
phenotypic differences are overwhelming in terms of difference in growth rate and other 
metabolic traits like appetite, fat deposition and immune response between those two lines. The 
difference in feed intake is remarkable where the High-Line has become hyper-phagic and feed 
restrictions are applied to control their body weight after selection and on the other hand, the 
Low-Line shows very low appetite and takes feed almost inadequate for survival (Jacobsson et al, 
2005). The High-Line is found to have lower immune response than the Low-Line and it is 
presumed that it may be due to the competition for resources between growth and immune system 
(Cheema et al, 2003). 
 
Chicken’s genomic DNA is organized into 39 pairs of chromosome (38 pairs of autosomes and 1 
pair of sex chromosome) inside a nucleus. Chicken is the first avian whose genome has been 
sequenced. In Ensembl database the size of chicken genome is 1,050,947,331 base pairs, which is 
approximately one third of the human genome (3,274,571,503 base pairs). Ensembl also reveals 
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17,934 genes (14,959 Known protein-coding) of all kinds (known and novel protein-coding genes, 
Pseudogenes, RNA genes) in chicken genome as compared to 51,737 genes of all kinds (21,257 
Known protein-coding) in human genome (Ensembl 59). 
 

Figure 1: Body weights of male chickens of High- and Low Lines at the age of 56 days. Also 
shown chickens from both lines in 37th generation after selection (Jacobsson et al. Genetical 
Research (2005). (Reproduced with permission) 

 
Multiple experimental strategies are devised to identify genomic regions containing genes that 
cause phenotypic variation in complex traits, which include Genome Wide Association Studies 
(GWAS) and Quantitative Trait Loci (QTL) mapping. Mapped genomic regions contain at least 
one mutation that has a functional role in the trait of interest. 
 
Quantitative trait loci (QTL) can be defined as regions in DNA that harbour one or more genes 
controlling complex traits of interest. Identification of those regions that are causing phenotypic 
variation in the complex trait of interest is the aim of QTL mapping. The total genetic variation in 
a population is the sum of the contribution from individual QTL and their interactions. Series of 
experimental crosses (mainly Backcross and F2 Intercross) in a mapping population may reveal 
the underlying genes controlling the trait of interest (Broman, 2001). The detection of co-
segregation of alleles of genetic markers and trait phenotypes results in the detection of QTL in 
those crosses (Carlborg, 2002). A genetic marker is a gene or region of DNA with known 
sequence polymorphism whose genotype can be determined by using a suitable method of choice 
whereas a genetic map shows all those known markers at their relative positions on chromosomes, 
with markers on the same chromosome separated by certain genetic distances (centiMorgan) 
based on the observed recombination rate between the markers in a family material. To maximise 
the chances to detect co-segregation between genetic markers and QTL all chromosomes and the 
mitochondrial genome should be well covered with informative (segregating) markers and the 
phenotypes of interest need to be segregating within the pedigree material / experimental cross. In 
crosses between phenotypically divergent inbred lines (lines highly homozygous at marker loci 
and QTL) it is more likely that segregation of QTL may be detected (Carlborg, 2002). Table 1 
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shows that the backcross progeny of phenotypically divergent inbred parental lines may have one 
of the two possible marker genotypes which makes it the simplest method whereas in case of F2 
intercross there are more than two marker genotypes in the progeny allowing the detection of 
QTL of additive, dominance, and epistatic effect. 
 
Table 1. Backcross and F2 Intercross experiments showing marker genotypes 

Backcross Genotype  F2 Intercross Genotype 
Parent AA X BB  Parent AA X BB 
F1 AB  F1 AB 
Backcross (AA X AB)  AA or AB  F2 (AB X AB) AA or AB or BB 
Backcross (BB X AB)  BB or AB    
 
There are different statistical methods for mapping QTL and Analysis of variance (ANOVA) at 
the marker loci (marker regression) is the simplest (Broman, 2001). In ANOVA, for each marker 
the backcross progeny is divided into two groups with respect to their genotypes at the marker 
loci, followed by the comparisons of the phenotypic distributions between the two groups.  
Distributions that are having phenotypic values approximately the same indicate that a marker is 
not linked to a QTL. A marker linked to a QTL is indicated by the significant differences in the 
phenotypic distribution of the two groups. For comparison of distributions, t-statistic may be 
calculated in a backcross experiment where progeny may have only one of the two marker 
genotypes and F-statistic may be calculated in the intercross experiment where there are more 
than two marker genotypes possible. In this way the genome is searched for finding significant 
associations between markers and the phenotypes. 
Currently the most popular technique in QTL mapping is Interval mapping (with some 
modifications to the original method of Lander and Botstein 1989), which estimates marker 
genotypes and association in the interval at each position between back-to-back marker pairs. 
Likelihood ratios or the Logarithms of the Odds (LOD) score are calculated as a statistical support 
for QTL in interval mapping. 
Genetic effects of the QTL can be modelled in different ways. The most common single locus 
models are for additive effects and dominance effects. The additive model measures an allele 
substitution effect by changing a low effect allele for a high effect allele where the heterozygote 
shows an intermediate phenotype to both homozygote phenotypes. In the dominance model the 
heterozygote phenotype is biased towards one of the homozygote phenotypes. Once QTL mapped 
it becomes possible to detect and measure effects of interactions between genotypes at different 
loci (two or more) known as epistasis. 
 
For positional cloning and identification of genes, which underlie the complex traits, fine mapped 
quantitative trait loci (QTL) data serves as a genetic resource of foremost importance for the 
researchers (Liu et al, 2007). Identification of QTL is critical to find and explain the biochemical 
mechanism of complex traits (Broman, 2001). Jacobsson et al. (2005) found that the difference in 
growth between the High- and Low-Lines of chicken is regulated by 13 different QTL on 9 
different chromosomes and all showed minor additive effects except two growth QTL (G11 on 
chromosome 20 and G13 on chromosome 28) which showed negative over-dominance resulting 
in reduced growth in heterozygotes. However, interactions between several of these QTL explain 
a larger proportion of the phenotypic differences (Carlborg et al, 2006). Recent fine mapping have 
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confirmed the majority of those previously found QTL and also the interactions between the QTL 
on chromosome 3, 4 and 7 (Besnier et al, in preparation). So it is not only the additive effects of 
the gene(s) in each QTL that control the QTL effects on phenotypes but also the epistatic 
interactions between QTL on different chromosomes. 
In the current study we concentrated on the three epistatic QTL on chromosome 3, 4 and 7, which 
have a major effect on growth (Carlborg et al, 2006, Besnier et al. (in preparation)), in order to 
trace the genetic basis (genes and mutations) of the complex phenotype of growth  
 
Most genome projects require genome sequences to start with functional genomics research. 
Today the complete reference genome sequences of several organisms including chicken are 
available. This provides us the opportunity to identify almost all the genes in those genomes. To 
identify genetic polymorphism affecting traits of interest certain populations or individuals are 
being re-sequenced. In our case the High- and the Low-Line chickens were re-sequenced to reveal 
the genetic polymorphism that could be contributing towards phenotypic variation between those 
phenotypically divergent lines. To sequence or re-sequence the genomes, the next generation 
sequencing (NGS) technologies are providing high-throughput methodologies in an affordable 
way for most functional genomic projects and that allows researchers to detect mutations and 
polymorphism that exist in the interesting genome regions in the populations that are under study. 
These platforms produce tens of thousands of megabases of sequence data per run. The 
technologies are currently being provided mainly by 454 (Roche), Solexa (Illumina) and SOLiD 
(ABI). These NGS technologies have gained preference over the state-of-the-art Sanger 
sequencing technology few years ago although compromising read length. 
Sanger sequencing uses chain termination method. The DNA fragments are cloned in vivo, 
usually inside a bacterial host. To synthesize complementary DNA strands the DNA polymerase, 
DNA primer and deoxynucleotides (dATP, dGTP, dCTP and dTTP) are added to DNA clones. 
The dideoxynucleotides (ddATP, ddGTP, ddCTP and ddTTP) are also added, which serve as 
chain terminators. The polymerase incorporates the complementary deoxynucleotides to a 
growing chain of complementary oligonucleotide and a dideoxynucleotides incorporated at 
random abruptly terminates the synthesis of the oligonucleotide chain. In this way several 
complementary strands of different lengths of a DNA template are synthesized having detectable 
dideoxynucleotides at their 3′ ends. This reaction generates all possible complementary 
oligonucleotides varying in size by one nucleotide but starting with the common 5′ base of a 
template DNA strand. The synthesized DNA strands of varying lengths are size-separated using 
gel electrophoresis. From the ladder of bands formed due to electrophoresis the 3′-end 
dideoxynucleotide is recognized for the template DNA strand. The sequence is read from the 
bands as shown in Table 2.  
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Table 2. Sanger Sequencing using chain termination methodology 

Synthesized complementary oligonucleotides 
5′--------------------------------------------------->3′ 

Dideoxynucleotide 
at the 3′ end 

Complementary 
sequence 

ATCGTCC 
ATCGTC  
ATCGT 
ATCG  
ATC 
AT 
A 

C 
C 
T 
G 
C 
T 
A 

ATCGTCC 

 
Basic principle of chain termination in the Sanger sequencing remained the same over time but 
technological advances in the original methods proved to decrease errors in sequencing along with 
longer reads. Current methods on ABI 3730xl Sanger sequencing instrument can produce up to 96 
Kb of sequenced data in a 3-hour run in the form of reads of size ≥ 900 bp. 
 
The next generation sequencing technologies offer affordable sequencing alternatives to the costly 
Sanger sequencing, which are also high-throughput, producing billions of bases of sequence data 
in a single run. The 454 / Roche technology was the first of the NGS technologies to be marketed 
and it is a massively parallel pyrosequencing scheme of sequencing-by-synthesis technique 
(Margulies et al, 2005). The DNA amplification is in vitro in contrast to the Sanger’s in vivo. For 
DNA amplification Emulsion PCR is used in which each DNA fragment attached to a bead 
through an adapter is enclosed in an emulsion droplet. Each droplet containing a different 
template serves as cloning reactor for producing several thousands of clones per template attached 
to the bead. A subsequent pyrosequencing reaction in very minute wells for every bead allows 
sequencing of the clones. The reaction is associated with the release of inorganic pyrophosphate 
(PPi) due to the incorporation of a complementary nucleotide in the oligonucleotide chain (being 
synthesized) and the resultant light emission by an enzyme is measured to generate a “Pyrogram”. 
Four deoxynucleotides are added one at a time in a certain order repeated in several hundred 
cycles in the reaction to the immobilized template DNA and whenever it is incorporated, light 
emitted by enzyme is measured. A Pyrogram shows the correct order of the nucleotide 
incorporation and hence the sequence of the template strand. Currently the 454 can produce up to 
80-120 Mb of sequence data in the form of 200-300 bp longer reads in a run of 4-hour. Millions 
of reads produced are then aligned with the reference genome or assembled into a new genome 
sequence de novo without needing any reference genome to align with. Biological applications for 
454 are de novo assemblies of bacterial and insect genome. Long reads in 454 improve mapping 
in repetitive regions but error rates are also higher. 
  
The Illumina (Solexa) technology relies on cloning-free DNA amplification, which is done by 
attaching single-stranded DNA fragments to a transparent surface known as flow cell. Single-
stranded DNA fragments (200 bp) are attached to the surface using 5′ and 3′ adapters. Those 
adapters are complementary to the primers on the surface. These fragments are sequenced one 
base at a time using fluorescently labeled dideoxynucleotides, which after incorporating and being 
read are able to allow incorporation of another nucleotide in the next cycle. The four nucleotides 
are added in a certain order in 50 or more cycles, starting with a primer complementary to one of 
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the adapter in first cycle and then starting with the primer to the other adapter in the second cycle 
to sequence a mate-pair read (50-mers sequenced on both sides of the DNA template). The DNA 
templates are sequenced in a massively parallel fashion on the surface using a DNA sequencing-
by-synthesis approach. The 1G-genome analyzer from Illumina, inc., can generate 35-bp single 
reads and produce at least 1 Gb of sequence data per run in 2-3 days. The biological applications 
include variant discovery by whole-genome re-sequencing and whole-exome capture. Illumina is 
currently the most widely used technology in NGS.   
 
ABI/SOLiD enables massively parallel sequencing by hybridization-ligation of amplified clones 
attached to beads. Emulsion PCR of single-stranded DNA is carried out to construct sequencing 
libraries which is similar to that used in the 454 technique. The DNA clones on the glass surface 
are sequenced using 16 dinucleotide combinations labeled by four different fluorescent dyes (each 
dye representing 4 dinucleotides) by sequential rounds of hybridization and ligation. The 
sequence is read every fifth base at a time and the nucleotide sequence is determined from the 
colour analysis resulting from the two successive ligation steps. The SOLiD instrument can 
produce 1-3 Gb of sequence data per an 8 day run in form of 35 bp reads. The biological 
applications include variant discovery by whole-genome re-sequencing and whole-exome capture. 
The two-base encoding scheme in SOLiD provides effective error correction mechanism 
 
For genome re-sequencing of the High-Line and the Low-Line we used the SOLiD system. This 
technology uses two-base encoding scheme, which makes the distinction between a sequence 
polymorphism and a sequencing error albeit short sequence reads. SOLiD sequencing produces 
maximum data per run of all next generation techniques, 1-3 Gb of sequence data in form of 35 bp 
long sequence reads. The 454-pyrosequencing approach incorrectly estimates the length of indels 
whereas Illumina is better and effective than 454 in sequencing indels and produces 1 Gb of 
sequence data per run. On the other hand, smaller read size of 30-40 bp in Illumina results in 
unresolved short sequence repeats (Morozova & Marra, 2008; Metzker, 2010). 
 
This study is a part of a project with an overall aim to reveal and explain genetic architecture that 
contributes to the phenotypic differences between the High-Line and the Low-Line. The current 
paper is an interim report of our investigation of the presence of functional elements and 
conserved sequences and genetic variation within three epistatic QTL regulating growth in 
chicken.  
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MATERIALS AND METHODS 
The Virginia Chicken Lines 
The chicken lines bi-directionally selected from the same base population for body weight at 56 
days of age, namely, the High-Line and Low- Line have been developed and are being maintained 
by Paul Siegel at Virginia Polytechnic Institute and State University in Blacksburg, Virginia, 
USA (Dunnington & Siegel, 1996). For the current study genome re-sequencing data from these 
lines are available (refer to section Genome re-sequencing data). These High- and Low-Line in 
generation 41 served as parental population to produce F2 generation through a design of 
reciprocal intercrosses for QTL analysis of growth (Jacobsson et al, 2005)  
 

QTL analysis of growth 
For QTL analysis of growth, Jacobsson et al. (2005) used reciprocal intercrosses between the 
chickens in generation 41 of the High-Line and the Low-Line to produce 874 F2 chickens. 145 
microsatellite markers were grouped into 25 linkage groups to form a genetic map (Jacobsson et 
al, 2004). A regression based analysis (Haley et al, 1994) was then performed for QTL analysis to 
detect 13 QTL that are affecting growth and except Growth11 and Growth13, all QTL showed 
mainly additive effects. 
 

Epistatic QTL analysis of growth 
Carlborg et al. (2006) used the same F2 intercross between the High-Line and Low-Line chickens 
for epistatic QTL mapping. The same genetic markers and linkage groups were used to detect 
epistasis using a statistical model which contained additive, dominance and all pair-wise epistatic 
effects of QTL pairs and the fixed effect of sex. Besnier et al. (in preparation) further confirmed 
the QTL on chromosome 3, 4 and 7, which include epistatic interactions with major influence on 
the regulation of growth. 
 

Genome re-sequencing data 
Genome re-sequencing data with 5X average depth coverage in each of the High-Line and the 
Low-Line were obtained as follows: One pool of genomic DNA from each line, with seven males 
and four females represented in each pool, was re-sequenced using Applied Biosystems SOLiD v2 
(next-generation sequencing technology) according to the manufacturer's protocols. The re-
sequencing was performed using a genomic fragment library and 35 bases per read. The reads 
were aligned to the Red Jungle Fowl’s reference genome assembly (version 2.1, Washington 
University) using the MAPREADS program by Applied Biosystems (Life Technologies), which 
maps SOLiD system sequencing reads to a reference genome sequence (Rubin et al, 2010). AB 
Resequencing Analysis Pipeline (Corona Lite) is data analysis software also from Applied 
Biosystems that analyses and aligns SOLiD reads against reference genome sequences and also 
calls SNP. Three non-reference reads with different start bases were used as a SNP detection 
threshold in Corona Lite pipeline. Thus, the SNP detection process requires that a given non-
reference base is read by the software multiple times because the sequencing data might contain 
some errors. 
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Gene identification 
The epistatic QTL on chromosome 3, 4 and 7 were scanned for known and predicted genes and 
transcripts. Gene repositories (gene databases and gene prediction tools) of RefSeq, Ensembl, 
Genscan, and N-Scan were used to extract the genes and transcripts. All these databases and tools 
for genes and transcripts refer to the chicken’s reference genome assembly WUGSC 2.1/galGal3 
of May 2006. The UCSC Genome Browser and Tables, Ensembl’s BioMart, and Galaxy were 
used for extracting the genes and gene related information (genomic sequences, coding sequences, 
translated proteins, protein domains, ontology) from the QTL.  

 
UCSC Genome Bioinformatics 
Today there exists a lot of bioinformatics integrated resources freely available on the web to 
access genomic information but Ensembl and UCSC Genome Browsers are acknowledged as the 
most popular and comprehensive (Barnes, 2010). All the genome browsers provide fundamental 
information on genomes like genes, regulatory regions, evolution, variation, homology and 
structure to list a few.  
University of California Santa Cruz (UCSC) Genome Bioinformatics website 
(http://genome.ucsc.edu/) was developed and is being maintained by University of California’s 
Genome Bioinformatics group (Kent et al, 2002; Karolchick et al, 2004; Rhead et al, 2010). 
Reference genome sequences of a variety of species including chicken are contained in a 
centralized and automatically annotated UCSC database. It provides Genome Browser 
(http://genome.ucsc.edu/cgi-bin/hgGateway) for researchers to visualize the annotated genes on 
chromosomes by zooming and moving around in specified genome coordinates in a particular 
genome assembly. Genome Browser provides different levels of annotations from a single 
nucleotide to a single gene and to a whole chromosome for many species including vertebrates 
and it addresses a whole range of biological problems in evolution, comparative genetics and 
bioinformatics (Pevsner, 2009). Custom annotated named tracks can be created for any genomic 
feature e.g., SNP by specifying chromosome number and genome coordinates. The researchers 
can upload their own genomic data in custom tracks to visualize and annotate them in the Genome 
Browser. The underlying genomic information in Genome Browser and custom tracks can be 
extracted using UCSC Table Browser (http://genome.ucsc.edu/cgi-bin/hgTables) for further 
analysis. UCSC Genome Browser also provides comprehensive supporting evidence (e.g., EST 
evidence, cDNA evidence, Protein evidence) for known and hypothetical genes. For a novel gene 
a conserved spliced EST is a good supporting evidence (Barnes, 2010). 
After identifying all the possible genes in the QTL, logically the next step should be to investigate 
each gene through literature search, ontology and homology information from sequences of other 
species for any of their functional roles in the phenotype of interest. 

 
Genes and Gene Prediction in UCSC 
The genes and transcripts from Ensembl, RefSeq, Genscan and N-Scan were extracted using the 
UCSC Table Browser (http://genome.ucsc.edu/cgi-bin/hgTables) by selecting appropriate 
parameters from the drop down lists. The parameters in our case were as follows: 
clade: Vertebrate 
genome: Chicken 
assembly: May 2006 (WUGSC 2.1/galGal3 

http://genome.ucsc.edu/cgi-bin/hgTables�
http://genome.ucsc.edu/cgi-bin/hgTables�
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group: Genes and Gene Prediction Tracks 
track: Ensembl Genes or RefSeq Genes or N-Scan Genes or GENSCAN (select one at a time) 
table: ensGene or refGene or nscanGene or genscan (select track relevant table) 
region: Select position and define the genome region of QTL (e.g., chr3:28,768,446-39,739,740) 
output format: Select Custom Track for viewing genes in Genome Browser or select BED-
browser extensible data to send output to Galaxy  
send output to: Select Galaxy if output to be sent to Galaxy web system     
file type returned: Select Plain text 
Press get output button with all other parameters set to their default values. 
On the next screen select Whole Gene and press Send query to Galaxy or get custom track in 
genome browser with all default values set on the form. 
Table browser outputs a tabular file enlisting all the genes along with their genome positions, 
exon counts, transcription start and end positions etc. Instead of whole genes researchers can 
extract separately different regions of genes e.g., exons, introns, UTR, coding exons and gene 
flanking regions.  
Sessions of Genome Browser can be created and saved for future reference. A personal account 
on the UCSC website can be created to save sessions and custom tracks. The output data of genes 
from all four tracks were transferred to the collaborating Galaxy web system for conservation 
analysis. 
 
Most Conserved in Evolution 
We also took advantage of the Comparative Genomics’ track in the UCSC Table Browser 
(http://genome.ucsc.edu/cgi-bin/hgTables) to extract the predicted most conserved elements in the 
QTL based on multiple alignment data from seven vertebrate species including chicken, human, 
mouse, rat, opossum, zebra fish and X. tropicalus. We were interested in identifying those genes, 
which contained the genomic regions that probably remained most conserved during evolution. 
For that reason we retrieved the most conserved elements in the QTL using the UCSC Table 
Browser and intersected them to identify those genes that contained those most conserved 
elements. The phastCons tool in PHAST (PHylogenetic Analysis with Space/Time) software 
package predicts most conserved elements (Siepel et al, 2005). The phylogenetic hidden Markov 
model, a probabilistic model, predicts conserved segments of sequences from multiple alignment 
data. Pairwise alignments through the Blastz (Chiaromonte et al, 2002; Schwartz et al, 2003) 
programme for all of seven species are produced first. From those pairwise alignments a multiple 
alignment are developed using the Multiz (Blanchette et al, 2004) programme. The phastCons 
programme is then run on that alignment with the most conserved option to extract the most 
conserved elements (Siepel et al, 2005). Every conserved element has a log-odds score between 0 
and 1000. The score is directly proportional to the conservation probability of the conserved 
element. In our case we used a middle value of 500 for extracting those elements, which had 
higher probability of being remained conserved in evolution. That, in turn, helped us to identify 
those genes (containing the most conserved elements of higher conservation probability), which 
probably remained most conserved in evolution. 
Conservation is considered probably the most important information to elucidate genome 
functions because sequence conservation shows preserved functions during evolution (Barnes, 
2010). 

http://genome.ucsc.edu/cgi-bin/hgTables�
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We retrieved the most conserved elements in QTL in UCSC Table Browser by setting the 
following parameters: 
clade: Vertebrate 
genome: Chicken 
assembly: May 2006 (WUGSC 2.1/galGal3 
group: Comparative Genomics 
track: Most Conserved 
table: phastConsElements7way 
region: Select position and define the genome region of QTL (e.g., chr3:28,768,446-39,739,740) 
filter: Press create and on the next screen set the value of score >=500 and submit 
output format: Select Custom Track for viewing conserved elements in Genome Browser or select 
BED-browser extensible data to send output to Galaxy  
send output to: Select Galaxy if output to be sent to Galaxy web system     
file type returned: Select Plain text 
Press get output button with all other parameters set to their default values 
On the next screen press Send query to Galaxy or get custom track in genome browser with all 
other parameters set to their default values 
Table browser outputs a tabular file enlisting all the conserved elements along with their genome 
positions and lod score ( ≥ 500). 

 
Ensembl / BioMart 
Ensemble (www.ensembl.org) is one of the leading genome browsers to visualize and retrieve the 
integrated information of genomes of chordates (Flicek et al, 2010). It provides resources for 
genome function, evolution and variation along with the gene annotations. Ensembl genes are 
supported by comprehensive supporting evidence of known ESTs, cDNA, and translated proteins. 
The Ensembl genomic data are easily accessible through its genome browser for visualization. 
The BioMart data-mining tool (http://www.ensembl.org/biomart/martview/) is used for retrieving 
genomic information from the underlying Ensembl genomic databases (Haider et al, 2009). 
European Molecular Biology Laboratory (EMBL-EBI) and Wellcome Trust Sanger Institute 
jointly developed Ensembl for creating and maintaining automatic annotation of eukaryotic 
genomes including chicken. This project is mainly focused on eukaryotic genomes especially 
vertebrates. Ensembl is widely considered a standard biological database. 
 
In our case we used the BioMart tool to retrieve the Gene Ontology (GO) annotations of candidate 
Ensembl genes. Genomic regions such as exons, introns, UTR and flanking regions of Ensembl 
genes for further analysis were also obtained using BioMart. 

 
Galaxy 
The UCSC Table Browser and Ensembl BioMart provide flexible and user-friendly interfaces for 
simple queries to a fairly large genomic data. But to handle complex queries for larger genomic 
and genetic datasets, Galaxy (http://main.g2.bx.psu.edu/) is considered a very helpful set of 
integrated tools to do computational analysis without even doing any programming and only 
requiring an online web browser  (Woollard, 2010). Galaxy is hosted by the Center for 
Comparative Genomics and Bioinformatics in the Huck Institutes of the Life Sciences at Penn 
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State University (Goecks et al, 2010; Blankenberg et al, 2010). It is a web-based platform for all 
kinds of genomic research offering analysis tools for Alignments, Evolution, NGS (next 
generation sequencing) and Metagenomics to list a few. File manipulation tools such as Text 
Manipulation, Convert Formats, Filter and Sort, Join, Subtract and Group and Operate on 
Genomic Intervals are some of the tools which are very helpful to take on files without even 
knowing any programming. It lets you to perform computational analysis such as by defining 
workflows to repeat the same set of queries on different genetic datasets.. The genomic data from 
the collaborating genome browsers such as UCSC and BioMart can be imported by Get Data tool. 
User data can also be uploaded and analysed in Galaxy. The results acquired from the data 
analysis remain on the online system and can be accessed from anywhere and shared with anyone. 
The genomic information of genes and most conserved elements in epistatic QTL from UCSC 
were imported in Galaxy to identify the genes that probably remained most conserved. The 
imported files were manipulated for conservation analysis with its Text Manipulation tools, Filter 
and Sort tools, Join, Subtract and Group tools, and Operate on Genomic Intervals. The 
intersection tool (Operate on Genomic Intervals) identified the genes containing the most 
conserved elements by detecting overlaps between the gene coordinates and conserved element 
coordinates. 
 
Ab initio Gene Prediction 
After sequencing and assembling the genome of a species the next step would be to annotate the 
genes in the genome. Protein coding sequences comprising genes can be discovered in the 
genome taking into account the common features of protein-coding transcripts. This process of 
gene prediction is known as ab initio gene discovery, which identify those common features using 
prediction software such as Genscan and N-Scan. The features might include the presence of long 
open reading frames in close proximity to transcriptional and translational initiation motifs and 3′ 
polyadenylation sites, and splicing consensus sequences (Gibson & Muse, 2009). We used the 
Genscan and N-Scan ab initio tools to predict genes from the epistatic QTL. 

 
Genscan 
Genscan is based on a general probabilistic model (generalized hidden Markov model) that 
predicts genes taking into consideration genomic information such as transcriptional, translational 
and splicing signals (Burge & Karlin, 1997). The features related to composition and length of 
introns, exons and intergenic regions are also considered in Genscan gene prediction. The 
algorithm scans both DNA strands for partial genes and complete genes. Genscan is one of the 
most widely used and most accurate de novo gene prediction tools with input of a single genome 
sequence in contrast to N-Scan, which requires at least two sequences for alignment and then 
prediction (Gross & Brent, 2006). This tool reveals only probable genes but provides no other 
information/annotation. Genscan is hosted at http://genes.mit.edu/GENSCAN.html. It can also be 
accessed from the UCSC Table Browser’s Gene and Gene Prediction track in a more customized 
way. 
 
  

http://genes.mit.edu/GENSCAN.html�


 

13 
 

N-Scan 
N-Scan is also an ab initio gene prediction tool, which uses multiple alignment of sequences 
(obtained from an informant sequence aligned with one or more target sequences) along with the 
biological signals (common features of protein coding transcripts) in the target sequence (s) to 
predict genes (Gross & Brent, 2006). It creates a phylogenetic relationship from the multiple 
aligned sequences of target and informant sequences to predict genes. For chicken sequences, it 
uses Zebra Finch sequence as an informant sequence for alignment and hence gene prediction. It 
is provided by the Computational Genomics Lab at Washington University in St. Louis 
(http://mblab.wustl.edu/nscan/) for public use. Like Genscan it can also be accessed from the 
UCSC Table Browser in the same way. 
  
After reviewing the number of genes and transcripts in the three epistatic QTL from all the 
databases and tools we used, we decided to select genes from the Ensembl and Genscan for 
further investigation into the identification of candidate genes because those revealed more genes 
and transcripts than RefSeq and N-Scan. We wanted to have as many genes as possible to start 
with the identification of candidate genes.   

 
Combination of gene and conservation information 
The information on gene prediction was combined with analysis of conservation patterns. For that 
purpose the most conserved regions were extracted in the epistatic QTL using the Comparative 
Genomics’ Most Conserved track (phastConsElements7way) in the UCSC Table Browser. Using 
Galaxy’s Text Manipulation and Operate on Genomic Intervals tools we identified those Ensembl 
and Genscan genes and transcripts that contained the most conserved genomic regions. The score 
used for most conserved elements was 500 or more (Score ranges 0-1000). We had two lists of 
those genes and transcripts considered conserved, one for Ensembl and one for Genscan.  

 
The conserved Genscan and Ensembl genes/transcripts which are approximately the same in 
number share the overlapping genomic intervals as shown by the USCS Genome Browser (Figure 
3, 4 and 5). Figure 2 exemplifies those overlaps between Genscan genes and Ensembl transcripts. 
Four genes in the same genome coordinates (1kbp-22kbp for example) are shown to have 
occupied the overlapping regions. Therefore, we decided to further investigate only Ensembl-
annotated conserved genes and transcripts which have the advantage over Genscan for being well 
supported from previously annotated cDNA reference sequence or EST sequences. From here on 
we refer to these Ensembl conserved genes as “candidate genes”. The Gene Ontology (GO) and 
KEGG pathways databases were analysed with these candidate Ensembl genes. 
  
  

Base pairs (kbp)  
Genscan genes 
 
Ensembl transcripts 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

 
Figure 2. Genes explaining the Genscan and Ensembl overlap 
 

http://mblab.wustl.edu/nscan/�
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Gene Ontology Consortium 
The Gene Ontology (GO) Consortium (Ashburner et al, 2000) established a project to take care of 
the issue of inconsistent gene and gene product annotation terms among different gene product 
databases of different species. The same function used to have different term names, which made 
it difficult to search for researchers and even computer programmes for finding paralogy and 
orthology in different species. To remove that inconsistency of terms, the GO project introduced 
three basic gene ontology terms to describe gene products independent of the species. The genes 
and gene products now have their associated functions in three domains namely, Biological 
Processes (bp), Cellular Components (cc) and Molecular Functions (mf) in the GO database. The 
GO is freely accessible on the web at http://www.geneontology.org/. Main genome projects also 
provide the links to GO for specified genes. In Ensembl BioMart researchers can also extract gene 
ontology for the desired Ensembl genes. The GO project is constantly improving and maintaining 
its controlled ontology and annotation vocabulary for genes and their products for making it 
complete and accurate. The consortium has also developed set of tools, namely, Amigo 
(http://amigo.geneontology.org/) and OBO-Edit (http://oboedit.org/) for researchers to access GO 
database customized to their needs. Currently the GO database holds the gene annotations for a 
variety of species and for a large number of genes. One of the main applications of GO is the 
prediction of the association of a particular gene(s) with some diseases or traits of interest that are 
still unmapped to any genes. The GO consortium comprises many participating ontology 
databases. Some of those databases are species-specific and some are organ-specific while others 
are investigating specific biological systems. The curators use evidence codes to annotate the 
genes and gene products. Evidence codes are the terms explaining the support for their annotation 
of genes. Evidences are from experiments (inferred from experiment EXP), direct assays (inferred 
from direct assay IDA) and electronic annotation (inferred from electronic annotation IEA) to list 
a few. Most widely accepted GO is a unified bioinformatic initiative for constructing a structured 
vocabulary for species-neutral annotation of genes and gene products and the current genome 
projects are annotating genes by employing GO terms (Hennig et al, 2003; Raychaudhuri et al, 
2002). Hennig et al. (2003) also concluded the correctness in most cases of annotation of 
sequence data using GO terms. The GO is the best in annotating the gene functions because the 
highly skilled biologists curate the genes after reviewing available information from literature and 
other such sources for evidence (Raychaudhuri et al, 2002). GO is arguably the most correct and 
popular ontology and annotation database to date. 
 
Gene Ontology of the candidate genes 
Using Ensembl BioMart the GO database was searched with the candidate Ensembl genes for all 
three kinds of gene annotation, namely, Biological Process, Molecular Function and Cellular 
Component. The annotations for the candidate Ensembl genes were studied along with KEGG 
pathways to understand the function of those genes in the biological pathways. 
 
  

http://www.geneontology.org/�
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GenomeNet / KEGG 
Kyoto University Bioinformatics Centre is hosting GenomeNet (http://www.genome.jp/), which 
was established in 1991 under the Human Genome Program of Japanese government and carries 
out research in the field of functional genomics and bioinformatics (Kanehisa et al, 2009). It 
provides database resources including KEGG Genes, KEGG Pathways, KEGG Disease and 
KEGG Brite to mention a few. The bioinformatic tools in the categories of Sequence Analysis, 
Genome Analysis and Chemical Analysis are also freely available for functional genomic 
research. Kyoto Encyclopaedia of Genes and Genomes (KEGG) is a part of GenomeNet database 
resources. We decided to use genomic information from KEGG Genes 
(http://www.genome.jp/kegg/genes.html) and system information from KEGG Pathways 
(http://www.genome.jp/kegg/pathway.html). The KEGG Pathway database contains biological 
pathway maps drawn manually mainly based on the molecular interaction and reaction networks 
information from published literature and it also contains maps for both normal and perturbed 
state (Kanehisa et al, 2009). Theses maps are broadly categorized into six global maps, which are 
Metabolism, Genetic Information Processing, Environmental Information Processing, Cellular 
Processes, Organismal Systems, Human Diseases and Drug Development. These major categories 
are further subdivided into specific molecular systems. The manually drawn and curated pathways 
are based on supported research from the literature and are interactive. The process of KEGG 
Pathway Mapping is to map large-scale molecular datasets of genomics, transcriptomics, 
proteomics, and metabolomics to its pathway maps for interpreting biological functions. The 
maps are in the form of images in which mapped objects can be coloured differently from others. 
Most of the objects in the pathway maps are hyperlinked to detailed information from different 
KEGG databases. Links related to mapped objects are also provided to popular protein and 
genomic databases like Uniprot, Pfam, PROSITE, Ensembl and NCBI. Our purpose of using 
KEGG pathway maps was to map the available genomic information, candidate Ensembl genes in 
our case, to KEGG maps so that we could understand the role of those genes in those pathways 
and could be able to find any relationship of those pathways to complex quantitative trait of 
growth. Currently there are around 600 KEGG entries in Pubmed that shows its popularity among 
functional genomic researchers.  
 
We tested some other biological pathway databases. One of those is REACTOME 
(http://www.reactome.org/) which is a knowledgebase of biological pathways and processes and 
provides information on molecular reaction systems (Vastrik et al, 2007). This web resource has 
less than 40 entries yet in Pubmed and do not provide the mapping support for the molecular 
datasets in contrast to KEGG. 
  
We have selected a few pathways along with the candidate genes involved, in our hunt for the 
causative genes and mutations affecting phenotype of growth. 
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  Summary of Materials and Methods 
 
1. Bi-directionally selected chicken lines for body weight at 56days for more than 40 
generations, the High-Line and the Low-Line (highly homozygous for QTL and genetic 
markers genotypes) are available for QTL analysis of growth 
 
2. Genome re-sequencing data of High-Line and Low-Line for SNP detection is also 
available  
 
3. The results from experimental crosses (F2 reciprocal Intercrosses) for QTL analysis of 
growth were: 
  a. 13 QTL detected affecting growth with minor additive effects 
  b. Epistasis between six QTL regions were found to play a major role in the regulation of 
growth 
 
4. Ab initio discovery and database search in epistatic QTL regions for genes and 
transcripts using Ensembl, RefSeq, Genscan and N-Scan 
 
5. Ensembl and Genscan genes selected over RefSeq and N-Scan as those contained more 
potential candidate genes 
 
6. To identify conserved genes, the evolutionary most conserved sequences in chicken 
genome were determined in epistatic QTL 
 
7. Identification of conserved Ensembl and Genscan genes containing the most conserved 
sequences in epistatic QTL regions 
 
8. Conserved Ensembl genes were preferred over conserved Genscan genes because both 
gene tracks occupy approximately the same genomic intervals, are approximately the same 
in number and Ensembl genes are being better supported from gene evidence. Conserved 
Ensembl genes are now considered as candidate genes 
 
9. Gene Ontology (GO) database consulted for functions of candidate genes from Ensembl 
 
10. Candidate Ensembl genes were mapped to KEGG biological pathways. 
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RESULTS AND DISCUSSION 
Genes 
Our findings using Ensembl and RefSeq gene databases and Genscan and N-Scan gene prediction 
tools regarding the number of genes in the previously mapped interacting QTL for growth on 
chicken chromosome 3, 4 and 7 are given in Table 3.  
 

Table 3. The size of QTL and the number of genes/transcripts therein 

Chr / 
QTL 

QTL 
(start bp-end bp) 

Size of 
QTL (bp) 

Ensembl 
Gene/Transcript 

RefSeq 
Gene/Transcript 

Genscan 
Gene 

N-Scan 
Gene 

3 28,768,446-
39,739,740 10,971,295 140/182 34/142 265 198 

4 9,401,881-
15,000,000 5,598,120 118/141 26/112 194 124 

7 16,446,768-
28,614,633 12,167,866 214/316 63/208 419 297 

Total   472/639 123/462 878 619 
 
Table 3 shows Ensembl and RefSeq genes and transcripts (each gene having one or more 
transcripts). Ensembl contained more genes and transcripts than RefSeq mainly due to the feature 
of Ensembl gene predictions. The Ensembl database contains different sets of genes including 
known protein-coding, projected protein-coding, novel protein-coding, pseudogenes and RNA 
genes. Whereas the RefSeq is the collection of only known, well-annotated sequences of DNA, 
RNA and proteins, which are non-redundant and well supported from literature. Table 3 also 
shows that Genscan predicted more genes than N-Scan because of the different principles of gene 
discovery discussed already. Gene prediction tools like Genscan and N-Scan do not provide any 
evidence for the predicted genes and the prediction is only based on the preset parameters to look 
for probable genes in the given genomic sequences. In human there are 51,737 Ensembl genes in 
3.27 Gbp of DNA (Ensembl database version 59.37d) whereas chickens have 17,934 Ensembl 
genes in 1.05 Gbp (Ensembl database version 59.2o). It is obvious that approximately three times 
more DNA in human than chicken also reveals approximately three times more genes in the 
Ensembl database. Approximately 63,300 bases represent one human gene while for chicken 
these bases are about 58,500. In our case 472 Ensembl genes were found in 28,737,281 bp of 
DNA representing approximately 60900 bases per gene. 
 
The purpose of using Ensembl, RefSeq, Genscan and N-Scan for known genes and for gene 
predictions was to have as many genes as possible in three QTL before we actually started to 
exclude them and identify the candidate genes for growth.  
 

Conservation pattern and conserved genes 
In our study, the known and predicted Ensembl genes/transcripts and Genscan predicted genes 
were selected for the subsequent conservation analysis because those revealed more genes than 
RefSeq or N-scan. To identify the most likely candidate genes for growth we decided to select 
those genes that probably remained most conserved in evolution. The UCSC Genome Browser 
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and Table Browser provide the phastConsElements7way track for extracting the most conserved 
regions in the given QTL. The Most Conserved option in Comparative Genomics’ track predicts 
conserved elements which are segments of alignments in QTL obtained from the pair-wise and 
then multiple alignment of 7 vertebrate species (chicken, human, mouse, rat, opossum, zebra fish 
and X. tropicalus) from 4 vertebrate classes namely, Fish, bird, mammals and amphibian. The 
Most conserved regions were scored having values from 0 to 1000. Table 4 shows the number of 
Most Conserved regions in all three QTL regions as 26,313 when the score was set equal to 0 and 
3,118 when set equal to or greater than 500. 
 
Both the Ensembl transcripts and Genscan genes were intersected separately with the most 
conserved regions (having conservation score ≥ 500) to identify those transcripts and genes that 
contain one or more of those conserved regions. The Galaxy’s intersection tool was used to 
extract those genes. The Table 5 shows 459 Ensembl transcripts and 450 Genscan genes that 
contain at least one of the most conserved regions. From here on we refer to those genes as 
conserved genes. 
 
Table 4: The number of most conserved regions in candidate QTL 

Chr / 
QTL Most Conserved Regions (Score ≥ 0) Most Conserved Regions (Score ≥ 500) 

3 7,787 864 
4 4,535 482 
7 13,991 1,772 

Total 26,313 3,118 
 
Table5: The number of genes/transcripts containing the most conserved regions (Score ≥ 500). 

Chr / 
QTL 

Ensembl Conserved 
Transcripts 

Ensembl Conserved 
Genes 

Genscan Conserved 
Genes 

3 134 98 128 
4 84 68 90 
7 241 155 232 

Total 459 321 450 
 
Overlaps of genomic intervals in UCSC Genome Browser 
When the conserved transcripts and genes tracks from Ensembl and Genscan were viewed in 
parallel in UCSC Genome Browser, most of the genes from both tracks appeared to occupy the 
overlapping genomic regions. Figures 1, 2 and 3 show those gene overlaps. This pattern suggested 
to primarily focusing on the Ensembl conserved genes as these have much more information and 
evidence for them to be probably the true genes (as described in the previous sections). To be 
raised to the gene status in genome annotation, the computationally predicted putative genes need 
to be confirmed by some supporting evidence from previously identified cDNA or EST sequences 
or known translated proteins. The Ensembl database is a collection of both known and putative 
genes that are well supported from second line of evidences. Therefore, Ensembl conserved genes 
were identified as candidate genes at that stage. 
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Figure 3: Chromosome 3 QTL Region showing genes and conservation in UCSC Genome Browser 

 

 
Figure 4: Chromosome 4 QTL Region showing genes and conservation in UCSC Genome Browser 
 

 
Figure 5: Chromosome 7 QTL Region showing genes and conservation in UCSC Genome Browser 
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Bioinformatic analysis of KEGG pathways and interactions 
To further investigate the functions of candidate Ensembl genes we decided to map them to the 
KEGG biological pathway database. There are 147 chicken biological pathways in the KEGG 
Pathway database. We found many pathways in which candidate Ensembl genes were involved. 
Using Galaxy’s tools like Text Manipulation, Filter and Sort, Join and Group we were able to 
identify those pathways that had gene representation from interacting QTL. A few of those 
pathways had the candidate genes from all three interacting QTL. Table 6 shows the actual 
number of Ensembl genes and the corresponding number of genes contained in KEGG gene 
database (KEGG gene). It also shows how many of the 147 biological pathways of chicken in the 
KEGG database were traced with those KEGG genes/Ensembl genes from all three candidate 
QTL. A total of 71 pathways were found with the candidate Ensembl genes and 76 pathways if 
we consider all Ensembl genes. 
 

Table 6: Ensembl/KEGG genes from all three epistatic QTL and the related KEGG Biological 
Pathways in Chicken 

Genes and 
Transcripts from 

three QTL 

Ensembl 
Transcripts 

Ensembl 
Genes 

KEGG 
Genes 

KEGG Genes 
mapped to 

KEGG Pathways 

KEGG Pathways 
mapped with 
KEGG genes 

Candidate 459 321 247 72 71 
All 639 472 307 80 76 

 
Table 7 shows the numbers of KEGG pathways, which may explain observed QTL interactions 
because they are represented with gene(s) in two or more QTL. A total of 24 and 27 such 
pathways were found when only candidate Ensembl genes were considered and when all Ensembl 
genes were considered, respectively. 
 

Table 7: Number of KEGG pathways found which have genes represented in two or three of the 
epistatic QTL studied 

Chr / QTL KEGG Pathways (with candidate 
Ensemble genes) 

KEGG Pathways (with all Ensembl 
genes) 

3 and 7 6 5 
3 and 4 7 8 
4 and 7 5 6 

3, 4 and 7 6 8 
Total 24 27 
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The KEGG biological pathways involving our candidate Ensembl genes present a way forward in 
our investigation of genetic architecture underlying phenotypes of our interest. We have found 6 
biological pathways having genes from all of the interacting QTL on chromosomes 3, 4 and 7. 
Table 8 briefly explains the major functions of those 6 biological pathways. Candidate Ensembl 
genes from those QTL involved in those 6 pathways are 35 in number. Those 35 candidate genes 
are also involved in 40 other pathways as one gene may be involved in more than one pathway. 
Table 9 shows those 6 pathways along with the candidate genes. 
 
Here we discuss the Mitogen Activated Protein Kinase (MAPK) signalling pathway, which 
involves candidate Ensembl genes from all of the three epistatic QTL. The MAPK cascade 
includes a series of highly conserved protein kinases, which are considered to be involved in 
regulation of cell proliferation in eukaryotes.  Once these kinases are inside the nucleus these also 
affect homeostasis, cell growth and viability/apoptosis by altering gene expression. The signalling 
of MAPK pathway results from three successive phosphorylation events, called MAPK cascade. 
MAPKs phosphorylations result in distinct functions for its substrates, which also include 
mitogen activated proteins (Faustino et al. 2010; Shiryaev & Moens, 2010; Huang, 1996). The 
MAPK involves seven of the Ensembl candidate genes from candidate QTL listed in Table 7. 
 
Gene annotations from GO for the candidate genes involved in the MAPK signalling pathway 
show that most genes are involved in metabolism related to phosphorylation of the kinases. That 
phosphorylation metabolism is a hallmark of MAPK signalling cascade that affects cellular 
growth, proliferation, differentiation and development. One of the genes (Q197G3_CHICK/ 
ENSGALG00000007806) has a growth factor activity related to it and another gene 
(ATF2_CHICK/ENSGALG00000009287) is involved in regulation of transcription in general, 
which affects gene expressions and might also affect growth eventually. 
 
The Adipocytokine signalling pathway is also an interesting pathway as it has functional roles in 
regulating appetite. The Low-Line chickens have low appetite after generations of selection. 
Therefore, an investigation into this pathway along with the candidate genes it involves may 
reveal the genetic basis of low appetite in Low-Line. This pathway controls the production of 
leptin and adiponectin hormones through the volume and the number of adipocytes. Adipocytes 
volume positively correlates the leptin production. Leptin, by acting at hypothalamic nuclei and 
affecting the levels of neuropeptides (like NPY, AGRP, and alpha-MSH) regulates metabolic rate 
and energy intake. Leptin in adipose tissue regulates energy intake through feeding and 
expenditure of energy in the body. Appetite suppressing actions of leptin are hampered in obesity 
(Munzberg & Myers, 2005). Obesity has been identified to associate with resistance to leptin 
(Becskei et al, 2010). 
 
We are also investigating other pathways having candidate genes from epistatic QTL. Currently 
MAPK and Adipocytokine signalling pathways are the key candidates and are being investigated. 
 
  

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Shiryaev%20A%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Moens%20U%22%5BAuthor%5D�
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Table 8: Major functions of KEGG pathways having gene representation from all three candidate 
QTL 

Pathway ID Pathway Name Major Functions 
gga01100 Metabolic 

Pathways 
Metabolic pathways include sub-pathways that are involved in 
biosynthesis and degradation of all sorts of biological substances. 
The changes in the rate of metabolism may affect the growth rate 
in general. 

gga04010 MAPK 
Signalling 
Pathway 

The MAPK signalling pathway is involved in numerous cellular 
functions which includes cell proliferation, cell differentiation and 
cell growth. 

gga04510 Focal Adhesion Focal adhesions are formed at contact points of cell-extracellular 
matrix and have different important biological roles such as cell 
proliferation, cell differentiation and survival of the cell. They are 
also involved in regulation of gene expression. 

gga04530 Tight Junction Tight junction is involved in cellular processes such as cell 
communication. The epithelial tight junction proteins form 
diffusion barriers at intramembrane and paracellular level. 

gga04810 Regulation of 
Actin 
Cytoskeleton 

The actin cytoskeleton helps regulate the shape of the cell and its 
motility, which is important to the development of biological 
systems such as central nervous system. 

gga04920 Adipocytokine 
Signalling 
Pathway 

The Adipocytokine signalling pathway controls the production of 
leptin and adiponectin through the volume and number of 
adipocytes. Leptin imparts anorectic condition by affecting the 
levels of neuropeptides. 
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Table 9: Pathways and Ensembl candidate genes involved 

Pathway ID Pathway Name Chr / QTL 
Ensembl 
Gene ID 

KEGG Gene 
ID 

gga01100 Metabolic pathways (16) 

3 
3 
3 
3 
3 
4 
4 
4 
4 
4 
7 
7 
7 
7 
7 
7 

ENSGALG00000010349 
ENSGALG00000010557 
ENSGALG00000010702 
ENSGALG00000010768 
ENSGALG00000014464 
ENSGALG00000007493 
ENSGALG00000007793 
ENSGALG00000007936 
ENSGALG00000007990 
ENSGALG00000008088 
ENSGALG00000009236 
ENSGALG00000009286 
ENSGALG00000009589 
ENSGALG00000010931 
ENSGALG00000010960 
ENSGALG00000011246 

gga:421452 
gga:421467 
gga:428579 
gga:428583 
gga:422069 
gga:422302 
gga:422327 
gga:395833 
gga:422339 
gga:422345 
gga:424135 
gga:424142 
gga:395743 
gga:429027 
gga:424177 
gga:769112 

gga04010 MAPK signalling pathway (7) 

3 
3 
4 
7 
7 
7 
7 

ENSGALG00000010435 
ENSGALG00000010709 
ENSGALG00000007806 
ENSGALG00000009287 
ENSGALG00000009344 
ENSGALG00000011502 
ENSGALG00000011592 

gga:421460 
gga:421497 
gga:422330 
gga:395727 
gga:424149 
gga:424225 
gga:395149 

gga04510 Focal adhesion (8) 

3 
3 
3 
4 
4 
4 
7 
7 

ENSGALG00000010290 
ENSGALG00000010709 
ENSGALG00000014463 
ENSGALG00000007646 
ENSGALG00000008058 
ENSGALG00000008266 
ENSGALG00000009362 
ENSGALG00000011141 

gga:395909 
gga:421497 
gga:396263 
gga:422316 
gga:422342 
gga:422350 
gga:396226 
gga:424191 

gga04530 Tight junction (6) 

3 
3 
3 
4 
7 
7 

ENSGALG00000010385 
ENSGALG00000010709 
ENSGALG00000014463 
ENSGALG00000007311 
ENSGALG00000009344 
ENSGALG00000011592 

gga:421455 
gga:421497 
gga:396263 
gga:422292 
gga:424149 
gga:395149 

gga04810 
 

Regulation of actin cytoskeleton (8) 
 

3 
3 
4 
4 
7 
7 
7 
7 

ENSGALG00000010778 
ENSGALG00000014463 
ENSGALG00000007806 
ENSGALG00000008058 
ENSGALG00000009362 
ENSGALG00000011141 
ENSGALG00000011452 
ENSGALG00000011592 

gga:396364 
gga:396263 
gga:422330 
gga:422342 
gga:396226 
gga:424191 
gga:429041 
gga:395149 
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The MAPK Signalling Pathway 

 
  
Figure 6. The MAPK signalling pathway in KEGG database, showing the candidate genes       
and gene products (coloured pink). (Reproduced with permission) 
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The Adipocytokine signalling pathway 

 
Figure 7. The Adipocytokine signalling pathway in KEGG database, showing the candidate  
genes and gene products (coloured pink). (Reproduced with permission)  
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Searching for the causative mutation(s)  
Polymorphism in the candidate genes of both chicken lines will be functionally evaluated, 
potentially explaining the genetic mechanism underlying the phenotypic differences between 
those lines. Table 9 shows the number of SNPs detected in genome re-sequencing in different 
parts of Ensembl genes in the epistatic QTL.  
 
Table 9: SNP distribution across different parts of all Ensembl genes in candidate QTL 

QTL→ 
Gene Region↓ 

Chr 3 Chr 4 Chr 7 Total SNPs SNPs (per kb) 

Genes 23,249 9,811 32,736 65,796 3.66 
CpG island 229 237 523 989 2.42 
Exons 711 552 1,259 2,522 2.07 
Introns 22,538 9,259 31,484 63,281 3.78 
5’ UTR 21 25 41 87 2.40 
3’ UTR 154 173 180 507 2.85 
Coding exons 536 354 1,038 1,928 1.91 
5bp (exons) 43 33 62 138 2.01 
5bp (introns) 36 16 79 131 2.10 

 
The SNP distribution shows that most SNPs are in intronic regions whereas the exons contain a 
very low percentage of those SNPs. Important mutations, which contribute to the divergent 
phenotypes in the High- and Low Chicken Lines might be residing in coding sequences and 
altering protein structure and function or might be located in regulatory regions and affect gene 
expression or post-translational processes. 
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FUTURE PROSPECTS 

The specific aim of the current project was to explore the genome for its genes in the previously 
mapped QTL for growth in general in chicken. A recent fine mapping study using an Advanced 
Intercross Line (AIL) confirmed QTL on chromosome 1, 2, 3, 4, 5, 7 and 20 controlling growth 
(Besnier et al, submitted). We have found a few candidate genes in the three important interacting 
QTL on chromosome 3, 4 and 7. In a near future we would scan the remaining detected QTL on 
chromosome 1, 2, 5, and 20 for the conserved genes and map them to interaction pathways, 
hopefully finding new candidate genes. 
After identifying the real candidate genes the polymorphism therein would be investigated. These 
investigations require efficient techniques to develop bioinformatic and computational algorithms, 
methods and tools to reveal and extract the interesting information from biological databases 
available for public use. Thus, the computational development done primarily for this project will 
be of broader interest and are likely to benefit many other research projects. 
To identify protein-coding sequences, regulatory regions, conserved sequences a pipeline would 
be developed using bioinformatic resources and scripting languages. Phylogenetic analysis needs 
to be done to identify orthologs and hence shared functional information with the chicken genes. 
In the future we shall use genome re-sequencing and 60K SNP chip genotyping data for 
computational analysis to identify selective sweeps within the detected QTL. 
The identification of the polymorphism in functional elements with prediction and ranking of the 
possible phenotypic contribution for mutations and interaction patterns may reveal and explain 
genetic mechanism underlying the phenotypic differences between the High- and Low Chicken 
Lines. Such findings could significantly contribute to our understanding of metabolic pathways 
regulating growth, which may benefit animal breeding, human medicine and/or other areas of 
biology. 
Finally the identified candidate mutations and pathways would be tested experimentally for their 
presumed functional effect on phenotypic variation between the High- and the Low chicken lines. 
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