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Abstract 
Engineered nanoparticles (ENPs) are used in so many different products. ENPs are released 

into different environmental compartments. Silver nanoparticle (AgNP) is one of the most 

used ENPs. AgNPs may cause damage to the environment due to their toxicity and wide 

exposure. In this thesis possible exposure ways of AgNPs to the environment was reported. 

Also sorption-solubility and aggregation of AgNPs and AgNO3 based on the different 

concentration of Ag and pH function in clayey and sandy soil was investigated.  

Results showed that sorption of both silver nanoparticles and silver ions by the soils were 

increased with increasing pH. Silver (nano/ion) sorption ratio in clayey treatment was slightly 

higher than sandy one. It can be due to having higher CEC value and finer texture in clay in 

comparison with sand. Partitioning between nanosilver and free silver ions was investigated 

by help of ultrafiltration. It can be concluded that a significant fraction of the silver 

nanoparticles were oxidized and transformed to free Ag
+
 during the oxic experimental 

conditions.  

 The aggregation of AgNPs and silver ions was investigated based on the different 

concentration of silver in a constant pH. Aggregation of silver nanoparticulate by help of 

SEM and XRD were identified in 2.5 ppm concentration of AgNPs in sandy soil. No 

aggregation was found at low concentration of silver nanoparticles. No silver aggregated spot 

could be recognized at 6.7, 0.65 and 0.05 ppm concentration of silver in silver nitrate polluted 

soil samples. 

Keywords: silver nitrate, silver nanoparticle (AgNP), soil, sorption, solubility, aggregation. 
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Introduction 

Nanomaterials 

Nanotechnology is the study of materials in nanometer scale which is approximately between 

1 to 100 nm [1]. It also involves how to control the formation of two and three dimensional 

building blocks of molecular scale into well-defined nanostructure or nanomaterials (NMs) 

[2]. Nanoparticles (NPs) exist in the environment from both natural and anthropogenic 

sources. Natural NPs in air are known as ultrafine particles and in the soil and water systems 

are also called colloidal particles [3]. The term ‘colloid’ refers to the particle sizes or other 

suspended material in the 1nm-1µm size range. Figure 1, illustrates the most common 

components of natural colloids along with their possible methods for separation and analysis. 

Generally in practical work and laboratory, they can be studied by using cross-flow 

ultrafiltration with nominal pore sizes between 1 nm and 0.2 to 0.45 µm [3]. In general NMs 

can be categorized in different groups such as: 

- Carbon based material such as Carbon nanotube (CNT) and Fullerenes 

- Metal oxides: Zinc oxide (ZnO), Iron Oxide (Fe2O3), Titanium Dioxide (TiO2) NPs, etc 

- Metals: Silver (Ag), Gold (Au) and Iron (Fe) NPs, etc 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Size distributions of various types of environmental colloids and particles and analytical techniques 

used for characterization. FFF=field-flow fractionation, FCS=fluorescence correlation spectroscopy,        

LIBD=laser induced breakdown detection. (Picture is derived from ‘Nanomaterials in the environment: 

behavior, fate, bioavailability and effects’) [3]. 

To study the morphology of NPs is interesting due to their unique shapes. Different shapes of 

material mean different activity potential (surface energy). NMs can be formed in different 

shapes such as: spheres, tubes, rods and prisms. 
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Engineered nanoparticles (ENPs) can also be classified according to their chemical 

compositions and properties. NMs are synthesized by two different ways: 

- Top down strategy 

- Bottom up strategy 

In top down strategy, well-organized assemblies directly originate from the bulk materials via 

generating isolated atoms by using various distribution techniques. The majority of these 

methods are physical but in the other type of methods; bottom up strategy, a molecular 

component is used as a starting material which is linked with chemical reactions to form of 

more complex clusters [4, 17]. 

 

Figure 2. Top down and bottom up strategy. (Picture is taken from the article ‘Manufacture nanoparticles:      

An overview of their chemistry, interactions and potential environmental implications’) [4]. 

Having a high surface to volume ratio is a property of ENPs which makes it important for 

environmental scientists to study the fate and behavior of NPs in the environment [12, 16].  

This property can cause different behavior of NPs in chemical reaction in comparison with 

their bulk materials. Having a high surface area per unit mass gives a specific characteristic to 

the surface of NPs that makes them have a significant potent energy for reaction with other 

particles. 

ENMs are applied in many commercially available consumer products such as cosmetics, 

textiles and paints. ENMs can reach the environment in different ways. Recent studies 

showed release of nano-TiO2 from the outer layer of exterior facades through water leaching 

[9]. Releasing of AgNPs from antibacterial socks to the waste water and sewage sludge 

during washing process is also reported [10]. In some countries treated sewage sludge is used 

as a soil amendment in order to increase the soil fertility. In case sewage sludges contain 

toxic nanoparticles, they will cause toxicity to the soil bacteria. Toxic nanomaterials in 

biosolids and landfills can cause toxicity for the environment. In order to know how to 

control this negative effect, studying physico-chemical property of NPs like aggregation, 

solubility-sorption and dispersion of NPs is crucial [8]. In ecotoxicological study, 

bioavailability, bioaccumulation and aggregation of NPs are key issues to study [18]. 
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Release of silver nanoparticles into the environment 
ENMs may reach to environment during production of material or during incorporation of 

NMs into products [5]. Mueller and Nowack (2008) reported that the current concentration of 

nano-TiO2 is toxic to the aquatic organisms in lakes whereas the current concentration of 

nanosilver and carbon nanotube still seems to be non hazardous but it is approaching the 

toxic level [6]. They designed a model to assess the exposure of chemicals to the environment 

in the absence of sufficiently detailed data. The model covers the flows of the NPs from 

products to environmental comportments e.g. soil, air, water, sediment and groundwater and 

also to the technical compartments such as; sewage treatment plant (STP), waste incineration 

plant (WIP), landfills and recycling sites. The unit of the calculated flows is ton/year and the 

modeled is stimulated based on the available data for Switzerland (Figure 3) [6].  

 

 

 

 

 

 

 

Figure 3. Pathways for nano-Ag from products to the different environmental compartments, Waste 

Incineration Plant (WIP), Sewage Treatment Plant (STP) and landfill are simulated by the model. Unit of the 

flows is ton/year and the thickness of the arrows is proportional to the amount of silver flowing between the 

compartments and dashed arrows represent the very small flows [6]. 

 

Based on the existing information and outputs from the model it is concluded that the most 

dominant flows for silver nanoparticle are from production, manufacturing and consumption 

to the sewage treatment plant and landfill [6]. 

Silver can be highly toxic to some aquatic organisms [20]. Silver has antibiotic property 

which can damage the useful microbial communities in environment [8, 21]. Silver, even in 

low concentration like 10 ng/l is toxic to zebra fish [22]. In some cases silver is reported to 

bioaccumulate in phytoplankton and some marine invertebrates [23, 24]. Silver ions have    

an inhibitory effect on bacterial growth. Ag
+
 tends to have a high sorption to the negatively 

charged bacterial cell wall. Ag
+
 also leads the bacterial death due to generation of reactive 

oxygen species and disruption of membrane permeability [25, 26]. Ecotoxicological study in 

soil media shows that silver nanoparticles are highly toxic to soil nematodes [27]. Silver 

nanoparticles with less than 5 nm diameter significantly inhibit the activity of nitrification 

bacteria [12]. Toxicity of silver nanoparticles to nitrification bacteria is highly dependent on 

the size of the silver nanoparticles [12]. According to [7], concentration of different 

nanoparticles in sediments and sludge treated soils is increasing (figure 4). 

AgNPs 
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Figure 4. Predicted concentrations of nanomaterials, nano-TiO2, nano-ZnO, nano-Ag, CNTs and fullerene in 

sediment and sludge treated soil in U.S during the period 2001-2012 [7]. 

 

 

Factors affecting detachment of nanoparticles from commercial products 
There are some factors which affect detachment of NPs from articles. These factors are such 

as; NPs store in the object, the object’s life time, the method with which NPs are built into the 

fabric and the real usage of the object [5]. Articles with an extended life time, weak 

incorporation and extreme use will most likely not contain NP anymore at the time of 

disposal. On the other hand, factors such as short lifetime, low usage and well built fixation 

increase the likelihood that particles will not be released before disposal [13]. Exposing 

articles with UV-light increases the chance of releasing NPs from the objective [14]. For 

example, for silver nanoparticles, one of the most possible ways of releasing Ag
+
 from textile 

and plastics is detachment of AgNPs in the form of silver ions [15]. 

 

Possible fate of silver and silver nanoparticle in soils 
Soils are complex systems. Soil solution might contain various concentrations of organic and 

inorganic ligands. Major compartments involving in metal sorption are soil organic matter 

(SOM), oxide surfaces (Fe, Al, Mn…) and clay minerals [28, 29]. High pH value and CEC 

enhance silver sorption to the soil due to higher negatively charged sites and more cation 

exchange reactions, respectively. Soils with fine texture have higher surface areas which also 

ease silver sorption [28].   

 Silver is sorbed more strongly to soils with high organic matter concentration than to mineral 

soils. Silver can be sorbed to the soil either due to cation exchanges or complexation 

reactions [28]. Soil organic matters play an important role in silver sorption and mobility 

[29]. Silver strongly tends to bind with reduced sulfur groups (thiol) on soil organic matter 

and form S-Ag-S bonds [30]. Regarding the silver nanoparticle in soil systems, there are not 

many published papers which discuss the fate of AgNPs in soils media. But there are some 
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investigations which show the effect of different environmental factors like ionic strength, 

pH, temperature, oxygen availability, time, organic matter on stability, aggregation, mobility 

and silver ion release kinetics of AgNPs in aquatic medias [19, 31, 32, 33]. Recently effect of 

fulvic acid on the aggregation of AgNPs in the aquatic systems was investigated and the 

results surprisingly show that addition of 10 mg/l of fulvic acid had no significant affect on 

the aggregation kinetic of AgNPs [34]. 

 

Objective 
The objective of this thesis is to study the solubility of silver nanoparticles and silver ions in 

two soil types as a function of pH and metal concentration added. Observation and 

identification of nanosilver aggregated spots in polluted samples were made by help of 

Scanning Electron Microscopy (SEM) and X-ray Energy Dispersion Spectrometry (XRD). 

 

Materials and Methods 

Nanosilver 
Commercial silver nanoparticles (<100 nm, 99.5 % metal) were obtained from Sigma-Aldrich 

Company. X-ray energy dispersion spectrometry and Scanning Electron Microscopy (SEM) 

were used to characterize the silver nanoparticles. SEM and X-ray energy dispersion 

spectrometry analysis have been performed in chemistry department of Swedish University 

of Agricultural Science (SLU) with SEM-Hitachi TEM-1000 and Bruker X-ray diffraction 

analyzer.   

Soil Samples 
Two different soil types were used in the study; one clayey and one sandy soil were sampled 

from Ultuna and Nåntuna regions respectively in Uppsala. The texture of the soils was 

analyzed by pipette and wet sieving using standard methods according to the procedure by 

Ljung (1987). Water content on mass basis was measured according to international standard 

ISO-11465. Carbon and Nitrogen content of soil samples based on the mass weight were 

measured with LECO, CNS-1000 Elemental Analyzer. Exchangeable cations were 

determined by 0.1 M BaCl2 extraction.   

 

Batch Experiment 

Pilot acid-base titration experiment 

In order to investigate the buffering capacities of the soils, batch experiment with different 

additions of HNO3 or Ca(OH)2 were made. 50 ml centrifuge tubes were used. 3 g of air dried 

soil was added to 12 centrifuge tubes (6 tubes for sand treatment and 6 tubes for clay one), 

plus various amounts of 0.1 M nitric acid (HNO3) or 0.1 M calcium hydroxide (Ca(OH)2) and 
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0.1 M calcium nitrate (Ca(NO3)2) and deionized water, see Table A1 in Appendix. Prepared 

samples were shaken for two days in end-over-end shaker in room temperature 20 °C. After 

shaking, the samples were centrifuged for 15 minutes at 3000 rpm in Sorvall RC 3C plus 

centrifuge machine. pH was measured in 5 ml of supernatant.  

Acid-base titration experiment with Ag+ and AgNPs 

The pilot titration experiment resulted in a pH range in clayey soil between 4 and 7. For the 

sandy soil pH varied from 3 to 6, see Table A1, Appendix. Sorption experiment with Ag
+
 and 

AgNPs was designed based on the pilot acid-base titration to achieve the desired pH values. 

Stock solution with 1.35 ppm concentration of AgNPs/AgNO3 in deionized water was 

prepared in 1 liter glass bottles. Stock solution of silver nanoparticle was ultrasonicated for 

10 minutes to get the homogenous suspension and delay the immediate aggregation of 

nanoparticles. Immediately after ultrasonication, 15 ml of 1.35 ppm concentration of AgNPs 

and AgNO3 stock solution were added to centrifuge tubes. See sample preparation schemes in 

Table A2, Appendix. 

After shaking and centrifuging (same instruction as for titration experiment above), pH was 

measured on 5 ml of unfiltered supernatants. An aliquot of the supernatants were filtered with 

0.45 µm membrane filtration. Supernatants were diluted 1000 times with 1% nitric acid in 

order to make the solution ready to measure silver concentration with ICP-MS (Inductively 

Coupled Plasma Mass Spectrometry, Leam 6100 ICP-MS Simplifying Ultra trace Analysis 

machine). In addition dissolved organic carbon (DOC) was measured on a small proportion 

of filtered (0.45 µm) supernatant with TOC 5000A Total Organic Carbon Analyzer, 

Shimadzu machine. Batch experiments were designed in two replicatesof all treatments. 

Aggregation 
In order to study the aggregation of AgNPs and Ag

+
, sets of batch experiments based on the 

titration experiment on sandy soil with fixed pH (4.9) and different concentration of silver 

(nano/ion) was designed. See Table A1. Appendix, set 2, centrifuge tube number 11. 28.5 ml 

stock solutions of silver nanoparticle with 2.5, 0.75 and 0.01 ppm concentrations and silver 

nitrate with 6.7, 0.63 and 0.05 ppm concentrations were added to the centrifuge tubes 

separately. The samples in centrifuge tubes were shaken for two days in end over end shaker 

in room temperature 21 °C. The samples were centrifuged for 15 minutes with 3000 rpm in 

Sorvall RC 3C plus centrifuge machine. Portion of supernatants were separated and sent for 

silver analysis. Sedimented soils containing silver nanoparticle/silver nitrate were extracted. 

Thin layers of extracted soil samples were rubbed into impermeable papers. The samples 

were dried for one day in a fume cupboard. Dried soil samples were prepared for SEM and 

X-ray energy dispersion investigation to find silver aggregated spots. The design of the 

aggregation experiment was to study the effect of different concentrations of silver metals 

(nano/ion) at a constant pH. 

Silver size distributions in solution 
Batch experiment was set with pH adjusted to 4 and initial constant concentration of 1.35 

ppm silver ion and silver nanoparticle separately. See Table A2, Appendix tube No.1 (1CN & 

1C
+
) and No.10 (10SN & 10S

+
). The batch experiments was prepared with sand and clay 
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soils with both silver nanoparticle and silver nitrate in two replicates, exactly with similar 

preparation scheme to batch experiment of sorption-solubility experiment. After the batch 

experiment, supernatants were filtered through 0.45 µm membrane, aliquot of supernatants 

were analyzed with ICP-MS to measure the silver concentration before ultrafiltration. 10000 

Dalton ultrafilters was spinned with 1%HNO3 and then rinsed with deionized water. 

Ultrafilters were used immediately for filtration before letting their membrane dried. 15ml of 

0.45 µm membrane filtered supernatants were added to the ultrafilters in an Amicon Ultra-15 

Centrifugal Filter Device. The added supernatants in the ultrafiltration centrifuge tubes were 

centrifuged for 35 minutes with 2000 rpm until most of the solution had passed the filter cap. 

Silver concentrations were measured on ultrafiltered solutions in both silver nitrate and silver 

nanoparticle treatments with ICP-MS. 

Results and Discussions 

Characterization of nanosilver particles 
 X-ray diffraction spectrometry shows 100% purity of silver in purchased silver 

nanoparticles. The result of X-ray diffraction spectrometry is shown in figure 5. 

 
Figure 5. X-Ray energy dispersion spectrometry result of silver nanoparticle. 

Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) images 

of pure silver nanoparticle powder were taken. Figure 6-A and 6-B show that AgNPs have 

ellipsoidal (sphere) shape. 

A)                                                      B) 

 
Figure 6. A) SEM image of AgNPs taken at SLU.                      B) TEM image of AgNPs (Sigma-Aldrich Co.). 



 

8 
 

Soil 
Results from mechanical analysis of soil samples are shown in Table 1. Based on the 

mechanical analysis, the soil texture was recognized according to USDA standard method. 

The clayey Ultuna soil is clay and sandy Nåntuna soil is loamy sand. General characteristics 

of soil samples are shown in Table 2.  

Table 1. Mechanical analysis of the experimental soils. Particle size classes are in mm. 

  
Clay Fine 

silt 

Medium 

silt 

Coarse 

silt 

Fine 

sand 

Medium 

sand 

Coarse 

sand 

Loss of 

ignition%  

   0.002- 0.006- 0.02- 0.06- 0.2- 0.6-   

  d<0.002 0.006 0.02 0.06 0.2 0.6 2   

Sand 8 3 1 3 12 57 17 5  

          

Clay 47 12 9 10 17 3 3 5  

          

 

Table 2. General characteristics of the experimental soils. 

 Clay Sand 

pH 6.6 5.3 

Water content*, % 1.8 0.9 

Carbon content, % 1.5 2.9 

Nitrogen content, % 0.16 0.19 

Clay, % 47 8 

Sand, % 6 74 

Silty, % 48 29 

Soil texture  Clay Loamy sand 

* Value is based on the mass weight.  

The exchangeable cations (Mg, Ca, Al, Na and K) and cations exchange capacity (CEC) in 

clay and sandy soil samples are shown in (Table 3). The cation exchange capacity is about 

three times higher in the clay soil compared with the sandy soil sample. This must be due to 

the higher clay content, since the content of organic matter actually is lower in the clay soil as 

compared to the sandy soil. 

Table3. Exchangeable cations and cations exchange capacity (CEC). CEC calculated as sum of metal cations. 

 Exchangeable Cations (cmolc/kg) 

Soil types Mg Ca Al Na K CEC 

Sand 0.58 4.43 0.15 0.01 0.08 5.27 

Clay 0.85 14.12 0.0 0.02 0.54 15.55 

 

Solubility of AgNPs and Ag+ as a function of pH 

Solubility of silver nanoparticles and silver ions was highly dependent on the pH. Results 

showed that at higher pH values, both silver nanoparticles and silver ions tended to be sorbed 

more strongly by the soil particles in both clay and sandy soils (Tables 4-7, Figure 7). 
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Table 4. Concentration of AgNPs & DOC in the supernatant at different pH in clay-AgNP sorption. 

Acid  

addition 

HNO3  

ml 

Base 

addition 

Ca(OH)2 

ml 

pH 

replicate 1 

pH 

replicate 

2 

DOC 

 conc. ppm 

replicate1 

DOC  

conc. ppm 

replicate 2 

Ag  

conc.ppb 

replicate 1 

Ag  

conc.ppb 

replicate 2 

3 0 4.2 4.2 12.3 11.3 1.6 1.6 

2.4 0 4.7 4.7 8.7 10.6 0.9 0.5 

1.8 0 5.2 5.2 7.9 7.1 0.8 0.4 

1.2 0 5.8 5.8 5.7 5.9 0.8 0.3 

0.6 0 6.4 6.4 4.2 4.7 0.3 0.2 

0 0 6.9 6.9 5.5 5.6 0.4 1.6 

 

Table 5. Concentration of AgNO3 & DOC in the supernatant at different pH in clay-AgNO3 sorption. 

Acid 

addition 

HNO3 

ml 

Base 

addition 

Ca(OH)2 

ml 

pH 

replicate 1 

pH 

replicate 2 

DOC 

conc. ppm 

replicate 1 

DOC 

conc. ppm 

replicate 2 

Ag 

conc.ppb 

replicate 1 

Ag 

conc.ppb 

replicate 2 

3 0 4.2 4.2 16.6 13.6 4.6 1.8 

2.4 0 4.7 4.7 10.5 10.9 4.6 0.6 

1.8 0 5.2 5.2 10.2 10.6 1.9 1.2 

1.2 0 5.8 5.8 9.0 9.1 1.0 0.4 

0.6 0 6.4 6.4 8.8 ** 0.9 0.4 

0 0 6.9 6.9 7.3 7.9 0.5 0.6 

 

Table 6. Concentration of AgNPs & DOC in the supernatant at different pH in sand-AgNP sorption. 

Acid 

addition 

HNO3 

ml 

Base 

addition 

Ca(OH)2 

ml 

pH 

replicate 1 

 

pH 

replicate 2 

DOC 

conc. ppm 

replicate 1 

DOC 

conc. ppm 

replicate 2 

Ag 

conc.ppb 

replicate 1 

Ag 

conc.ppb 

replicate 2 

1.8 0 3.3 3.2 17.5 17.1 38.2 48.0 

1.2 0 3.5 3.4 16.1 14.6 17.7 31.2 

0.6 0 4.1 4.0 12.3 12.6 3.5 5.8 

0 0 4.9 5.3 9.4 8.5 0.3 0.4 

0 0.3 6.9 6.6 10.3 10.4 0.2 0.2 

0 0.6 7.4 7.4 15.3 13.9 0.2 0.5 

 

Table 7. Concentration of AgNO3 & DOC in the supernatant at different pH in sand-AgNO3 sorption. 

Acid 

addition 

HNO3  

ml 

Base 

addition 

Ca(OH)2 

ml 

pH 

replicate 1 

 

pH 

replicate 2 

DOC 

conc. ppm 

replicate 1 

DOC 

conc. ppm 

replicate 2 

Ag 

conc.ppb 

replicate 1 

Ag 

conc.ppb 

replicate 2 

1.8 0 3.2 3.2 18.0 14.8 16.4 17.9 

1.2 0 3.5 3.4 16.1 14.4 9.4 12.9 

0.6 0 4.0 4.0 13.2 12.3 5.5 6.4 

0 0 5.1 5.3 11.3 12.0 0.9 0.5 

0 0.3 6.6 6.8 13.6 12.5 0.4 0.5 

0 0.6 7.3 7.3 18.5 17.1 0.7 0.9 

 

Furthermore, silver nanoparticles and silver ions behave similarly, showing a similar pH 

dependency. The solubility of silver ions is slightly higher than silver nanoparticles, but this 

difference is surprisingly small (Figure 7).  
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A-1)                                                                                              A-2)     

                       
 

B-1)                                                                                              B-2) 

                       
 

Figure 7. A-1) Solubility of AgNP and DOC vs. pH in clayey soil treatment. A-2) Solubility of AgNO3 and 

DOC vs. pH in clayey soil treatment. B-1) Solubility of AgNP and DOC vs. pH in sandy soil treatment. B-2) 

Solubility of AgNO3 and DOC vs. pH in sandy soil treatment.  

The concentration of Ag in solutions varied from 0 to 5 ppb and from 0 to 60 ppb in clay and 

sand treatment respectively. The high concentration of silver in the supernatant of sandy 

treatment could be due to less free surfaces available for metal binding in sandy soil in 

comparison with clayey soil. This is in accordance with the higher CEC of the clay sample 

(Table 3). However, a factor also contributing to the higher concentrations of Ag (both Ag
+
 

and AgNPs) is the fact that lower pH values were achieved in the sandy soil. Since solubility 

increases with decreasing pH, this will explain, at least partly, the higher Ag concentrations 

obtained in the sandy soil. 

One possible explanation for the similar behavior of silver nanoparticles and silver ions could 

be that they both have a net positive charge. Silver nanoparticles have zero charge [Ag(0)] in 

their metallic form. However, part of the Ag(0) atoms at nanoparticle surfaces might be 

ionized and oxidized when particles are exposed to aerobic environmental compartments. 
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This will give a net positive charge of the silver nanoparticles. From Figure 7, it can be 

assumed that AgNPs have net positive charges in their diffuse layer since they act like silver 

cations in sorption. 

Silver ions might also be strongly bound by soil organic matter [28]. Silver strongly tends to 

bind with reduced sulfur groups (thiol) on soil organic matter and form S-Ag-S bonds [30]. 

As shown in Figure 7, Ag concentrations follow DOC concentrations in suspensions of the 

clay soil but not in the sandy soil. Thus, dissolution of organic matter does not seem to be the 

major driver for controlling the solubility of Ag ions. Instead it is likely a pH dependent 

partitioning of Ag ions between the solid and solution phases, which is governing the 

solubility. 

Silver size distribution in the solution 

According to the manufacturer Malvern Co, it is assumed that only silver ions (Ag
+
) can pass 

the 10000 Dalton ultrafiltration membranes [11]. Therefore by using ultrafiltration separation, 

nanosilver particles and silver ions in the solution can be separated according to their size.  

According to [19], silver nanoparticles can be oxidized and transformed to free silver ions in 

the presence of oxygen molecules. If this occurs to a large extent with the particles introduced 

into the sand and clay soil suspensions, this would be an alternative explanation for the 

similar behavior of silver nanoparticles and silver ions. One way to investigate if this was the 

case in my experiment was to apply ultrafiltration on equilibrium solutions.  

The size distribution of silver in the solutions of silver ion and silver nanoparticle 

suspensions, before and after ultrafiltration (10000 D) is shown in Figure 8.  

 

Figure 8. Ag (ion/nano) concentration after and before ultrafiltration. Ag conc. in clay AgNP treatment was 

below the detection limit. Error bars show the standard error values (n=2). 

The concentrations of silver in the ultrafiltered solutions in clay and sand were slightly lower 

than in the unfiltered (unultrafiltered) solutions (red bars are smaller than the blue bars, see 

figure 8). It can therefore be concluded that a significant fraction of the added silver 

nanoparticles were transformed and oxidized to the free silver ions, which could pass the 

ultrafiltration membrane. In the clay AgNP treatment the silver concentrations before and 

after the ultrafiltration were below the detection limit and results for this treatment was not 

plotted. 
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Silver ion release from silver nanoparticles is an oxidation process which needs both 

dissolved oxygen and protons [19] (Equation 1). The oxidation of silver nanoparticles is 

followed by peroxide production. Peroxide is a more powerful oxidant than oxygen and 

reacts faster than oxygen with AgNPs under ambient conditions [19].  

  Equation 1:          

 

                                        2Ag (s) + ½ O2 (aq) + 2H
+

 (aq)<----> 2Ag
+

 (aq) + H2O (l) 

 

Silver ions release from silver nanoparticles may vary based on the different abiotic 

environmental factors. According to [19], Silver ion release from silver nanoparticle will 

increase with increasing temperature in the range of 0 – 37 °C. Silver ion release is 

decreasing with increasing pH and addition of humic or fulivc acid will decrease the ion 

release rate [19]. But these factors were not studied in this thesis. In this thesis kinetics of 

silver ion release was investigated at constant room temperature 21 °C. 

Aggregation of silver nanoparticles in soil 
With help of SEM and XRD, polluted sandy soil samples with different concentration of 

silver ions and silver nanoparticles were inspected carefully. An aggregated spot in treatment 

with 2.5 ppm concentration of silver nanoparticles treatment was found in sandy soil    

(Figure 9).   

A) B) 

  
Figure 9. A) Aggregated spot of AgNP found in 

 sand treatment.                  
B) XRD spectrum showing the existence of Ag in 

aggregated spot. 

 

No aggregation was found in 0.01 and 0.75 ppm concentrations of silver nanoparticles. In the 

treatments polluted with silver nitrate no aggregation of silver was found at any 

concentration. Possible reason for having no aggregation of silver in silver nitrate treatment 

could be no reduction of Ag
+
 to metallic silver. 

Some studies in aquatic mediums show that abiotic factors such as ionic strength, pH, 

concentration and salinity affect the aggregation of nanoparticles in aquatic systems [18]. 

NPs tend to highly interact with other molecules to reduce their surface energy. NPs bounded 
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with capping agents tend to remain stabilized [17]. In aquatic mediums, aggregation of metal 

nanoparticles can be described by DLVO theory (Derjaguin, Landau, Verwey, Overbeek 

theory). DLVO theory explains the forces between charge surfaces interaction in liquid 

mediums. DLVO theory describes the vanderwales attraction forces and electrostatics 

repulsion forces in electrical diffuse layer between two particles [18]. Soils are more complex 

systems than the aquatic mediums; therefore aggregation of metal nanoparticles in soil cannot 

directly be interpreted by DLVO theory. But since aggregation of silver nanoparticle could 

only found in the treatment with the highest concentration of metal, it can be concluded that 

concentration is a driving factor in aggregation of silver nanoparticle in soil media which also 

can be interpreted by DLVO theory. The aggregation experiment in this thesis was based on 

the different concentrations of silver metals (nano/ion) and did not investigate the other 

abiotic factors. 

 

Conclusion 
The experiments in this work showed that the solubility-sorption of Ag

+
 and AgNP is            

a function of pH. Ag
+ 

and AgNP behave similarly in pH dependency. A possible explanation 

for the similar behavior of Ag
+
and AgNP could be that, they both have the net positive 

charges. In both silver ion and silver nanoparticle treatment it is shown that the solubility of 

silver is higher at lower pH. Increasing the pH value, will increase the sorption of Ag. The 

solubility of Ag
+ 

is slightly higher than the AgNP but this difference is surprisingly small. By 

comparing the silver sorption between the sand and clay treatments it can be understood that 

clayey soil can retain more silver (nano/ion) concentration rather than sandy one. Higher 

sorption of silver in clay soil can be due to its higher CEC value. DOC doesn’t seem to be 

major factor for controlling the solubility of the Ag ions. Size speciation with ultrafiltration 

shows that parts of the AgNPs are oxidized to Ag
+ 

in oxic conditions. This is an alternative 

explanation of similar behavior of Ag
+ 

and AgNP. AgNPs appear to have higher aggregation 

tendency than Ag
+ 

since the aggregation spot could just be found in the treatments with silver 

nanoparticles and no aggregation spot could be found in the silver ion treatments. 

Future Study 
Studies of the current concentration of nanoparticles in different environmental compartments 

show that in close future the concentration of metal nanoparticles may reach to the toxic level 

for soil microorganisms in sewage sludge treated soils, landfills and sediments. In order to 

control the toxicity of NPs to the soil microorganisms, further toxicological studies of NPs is 

needed. In environmental chemistry, studies of the aggregation, sorption-solubility 

(dispersion) of NPs in different abiotic conditions is needed. Toxicity of NPs can be ascribed 

to different shapes, charge, surface area and surface structure, wetability of NPs and also 

availability of different surfactants in the solution. Also partitioning between nanoparticles 

and free ions is fundamental in order to examine if the toxicity affect is due to free ions 

derived from nanoparticles or intact nanoparticles or both. In literature most of the papers 
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have discussed the fate of NPs in aquatic conditions. There is not that much studies regarding 

the fate of metal nanoparticles in soil. 
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Appendix 
 

Table A1. 

Design of pilot acid-base titration experiment on clay and sand. 

Clay soil: 

Tube no.  0.10 M           

HNO3 ml 

H2O (DW) 

ml 

0.10 M      

Ca(NO3)2 ml 

 0.10 M   

Ca(OH)2 ml 

pH 

1 3 27 0 0 4.2 

2 2.4 27.3 0.3 0 4.7 

3 1.8 27.6 0.6 0 5.2 

4 1.2 27.9 0.9 0 5.8 

5 0.6 28.2 1.2 0 6.4 

6 0 28.5 1.5 0 6.9 

 

Sand soil: 

Tube no. 0.10 M           

HNO3 ml 

H2O (DW)  

ml 

0.10 M      

Ca(NO3)2 ml 

0.10 M    

Ca(OH)2 ml 

pH 

7 2.4 27.3 0.3 0 3.1 

8 1.8 27.6 0.6 0 3.2 

9 1.2 27.9 0.9 0 3.5 

10 0.6 28.2 1.2 0 4.0 

11 0 28.5 1.5 0 4.9 

12 0 28.5 1.2 0.3 5.9 

 

Table A2. 

Design of sorption experiment of AgNPs and AgNO3 as a function of pH in clay and sand. 

Set 1) 

CN: Clay AgNPs (replicate 1). 

Tube no. 0.10 M 

HNO3 ml 

 H2O (DW) 

ml 

 0.10 M     

Ca(NO3)2 ml 

 0.10 M 

Ca(OH)2 ml 

pH1 

 

pH2 

 

Add AgNPs 

1.35 ppm ml 

1 CN 3 12 0 0 4.2 4.2 15 

2 CN 2.4 12.3 0.3 0 4.7 5.6 15 

3 CN 1.8 12.6 0.6 0 5.2 6.2 15 

4 CN 1.2 12.9 0.9 0 5.8 7.0 15 

5 CN 0.6 13.2 1.2 0 6.4 7.4 15 

6 CN 0 13.5 1.5 0 6.9 7.6 15 

 

 

 

CN: Clay AgNPs (replicate 2). 

Tube no.  0.10 M 

HNO3 ml 

 H2O (DW) 

ml 

 0.10 M        

Ca(NO3)2 ml 

 0.10 M     

Ca(OH)2 ml 

pH1 

 

pH2 

 

Add AgNPs 

1.35 ppm ml 

1 CNr 3 12 0 0 4.2 4.2 15 

2 CNr 2.4 12.3 0.3 0 4.7 4.8 15 

3 CNr 1.8 12.6 0.6 0 5.2 6.6 15 

4 CNr 1.2 12.9 0.9 0 5.8 7.0 15 

5 CNr 0.6 13.2 1.2 0 6.4 7.4 15 

6 CNr 0 13.5 1.5 0 6.9 7.5 15 
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C+: Clay AgNO3 (replicate 1). 

Tube no.  0.10 M 

HNO3 ml 

H2O (DW) 

ml 

0.10 M      

Ca(NO3)2 ml 

0.10 M 

Ca(OH)2 ml 

pH1 

 

pH2 

 

Add Ag
+
  

1.35 ppm ml 

1 C+ 3 12 0 0 4.2 4.4 15 

2 C+ 2.4 12.3 0.3 0 4.7 5.1 15 

3 C+ 1.8 12.6 0.6 0 5.2 6.3 15 

4 C+ 1.2 12.9 0.9 0 5.8 6.9 15 

5 C+ 0.6 13.2 1.2 0 6.4 7.4 15 

6 C+ 0 13.5 1.5 0 6.9 7.7 15 

 

C+: ClayAgNO3 (replicate 2). 

Tube no.  0.10 M 

HNO3 ml 

 H2O (DW) 

ml 

 0.10 M 

Ca(NO3)2 ml 

0.10 M 

Ca(OH)2 ml 

pH1 

 

pH2 

 

Add Ag
+      

1.35 ppm ml 

1 C+r 3 12 0 0 4.2 5.3 15 

2 C+r 2.4 12.3 0.3 0 4.7 5.7 15 

3 C+r 1.8 12.6 0.6 0 5.2 6.2 15 

4 C+r 1.2 12.9 0.9 0 5.8 6.9 15 

5 C+r 0.6 13.2 1.2 0 6.4 7.4 15 

6 C+r 0 13.5 1.5 0 6.9 7.7 15 

 

Set 2) 

SN: Sand AgNPs (replicate 1). 

Tube 

no. 

 0.10 M 

HNO3 ml 

 H2O (DW) 

ml 

0.10 M   

Ca(NO3)2 ml 

0.10 M       

Ca(OH)2 ml 

pH1 

 

pH2 

 

Add AgNPs 

1.35 ppm ml 

8SN 1.8 12.6 0.6 0 3.2 3.3 15 

9SN 1.2 12.9 0.9 0 3.5 3.5 15 

10SN 0.6 13.2 1.2 0 4.0 4.1 15 

11SN 0 13.5 1.5 0 4.9 4.9 15 

12SN 0 13.5 1.2 0.3 5.9 6.9 15 

13SN 0 13.2 1.2 0.6 *** 7.4 15 

 

 

SN: Sand AgNPs (replicate2). 

Tube 

 no. 

 0.10 M 

HNO3 ml 

 H2O (DW) 

ml 

0.10 M      

Ca(NO3)2 ml 

0.10 M    

Ca(OH)2 ml 

pH1 

 

pH2 

 

Add AgNPs    

1.35 ppm ml 

8SNr 1.8 12.6 0.6 0 3.2 3.2 15 

9SNr 1.2 12.9 0.9 0 3.5 3.4 15 

10SNr 0.6 13.2 1.2 0 4.0 4.0 15 

11SNr 0 13.5 1.5 0 4.9 5.3 15 

12SNr 0 13.5 1.2 0.3 5.9 6.6 15 

13SNr 0 13.2 1.2 0.6 *** 7.4 15 

 

S+: Sand AgNO3 (replicate 1). 

Tube 

no. 

 0.10 M 

HNO3 ml 

 H2O (DW) 

ml 

 0.10 M   

Ca(NO3)2 ml 

 0.10 M  

Ca(OH)2 ml 

pH1 

 

pH2 

 

Add Ag
+
      

1.35 ppm ml 

8S+ 1.8 12.6 0.6 0 3.2 3.2 15 

9S+ 1.2 12.9 0.9 0 3.5 3.5 15 

10S+ 0.6 13.2 1.2 0 4.0 4.0 15 

11S+ 0 13.5 1.5 0 4.9 5.1 15 

12S+ 0 13.5 1.2 0.3 5.9 6.6 15 

13S+ 0 13.2 1.2 0.6 *** 7.3 15 
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S+: Sand AgNO3 (replicate 2). 

Tube 

 no. 

0.10 M 

HNO3 ml 

 H2O (DW) 

ml 

 0.10 M   

Ca(NO3)2 ml 

0.10 M   

Ca(OH)2 ml 

pH1 

 

pH2 

 

Add Ag
+        

1.35 ppm ml 

8S+r 1.8 12.6 0.6 0 3.2 3.2 15 

9S+r 1.2 12.9 0.9 0 3.5 3.4 15 

10S+r 0.6 13.2 1.2 0 4.0 4.0 15 

11S+r 0 13.5 1.5 0 4.9 5.3 15 

12S+r 0 13.5 1.2 0.3 5.9 6.8 15 

13S+r 0 13.2 1.2 0.6 *** 7.3 15 

 

Note: In the appendix section, (C) stands for clay;(S) stands for sand, (N) stands for 

nanoparticle, (+) stands for ion and (r) stands for replicate.   

 

 

 


