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ABSTRACT 

Lake Mälaren, located in eastern Sweden, supplies water for drinking use to more than 

two million people in Stockholm and the surroundings. Water quality is generally rather 

good; although concern has been raised in the last years due to observed increasing 

trends in both color and dissolved organic carbon (DOC) in other surface waters in 

Scandinavia. This may eventually occur in Lake Mälaren. DOC can carry along 

contaminants and toxic compounds affecting the functioning of water treatment plants. 

A better understanding of the DOC dynamics within the catchment is essential. This 

requires an investigation of the spatial and temporal patterns in DOC quality and 

quantity. The main aim of this project is to produce the basic knowledge that will be 

useful to predict DOC quality and quantity in Lake Mälaren. The project is structured in 

two parts: (1) areal mass transport fluxes of color and total organic carbon (TOC) within 

the catchment, and (2) simulation of DOC concentrations in Fyrisån subcatchment using 

the HBV and INCA-C models. TOC concentrations and color show similar dynamics 

with some differences. Catchments with lower open water proportion present browner 

waters due to lower retention times. TOC exports are well correlated to discharge in 

suggesting that TOC concentration is controlled by flow. However, there is a risk of 

increasing carbon concentrations after peaks in runoff, which are related to wet years. 

The INCA-C reproduces well the intra- and interannual variation in DOC concentration 

in Fyrisån, however, the model fails to capture some of the high peaks. Further studies, 

are needed in order to both understand the new trends in DOC concentration and 

develop the INCA-C model to predict these trends. Once the new studies based on this 

report are carried out successfully the model could be used to predict DOC 

concentrations in the future. 
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1. INTRODUCTION 

The occurrence of water is may be the reason why it has been possible to develop on the 

planet Earth what we call life. Human beings, like any other organism, need water and 

they need it for many different purposes: food, cleaning, hygiene, agriculture, industry, 

energy, leisure time, etc. The world has an abundance of water, but the amount that we 

can really use is limited. Besides, it is not equally distributed around the different 

regions. In that sense, Sweden is one of the luckiest countries, with many water 

resources. Even so, there is still a need of treat the water for drinking consumption. 

Contaminants and potential toxic substances have to be removed before water is 

suitable for human consumption. In this paper the focus is on dynamics of dissolved 

organic carbon (DOC) concentrations and its influence upon water treatment, especially 

nowadays since it is increasing in natural waters. 

1.1 Characterization of dissolved organic carbon (DOC) 

DOC is defined as the broad classification for organic molecules of varied origin and 

composition in aquatic systems (Sucker and Krause, 2010). Broadly, the organic matter 

(OM) in natural waters consists of a wide size range of compounds including free 

monomers, macromolecules, colloids, aggregates and large particles. Traditionally, this 

material has been divided into two major groups (Spitzy and Leenheer, 1991): 

- Particulate organic matter (POM): fraction that upon filtration of a water 

sample is retained on a 0.45 µm filter. This group is subdivided depending on 

the element considered in particulate organic carbon (POC), particulate organic 

nitrogen (PON) and particulate organic phosphorus (POP). 

- Dissolved organic matter (DOM): fraction that passes the filtration of a water 

sample on a 0.45 µm filter. Analogously, this group includes dissolved organic 

carbon (DOC), dissolved organic nitrogen (DON) and dissolved organic 

phosphorus (DOP). 

Thus, the combination of POC and DOC makes up the total organic carbon (TOC) in a 

water sample. The OM that can be found in waters has different origins. Natural organic 

matter (NOM) derives from plants and microbial residues. Besides, we can find an 

anthropogenic fraction from deliberate or accidental disposal of domestic sewage, 

agricultural chemicals, medicinal and products of industrial processes (vanLoon and 
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Duffy, 2005). Therefore, the characterization of the OM present in water is not easy, 

especially regarding the dissolved part. 

Spitzy and Leenheer (1991) suggest that DOC is formed by a defined fraction consisting 

of carbohydrates, amino acids, hydrocarbons, fatty acids and phenolic compounds; and 

an uncharacterized fraction consisted mainly of humic (HA) and fulvic acids (FA). HA 

and FA (from now humic substances) are recalcitrant organic acids derived mainly from 

detrital plant material and soils, but also from the growth of algae and other 

microorganisms in the water column or benthos (Miller et al., 2009). HA and FA are 

differentiated by their solubility at different pH, HA only soluble at pH > 2; and their 

molecular weight, higher for HA (Vermeer and Koopal, 1998). The majority of DOM 

consists of the uncharacterized fraction, i.e. humic substances, which may reach more 

than 80 % in some wetlands (Mladenov et al., 2005). Lakes with high DOC content 

show a yellow to brown coloration, which is a typical characteristic of humic 

substances. 

1.2 Rising DOC concentrations in recent years 

Concentrations of DOC are increasing in surface waters across Europe, especially in 

Scandinavian countries (Hongve et al., 2004) and in parts of North America (Monteith 

et al., 2007). The causes for this increasing are still not clear, although some 

mechanisms have been described as responsible for the trend. According to Futter et al. 

(2009), the two most important are declines in sulfate (SO4
2-) deposition and changes in 

climate. These two mechanisms and some others are described next: 

- Decreasing in acid deposition. It has been observed in the last decades that the 

deposition of acid compounds such as sulfate (SO4
2-) or nitrate (NO3

-) has 

decreased significantly (Fölster & Wilander, 2002), especially in those countries 

where surface water acidification is an important environmental issue. 

Skjelkvåle et al. (2005), Monteith et al. (2007) and Futter et al. (2009) found 

correlations between increasing water DOC concentrations and reduction of 

sulfate deposition. The reasons for this correlation are still unknown but the 

hypothesis is that the solubility of DOC increases when sulfate content decreases 

during recovery. 
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- Climate change. In the international scientific community, it is accepted that 

the average world temperature will increase in the next decades due to global 

warming. In the case of Sweden, the annual mean temperature is projected to 

increase between 2.5 ºC and 4.5 ºC by 2071-2100 compared to the period 1961-

1990 (Persson et al., 2007). In the same study, the annual mean precipitation 

over Sweden is projected to increase during the century by between ~10 to 20 %. 

The activity of microorganisms that break down organic matter in the soil is 

enhanced by higher temperatures. Köhler et al. (2008) observed an increase in 

TOC concentrations during the warm summer months during wet years in 

forested catchments in an 11-year study in Sweden. Therefore, it is expected that 

DOC concentrations in Swedish surface waters will be higher in the future due 

to increasing in both temperature and precipitation. 

- Changes in hydrology. The spring snow melt period is important for organic 

matter flow to surface waters. Laudon et al. (2004) monitored TOC 

concentrations in seven boreal catchments in northern Sweden. They found that 

the four week long spring period contributed between 50 % and 68 % of the 

annual TOC export from the seven catchments. Furthermore, the contribution in 

this period was higher in forested catchments than wetland dominated 

catchments. 

- Land use. Land use type and changes on it may affect the quantity and quality 

of the TOC in the catchments by themselves or by altering hydrological cycles. 

Mattsson et al. (2005) observed that the TOC export increased with increasing 

peatland proportion in Finnish main rivers. As it was pointed out earlier, the 

proportion of forest and wetland is important for the yield of DOC from 

catchments, being the principal variable in the Northern Hemisphere according 

to Curtis (1998). 

- Combination of factors. Despite what has been mentioned earlier, most of the 

times the change in DOC concentrations in water systems is not a result of one 

factor but a combination of those. Tranvik and Jansson (2002) suggest that 

predictions of DOC export based on temperature or any other single parameter 

may be overly simplistic. In Sweden, the two main factors behind the increasing 
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concentrations of organic matter in surface waters are decreases in sulphate 

deposition and flow (Erlandsson et al., 2008). 

1.3 DOC, human health and water treatment 

One reason concern about the increasing DOC concentrations in surface waters is the 

possible interaction with human health. When treating water for drinking use, the DOC 

needs to be removed due to its capability to carry along contaminants and toxic 

compounds. Moreover, changes in DOC concentrations significantly affect treatment 

process selection, design and operation (Eikebrokk et al., 2004).  

DOC is related to contamination and potential toxicity in aquatic systems in many ways: 

- DOC is a precursor of trihalomethanes (THM), which are a group of 

compounds, including dibromochloromethane, bromodichloromethane, 

chloroform and bromoform, with potential carcinogenic and mutagenic 

properties. During the water treatment process the DOM reacts with chlorine 

forming THM (Chow et al., 2003).  

- DOC is important in the fate of mercury in water since there is evidence of 

strong interactions between DOM and the metal (Ravichandran, 2004). Mercury 

is mobilized from the solid phase and therefore its bioavailability increases. 

- At around neutral pH, the mobility of copper increases due to formation of 

complexes with DOM, although these complexes are less toxic than the metal 

itself (Ashworth and Alloway, 2007). 

- Lead is transported continuously, but slowly, downward together with colloidal 

organic matter in soils (Klaminder et al., 2006). They reach water-saturated 

mineral soil layers and eventually, trough lateral transport, surface waters. 

Klaminder et al. (2006) suggest that the amount of lead leached from the soil and 

lost through runoff will increase in the future in boreal catchments. 

- DOC structure also allows binding and transport of organic pollutants (Dawson 

et al., 2009). 
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- Humic substances belonging to DOC can cause secondary problems such as 

diseases, taste and odor due to excess microorganism growth (Löfgren et al., 

2003). 

Surface water treatment comprises a sequence of unit processes in order to produce 

potable water. The most common unit processes are disinfection, coagulation, rapid 

mixing/oxygenation, flocculation, fast and slow sand sedimentation, membrane 

filtration and a final disinfection before distribution. There is a variety of different 

combinations of such unit processes to achieve this target, and for each unit process 

different treatment technologies are practiced (Gaulinger, 2007). 

Due to the capability of DOC to bind organic and inorganic contaminants and reactive 

species, it often interferes with treatment processes. There are two measures intimately 

related with DOC content that have special importance in water treatment: water color 

and specific ultraviolet absorption (SUVA). Historically, water color was measured by 

comparison to dissolved platinum standards (mg Pt L–1). Today, color is usually 

measured by light absorbance at 465 nm and it relates to chromophores in DOC, 

including conjugated double bonds, aromatic rings and phenolic functional groups 

(color centers in humic substances). Color can also be measured as light absorption of 

0.45 µm filtered water at 420 nm in a 5 cm cuvette (Weyhenmeyer et al., 2004). SUVA 

is expressed by the ratio of UV absorbance at 254 nm or 280 nm divided by DOC and it 

is related to the hydrophobicity and aromaticity of DOC respectively (Chen et al., 

2004). 

For water to become suitable for drinking, water color needs to be eliminated, not only 

because of DOC can carry contaminants, but also because colored water is regarded to 

be unpleasant. It has been proved that water color increases with DOC (Weyhenmeyer 

et al., 2004). In an experiment carried out in Norway, Eikebrokk et al. (2004) found that 

the required coagulant dose, sludge production, number of backwashes per day and 

residual TOC increased by 64%, 64%, 87%, and 26% respectively when water color 

increased from 20 to 35 mg Pt L–1. SUVA also increases when DOC increases and it 

especially affects the performance of the coagulation process (Eikebrokk, 2009). 

Therefore, according to these studies it is expected that the treatment costs increase 

when DOC is higher. 
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There have been many studies about how to remove DOC from water in the best way. 

Nishijima et al. (2003) compared a multi-stage ozonation-biological treatment process 

with the conventional single-stage ozonation-biological treatment process. They found a 

higher DOC removal in the multi-stage treatment due to larger generation of 

biodegradable DOC in several ozonation steps, even when the total reaction time was 

lower. However, traditional removal by ozone may lead to biological regrowth in the 

distribution network due to formation of biodegradable DOC (Osterhus et al., 2007). 

This is the basis for developing a biofiltration step. Nowadays, a novel process so-called 

ozonation, biodegradation and micro or ultra membrane filtration (OBM), has reached 

importance. 

The problem of DOC removal from natural waters is especially important in Sweden, 

where 50 % of the population drinks water originating from surface waters (Löfgren et 

al., 2003). 

1.4 Problematic of DOC in Lake Mälaren 

Lake Mälaren, located in eastern Sweden (Figure 1), supplies water for drinking use to 

more than two million people in Stockholm and the surroundings. Water quality is 

generally rather good; although concern has been raised in the last years due to observed 

increasing trends in both color and DOC in other surface waters in Scandinavia 

(Hongve et al., 2004). This may eventually occur in Lake Mälaren, with adverse 

consequences for water treatment. 

 

Figure 1. Location of Lake Mälaren in Sweden. Modified from Weyhenmeyer et al. 
(2004). 
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Higher water color associated with extreme precipitation events has been already 

reported in the lake Mälaren (Weyhenmeyer et al., 2004). Since climate change 

predictions forecast a precipitation increase and more extreme events in the region it is 

expected that DOC concentrations will increase in the future. 

In order to avoid undesirable outcomes in Lake Mälaren water treatment plants, a better 

understanding of the DOC dynamics within the catchment is essential. This requires an 

investigation of the spatial and temporal patterns in DOC quality and quantity. The tools 

commonly used to aid in the understanding of dynamic systems are simulation models. 

1.5 DOC modeling in surface waters 

Ecosystems are complex systems characterized by an infinite web of interactions and 

dynamic processes. The integration of these interactions and processes in a simplified 

way is needed when studying them. Here is where simulation models can help 

environmental assessors with the ecosystem evaluations. Simulation models are 

simplified mathematical representations of the functioning of dynamic systems and they 

are worldwide used in environmental assessment. 

According to Futter et al. (2007) a model for simulating fluxes of DOC from headwater 

streams to outlets in the sea should fulfill six premises: 

1. Take into account spatial heterogeneity and land cover types in the catchment. 

2. Simulate effects of patterns of precipitation and temperature. 

3. Simulate in-soil production and consumption of organic carbon.  

4. Incorporate surface water fluxes.  

5. Account biological and chemical processes that consume DOC.  

6. Be calibrated using monitoring data. 

No current models fulfill the above characteristics at a scale greater than at an individual 

catchment. However, several models of DOC dynamics in both terrestrial and aquatic 

environments have been developed in the last years. Simple models have been used to 

simulate the effects of snowmelt on DOC export (Boyer et al., 2000), study carbon 

processing in lakes (Hanson et al., 2004) and estimate export coefficients of DOC in 

lakes (Canham et al., 2004). More detailed process-based models have been developed 

to predict soil water DOC concentrations (Neff & Asner, 2001; Michalzik et al., 2003; 

Lumsdon et al., 2005). 
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Recently, a new process-based biogeochemical model, the Integrated Catchments model 

for Carbon (INCA-C) has been used in similar previous researches (Futter et al., 2007; 

Futter & de Witt, 2008; Futter et al., 2008; Futter et al. 2009; Oni et al. 2010) in 

forested, temperate and boreal single catchments with successful results. INCA-C is 

based on previous versions of INCA which were originally designed to model nutrient 

patterns in both aquatic and terrestrial environments (Whitehead et al., 1998; Wade et 

al., 2002a; Wade et al., 2002b). So far, INCA-C has been used in relatively small 

catchments and subcatchments of lakes and streams in Canada and Scandinavia. In this 

project, the INCA-C model is applied within a much larger watershed, the lake Mälaren, 

with a catchment area of 22603 km2 (Wallin et al., 2000). The model is tested in one of 

its major tributaries, the river Fyris, with a catchment area of 1982 km2 (Wallin et al., 

2000). 

2. AIM 

The main aim of this project is to produce the basic knowledge that will be useful to 

predict DOC quality and quantity in Lake Mälaren by modeling fluxes of water color 

and organic carbon within the lake catchment. 

Some other specific objectives of this project are: 

- Calculate and compare the fluxes of different substances (with focus on TOC and 

color) flowing into the lake Mälaren from its main tributaries and at the outlet. 

- Test the applicability of INCA-C model in a large catchment in Sweden: the Fyrisån 

catchment that contributes to flow into Lake Mälaren. 

- Compare the simulated and the observed DOC patterns of the modeled catchment. 

3. STUDY SITE: LAKE MÄLAREN AND FYRISÅN SUBCATCHMENT 

Lake Mälaren (59º 30´ N, 17º 12´ E) is the third largest lake in Sweden. Located in the 

southeast, Mälaren catchment area is a large expansion of 22603 km2 (Wallin et al., 

2000) which constitutes about 5 % of the country, with the outlet in the city of 

Stockholm. The catchment is dominated by forests and wetlands (70 %), arable lands 

and meadows (20 %) and lakes (10 %) (Wallin et al., 2000). Mälaren has a water 

surface area of 1120 km2, a volume of 14.03 km3, a mean depth of 12.8 m (max depth is 

63 m) and water retention time of 2.8 years (Weyhenmeyer et al., 2004). This relatively 
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short water residence times leads to fast responses to changes in input water quality. 

The average annual precipitation in the area is about 650 mm and the annual average 

evapotranspiration about 420 mm (Bergström et al., 2006). 

Lake Mälaren receives 80 % of the water from 10 major rivers of the catchment (Wallin 

et al., 2000). The lake can be divided in six basins (Figure 2) to facilitate the 

understanding of its functioning. 

 

Figure 2. Mälaren basins with sampling stations (red dots). From Wallin et al. (2000). 

Organic substances in the lake are measured as TOC. The highest levels are found in the 

northeast, in the stations Ekoln and Skarven (Figure 2). In this area, water entering the 

lake comes from rivers which transport large amounts of organic material from 

agricultural land. TOC concentrations are high in the western stations. Organic 

substances are gradually broken down and diluted, leading to lower TOC concentrations 

in the stations nearby the outlet (S. Björkfjärden and Görväln). Water color is higher at 

the beginning of the year due to inflows of humic substances in the winter-spring 

period. The water is significantly less colored in the center (N. Prästfjärden station) and 

close to the outlet. In these areas there are no large tributaries (Sonesten et al, 2010). 

There are 12 main streams which flow into the Mälaren (Figure 3). According to Wallin 

et al. (2000) the 12 streams altogether contribute about 84 % of the water. The rest of 

the water comes from the so-called närområdet (neighborhood), i.e. small streams 

within the Mälaren basin. Table 1 shows the contribution of each stream and its 

catchment area. 
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Figure 3. Overview of the Mälaren catchment area with boundaries of the largest stream 
basins. From Wallin et al. (2000). 

Table 1. Water contribution of the main streams flowing into the Lake Mälaren with 
their catchment area. Adapted from Wallin et al. (2000). 

Stream Outflow basin Area (km2) Water contribution to Mälaren (%) 

Arbogaån A 3802 25.1 
Kolbäcksån A 3093 16.9 
Hedströmmen A 1058 7.0 
Köpingsån A 284 1.1 
Eskilstunaån B 4187 14.0 
Svartån B 754 3.5 
Sagån B 865 4.1 
Råckstaån C 239 0.6 
Fyrisån D 1982 7.6 
Örsundaån D 727 2.9 
Oxundaån D 271 0.9 
Märstaån D 71 0.3 
Närområdet A,B,C,D,E,F - 16.0 
 

One of the most interesting subcatchment to study regarding organic carbon is the 

Fyrisån basin. According to Sonesten et al. (2010), the Fyrisån is one of the largest 

contributors of TOC in the whole catchment. 
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The Fyrisån basin is located in the northwest part of the Mälaren catchment (Figure 3 

and Figure 4) and has an area of 1982 km2. Land use is dominated by forest (mainly 

coniferous trees) with about 61 %. It has one of the largest agricultural areas in the 

catchment with 31 % of the total area. The rest, 6 % consists of wetlands and lakes and 

about 2 % urban areas. The elevation of this lowland catchment ranges from 15 m to 

115 m (Exbrayat et al., 2010) with a predominance of clay soils and forest associated 

with till and croplands (Lindgren et al., 2007). Its main and last contributing 

subcatchment is Sävjaån, with an own area of 699 km2 (Exbrayat et al., 2010), 

approximately one third of the Fyrisån total catchment area. 

 

Figure 4. Fyrisån catchment with Sävjaån subcatchment highlighted green. In the map: 
sewage treatment plants (brown squares), precipitation station (black circle), 
temperature station (green square), discharge station (blue triangle) and outlet of the 
catchment at Flottsund (blue cross). Modified from Exbrayat et al. (2010). 

Fyrisån, besides to be one of the most interesting subcatchment to study, has one of the 

largest amounts of data associated. This is why this subcatchment was selected for the 

INCA-C modeling in this project. 
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4. MATERIAL AND METHODS 

The project was structure in a procedure divided in three main phases, which are 

summarized next: 

1. Data handling and mass transport calculations: to calculate fluxes of color 

(measured as light absorption of 0.45 µm filtered and unfiltered water samples at 

420 nm in a 5 cm cuvette), TOC, KMnO4, Ca, Mg, Na, K, NO2 + NO3, NH4, 

SO4, Cl, Fe and Al from the 12 major stream catchments (Figure 3) draining into 

Lake Mälaren and from the outlet. 

2. Use of HBV model: to estimate soil moisture and hydrologic parameters. 

3. Use of INCA model: to simulate temporal patterns of DOC in Fyrisån 

subcatchment using the results from the previous steps and comparison with 

observed data. 

4.1 Data handling and mass transport calculations 

The flux estimates were generated using existing data on flow and water chemistry. To 

calculate a monthly and annual mass export of the different substances, daily flow and 

daily concentration data are required. Daily flow data are easily available, whereas 

chemistry data are less frequently recorded and have to be interpolated. Interpolation 

was done using the Visual Basic program Flownorm 2.1 (Grimvall, 2004). 

4.1.1 Data sources 

The most suitable data for working in this project were those belonging to the mouth of 

the 12 major rivers and the outlet in Stockholm. In total, data from 14 stations were 

used in this project, 12 corresponding to the 12 major streams and 2 corresponding to 

the outlet of the lake: Arbogaån Kungsör, Kolbäcksån Strömsholm, Eskilstunaån 

Torshälla, Fyrisån Flottsund, Hedströmmen Grönö, Sagån Målhammar, Svartån 

Västerås, Örsundaån Örsundsbro, Köping II, Oxundaån Rosendal, Råckstaån Utl., 

Märstaån Utl., Norrström Stockholm and Stockholm Centralbron. The required 

information for calculating mass transports was flow data and water chemistry data. 

Table 2 and Table 3 show a summary of the available data and sources for the different 

places. 
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Flow data 

There were available flow data from different sources.  

- The Swedish Meteorological and Hydrological Institute (Sveriges 

Meteorologiska och Hydrologiska Institut, SMHI) supplies modelled daily flow 

data from small single subbasins all around Sweden. SMHI has developed the 

Swedish version of the HYdrological Predictions for the Environment model (S-

HYPE) (Lindström et al., 2010). The model provides daily simulations of 

discharge for more than 17000 subbasins (SMHI, 2010) for the period 1995-

2010. Data can be downloaded at the website of the SMHI: 

http://homer.smhi.se/. 

- Besides, another group of flow data at the mouth of the main streams was 

available. The data in this case came from different sources depending on the 

stream (Table 2). Some had modelled flow corresponding to either PULSE 

model, HBM model or a third unknown model. Four of the streams 

(Hedströmmen, Svartån, Örsundaån and Köpingsån) had measured flow. 

Water chemistry data 

Water chemistry data were provided by the Department of Aquatic Sciences and 

Assessment (Institutionen för Vatten och Miljö) of the Swedish University of 

Agricultural Sciences (Sveriges Lantbruks Universitet, SLU). The measurements of the 

different chemical parameters are monthly and the period of available data depends on 

the station and the substance (Table 2 and Table 3). The substances that had been 

measured and were used in the calculations of the monthly and annual export by 

Flownorm 2.1 are: color (measured as light absorption of water at 420 nm in a 5 cm 

cuvette) in 0.45 µm filtered (AbsF) and unfiltered samples (AbsOF), TOC, 

permanganate (KMnO4), calcium (Ca), magnesium (Mg), sodium (Na), potassium (K), 

total nitrogen (Tot-N) nitrite and nitrate (NO2 + NO3), ammonium (NH4), sulfate (SO4), 

chlorine (Cl), iron (Fe) and aluminium (Al). Lists of periods for which data were 

available are shown in Table 3. 
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As Table 2 shows, spatial coordinates for chemistry data and the second group of flow 

data are the same, i.e. the place of measurement was the same. In order to choose the 

most suitable basin with S-HYPE modelled flow data it was necessary to use the 

Geographic Information System (GIS) ArcGis 9.3. This task was carried out by 

overlapping one layer with the spatial location of the known stations with another layer 

with the boundaries of the basins used by SMHI plus one additional layer with the map 

of the area. The most suitable basins were placed upstream the known stations. The 

corresponding flow data were downloaded from the SMHI website. 

Since different flow data were available, it was necessary to choose the most 

appropriate for using in the mass transport calculations. Data were compared for the 

different places in those years with overlapping information. 11 of the streams had two 

different sets of flow data. Finally, the decision was to use measured data when 

available (Hedströmmen, Köpingsån, Svartån and Örsundaån) and S-HYPE modelled 

data in the other cases (Arbogaån, Kolbäcksån, Eskilstunaån, Sagån, Råckstaån, 

Fyrisån, Märstaån and the outlet Mälaren). Thus, all the calculations were carried out 

with a homogeneous group of information when no measured data were available. 

4.1.2 Mass transport calculations 

Computations of monthly and annual loads from concentration of different substances 

and flow data for each of the 14 places listed in Table 2 and Table 3 were carried out by 

using Flownorm 2.1. Flownorm 2.1 consists of five Visual Basic macros, using two 

Excel worksheets containing concentration (mg/l) and flow (m3/s) data for an arbitrary 

number of sampling sites as inputs. When computing color loads, the input units were 

the measured absorption of 0.45 µm filtered and unfiltered water at 420 nm in a 5 cm 

cuvette. These units of absorbance per 5 cm were assumed as analogous to the mass 

concentrations in mg/l used with the other substances. This assumption is justified since 

the objective was to compare the relative values between the different catchments rather 

than obtain a specific absolute value. The Flownorm program calculates monthly and 

annual riverine loads by first expanding the time series of observed concentration and 

flow data to complete series of daily data and then summing daily values of the product 

of concentration and water discharge. The expanded values are computed by a linear 

interpolation between observed values. The units of the outputs are tons per unit of time 

(month or year) for the monitored substances and m3∙109 per unit of time (month or 
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year) for the discharge. More intuitive units such as g⋅m-2
⋅year-1 can be easily obtained 

by dividing the output loads by the area of the specific catchment in km2. Color outputs, 

as assumed to be analogous as the others, were also divided by the area obtaining units 

of absorbance⋅m-2
⋅year-1. Extended information about Flownorm 2.1 can be found in 

Grimvall (2004). 

4.2 HBV model 

4.2.1 Description of HBV model 

The HBV model (Hydrologiska Byråns Vattenbalansavdelning) was developed at 

SMHI by Sten Bergström (Bergström, 1976). It is a conceptual model for runoff 

simulations, which has been especially used in Swedish catchments, although it has 

been also applied in modified versions in many other countries. Some applications of 

the model have been water balance studies (Graham & Bergström, 2001), forecasting of 

snowmelt runoff (Şorman et al., 2009), analysis of temporal variability within 

catchments (Arheimer & Liden, 2000), study of effects of climate change (Beldring et 

al., 2008) and study of effects of land use change (Seibert & McDonnell, 2010). 

Besides, HBV model has been used as a preliminary step in INCA-C model calibrations 

(Futter et al., 2007; Futter & de Witt, 2008; Futter et al., 2008; Futter et al. 2009; Oni et 

al. 2010). Two important parameters that are required as inputs in the latter are obtained 

as outputs from the former. These are the soil moisture deficit (SMD) and the 

hydrologically effective rainfall (HER). These two parameters are described in the 

INCA-C model section. 

HBV model simulates daily discharge using daily rainfall, temperature and potential 

evaporation as input. The model consists of four routines or modules and fourteen 

parameters (Figure 5): 

1. Snow routine. Precipitation is simulated as either snow or rain depending on 

whether the temperature is above or below a threshold temperature TT (ºC). All 

precipitation that is simulated as snow is multiplied by a correction factor, SFCF (-). 

Melt of snow is calculated with a degree-day method using a degree day factor, 

CFMAX (mm⋅ºC-1
⋅day-1). CFMAX varies normally between 1 and 4 mm⋅ºC-1

⋅day-1 

with lower values for forested areas. The snowpack retains meltwater and rainfall 

until it exceeds a certain fraction of the water equivalent of the snowpack, CWH (-). 
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When temperature decreases below TT, liquid water within the snowpack refreezes 

again using a refreezing coefficient, CFR (-). 

 

Figure 5. HBV model structure. From Seibert (2000). 

2. Soil moisture routine. Rainfall and snowmelt are divided into water filling the soil 

box and groundwater recharge depending on the relation between water content of 

the soil box and maximum soil water content, FC (mm). BETA (-) determines the 

relative contribution to runoff from rain or snowmelt. Actual evaporation is equal to 

potential evaporation when actual water content divided by maximum water content 

is above LP (-). Below LP, a linear reduction is used. 

3. Response function. SUZ and SLZ define the water storage in upper and lower 

boxes of the soil respectively. PERC (mm/day) is the maximum percolation from 

the former to the latter. Runoff from the lower box is calculated as a single outflow, 

while in the upper box there are two or one outflows depending on whether SUZ is 

above a threshold value, UZL (mm), or not. To calculate the outflow, three 

conductivity parameters, K0, K1, and K2 (day-1), are used. 
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4. Routing routine. The generated runoff is finally transformed by a triangular 

weighting function defined by the parameter MAXBAS (-) to give the simulated 

runoff. 

4.2.2 Data sources for HBV model 

In order to run the HBV model, two files are needed. The first is called a PTQ-file 

(named as ptq.dat) and contains time series of daily precipitation (mm), temperature 

(ºC) and flow (mm). The second evaporation-file (named as evap.dat) contains daily 

values of potential evaporation for the same period of time. 

Daily records of rainfall and temperature were available from SMHI at two stations 

located in the city of Uppsala (Figure 4), where the Fyrisån has its outlet. The available 

time period consisted of 29 years (1980 to 2008). Unfortunately, no observed flow data 

for Fyrisån were available. However, measured flow data for the 14 years series 1996-

2009 were available for its last and main tributary, the Sävjaån. Sävjaån subcatchment 

covers more than one third of the Fyrisån catchment (699 km2 out of 1982 km2). 

Parameters SMD and HER obtained by modeling Sävjaån flow can be considered as 

good estimates for the whole catchment. 

Potential evaporation was calculated using the Thornthwaite equation (equation 1) 

(Shaw, 1994). The formula is based mainly on temperature with an adjustment being 

made for the number of daylight hours and gives a monthly estimation of the potential 

evaporation in millimeters per unit of time: 

PE� = 16 ∙ N� ∙ 	10 ∙ T�I 

�
 

Equation 1 

where PEm is monthly potential evaporation (mm), m is the months (1,2…12), Nm is the 

monthly adjustment factor related to hours of daylight, Tm is the monthly mean 

temperature (ºC), I is the heat index for the year and a is a parameter function of I. 

Monthly mean temperature was calculated for the period 1989-2008 with data from the 

station in Uppsala. Yearly potential evaporation was obtained by summing the monthly 

results, given a value of 412 mm. This value had to be adjusted since estimation of 

actual evaporation gave a larger maximum value, 500 mm for the year 1997. The 
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estimations were made by subtracting annual discharge from annual precipitation. The 

adjustment consisted of adding 10 mm extra to each month to give a final value of 

potential evaporation of 532 mm. 

4.2.3 Calibration of HBV model 

The model was calibrated for the 12 years period 1996-2008, the longest possible with 

the available data. The HBV model provides the option of doing Monte Carlo runs. The 

calibration consisted of several Monte Carlo iterations with 100 000 runs each. The 

different parameters were examined after the simulations by looking at the model 

efficiency of each run. Only runs with certain minimal efficiency were examined. 

Therefore, model runs with better fits guide decision making about the upper and lower 

limits of each parameter for the next Monte Carlo iteration. Every time, the uncertainty 

of the sensitive parameters is reduced so the range of the parameters was smaller and 

the new iteration gave better runs. The process was repeated until no improvement in 

the model efficiency was achieved. 

4.3 INCA-C model 

4.3.1 Description of INCA-C model 

The dynamic, semi-distributed, process-based INCA-C model simulates DOC 

concentrations, fluxes and water flow in a daily time-step, so the biogeochemical 

dynamics of organic carbon within a single catchment can be investigated. Recently, the 

model has been also used to project the effects of climate change and acid deposition on 

DOC concentrations in surface waters (Futter et al., 2009) and investigate the effects of 

different land cover uses (Oni et al., 2010). 

INCA-C interface is divided in four main groups of parameters which describe the 

processes represented in Figure 6 and Figure 7: 

1. Subcatchment parameters. To specify the areas of the different land cover types 

(up to six). It includes information about runoff and water flow which is used in a 

hydrological submodel (Figure 6). 

2. Reach parameters. To simulate the transformations in the aquatic phase (Figure 

7). It also includes the catchment boundaries and parameters used in the 

hydrological submodel to simulate water flow (Figure 6). 
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3. In-stream parameters. To describe the initial conditions in the stream. 

4. Land phase parameters. To simulate material fluxes through the soil column and 

transformations between carbon stocks (Figure 7). 

 

Figure 6. Terrestrial hydrological submodel in INCA-C (from Futter et al., 2007). 

The model needs both daily observed time series of air temperature and precipitation, 

and daily estimates of SMD and HER. Air temperature and a model from Rankinen et 

al. (2004) are used in INCA-C to simulate both soil and stream water temperatures. The 

soil moisture deficit (SMD) is an estimate of the difference between the maximum soil 

water content and the actual amount of water in the soil. The hydrologically effective 

rainfall (HER) represents the net precipitation, either as rainfall or snowmelt, that can 

infiltrate after the evapotranspiration effect (Oni et al., 2010). The two estimates can be 

calculated by an external runoff model, in this case, the HBV model. Besides, time 

series of observed flow and DOC concentration in the surface water are necessary in the 

calibration process. 



28 
 

 

Figure 7. Pools of carbon, fluxes and transformations in terrestrial and aquatic systems 
in INCA-C (modified from Futter et al., 2007). 

INCA-C divides the terrestrial environment into two boxes for each land use 

considered: the upper organic layer and the lower mineral layer. The modeled 

catchment can be divided as up to 6 different land cover types. The functioning of 

INCA-C is divided into two interconnected submodels. On one hand a hydrological 

submodel simulating the water flows in the soil and to the stream (Figure 6) and on the 

other hand a carbon model which simulates fluxes and transformations between the 

different carbon pools in both the terrestrial and the aquatic compartments (Figure 7). A 

brief description of both submodels is presented next. 

Hydrological submodel (Figure 6). 

Three water pools are represented in the model: the soil surface water and the water in 

the upper and lower soil boxes. Precipitation reaches the soil surface and may be 

accumulated (mostly when is in the snow form) or contributes to overland flow. HER is 

the only form in which water enters in the soil. Once in the upper soil layer, water may 

percolate to the lower soil box, return to the surface as saturation excess overland flow 

or diffuse to the stream as diffuse runoff. All water entering the lower soil horizon will 

be eventually lost to the stream as diffuse runoff. Water in both soil boxes is divided 

into drainage water and retention water. The retention volume is fixed and unchanging 
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and corresponds to the volume of water in the soil at the permanent wilting point (Futter 

et al., 2007), while the drainage volume includes the water that can eventually reach the 

stream. 

Submodel of carbon transformations and fluxes (Figure 7). 

Four different carbon pools are considered in INCA-C: (1) potential dissolved carbon 

(PDC) which consists of leaf litter, root exudates and soil microflora in the terrestrial 

system and leaf litter from the terrestrial compartment, particulate organic carbon in the 

water column and aquatic biota in the aquatic environment (Whitehead et al., 2006); (2) 

soil organic carbon (SOC) which includes all organic carbon bound to the mineral and 

clay constituents of the soil and the microbial community attached to the soil substrate 

(Whitehead et al., 2006); (3) DOC and (4) dissolved inorganic carbon (DIC). In the 

upper soil box, PDC is the only source for the other three carbon pools SOC, DOC and 

DIC, so neither DOC nor DIC are directly added in precipitation. DOC and DIC are 

transported advectively by water movement from the upper to the lower soil box,  DOC 

is the only source of SOC in the lower soil layer. In both layers sorption and desorption 

processes control the transformation between SOC and DOC and mineralization 

controls the transformation of SOC and DOC to DIC (Futter et al., 2009). Both DOC 

and DIC are transported from the soil to the stream through diffuse flow (Futter et al., 

2007) and DIC may be lost to the atmosphere through degassing (Futter et al., 2009). In 

the stream, inflows from upstream and the soil and aquatic PDC contribute to DOC and 

DIC. DOC is lost by photolytic and temperature-dependent biological mineralization to 

DIC and in the outflow downstream. DIC is lost to the atmosphere and through 

biological uptake (both temperature-dependent processes) and in the outflow 

downstream. 

Extended information about INCA-C with model equations is provided in Futter et al. 

(2007). 

4.3.2 Data sources for INCA-C model 

INCA-C needs two files when simulating DOC within a single catchment. The first file 

(.dat file) includes daily time series of SMD, HER, temperature and precipitation. This 

file is enough to run the model. Another file (.obs file), which contains both measured 

discharge and measured DOC concentration, is needed in the calibration process. 
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Temperature and precipitation data were the same that previously were used in the HBV 

model calibration from the two stations in Uppsala (Figure 4). Daily estimations of 

SMD and HER for the period 1996-2008 were obtained from the HBV calibration of 

Sävjaån flow. The Sävjaån subcatchment covers approximately one third of the Fyrisån 

catchment, so the SMD and HER calculated for Sävjaån are considered as good 

estimates for the whole Fyrisån catchment. 

No measured flow data for Fyrisån were available in this project, although this 

information is essentially needed in the calibration. The decision was to upscale the 

input flow by multiplying the observed Sävjaån flow by its corresponding areal fraction 

(1982 km2 / 699 km2 = 2.84) to get an approximation of the actual discharge in Fyrisån. 

When comparing S-HYPE simulated Fyrisån flow and measured Sävjaån flow (Figure 

8) one observes that both inter- and intra-annual flow patterns are very similar in both 

rivers confirming the approximation made here. No measured DOC were available so 

TOC concentrations in Fyrisån outlet were used (Table 2 and Table 3). Assuming that 

particulate organic carbon is not quantitatively important and that both TOC and DOC 

follow the same patterns during and between the years, we consider that TOC 

concentrations are a good substitute for the DOC calibration. 

 

Figure 8. Comparison between observed flow in Sävjaån outlet and simulated flow in 
Fyrisån outlet for the period 1996-2009. 
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4.3.3 Calibration of INCA-C model 

The calibration process for the period 1996-2008 was carried out in three different 

phases: (1) selection of fixed values for some parameters, (2) manual calibration of first 

hydrological submodel and second carbon module and (3) a Monte Carlo simulation. 

Selection of fixed values 

The Fyrisån catchment was divided in three different land uses: wetlands (6 %), forests 

(63 %) and agricultural land (31 %) (subcatchment parameters). The boundaries of the 

catchment (reach parameters) and the initial flow and DOC in the stream (in-stream 

parameters) were fixed. This information is easily extracted from the observed data but 

the initial values in the soil (land phase parameters) had to be estimated. Typically, the 

upper soil horizons (peatlands and forest floors) have higher SOC and DOC 

concentrations. The SOC and DOC in the upper soil box in wetlands were fixed to 8⋅105 

kg/ha and 40 mg/l respectively. We considered that wetlands have double the amount of 

carbon than forests and forests double the amount of carbon than agriculture and that the 

upper soil boxes twice as much as the lower horizons in all cover types. Therefore, for 

instance, the SOC and DOC in the lower box in the agricultural land were 105 kg/ha and 

5 mg/l respectively. These values were not modified during the calibration. 

Manual calibration 

This phase is crucial to achieve a good approximation to the observed values before 

proceeding with Monte Carlo simulations. The strategy was first to establish realistic 

values for the sensitive parameters such as base flow index (BFI), soil volumes or 

residence times, until both simulated flow and simulated DOC were in the range of the 

observed values. Then, the parameters affecting both hydrological and carbon 

submodels were adjusted until most of the flow and carbon dynamics matched the 

observed data. Finally, the parameters describing carbon transformation in the soil were 

adjusted. The objectives of this phase were: (1) to achieve a similar efficiency in the 

flow model that that obtained previously in HBV model and (2) to get a Nash-Sutcliffe 

(NS) R2 statistic (Nash & Sutcliffe, 1970) of at least 0.2 in the carbon model. 
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Monte Carlo simulation 

A Monte Carlo iteration varying the most uncertain parameters with 10000 simulations 

was carried out in order to get a better calibration. The parameter set with the best NS 

R2 statistic was the one finally selected.  

5. RESULTS 

5.1 Data handling and mass transport calculations results 

5.1.1 Flow data comparison 

Comparisons for those streams with measured flow data and model data show that S-

HYPE underestimated the discharge for the period of overlapping (1995-2008). On 

average the underestimation is 12 % for Hedströmmen; 2.5 % for Svartån; 22 % for 

Örsundaån and 3.4 % for Köpingsån. The underestimation can be considered not very 

important for Svartån and Köpingsån. The pattern is that S-HYPE overestimates the 

flow during winter time (especially February and March) and underestimates flows 

during summer (more than 30 % in all cases in July). 

Comparisons for those streams with both series of flow data from models show very 

heterogeneous results, with no general pattern. The worst case is found in Eskilstunaån, 

where average flow is 37 % larger when using S-HYPE (120 % on average for June). 

Due to the uncertainty of the source of some information from the second group of flow 

data and to the fact that S-HYPE is a better and newer model than PULSE and HBM, 

the second group of flow data were ruled out. 

5.1.2 Relative contribution of water from the main streams. 

The contribution of water that is discharged into the lake from every catchment in the 

period 1995-2008 can be calculated easily after computations of loads and flows by 

Flownorm 2.1 (Table 4). The results are very similar to those presented in Wallin et al. 

(2000) from the previous decades (Table 1). This may imply two things: (1) the 

contribution of each catchment remains constant with time and (2) the S-HYPE 

modeled flow used for some streams is a good approach to simulate the flow dynamics 

over a relatively long period of time. The exception is Eskilstunaån, in which S-HYPE 

could be overestimating the flow since the relative contribution increases from 14 % to 

18 %. 
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Table 4. Computed water contribution of the main streams flowing into the Lake 
Mälaren with their catchment area for the period 1995-2008. 

Stream Outflow basin Area (km2) Water contribution to Mälaren (%) 

Arbogaån A 3802 24.17 

Kolbäcksån A 3093 17.82 
Hedströmmen A 1058 6.67 

Köpingsån A 284 1.31 

Eskilstunaån B 4187 18.48 

Svartån B 754 3.44 

Sagån B 865 3.18 

Råckstaån C 239 0.93 

Fyrisån D 1982 7.66 
Örsundaån D 727 3.07 

Oxundaån D 271 0.84 

Märstaån D 71 0.27 
Närområdet A,B,C,D,E,F - 12.17 
 

5.1.3 Outlet stations comparison 

The Mälaren outlet in Stockholm has two stations (Norrström Stockholm and 

Stockholm Centralbron) with overlapping data (Table 2 and Table 3) in the seven years 

period 1996-2002. The two stations are separated by 350 meters and located in two 

bridges at north of Gamla Stockholm with Stockholm Centralbron located upstream. 

Comparisons of annual areal exports for the computed substances show no significant 

differences between the two stations. However, the color load as AbsF and the TOC 

load are 7.1 % and 0.88 % respectively higher on average in Stockholm Centralbron. A 

special observation is that the calculated ammonium NH4 loads are 85 % lower in 

Stockholm Centralbron (200 % lower in 1998). Hereafter all the references to the 

Mälaren outlet correspond to calculations using Stockholm Centralbron data, except 

those for 1995 where Norrström Stockholm data are used. The criterion was to use 

information from the newest station, Stockholm Centralbron. In 1995 only data from 

Norrström Stockholm were available. 

5.1.4 TOC and color fluxes within the catchment 

A brief summary of the main results obtained after computing loads of the different 

substances per unit of area in each station within the Mälaren catchment is presented 
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next. Tables with all the results are presented in the appendix. Besides, TOC and color 

fluxes are compared. 

Table 5. Subcatchment sizes and land uses within the Mälaren catchment. Other land 
types include cutting forest and urban areas. 

Catchment 
Area 
(km2) 

Wetland 
(%) 

Forest 
(%) 

Agriculture 
(%) 

Open water 
(%) 

Others 
(%) 

Arbogaån 3802 7.07 60.25 14.18 7.11 11.39 

Kolbäcksån 3093 7.69 66.32 6.48 8.96 10.56 

Hedströmmen 1058 9.69 63.67 9.15 8.27 9.23 

Köpingsån 284 7.85 63.05 16.07 5.02 8.00 

Eskilstunaån 4187 4.94 44.22 28.70 14.65 7.49 

Svartån 754 7.13 54.66 26.20 3.29 8.73 

Sagån 865 2.86 45.78 40.88 1.23 9.25 

Råckstaån 239 5.45 60.71 19.70 5.30 8.84 

Fyrisån 1982 4.13 51.00 30.91 1.56 12.41 

Örsundaån 727 2.92 47.37 38.90 1.26 9.55 

Oxundaån 271 1.56 33.79 37.73 6.22 20.70 

Märstaån 71 0.95 31.01 36.11 0.54 31.39 
 

- Arbogaån Kungsör. Only data for 1995 were available. Having as reference this year, 

Arbogaån shows one of the highest colored waters indicating that a major absolute 

contribution of carbon comes from this catchment since it is the second largest. Base 

cations and nitrogen areal exports are slightly below the average of the whole 

catchment. 

- Kolbäcksån Strömsholm. The characteristics of Kolbäcksån catchment are similar to 

Arbogaån regarding land use, leading to similar areal loads. However, data from 1995 

indicate less colored waters in Kolbäcksån. 

- Hedströmmen Grönö. This catchment has similar characteristics to those Arbogaån 

presents, but shows the lowest loads on base cations and nitrogen in the year 1995. The 

differences may be due to differences in geology. 

- Köping II. Köpingsån is included in the same group of catchments as the previous 

three, which all present similar characteristics and are located next to each other. The 

main difference here is a higher areal nitrogen flux due to the presence of more 

agricultural land. 
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- Eskilstunaån Torshälla. It is the largest subcatchment with only data for 1995. Water 

color in that year was the lowest in the whole catchment together with Oxundaån 

suggesting a small contribution of carbon per unit of area. On the other hand, the sulfate 

and base cations inputs are high. 

- Svartån Västerås. Svartån has only data for 1995 but for color in the filtered samples 

and permanganate the values are the highest suggesting that this subcatchment could be 

the largest contributor of carbon per unit of area. The other parameters are about the 

average of the whole catchment. 

- Sagån Målhammar. One of the main nitrogen inputs come from Sagån catchment. 

- Råckstaån Utl. It is a small catchment with areal loads of substances around the 

average. 

- Fyrisån Flottsund. Fyrisån is the fourth largest subcatchment and the most important 

in the east part. Having Kolbäcksån as the representative of the larger forested 

catchments in the west, Fyrisån contributes with more carbon per unit of area in most of 

the years in the period 1997-2009 (Figure 9). The nitrogen loads are the highest. Plus, 

sulfate exports and base cations are high. 

- Örsundaån Örsundsbro. Örsundaån is smaller but similar to Fyrisån with lower loads 

per unit of area in general. However, water color is usually higher. 

- Oxundaån Rosendal. It is the second smallest subcatchment and the lowest contributor 

of carbon per unit of area. It contributes with large sulfate and base cations inputs. 

Chlorine is also high. 

- Märstaån Utl. It is the smallest subcatchment with the largest human influence; two 

thirds of the catchment corresponds to either agricultural or urban areas (Table 5). 

Nitrogen and sulfate areal exports are high. 

- Mälaren outlet. Carbon outputs are low since organic substances are gradually broken 

down and diluted as they flow to the sea. 

Annual TOC areal exports are compared for six of the catchments flowing into Mälaren 

and the outlet in Figure 9. The highest inputs of carbon per unit of area come from 

Kolbäcksån, Fyrisån and Örsundaån, while the lowest loads are found in Oxundaån and 
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the outlet. The interannual patterns are in general very similar in all places. The 

differences one can see, for instance in the year 2000, come from differences in total 

modeled runoff. Fyrisån and Oxundaån have less water entering the lake in 2000 

compared with that in 1999, while Kolbäcksån, Råckstaån and the outlet shows an 

increasing in water loads (Figure 11). This suggests a positive relationship between 

amount of water and mass of carbon exported per unit of area. This relation is studied 

later in the next section (Figure 12 and Figure 13). 

 

Figure 9. Loads of TOC in g⋅m-2
⋅year-1 in six subcatchments of Lake Mälaren and the 

outlet. 

Color of filtered samples shows similar patterns (Figure 10). Örsundaån shows the 

highest contribution of color per unit of area, while the lowest are found in Oxundaån 

and the outlet. These similar results in the dynamics and in the relative importance of 

both TOC and color loads from the streams indicate that carbon content and water color 
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are intimately related, although with some slight differences. The relative importance of 

areal exports from Sagån and Örsundaån are higher for color than for TOC fluxes. For 

instance, color fluxes are generally higher in Sagån than in Kolbäcksån, while for TOC 

is the opposite. This indicates that in some streams some different mechanisms or 

processes might influence the water color, while for some others such as Kolbäcksån or 

Fyrisån the water color in mainly controlled by the TOC concentration, as Figure 14 

shows in the next section. 

 

Figure 10. Annual color loads per unit of area from six subcatchments of Lake Mälaren 
and the outlet. Color is measured in filtered samples. 
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Figure 12. Correlation between mass of TOC per unit of area and volume of water 
transported from Fyrisån catchment 

5.1.5 Exported TOC correlations at Fyrisån Flottsund and Mälaren outlet 

TOC exported per unit of area is well correlated to runoff in both Fyrisån subcatchment 

(r2 = 0.820) and the Mälaren catchment (r2 = 0.868) (Figure 12 and Figure 13). This 

indicates that the TOC concentration is mainly controlled by flow. The interannual 

value remains stable since the carbon exported is proportional to the discharge per year. 

Therefore, only big changes in flow may affect the TOC concentration. However, this 

tendency seems to change in the two catchments in the last two years of the time series 

(2008 and 2009), where the ratio exported carbon/discharge increases and so does the 

concentration. The period 1996-2000 of increasing discharge is follow by a decreasing 

in 2000-2003 in the outlet. On the other hand, the carbon follows the same pattern but 

the decrease is more gradual, suggesting a risk of prolonged increased TOC 

concentrations after periods with peaks in runoff. 

 

 

Figure 13. Correlation between mass of TOC per unit of area and volume of water 
transported from Mälaren outlet 
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Figure 15. Correlation between mass of TOC and color of water transported per unit of 
area from Mälaren outlet. 

The correlation between color and TOC export is marked and stronger in Fyrisån (r2 = 

0.919) than in the outlet (r2 = 0.694) (Figure 14 and Figure 15). The good correlation in 

Fyrisån shows the strong relationship between organic carbon and the color of water in 

the catchment. The lowest peak corresponds to a very dry cold year while the highest 

peak corresponds to a very wet and warm year supporting the idea that warmer and 

wetter soils produce more organic carbon. The year 1999 was significantly drier than 

1998 but discharge, color and carbon increased indicating that for some years the 

conditions of the previous year are important. The opposite happens in 2000, where 

despite of being wetter than 1999, the discharge, color and carbon all decrease. The lake 

shows several signs of poor color-TOC correlation at the outlet. For example, the 

relative importance of color decreases from 2003 onwards. 

 

 

Figure 14. Correlation between mass of TOC and color of water transported per unit of 
area from Fyrisån catchment. 
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Figure 16. Climate data at Uppsala (1996-2008). In the figure: total precipitation (bars), 
mean temperature (continuous line), mean temperature during growing season May-
October (upper dotted line) and mean temperature during no growing season January-
April and November-December (lower sparse dotted line). 

Sulfate and iron are two interesting compounds to look at regarding organic carbon. 

Sulfate competes with carbon for places in the soil (Kaiser and Zech, 1996), and the 

simulated correlation TOC-SO4 suggests a bad relationship between them (r2 = -0.09, 

Figure 17). Iron is theoretically co-transported with DOC (Maloney et al., 2005) and the 

similar dynamics and relative good correlation (r2 = 0.731) showed in Figure 18 support 

this idea. 
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Figure 17. Correlation between mass of TOC and mass of sulfate transported per unit of 
area from Fyrisån catchment. 
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5.2 HBV model results 

During the calibration process, some unexpected relations between precipitation and 

observed flow were found. Specifically, two extreme precipitation events in two 

summer days in 1997 and 2001, 108 mm and 78.5 mm respectively, did not produce any 

response in the observed flow. Two arguments could explain this: (1) errors in the 

precipitation measurements or in the data handling for those days and/or (2) very local 

storms occurred in the surroundings of the weather station but not in the place where 

flow is measured. In the near station of Västerås (80 km from Uppsala) the measured 

precipitation in the same two days was 0 mm and 15 mm respectively.  The decision 

was to delete the event with 108 mm and reduce by half the event of 78.5 mm. These 

changes helped to improve the model fit. The changes were kept in the subsequent 

INCA-C modeling. 

One advantage of working with Monte Carlo simulations is the possibility of decreasing 

the uncertainty of the most sensitive parameters. No specific analysis on parameter 

uncertainty or sensitivity was carried out. However, simple plots of parameter values 

against model efficiency gave an idea of how the parameters are related to each other 

and helped to decide the ranges in following iterations. Table 6 shows the final 

parameter set. SFC, CFR, CWH and LP were given standard values in the first iteration 

and were unchanged during the calibration. TT has a low uncertainty, while the 

Figure 18. Correlation between mass of TOC and mass of iron transported per unit of 
area from Fyrisån catchment. 
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uncertainty of CFMAX is higher. The final value of CFMAX is 1.0 mm⋅ºC-1
⋅day-1, a 

low value which usually corresponds to forested areas. Sävjaån catchment can be 

considered as mainly forested with 65 % of the total area with this land type. FC shows 

a credible value of 135 mm with low uncertainty and BETA is more uncertain with a 

final value relatively high indicating important contributions of precipitation and 

snowmelt to  runoff. The uncertainty of UZL is the largest, although it is also the less 

sensitive parameter. UZL uncertainty can be related with the low value of K1. PERC is 

uncertain and so is K0, while K1 and K2 has very low uncertainty. MAXBAS is 

somewhat uncertain. The fact that K0 shows a final value significantly high, specially 

comparing with the low K1 and K2, indicates that the largest contribution of flow to the 

stream is from the upper soil, having the lower layers higher retention times. 

Nevertheless, this parameter is very uncertain. 

Table 6. Final parameter set in HBV model calibration of Sävjaån flow. The model 
efficiency with these parameters is 0.766 for the period 1996-2008. 

Parameter Value Units Module 
TT -0.3 ºC Snow routine 
CFMAX 1.03 mm⋅ºC-1

⋅day-1 Snow routine 
SFCF 0.692 dimensionless Snow routine 
CFR 0.02 dimensionless Snow routine 
CWH 0.014 dimensionless Snow routine 
FC 135.13 mm Soil moisture routine 
LP 0.867 dimensionless Soil moisture routine 
BETA 7.087 dimensionless Soil moisture routine 
PERC 0.54 mm/day Response function 
UZL 70.84 mm Response function 
K0 0.857 day-1 Response function 
K1 0.0624 day-1 Response function 
K2 0.0596 day-1 Response function 
MAXBAS 3.51 day Routing routine 
 

The efficiency of the best run with HBV model was 0.766 with an R2 of 0.787, which 

can be considered as high. The HBV model performed well when describing flow 

patterns at Sävjaån for the period 1996-2008 (Figure 19). However, simulated average 

runoff was somewhat lower: 171 mm/year, compared with the observed one, 203 

mm/year. Average precipitation is 559 mm/year given a simulated mean annual 

evapotranspiration of 388 mm, which is higher than the observed 356 mm/year. The 

assumptions used when calculating potential evapotranspiration could have lead to an 
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overestimation of the evaporation in the region, producing the slightly lower simulated 

average runoff. Some of the peaks from both simulated and observed flow do not match 

properly. This might be due to very local precipitation events, although the distance 

between the station where precipitation is measured and the station where flow is 

measured is only 5 km (Figure 4). Even so, the final parameter set used in HBV (Table 

6) simulates properly the temporal patterns of Sävjaån discharge to the Fyrisån, 

reproducing well the general trends. 

 

Figure 19. Observed and HBV simulated flow at Sävjaån for the period 1996-2009. 

5.3 INCA-C model results 

The results from the manual calibration of the model were very encouraging, achieving 

the objectives in both flow model (r2 = 0.757, N-S = 0.745) and DOC model (r2 = 0.245, 

N-S = 0.218). After the Monte Carlo simulation, the best parameter set improved 

significantly the DOC model (r2 = 0.432, N-S = 0.392), with a similar efficiency in the 

flow model (r2 = 0.752, N-S = 0.719). With these results we consider that the simulated 

hydrology is very good and the simulated carbon is good. 

The INCA-C simulation reproduces well the intra- and interannual variation in DOC 

concentration (Figure 20). The model fails to capture some of the high peaks (especially 

“0008” and “0606” in Figure 20), although the timing is correct. The high concentration 

in summer 2000 that the model fails to capture corresponds to a year where the non-
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growing season, i.e. winter and early spring, was especially warm (Figure 16). Also, the 

peak in the summer of 2006 that the model is unable to reproduce corresponds to a year 

when the growing season, i. e. spring and summer, is especially warm. Two conclusions 

can be draw from these results: (1) peaks in DOC are linked to especially hot periods 

and (2) the model is unable to predict high concentrations related to warm conditions. 

Although the model does a better job in reproducing the lower concentrations, in some 

cases there is an overestimation. Despite a good reproduction in the general trends, 

these problems on capturing both high and low concentrations make the model consider 

DOC more stable that it really is, not covering all the range of observed variation. 

 

Figure 20. Observed and INCA-C simulated TOC at Fyrisån for the period 1996-2008. 
The two most deviated values are marked as “0008” and “0606”. 

6. DISCUSSION 

A considerable amount of data was handled during the course of this project. Only part 

of the information could be subject of investigation, but future researches are necessary 

to complete the task given here. 

In the first phase of this project, comparisons of areal export of substances were done in 

an annual scale despite the tool Flownorm 2.1 calculates also the monthly values. For 

some subcatchments of the Mälaren flow data were S-HYPE modelled. Lindström et al. 
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(2010) conclude that S-HYPE model provides good simulations of discharge. However, 

it was shown after comparisons with measured data in four subcatchments that the 

model works well over annual periods but have serious mismatches in the individual 

months. Thus, it was more convenient to work in the annual scale to avoid possible 

significant errors in the monthly calculations despite this information could be less 

relevant from the managing point of view. 

There are differences in the carbon inputs per unit of area flowing into the Lake 

Mälaren from the different subcatchments. For example, the eastern Fyrisån and 

Örsundaån contribute with more carbon and color per unit of area than the large forested 

catchments in the west. According to Löfgren et al. (2003) high concentrations of humic 

substances, which are the main cause of water color, occur mainly in peat and forest 

covered areas with few lakes. Less open water leads to less water retention times so the 

humic substances are rapidly mobilized with lower mineralization. The results suggest 

more rapid responses in the Fyrisån and Örsundaån catchments due to lower retention 

times. The opposite example is the Eskilstunaån catchment which contributes with very 

low carbon per unit of area. Here, there is a significant proportion of open water (15 %) 

which increases the retention time of water in the catchment leading to mineralization 

and dilution of carbon. Besides, the forest proportion in Eskilstunaån is lower than in 

other subcatchments so the carbon sources are reduced. The high color found in Sagån 

could be caused for the same reason since open water comprises 9.0 % of the area in 

Kolbäcksån catchment, while the proportion in Sagån is only 1.2 %. But some other 

mechanisms could explain differences in water color. Higher open water also tends to 

higher photobleaching and loss of color (Reche and Pace, 2002). Fyrisån and Örsundaån 

are very similar catchments with similar carbon contributions but different water color: 

Örsundaån has browner waters. In this case we speculate on hypothetical higher iron 

content in the soil which is usually related to browner waters (Forsberg, 1992) and/or 

more sedimentation of organic material from erosion processes. 

Nitrogen, sulfate, base cations and chlorine were also subject of a small investigation. 

High nitrogen inputs are intimately related with larger agricultural land, see for example 

Fyrisån (31 %) and Sagån (41 %). Small catchments such as Oxundaån and Märstaån 

show high sulfate and base cations loads. The urban area here is significantly important 

leading to higher sulfate deposition from industrial activity. In Sweden sulfur deposition 

shows a pronounced gradient, with decreasing deposition from south to north (Fölster & 
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Wilander, 2002). Eskilstunaån is may be more influenced than other catchment by this 

phenomenon and that is why it presents higher sulfate inputs. The high content of base 

cations is intimately related to acid deposition since the environment needs them to 

buffer the sulfate. High chlorine is more related to sea influence as the catchments close 

to the coast show higher loads of this element. 

Annual TOC exports are well correlated to discharge in both Fyrisån and Mälaren outlet 

suggesting that TOC concentration is controlled by flow. However, after annual peaks 

in runoff the ratio TOC/discharge increases in the following years, meaning that TOC 

concentration increases in those years. Besides, these peaks in runoff are related to wet 

years. The year 2008 was very wet in the Fyrisån catchment which might explain the 

increase in TOC concentration in 2009. If we assume that the climate change will bring 

more precipitation, the expectations are higher carbon concentrations. The TOC 

concentration in the lake is also very high in 2009. What happens in Fyrisån could be 

very important on what happens in the Mälaren. More studies are needed in order to 

relate TOC dynamics in the Fyrisån with TOC dynamics in the lake. 

There is an important concept to be considered when modeling complex environmental 

systems, the so-called equifinality. According to Beven & Freer (2001), the equifinality 

is produced when several or many different parameters sets within a model may be 

behavioral or acceptable in reproducing the observed behavior of that system. The 

causes are the overparameterization and the compensatory effects across the parameter 

space. The Monte Carlo simulations during the HBV model calibration give thousands 

of different parameter sets with similar efficiency. Although the uncertainty can be 

minimized by reducing the parameter ranges, there is still an important degree of 

equifinality in the last iteration where thousands of parameter sets are close to the best 

simulation with the parameter measuring conductivity in the upper layer having values 

varying between 0.1 and 0.9 day-1. This variability is compensated with the variability 

in the two related parameters PERC and UZL. Thus, different combinations of these 

three parameters produce the same result, leading to equifinality. Signs of equifinality 

were also noticed during the manual calibration of INCA-C model. For example, the 

model efficiency was the same when considering a low retention time in the mineral 

layer with low rates of DOC production than high retention times with high 

productions. Since the experience let us know that retention times are usually higher in 

mineral layers than in organic layers, the second possibility is considered better. This 
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point out the importance of a first manual calibration to produce more realistic 

parameter sets. 

INCA-C is used in this project in a significantly bigger catchment that it was used 

before. The experience can be considered as successful, but the combination of different 

land types and the large range of conditions that can be found in an 80 km stream within 

a 1982 km2 catchment might be too big for a single model. Furthermore, some 

processes are different in the headwaters than in the outlet such as the DOC 

mineralization, which is more important upstream (Köhler et al., 2002). Therefore the 

longer the stream the larger the chance to have different conditions and omit 

information with one single model. In this sense, an intentional omission of information 

was done when dividing the catchment in land uses. The 2 % urban area of the Fyrisån 

catchment was not considered in the model. This was done to simplify the inputs and 

make the calibration easier. Besides, among all the previous projects in which INCA-C 

was used, only in one of them (Oni et al., 2010) the urban land type was introduced. The 

results in that project were good. However we preferred to share the small 2 % urban 

area between the other more studied land types: wetlands, forest and agriculture. 

Two approximations were used in the Fyrisån input data to INCA-C: (1) estimates HER 

and SMD from HBV model and subsequent water flow upscale from the tributary 

Sävjaån and (2) TOC concentration measurements considered as DOC. There is no 

possibility to estimate to what extent the error from these considerations could influence 

model simulations. Nevertheless, Sävjaån is big enough to represent the whole 

catchment. Plus, TOC concentration has been described as effectively equivalent to 

DOC concentration in previous studies. Laudon et al. (2004) suggested that POC 

contributed insignificantly to the TOC in a study based in seven boreal catchments in 

northern Sweden. Balogh et al. (2003) found that 82-96 % of the TOC in a Hungarian 

lake was in the form of DOC. 

Further work in parameter sensitivity would improve the understanding of the important 

parameters and thus, the model calibration itself. However, typical sensitive parameters 

in previous INCA-C applications such as base flow index, in-soil DOC transformations, 

residence times and retention volumes were found as sensitive here as well. Special 

concern rises from two parameters describing stream velocity. INCA-C uses Equation 2 

to calculate the water velocity in the stream, with the dimensionless “a” and “b” as 
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model parameters. They both show high sensitivity. Considering a spring peak flow of 

80 m3/s and a stream velocity of 1 m/s in Fyrisån, “a” and “b” should have values 

around 0.05 and 0.7 respectively (the model responded better with “b” values around 

0.7). However, these values produce very good flow simulations but lead to a very poor 

simulation of DOC concentration. The simulated signal is faster than the observed data. 

In order to reproduce a good pattern the “a” value needed to be reduced one order of 

magnitude. The simulated flow is still good but the result is a slower flow than in 

reality. TOC is sampled monthly so it is not possible to catch a lower time-scale 

variation which could be more accurate to represent the velocity in the model. 

� = � ∙ �� 

Equation 2 

Most of the parameters in the INCA-C had to be calibrated manually since no data on 

actual conditions were available. This lack of information leads to a high uncertainty in 

the values. For instance, no inventories of carbon content in the soil were available and 

the initial values used were only estimations that did not change during the calibration. 

There is a risk of missing accuracy by unchanging parameters. However, we believe the 

values fixed are adequate to represent reality, giving higher values to wetlands and 

upper layers than forest and agricultural land and lower layers. Besides, the calibration 

is easier when some parameters are kept unchanged. Even so, better results would have 

been obtained with more data. 

Despite all the aforementioned sources of uncertainty, INCA-C does a good job 

modeling the DOC in the Fyrisån catchment. However it fails to what is one of the main 

objectives of the model: predict high concentrations of DOC. Related to this problem, 

new results were obtained close to the end of this project. Data of precipitation and 

temperature in Uppsala in the year 2009 were lately available. The final parameter sets 

obtained before were used again to rerun both HBV and INCA-C models with the new 

climate data. The observed DOC concentrations suffered a significant increase in the 

year 2009. Again, INCA-C reproduces well the intra-annual pattern but it clearly 

underestimates the DOC concentration during the whole year (Appendix 17). 
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7. CONCLUSIONS AND FURTHER INVESTIGATIONS 

This report is a good first step for more specific project studying the color and DOC 

dynamics in Lake Mälaren. Further studies, especially after the late results obtained for 

2009, are needed in order to both understand the new trends in DOC concentration and 

develop the INCA-C model to predict these trends. Once the new studies based on this 

report are carried out successfully the model could be used to predict carbon content in 

the future. These investigations can be very useful to the Mälaren water treatment plants 

since they will be aware of future changes and thus apply the proper solutions before the 

problems come. 
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