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Abstract 

Promoters are genetic elements that facilitate the transcription of a gene and they 

have been found in front of non-coding RNA (ncRNA) genes in different organ-

isms, e.g. the model plant Arabidopsis thaliana. A similar element, DUSE, has 

been found in front of ncRNAs in the social amoeba Dictyostelium discoideum and 

a part of this project has been to analyze the function of this putative promoter 

element through cloning and expression studies. A construct to analyze the func-

tion of DUSE was successfully designed and introduced into D. discoideum but 

full expression studies were not finished because of shortage of time. However, 

the first preliminary tests with northern blot showed a distinct loss in the expres-

sion of a model gene when the putative promoter was rendered non-functional by 

site-directed mutagenesis, indicating that DUSE truly functions as a promoter.  

The main part of this project has been to set up an infection system for Legio-

nella pneumophila utilizing the social amoeba Dictyostelium discoideum as a host 

organism. A big focus of the infection studies has been to study the RNA interfe-

rence response to infection by utilizing two D. discoideum knock out strains and 

SOLiD sequencing. Deep sequencing using the SOLiD technique has been carried 

out on infected- and uninfected cells to compare the difference in the small RNA 

population and to analyze the response to infection. 

The infection system was successfully set up with good confirmation of intra-

cellular bacteria by two different screening methods. The infection efficiency 

showed to differ substantially between the tested strains AX4 and AX2, 10,0% to 

3,4% respectively. The protein Dicer B has shown to play a big role in the bioge-

nesis of miRNA and a D. discoideum strain with this gene knocked out showed to 

be more resistant to infection, having an infection efficiency of only 1.2%. At the 

same time, the growth of this knock out strain was inhibited when grown in prox-

imity to L. pneumophila. This could indicate that there are miRNA(s) that are in-

volved in the amoeba’s response to bacterial infection.  

SOLiD sequencing showed that the non-coding Class I RNA gene, DdR-31,was 

the gene most affected in infected cells compared to uninfected cells also indicat-

ing the role for a non-coding RNA in infection. 



  

Populärvetenskaplig sammanfattning 

Det här projektet har eftersträvat att studera hur icke-kodande RNA-molekyler 

regleras i den encelliga amöban Dictyostelium discoideum samt att utforska dessa 

molekylers roll vid bakteriell infektion. RNA-molekyler delas idag in i två olika 

grupper, mRNA (budbärar-RNA) som avläses till ett funktionellt protein och icke-

kodande RNA som har specifika funktioner på egen hand, så som tRNA (trans-

port-RNA) och rRNA (ribosomalt-RNA). Man har hittills funnit att icke-kodande 

RNA är inblandade i nedbrytandet av mitokondriellt rRNA i D. discoideum när 

dessa infekteras av Legionella pneumophila. Tidigare har man även funnit att icke-

kodande RNA har en roll i kontrollen av gener vid infektion i andra organismer, så 

som modellväxten Arabidopsis thaliana. Vad som studerats i detta projekt är en 

klass icke-kodande RNA som är unika för D. discoideum, Class I RNA, med ännu 

okänd funktion och deras möjliga roll i infektionsresponsen. Inom denna klass 

finns genen DdR-21 som använts som modellgen i detta projekt.  

En del av infektionsanalysen har varit att studera hur RNA-

interferensmaskineriet, inaktivering av gener via dubbelsträngat RNA, påverkas av 

infektionen. Detta har gjorts via användandet av D. discoideum med specifikt av-

stängda gener samt en väldigt omfattande sekvenseringsteknik, SOLiD. För att 

studera genregleringen av icke-kodande RNA har funktionen av en sekvens som är 

en tänkbar promotor, DUSE, analyserats. Dessa element har sen tidigare bara be-

kräftats i andra organismer och här för första gången visas preliminära bevis för en 

faktisk promotor framför icke-kodande RNA i D. discoideum. 

 D. discoideum används som modellorganism för att det finns många mole-

kylära och genetiska verktyg tillgängliga och för att det patogena gensvaret är väl-

digt likt det i makrofager hos djur. Därmed kan infektionsprocessen studeras på ett 

mycket enklare sätt. Anledningen till att L. pneumophila, som orsakar lungsjuk-

domen legionärssjukan, och att andra likartade bakterier är patogena för männi-

skor är just denna likhet mellan bakteriernas naturliga värdorganismer och makro-

fagerna. Detta innebär att bakterien kan använda sig av samma mekanismer vid 

infektion.  

 För att studera DUSE så konstruerades en utomgenomisk plasmid innehål-

lande två versioner av modellgenen DdR-21 med omkringliggande sekvens. Den 

ena versionen gjordes med en normalt fungerande DUSE medan den andra versio-

nen gjordes med en muterad och förhoppningsvis ickefungerande DUSE. För att 



  

skilja dessa två modellgener från det normala genuttrycket av DdR-21 så ändrades 

även en loop-sekvens i genen, och därmed RNAt, på två olika sätt i de olika ver-

sionerna. För att studera skillnaden mellan de båda versionerna gjordes en 

Northern blot där man bestämmer mängden av ett visst RNA. En första preliminär 

Northern blot visade att mängden RNA var lägre då den troliga promotorn, DUSE, 

var söndermuterad jämfört med när den var hel och fungerade normalt. Detta pe-

kar på att detta element faktiskt har en stor påverkan på uttrycket av modellgenen 

och därmed fungerar som en promotor. 

Att få till en hög reproducerbar infektionseffektivitet visade sig vara komplice-

rat då L. pneumophila utvecklar sin rörlighet, som gör att den kan infektera, vid en 

viss celldensitet. Då denna celldensitet visade sig variera kraftigt från experiment 

till experiment kunde inget samband påvisas för att standardisera infektionen. Ge-

nom att öka koncentrationen bakterier relativt koncentrationen av D. discoideum 

vid infektionen gick det dock att få till en kvantifierbar infektionseffektivitet och 

ett system som kan användas för framtida tester med L. pneumophila och andra 

intressanta bakterier. Vid test av RNA-interferensmaskineriet upptäcktes att när 

man slog ut genen som kodar för proteinet Dicer B, som aktiverar det dubbel-

strängade RNAt via klyvning, i D. discoideum så blev infektionseffektiviteten läg-

re. Det kunde även fastställas att D. discoideum utan Dicer B hade sämre tillväxt 

än normala D. discoideum när den växte i närhet till L. pneumophila. 

SOLiD sekvenseringen visade att det sker en omfattande upp- och nedreglering 

av icke-kodande RNA när D. discoideum blir infekterade av L. pneumophila. Den 

gen där störst förändring sker är DdR-31, ett Class I RNA precis som modellgenen 

DdR-21. Detta kan vara en indikation på att denna gen och kanske klassen i sig har 

en funktion i gensvaret på infektion. En annan sak som kunde observeras var att 

storleksfördelningen på RNA-molekylerna i infekterade gentemot ickeinfekterade 

celler var förändrad. En större mängd av kortare RNA kunde hittas i infekterade 

celler, vilket tyder på att det kan ha skett en klyvning och trolig inaktivering av en 

hel del RNA vid infektion.  

Det verkar som att icke-kodande RNA kan ha en funktion inom gensvaret vid 

infektion av bakterier och en fortsatt analys av den stora mängd data som SOLiD 

analysen gav kan förhoppningsvis styrka detta faktum. En studie där man stänger 

av DdR-31, genen som påverkades mest av infektion, i D. discoideum och sen gör 

infektionsstudier på den kan också vara ett bra framtida test. När det gäller genre-

gleringen och analysen av funktionen av DUSE så kommer ett framtida test med 

Northern blot med den färdiga utomgenomiska plasmiden ge definitiva besked om 

det verkligen är en promotor eller inte. 
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1  Introduction 

The aim of this project has been divided into two parts where one has been to set 

up a system for infection of Dictyostelium discoideum with Legionella pneumophi-

la and to analyze how the RNA interference (RNAi) machinery is influenced by 

infection. We have also started to analyze how the small RNA population is af-

fected by infection by the use of deep sequencing, i.e. SOLiD sequencing where 

we can compare the difference in the levels of primarily small RNAs in infected 

and uninfected cells. The other part has been to study a ncRNA named DdR-21, 

with unknown function, to see if it might be involved in the infectious process. It 

has previously been shown that small ncRNAs are involved in infection in other 

organisms and in this part of the project we wanted to see if longer ncRNAs might 

have a role in the response to infection in D. discoideum. The primary focus of this 

second part has been to analyze a putative promoter element, DUSE, for DdR-21, 

which if confirmed would be the first promoter element found that control ncRNA 

gene expression in D. discoideum. This promoter element will then be used to 

tinker with the expression of the DdR-21 gene which could give information about 

its function. 

1.1 Dictyostelium discoideum 

D. discoideum is a unicellular eukaryotic social amoea, commonly known as a 

slime mold, and a member of the Mycetozoa phylum [1]. The mycetozoa is a 

branch of the eukarotyic evolutionary tree placed before both the fungi and the 

metazoan branches. D. discoideum as a species was discovered in 1935 as a soil-

living organism living among decayed forest material feeding on different bacteria 

prominent in those habitats [2,3].  

The haploid genome was fully sequenced in 2005 and it is 34 Mb in size and 

built up of six chromsomes containing approximately 10300 protein coding genes 
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[4,5]. An important aspect of the D. discoideum genome is the high A/T content at 

78 % and that it has a high composition of simple sequence repeats and transposa-

ble elements [3,5]. Another interesting and useful characteristic of the genome is 

that it contains several extra chromosomal plasmids which among others contain 

the ribosomal genes. Some of these plasmids have been modified and are used in 

D. discoideum research as transformation vectors [5].  

There are many features of D. discoideum that make it a useful and interesting 

model organism for many research areas. A number of cell biological, molecular 

genetic and biochemical techniques are available for studies of D. discoideum and 

the haploidity of the genome together with the possibility of RNA interference 

(RNAi) make the creation of mutants and gene manipulation easy [1]. Much that is 

possible to do in the famous yeast model organism Saccharomyces cerevisiae can 

also be performed in D. discoideum but because of its intriguing life cycle, D. dis-

coideum can also be used to study the development of multicellularity and cell 

differentiation. Other areas often studied are phagocytosis, cell signaling, cell mi-

gration and morphogenesis [6]. 

1.1.1 Life cycle  

D. discoidium has a very special life cycle. Apart from its normal unicellular sta-

dium, where it goes through normal vegetative cell division, D. discoidium also 

has a multicellular phase which it enters upon starvation. When there is a lack of 

nutrition and starvation commences there is a switch in the life style of D. discoi-

deum and a set of genes involved in chemotaxis for cAMP are turned on. Cells 

under starvation develop the ability to produce, excrete and recognize cAMP in 

the vecinity and respond to it [3]. Under normal conditions this process leads to 

entrance into the asexual multicellular life cycle, the formation of spores within 

fruiting bodies, figure 1.  

Around 12 hours after initiation of multicellularity a structure known as a 

mound is formed and from there there are two ways to go; the aggregate can either 

go into the slug structure or the finger structure. The slug is the only development 

phase when the multicellular D. discoideum is motile. This moving structure is 

essential if the environmental conditions are not favourable at the site the cells 

currently are in. The slug is able to move to a better environment, by the use of 

light and heat, and there it continues development through the finger structure 

[3,7]. The cells in the finger structure continue to differentiate to become stalk- 

and spore cells which make up the mature fruiting body. After approximately 24 

hours the fruiting body is fully developed, containing dead stalk cells surrounded 
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by a shell of cellulose and a ball of spores that will stay dormant until conditions 

are better and germination is induced [3].  

 

Figure 1. Schematic view of the life cycle of Dictyostelium discoideum where the different multicellu-

lar stages and the time it takes for the organism to reach them are visualized. Under normal condi-

tions it stays in the unicellular stages of life.  

Under certain conditions, submersion and darkness, an alternative sexual devel-

opment pathway is available. This is initiated by the fusion of two cells of differ-

ent mating types. The fused cells start to excrete cAMP which attracts other D. 

discoideum cells. The big fusion cell, the zygote, engulfs the attracted amoebas 

and uses them as nutrients.  This structure known as a macrocyst, can subsequent-

ly produce meiotic offspring [3,8].  

1.1.2 As a host for infection 

The use of more simple organisms as hosts for bacterial infection is of great im-

portance because the basic cell biology is evolutionary conserved between the 

non-vertebrates and the vertebrates. By studying extensively used model organ-

isms, e.g. Drosophila melanogaster, Caenorhabditis elegans and D. discoideum, 

where many molecular and genomic tools are available, the pathogenic response 

of higher eukaroytes can be established by much simpler methods [9,10]. D. dis-

coideum has several advantages in phagocyte-pathogen interaction studies, e.g. the 
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cells are easily infected and there are many genetic tools available, such as random 

mutagenesis by restriction enzyme mediated integration (REMI) and RNAi, mak-

ing mutant screening and host mutant analysis easy to perform [10]. Other features 

that make D. discoideum a useful host is that it can easily be grown on a bacterial 

carpet in petri dishes or without bacteria in solution and it have uncomplicated 

demands for nutrients and environmental conditions [11].  

A very intriguing and important trait of D.discoideum is that it shares many si-

milarities with human macrophages, such as phagocytosis and the way of killing 

bacteria. Because of the fact that D. discoideum shares environment with many 

pathogenic bacteria it is believed that because these bacteria have developed ways 

to infect the amoeba it has at the same time by coincedence gained the ability to 

infect the similar human macrophages and thereby becoming opportunistic human 

pathogens [12]. The protozoa can be seen as environmental incubators that propel 

the bacteria to adapt to avoid being killed by similar functioning macrophages. 

The similarities between human macrophages and amoeba are plentyful and be-

sides having similar killing mechanisms, bacteria like L. pneumophila are interna-

lized and grow in a very analogous ways in both cell types [13].  

There seems to be a vast number of bacteria and other microorganisms that are 

equally pathogenic for humans and amoeba like D. discoideum. The first infection 

studies made with D. discoideum was with L. pneumophila [14] and up until today 

many more bacteria have been found suitable to use in similar studies, table 1 [13].  

Table 1. Bacteria that have been used in infection studies with D. discoideum. 

Bacteria Reference 

Cryptococcus neoformas 

Klebsiella pneumoniae 

Legionella pneumophilia 

Mycobacterium avium 

Mycobacterium marinum 

Mycobacterium tuberculosis 

Neisseria meningitidis 

Pseudomonas aeruginosa 

Salmonella typhimurium 

Vibrio cholerae 

Yersinia pseudotuberculosis 

Steenbergen et al., 2001  [15] 

Benghezal et al., 2006     [16] 

Hägele et al., 2000           [14] 

Skriwan et al., 2002        [17] 

Solomon et al., 2003       [18] 

Hagedorn et al., 2009      [19] 

Colucci et al., 2008         [20] 

Pukatzi et al., 2001          [21] 

Skriwan et al., 2002         [17] 

Pukatzi et al., 2005           [22] 

Vlahou et al., 2009           [23] 
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1.2 Legionella pneumophila 

L. pneumophila was first discovered in 1976 as the causative agent of a clinical 

outbreak of a respiratory disease named Legionnaires’ disease [24]. L. pneumophi-

la are gram-negative rod-structured obligate aerobic bacteria with a size variation 

between 0.3-0.9 µm in width and 2-20 µm in length [25]. They are found in both 

man-made and natural fresh water environments where they live as parasites with-

in protozoan hosts. Even though they are almost exclusively found in aquatic envi-

ronments they have also been found in protozoa from moist soil samples [24].  

L. pneumophila is only one out of 52 species and 72 sero groups within the Le-

gionellaceae family, which fits in the evolutionary tree within the phylum of pro-

teobacteria [11,26]. Some species of Legionella are able to infect human macro-

phages and are therefore regarded as human pathogens although most of the spe-

cies are harmless saphrophytes, feeding on dead organic material [27]. The bacte-

ria are slow-growing and the temperature interval for growth is 20°C to 45°C but 

survival is possible at temperatures close to 70°C for a short period of time 

[25,26].  

The genome of L. pneumophila consist of one single circular choromosmome 

and up to today three different isolates, Philadelphia, Paris and Lens, have been 

fully sequenced. The sequencing showed that the average G/C content is 38% and 

that the total genome size varies between 3.3-3.5 Mbp and contains approximately 

3000 genes [28,29]. Around 60% of the genes in L.pneumophila have homologues 

in other known bacteria with the closest known relative being Coxiella burnetii, an 

intracellular pathogen. Hence, approximately 40% of the genes are genus specific 

[28].  

1.2.1 Life cycle and host interaction 

L. pneumophila goes through two distinct phases in life, a transmission phase and 

a replication phase, where much of the morphology of the bacteria changes which 

reflects its life as a parasite. L. pneumophila that are not living within a host proto-

zoa are believed to be part of biofilms, an aggregation of cooperating microogran-

isms, which they use as protection against predators and to obtain necessary nu-

trients [30]. It has been shown that these biofilms are only used for survival and no 

evidence has been found that growth can occur in them [31,32]. L. pneumophila 

are not forming biofilms on their own but instead they attach to already existing 

biofilms created by other bacteria which they then colonize and take over.  



15 

 

These biofilms are a perfect food source for protozoa that engulf the bacteria by 

normal phagocytosis through an actin-mediated process [32,33]. L. pneumophila 

that are in its transmissive phase are able to survive within the protozoa while the 

ones in the replicative phase are rapidly killed and degraded. The transmissive 

bacteria that survive and resist degradation by the protozoan lysosome do so by 

forming a protective membrane-bound vacuole inside the host-cell [27]. There are 

different secretion systems encoded by the bacteria that are responsible for its abil-

ity to survive and replicate within the vacuole of protozoa and macrophages. The 

most important ones are the Dot/Icm type IVB secretion system and the Lvh type 

IVA secretion system [27]. When the protective vacuole is fully established the 

bacteria go into a replicative phase during which they repress the genes involved 

in transmission [30,34].  

The internalized bacteria affect the host D. discoidium in several ways by just 

staying within their replication vacuole. It has been shown that several genes in-

volved in metabolism are upregulated in the amoeba upon infection, which is 

probably done to supply the bacteria with the vital nutrients for survival. Genes 

that are downregulated are instead genes involved in bacterial degradation, fatty 

acid modification and protein biosynthesis [35]. 

When nutrition levels are low the bacteria yet again change between the replica-

tive phase and the transmissive phase and environmental signals causes blockage 

of the RNA-binding repressor protein CsrA (carbon storage regulator A) by the 

signal transduction system, LetA/LetS [36]. This leads to the induction of several 

genes and the most important gene is the flaA, coding for the protein flagellin, 

which is the building stone of the flagellum. The flagellum gives the bacteria its 

motility making it highly infectious. Furthermore, the flaA gene is also involved in 

mediating the other important transmissive traits, lysosome avoidance and the 

ability to induce host cell death [37]. The resilient and infectious bacteria can now 

upon cell lysis start the life cycle all over again by either invading a new host or 

becoming a part of a biofilm. 

An important difference between protozoa and macrophages as hosts for L. 

pneumophila is that the bacteria is able to continue its life cycle after infection and 

lysis of protozoa but so far this have not been seen in humans. This together with 

the fact that the temperature of 37°C within macrophages is not an optimal tempe-

ratur for L. pneumophila neither for growth nor for virulence which indicates that 

macrophages are not a natural host for the bacteria [38].  
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1.2.2 Pathogenesis 

L. pneumophila is the causative agent of two serious human respiratory diseases, 

Legionnaires’ disease and Pontiac fever, both affecting mostly adults but also to a 

lesser extent children and infants [26]. The legionella bacteria are transmitted to 

humans through inhalation of aerosols that contain bacteria which infect the alveo-

lar macrophages in the patient’s lungs. Common man-made sources for infection 

are water fountains, water misters, cooling towers etc. and increased prolifiration 

comes with elevated temperatures in these sources [25,26]. 

Legionnaires’ disease is one of the most common causes of pneumonia and it is 

often fatal if not diagnosed and treated [25,27]. The disease is much more com-

mon for elderly people since it usually affects people with underlying disease or 

respiratory problems. Pontiac fever is the milder and less studied disease caused 

by the legionella bacteria. It is a non-fatal disease that has similar symptoms to 

influenza and in contrast to Legionnaires’ disease it does not cause pneumonia 

[26,39].  

1.3 Non-coding RNAs 

RNAs have for a long time been divided into two major groups, mRNAs which 

are coding for proteins and non-coding RNAs (ncRNAs) like tRNAs, rRNAs and 

small RNAs, which have a distinct function on their own. The ncRNAs can oper-

ate on RNA stability, transcription and protein transport among others and they are 

involved in many different processes in the cells ranging from apoptosis to chro-

mosome maintenance. ncRNAs can be found in a large size range with the smal-

lest known being 20 nt while the biggest found can be several thousand nucleo-

tides long [40]. 

1.3.1 ncRNAs and infection 

Studies on the transcriptional response in the host cell D. discoideum upon infec-

tion with L. pneumophila have showed that many protein coding genes are being 

up- and downregulated but so far almost nothing is known about the role of the 

ncRNAs in the response to infection[35]. The one thing that has been shown to 

occur upon infection with L.pneumophila is that the mitochondrial rRNA of D. 

discoideum is specifically cleaved, indicating that the bacteria hinder the mito-

chondrial protein synthesis [41]. 

In addition it has been shown that ncRNAs play a big role in the pathogen L. 

pneumophila upon infection of the amoeba Acanthamoeba castellanii. Two 
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ncRNAs named RsmY and RsmZ are linking the two regulatory networks involv-

ing the two-component system LetA/LetS and the repressor CsrA together. The 

transcription of these ncRNAs is activated by the LetA/LetS system and they have 

the ability to bind to the repressor CsrA and thereby block its repressive activity. 

When CsrA no longer represses the LetA/LetS system the bacterium is able to en-

ter its transmissive phase and infect its host [42]. From this it is obvious that 

ncRNAs are very important for the bacteria in its ability to infect host cells and the 

question is then if there are equally important ncRNAs in the host organism in-

volved in the response to infection. 

In a study on the plant model organism Arabidopsis thaliana it was found that a 

class of ncRNAs with a size of 30-40 nt are induced when the plant is infected 

with the bacteria Pseudomonas syringae. They showed that one of these ncRNAs 

is involved in disease resistance by silencing its target gene [43]. Previousely it 

had been shown that a miRNA in A. thaliana was induced upon stimulation with a 

bacterial peptide from the flagellin protein. This induction caused a repression of 

auxin signals needed for the internal growth of the bacteria P. syringae [44]. These 

reports both show that in plants ncRNAs can play very important roles in the fight 

against pathogens and it naturally leads to the question if this occurs in other or-

ganisms outside the plant kingdom, e.g. in D. discoideum.  

1.3.2 ncRNAs and Class I RNAs in D. discoideum 

Most of the ncRNAs that have been found in D. discoideum have homologues in 

other organisms, rRNAs, tRNAs, spliceosomal RNAs, small nucleolar (sno)RNAs, 

signal recognition particle (SRP) RNAs, RNase P RNAs, antisense RNAs and 

small interfering (si)RNAs. The spliceosomal RNAs are found within the nucleus 

and together with specific proteins they form snRNPs, ribonucleoproteins, which 

identify and cut out introns from pre-mRNAs. There are 17 expressed spliceosom-

al RNAs identified in D. discoideum and they fold into predicted conserved struc-

tures also found in many other organisms [40]. SnoRNAs are involved in modify-

ing other RNAs either by cleaving or by adding a chemical modification to the 

RNA. 

The two main groups of snoRNAs are also present in D. discoideum, the C/D 

and the box H/ACA snoRNAs. The box C/D snoRNAs are modifying RNAs by 

methylation and the box H/ACA modifies RNAs by pseudouridylation [40]. Two 

other large groups of ncRNAs found in D. discoideum that also exist in other or-

ganisms are SRP RNAs and RNase P RNA. SRP RNAs are involved in protein 

localization while the RNase P RNAs are involved in the processing of tRNAs. 
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The antisense RNAs and siRNAs are involved in the regulation of transcriptional 

and post-transcriptional gene expression [40].  

In addition to all the common ncRNAs, some additional unique groups of 

ncRNAs have been found in D. discoideum, i.e. D1/Dd8, dutA, msRNA, Class I 

and Class II RNAs [45,46]. In this project DdR-21 is used as a model gene and it 

is a member of the Class I RNA genes. So far 14 uniqe Class I RNAs and 2 unique 

Class II RNAs have been identified and because of the structure and sequence si-

milarities between them, the Class II RNAs have been considered to be a subclass 

of the Class I RNAs. The Class I RNAs are long cytosolic ncRNAs with a size 

distribution between 55-65 nt forming a stem-loop structure with conserved 5´- 

and 3´sequences, figure 2 [45] (Avesson and Söderbom, unpublished). Until today 

no homologues to these ncRNAs have been found in any other organism besides 

D. discoideum. An interesting finding is that two of the Class I genes, DdR-21 and 

DdR-32 most probably are transcribed as precursors which later are cleaved into 

their correct active form [45]. 

 

 

 

 

 

 

 

 

 

Figure 2. The structure of the representative Class I RNA DdR-21 (adapeted from Hinas and Söder-

bom, 2007). As can be seen in the figure the RNAs folds into a stem-loop structure where the red 

nucleotides are conserved in all the known members of the class.  

The function of the Class I RNAs is still not known. However, it has been shown 

that the expression levels are decreased during the course of the multicellular de-

velopment. Furthermore, disrupting one of the Class I RNA genes, DdR-21, af-

fects early development. Taken together, these results indicate a function in the 

developmental process. The stretch of 11 nt that is shared between almost all the 

members of the Class I RNAs and also by the Class II RNAs could be a possible 

interaction site with proteins but this have not yet been confirmed [45] (Avesson 

and Söderbom, unpublished). 
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1.3.3 Promotors of ncRNAs 

Promoters are short stretches of nucleotides facilitating transciption of specific 

genes. The promoters are situated upstream of the target gene and the RNA poly-

merase utilize it to locate the gene and attaches to it and from there continue 

downstream to initiate transcription [47]. A putative promoter sequence of 8 nuc-

leotides named DUSE, Dictyostelium upstream sequence element, has been found 

positioned approximately 63 nt upstream of the transcription start site of the ma-

jority of the different classes of ncRNAs ≥ 50 nt in D. discoideum [48].  

The first upstream promoter element found in front of ncRNA genes was identi-

fied in front of U-RNA genes, involved in the splicing machinery, in A. thaliana. 

The element is situated approximately 70 nt upstream of the start site of transcrip-

tion of the studied U5 RNA gene [49]. Promoters of ncRNA genes have also been 

confirmed in non-plants in both the nematode C. elegans and in the fruit fly D. 

melanogaster, table 2. In C. elegans, these promoter sequences are known as 

UM1-3 and they are built up of a number of different consensus sequences of 7-11 

nt. UM1 is the most frequent and found in front of approximately 10% of the 

ncRNA so far identified in C. elegans. It consists of a stretch of 50 nt containing 

two conserved core sequences of 21 nt known as the PSEA and PSEB elements 

[50].  

Table 2. Comparison of the putative promoter sequence from D. discoideum to the confirmed promo-

ter sequences in two other famous model organisms. 

Organism Sequence Distance between promoter and transcription start site Reference 

D. discoideum ATCCCACTAA 63 bp Hinas et al., 2006 

A. thaliana ATCCCACATCG 70 bp Vankan et al., 1988 

C. elegans GCGGAACCCG – 5bp  - 

TGTCGGCCGC 

30 bp Li et al., 2008 

 

The fact that there are ncRNA promotors in other organisms and the high similari-

ty between the putative elements found in D. discoideum and the confirmed pro-

moter in A. thaliana strongly suggests that DUSE in fact is a promoter element. 

1.3.4 The RNAi machinery 

In this project two different D. discoideum strains were used, AX4 and AX2, and 

two different AX2 knock out strains were also used in the experiments, RdpC
-
 

(RNA-dependent RNA-polyemerase) and DicerB
-
. Both the knocked out genes are 

important components of the RNAi machinery and play important roles in the de-

fence of the organism. 
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The mechanism of RNAi was first reported in 1998 in the nematode C. elegans as 

a system where double stranded RNA cause silencing of specific genes, figure 3 

[51]. The RNAi machinery has now been found in diverse eukaryotes, from plants 

and animals to fungi and it is believed that a simple RNAi system existed in the 

last common ancestor to all the eukaroytes. The RNAi machinery has been pro-

posed to have evolved as a defense system against viruses and selfish genetic ele-

ments. Even though the RNAi machinery is a complex system there are four com-

ponents that are of specific importance, a Dicer protein, a RNA-dependent RNA 

polymerase, a Piwi-like protein and an Argonaute-like protein [52]. The process of 

RNAi starts with dsRNAs in the cytoplasm where they are are recognized and 

cleaved by the Dicer protein (a RNA specific endonuclease) into small siRNAs, 

21-25 nucleotides. The source of dsRNAs can either be endogenous pre-mRNAs 

or exogenous coming from viral infections [53]. 

After the generation of siRNAs by Dicer there are two routes to take. The first is 

the generation of even more siRNAs to get an even better silencing effect. This 

happens when the siRNAs binds to the complementary mRNAs and act as primers 

for a RNA-dependent RNA polymerase. The long dsRNAs created in this way are 

then cleaved by Dicer, leading to a bigger pool of double stranded siRNAs [52]. 

The other route is to directly bind to the RNA-induced silencing complex (RISC). 

Only one strand of the siRNA, the guide strand, binds to the RISC complex while 

the other strand, the anti-guide strand, is degraded during RISC activation. The 

RISC complex is built up of endonucleic proteins of the Argonaute-Piwi family 

and becomes active when the siRNA has bound. The active RISC binds to the 

complementary mRNA guided by the bound single stranded siRNA and the argo-

naute protein then cleaves the target mRNA, causing silencing of the gene [52,53]. 

RNAi has been confirmed to exist in D. discoideum where siRNAs in the size of 

21-23 nt are thought to be responsible for the silencing effect. The RNAi machi-

nery in D.discoideum seems to have a partial capacity because at some develop-

mental stages no RNAi effect at all can be seen [54].  
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Figure 3. Scehmatic view of the RNAi mechanism. Dicer cleaves the dsRNA generating siRNAs 

which either are incorporated into RISC or works as primers on the mRNAs for RdRp to generate 

more dsRNA, amplifying the silencing signals. siRNAs bound to RISC then binds to the complemen-

tary mRNA so that the active RISC endonuclease components, Argonaute proteins, can cleave the 

mRNA and cause silencing of the gene.  
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2 Material and methods 

2.1 Growing D. discoideum 

Four different D. discoideum strains were used during the project, AX2, AX4 

(Boston), AX2RdpC
-
 and AX2DrnB

-
 which all were available in -80°C storage at 

the department of moleular biology, SLU. To retrieve them the frozen D. discoi-

deum were spread on SM-plates [55] together with Klebsiella pneumoniae and 

incubated at 22°C until plaques appeared, normally 4-6 days. To get D. discoi-

deum growing in liquid culture, growing cells from the outer part of the plaques 

were scraped off and inoculated in 2 ml of a rich axenic medium, HL5 [55], to-

gether with PenStrep, dil 1:100, (GIBCO) in sterile round-bottom glass tubes.  

For continousely growing D. discoideum the 2 ml culture were then transfered 

to a 100 ml E flask and diluted to a total volume of 25 ml HL5 with PenStrep and 

kept at 22°C on a shaking table at 155 rpm. The cells could be kept growing for 

approximately a month, if the growth medium was continusely changed so that the 

concentration of cells was kept below 4x10
6
 cells/ml, before new cells had to be 

restarted. To calculate the concentraton of cells in liquid culture a hemocytometer 

(Bürker chamber) was used to count the cells using a light microscope (Zeiss Axi-

oskop). 

2.2 Plasmids and oligonucleotides  

All the oligonucleotides used through the project are listed in table 6 (appendix). 

They were all customly made and ordered from Invitrogen (Desalted, scale of syn-

thesis 25 nmol). The Tm values of the primers were calculated from the following 

formula: Tm =  64.9°C + 41°C x (number of G’s and C’s in the primer – 16.4)/N.
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Two different plasmids have been used in the project, the pCR 2.1 TOPO (Invitro-

gen) as a cloning vector and the pDXA-HC as a transformation vector, figure 19 

(appendix). The TOPO cloning system utalizes the fact that a normal PCR with 

Taq polymerase adds a deoxyadenosin on the 3´end of the PCR products. The 

TOPO-vector is constructed as a linearized plasmid with a deoxythymidine at the 

3’ ends together with a covalently bond topoisomerase. This makes it very easy to 

ligate the PCR product with the A overhang into the vector with the complementa-

ry T overhang with the aid of the topoisomerase, which cleaves and rejoins com-

plementary strands of DNA [56]. The pCR 2.1 TOPO vector contains two impor-

tant selection inserts, kanamycin and ampicilin resistence, which are used to select 

for and isolate bacteria that contain the plasmid. 

The second plasmid pDXA-HC is designed to be transformed into D. discoi-

deum, containing a origin of replication (Ori) for a high copy number plasmid, a 

multiple cloning site (MCS) and selecion inserts Amp (R) and Tn5 neo (R) con-

veying resistence for Ampicilin and G418 respectively [57]. In the pDXA-HC vec-

tor used in this project the actin promoter insert has been removed to prevent the 

expression of the inserted DdR-21 gene from this promoter. pDXA-HC will refer 

to this modified plasmid from here on. 

2.3 Site-directed mutagenesis of DdR-21 

The work with the promoter analysis have been a continuation of a project started 

before this thesis and not everything written in this section have been done during 

the time of this master thesis. For easier understanding of the project, all methods 

used to reach the final double construct are included in this report.  

2.3.1 Extraction of genomic DNA and genomic PCR 

To extract the genome 1-2·10
8
 D. discoideum cells were harvested by centrifuga-

tion at 300 g for 5 min at 4°. Subsequently, supernatant was poured off and the 

pellet were resuspended in 1,5 ml nucleic buffer (40 mM Tris pH 7,8, 1,5% su-

crose, 0,1 mM EDTA, 6 mM MgCl2, 50 mM KCl, 5 mM DTT, 0.4% NP-40). The 

tube was then incubated on ice for 5 min which was followed by a centrifugation 

at 13000 rpm for 5 min at 4°C. The steps after the first centrifugation was then 

repeated twice before the pellet was resuspended in 20 ml 0,5 M EDTA and dH2O 

to a total volume of 100 ml. 100 ml 10% sodium lauryl sulphate (sarcosine) was 

then  added to the tube, which then was gently mixed and incubated at 55°C for 15 
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min. After that 250 ml 4M NH4Ac was added and was followed by centrifugation 

at 13000g for 15 min at 4°C. The supernatant was then transferred to a fresh 1,5 

ml eppendorf tube and precipitated by adding 1 ml ice cold 99% EtOH. The tube 

was then centrifuged at 13000 g for 10 min which was followed by a wash with 

1.5 ml cold 70% EtOH. The pellet was briefly air-dried and  resuspended in a suit-

able volume of 10 mM Tris-Cl pH 8.5. Finally10 mg/ml of RNase A was added to 

the DNA solution, followed by incubation at 37°C for 1 hour.  

The DdR-21 gene with surrounding sequence was isolated from the genome by 

PCR, the Stratagene Robocycler
®
 Gradient 96 were used for all PCRs. Two sets of 

primers (489/490 + 491/492) were used to introduce two different pairs of restric-

tion sites, Sal I/Kpn I + Sac I/Xba I, flanking the DdR-21 insert. PCR was carried 

out by using 2,5 µl of each primer together with, 1 µl genomic DNA, 5 µl Pfu 

reaction buffer (10x), 1 µl Pfu Turbo polymerase (2,5 units/ µl), 1 µl dNTP solu-

tion (10mM of each nucleotide) and dH2O to a final volume of 50 µl. The PCR 

cycling conditions were 95°C for 2 min, 35 cycles of 95°C for 30 s, 55°C for 30 

sec, 62°C for 2 min, followed by a final extension of 62°C for 10 min. 

2.3.2 Agarose gel electrophoresis 

Agarose gel electrophoresis was the method used during the project to analyze the 

size and purity of the DNA or RNA of interest. The agarose gels were made with 

concentrations variying between 0.8-2% depending on the size of the fragments to 

analyze. TBE (0,5x) was used to make the gels and as running buffer. To be able 

to visualize the DNA fragments ethidiumbromide (0.5 µg/ml) was added to the 

gels before they were casted. The gels were run at 100V and 60mA. A UV-table 

with a connected camera (GelPhotoSystem GFS1000) visualized the fragments in 

the gel. As size markers a, 1Kb ladder or a 100 bp ladder (Fermentas) were used 

depending on the size of the fragments. 

2.3.3 TOPO TA cloning of PCR products and plasmid purification 

To get the PCR products into the competent DH5α strain of Escherichia coli the 

TOPO TA Cloning
®
 kit (Invitrogen) was used with the pCR

®
2.1 TOPO

®
 vector. 

This would create two TOPO plasmids, named v001 (DdR-21 amplified with oli-

gos 489/490) and v002 (DdR-21 amplified with oligos 491/492), containing the 

wild type DdR-21 with surrounding nucleotides but flanked by different restriction 

sites. The cloning was performed according to the manufacturer´s recommenda-

tions with the difference that in the procedure of addition of A overhangs a 2x 
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Master Mix containing 0.05 units/µl Taq DNA Polymerase in reaction buffer, 4 

mM MgCl2, 0.4 mM dNTPs (Fermentas) was used instead of seperate solutions for 

H2O, buffer, dNTPs and polymerase. The TOPO cloning mixture was incubated at 

30 min to get efficient cloning before transformation into DH5α. Transformation 

was done by heat-shock where 40 µl of the competent cells were mixed with 2 µl 

of TOPO cloning mixture before incubation in a 42°C watherbath for 30 sec and 

then i put back on ice. After the heat-shock, the cells were imideatly put back on 

ice. 10 µl of the mixture were mixed with 200 µl of LB [58] and then spread on 

selective LB + ampicillin (50 ug/ml) plates and incubated at 37°C over night.  

For isolation of more plasmides the transformed colonies were grown in 2 ml 

LB + ampicillin (50 ug/ml) in a shaking incubator (LAB-LINE) at 250 rpm and 

37°C before plasmid purification were performed. The plasmid purifications in 

this project were performed with one of three different kits, QIAprep Spin Mini-

prep Kit or QIAGEN Plasmid Midi Kit both from Qiagen or Fermenta´s The Ge-

neJET™ Plasmid Miniprep Kit. In all instances the protocols supplied with the 

kits from the manufacturer were followed when performing plasmid preparations. 

The only difference was the amount of starting material where 2 ml bacterial cul-

tures were used for the miniprep kits and 100 ml cultures for the midikit. A Nano-

Drop1000 spectrophotometer (Thermo Scientific) was used to analyze the concen-

tration of DNA or RNA. 

2.3.4 Sequencing of DNA 

Sequencing was performed to analyze the constructed plasmids in order to verify 

that they contained the correct inserts. Sequencing was done both at Uppsala Ge-

nome Center and at Macrogen Inc. The sequencing files were analyzed by the pro-

gram Chromas Lite 2.01 and the online program ClustalW2 was used for sequence 

alignments. 

2.3.5 PCR-based mutagenesis 

To introduce the mutations in the promoter and loop regions oligonucleotides were 

designed for site directed mutagenesis by PCR. In order to optimize the mutagenic 

PCR many different annealing temperatures were tried before the mutations were 

succesfull incorporated. Included here are only the experimental conditions which 

worked succesfully. One of the inserts contains mutations both at the promoter and 

loop region so here the mutagenesis was done in two steps. First the v001 plasmid, 

described in 2.2.3, is used as template to insert the promoter mutation, creating the 
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v011 plasmid. The v011 plasmid is then used as a template for the second loop 

mutation, creating the v211 plasmid containing the first cassette. For the first loop 

mutation the v002 plasmid, described in 2.2.3, is used as a template, creating the 

v102 plasmid containing the second cassette. 

To introduce the promoter mutation primers 496 and 497 was used and to get 

the two different loop mutations forward primers 517 and 528 was used together 

with reverse primer 419. The PCRs were performed by using 1 µl of each primer 

together with, 1 µl plasmid template (v001 for the promoter mutation, v002 for the 

loop 1 mutation and v011 for the loop 2 mutation), 5 µl Pfu reaction buffer (10x), 

1 µl Pfu Turbo polymerase (2,5 units/ µl), 1 µl dNTP solution (10mM of each nuc-

leotide) and dH2O to a final volume of 50 µl. The PCR cycling conditions were 

95°C for 2 min, 14 cycles of 95°C for 30 s, 55°C for 30 sec for the promoter muta-

tion and 52°C for the loop mutations, 72°C for 5 min. 

The PCR-based mutation reactions were Dpn I treated in order to destroy the 

original fully methylated template DNA and leave the PCR products intact. Aga-

rose gel electrophoresis was performed to verify that the template DNA had been 

degraded. Transformation and plasmid preparation of the Dpn I treated PCR prod-

ucts were then done as in the TOPO cloning. Further analysis to confirm the mu-

tated plasmids was performed by analytical PCR. For the analytical PCRs 1 µl 

template was mixed with 1 µl primer (forward primers 498 and 489 for the promo-

ter mutation and loop mutations respectively and reverse primers 489 and 493/494 

for the promoter and the loop mutations 1 and 2 respectively), 12,5 µl 2 x PCR 

Master Mix and 9,5 µl dH2O. The PCR cycling conditions were 95°C for 5 min, 

30 cycles of 95°C for 30 sec, 55°C for 30 sec, 60°C for 1 min and a final extension 

at 60°C for 10 min. The analytical PCR was followed by agarose gel electrophores 

to visualize the results. Finally sequencing was performed as a definitive confir-

mation. 

2.4 Transformation into D. discoideum  

2.4.1  Gel extraction and ligation into the pDXA-HC vector 

FastDigest
®
 restriction enzymes (Fermentas) matching the flanking restriction 

sites, Sal I + Kpn I and Sac I + Xba I, were used to cleave out the confirmed in-

serts from 10 µg of the TOPO-plasmids. The protocoll included from the manu-

fucturer for double cleavage were followed. 10 µg of the pDXA-HC vector was 

also cleaved with the same restriction enzymes as the construct to be inserted in it 
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and 2 µl FastAP, Thermosensitive Alkaline Phosphatase, (Fermentas) was added 

to remove phosphates and prevent self-ligation of the vector. All the cut out inserts 

were loaded on a 1.2% agarose gel and the linearized pDXA-HC vector were 

loaded on a 0.8% agarose gel. Fragments of the correct sizes were excised by a 

sterile scalpel blade and used for gel extraction. Gel extraction was performed 

with the Fermentas GeneJET™ Gel Extraction Kit and it was done following the 

manufacturer´s instructions. 

T4 DNA Ligase (Fermentas) was used for ligation of the extracted inserts into 

the vector; the molratio 3:1 of vector to insert was used. Because of low yields 

from the gel extraction only 50 ng of vector was used and the amount of insert was 

adjusted accordingly. The ligation reaction was otherwise performed after the pro-

tocol supplied from the manufacturer and the reactions were incubated over night 

at 22°C. To achieve the double construct with both the cassettes into one pDXA-

HC plasmid the process of cleaveage and ligation was done a second time but this 

time with the other pair of restriction enzymes. 

2.4.2 D. discoideum transformation by electroporation 

The D. discoideum AX3 strain was used for transformation at a cell density of 1-

4·10
6
 cells/ml. 10

7
 cells were aliqouted in 12 ml falcon tubes and centrifuged at 

300 g at 4°C for 4 min. The supernatant was discarded and the pellets resuspended 

in cold Zap buffer [59] to 10
7 
cells/ml. 800 ml of the resuspended cells were mixed 

with 10 mg of the transformation construct and added to a chilled electroporation 

cuvette (0,4 cm gap, Bio-Rad) and incubated on ice for a few minutes. The elec-

troporator (Bio-Rad GenePulser) was set to 3 mF and 1KV (2,5 KV/cm) and the 

cells were zaped with a time constant of 0.9-1.4 being acceptable. The electropo-

rated cells were then transfered to three petri dishes (15 cm) filled with 10 ml HL5 

+ PenStrep (10µl/ml) medium, i.e 100 µl, 200 µl and 500 µl respectively. As con-

trols, plates with electroporated cells with no DNA were included. 

The pDXA-HC vector contains the Tn5 neo (R) gene which confere G418 resis-

tence which is used for selection. G418 selection was performed by first incubat-

ing the electroporated cells in HL5 + PenStrep (10µl/ml) for 24 hours before the 

medium is changed to include 5 g/ml G418 and incubated for three days at 22°C. 

The medium was then changed to 10g/ml G418for yet another three days before 

adding medium without G418 for three days to improve the viability of cells. The 

last step of the selection is to again add medium with 10g/ml G418 each third 

day until colonies are claerly visible on the plates.  
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To analyze the visible colonies and get larger cultures the colonies were trans-

ferred to a 24-well plate where they were kept growing before single colonies were 

isolated. To isolate single colonies a 200 µl pipette was used to suck the liquid up 

and down in the wells to make the cells detach from the bottom. 100 µl were then 

transferred to a 1,5 ml eppendorf tube and the cell density was counted in a hemo-

cytometer. Approximately 50 cells are spread together with 250 µl K. pneumoniae, 

which was grown in SM-medium, on a SM-plate containing 0,5 M MES, 40 ml/L 

(SMM-plate). The plates are then incubated at 22°C for 4-6 days until large pla-

ques appear which can be analyzed by PCR.  

To get a good template for the PCR cells are scraped of the plaques and resus-

pended in 10 µl dH2O to which 25 ml LysB buffer (50 mM KCl, 10 mM Tris pH 

8,3, 2,5 mM MgCl2, 0,45% Nonidet P40 and 0,45% Tween 20) and 1µl proteinase 

K was added. The mixture is then incubatedt at 95°C for 5 min to inactivate the 

proteinase K before it is ready to be used as template for PCR. The analytical PCR 

is done as described in 2.3.5 and the primers used depend on which insert is in the 

plasmid that has been transformed into the cells. For the first insert primer 489 

was used as forward primer and primers 499 and 528 as reverse primers for con-

firmation of the promoter mutation and the loop mutation two respectively. For the 

second insert primer 489 was used as a forward prime and primer 518 as a reverse 

primer to confirm the loop mutation one. 25 ml cultures are started from the pla-

ques with cells that contain confirmed correct plasmids as stated earlier. Trans-

formed cells with all the different plamids were succesfully made and stored in -

80°C to be later used for RNA extraction and expression studies. 

2.5 RNA extraction from D. discoideum 

Approximately 10
8
 D. discoideum cells are collected in a 50 ml falcon tube and 

centrifuged in a swing-out rotor at 300 g for 5 min at 4°C. The pellets are resus-

pended in an equal volume as the culture volume of cold PDF (20 mM KCl, 5 mM 

MgCl2, 13 mM KH2PO4, 7 mM K2HPO4, pH 6.2) and spun down again. The pel-

lets are resuspended in 1ml TRIzol reagent (Invitrogen) in a 1,5 eppendorf tube, 

vortexed and inbubated for 5 min at room temperature. 200µl of chloroform is 

added and the mixture is vortexed and incubated for 3 min at room temperature. A 

15 min centrifugation at 12000 rpm in a microcentrifuge (BIOFUGE pico He-

raeus) was followed by a separation of the phenol/chloroform and aqueous phases. 

The RNA is in the aqueous phase so that phase is transfered to a new 1,5 ml ep-

pendorf tube to which 500 µl room-tempered isopropanol is added followed by a 
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10 min incubation at room temperature. Precipitation of RNA by a 10 min centri-

fugation at 13000 rpm was then followed by discarding the supernatant and wash-

ing the RNA pellet with 1 ml room-tempered 70% ethanol. The wash was fol-

lowed by a 5 min centrifugation at 13000 rpm and all ethanol were then discarded 

and the pellets were allowed to air-dry for a short time. The dry pellets were then 

disolved in RNase free dH2O and the final RNA concentration were determined by 

NanoDrop. To analyze the integrity of the RNA a 1,5% agarose gel electrophores 

weas done and two sharp bands representing the 16S and 26S subunits of the ribo-

some were expected if the RNA were intact.  

2.6 Expression analysis by northern blot 

For expression analysis by northern blot 20 µg total RNA were first mixed 1:1 

with 2 x RNA loading dye and denatured at 95°C and chilled on ice before they 

were loaded on the gel. A 10% polyacrylamide gel containing1xTBE and 7M Urea 

were used, 10% APS (1:100) and TEMED (1:1000) were added to initiate polyme-

rization of the gel. The gel was casted to an approximate size of 20x20x0.1cm and 

prerun at 21W in 1xTBE for 1 hour. The prepared RNA samples were then added 

to the washed wells and run for approximately 2 hours for separation of the small 

RNAs. As size markers a DNA ladder ([-
32

P]-ATP end-labeled pUC197MspI, 

AMbion) and a RNA ladder ([-
32

P]-ATP end-labeled Decade marker) were used. 

Next, electroblotting of the gel was done where the RNA was transfered to a 

Hybond-N+ (Amersham Biosciences) nylon membrane by running it in TBE (1x) 

buffer at 20V in 4°C over night in a Bio-Rad Trans-Blot Cell. To fix the RNA to 

the membranes UV-crosslinking was done at 150mJ in a Bio-Rad GS Gene Link-

er. For the hybridization step, 15µl of the oligonucleotides (15 pmol) used were 

radioactively labeled using 10µl [-
32

P]-ATP (100µCi), 2,5 µl 10 x T4 PNK reac-

tion buffer, 0,5µl T4 PNK (10 U) and 25µl dH2O. The probes were ready to use 

after 1 hour incubation at 37°C. QIAquick nt removal (QIAGEN) was used to re-

move unincorporated nucleotides. 

Before hybridization the membranes were incubated in Church buffer (1 % 

BSA, 1 mM EDTA, 0,5 M NaH2PO4 (pH 7,2), 7 & SDS) at 42°C for 1 hour and 

the oligos were denatured at 95°C for 5 min then put on ice for 5 min. The mem-

branes were then soaked in approimately 30 ml of fresh 42°C Church buffer to-

gether with the denatured oligos in a hybridization bottle (Amersham Bios-

ciences). The bottles are then put in a hybridization oven (Hybaid Mini Hybridiza-

tion Oven) at 42°C over night. The next day the membranes are washed in 42°C 
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washing buffers of equal volumes as the hybridization buffer in the subsequent 

order: rinse with 2xSSC/0.1%SDS, 2x5min 2xSSC/0.1%SDS, 2x10 min 

1xSSC/0.1%SDS, 2x 5min 0.5xSSC/0.1% SDS. The membranes were then sealed 

in a plastic hybridization bag and exposed in a phosphorimager (Molecular Dy-

namics PhosphorImager) and the expression results could then be easily analyzed. 

2.7 Set up of a bacterial infection system of D. discoideum 

2.7.1 Growing L. pneumophila 

The L. pneumophila Philadelphia 1 (NC_002942) strain used in the project was a 

kind gift from Professor R. Isberg (Tufts University, Boston, USA). The strain 

contains a gene for streptomycin resistence used for selection and also contains a 

plasmid that express GFP from an isopropyl-D-thiogalactopyranoside (IPTG)-

inducible promoter, GFP is used when looking at the bacteria in a fluorescense 

microscope [60]. The bacteria were succesfully grown both on agar plates and in 

solution. Charcoal yeast extract (CYE) agar supplied with ACES (N-(2-

acetamido)-2-aminoethanesulfonic acid, Sigma) was the medium used for growth 

on agar plates and for growth in liquid medium the same medium but without 

charcoal (AYE-broth) was used [61]. Both on plates and in liquid culture the bac-

teria were grown at 37°C and for adequate growth in liquid culture a constant 

shaking at approximately 200 rpm was needed. L. pneumophila growing on plates 

could be kept and used for appoximately 14 days in 4°C before new had to be re-

trieved from the -80°C stock. 

2.7.2 Infection of D. discoideum 

The infection system that was set up in this project was adapted from existing pro-

tocols from other groups that perform succesful infections of D. discoideum 

[60,62]. Fresh L. pneumophila from CYE-plates were picked with a sterila tooth-

pick and spread in 1x1cm patches on a freshly made CYE-plate and incubated at 

37°C for 2 days. 18ml AYE-broth containing 5 µg/ml streptamycin antibiotic and 

1mM IPTG was prepared and aliqouted to five 12 ml falcon tubes, 6 ml in the first 

and 3 ml in the rest. All bacteria from a patch is collected and added to the first 

tube, which then is vortexed for 30 sec to resuspend the bacteria. From the first 

tube 3 ml is then added to the second tube, which then is vortexed for 30 sec and 

the procedure is repeated until all five tubes contain 3 ml with different dilutions 
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of L. pneuomophila (1:1, 1:2, 1:4, 1:8 and 1:16). The tubes were then incubated at 

37°C over night shaking at 200 rpm.  

The next morning the cell density of the cultures were analyzed by measuring 

the OD600 where OD = 1 corresponds to approximately 10
9
 cells. An OD of over 3 

was aimed for since that is approximately when the bacteria starts to develop mo-

tility. However, variation between cultures was very high. The apperance and mo-

tility of the bacteria was analyzed by light microscopy (40x magnification). High 

percentage of short and fat cells with over 10% motile were the requirements for 

the culture to be used in the infection. The D. discoideum culture that were to be 

used in the infection were also analyzed so that the cell density were at the re-

quired level of 2-3·10
6
 cells/ml before infection could be commenced. Approx-

imately 1·10
7
 cells of the  D. discoideum culture was then collected at 300g for 5 

min for AX4 cells and 1000 rpm for 2 min for AX2 cells. The pelleted cells were 

then washed twice with rich 1xMB medium (5 ml 10xMB (35 g yeast extract, 70 g 

thiotone, 0,5 L dH2O), 5ml 400 mM MES (pH 6.9), 40 ml sterile H2O) before the 

pelled cells were resuspended in rich 1xMB medium and diluted to a concentration 

of 8·10
5 
cells/ml. 

The infection was performed in a 24 well-plate where different infection condi-

tions could be used in different wells. In the wells where screening by microscopy 

was to be done, round cover slips were added. Before infection could be started, 

500 µl of the diluted D. discoideum were added to all wells, except in the control 

lane where only L. pneumophila was present, and let to settle for 2 hours. The L. 

pneumophila culture chosen for infection was diluted in rich 1xMB so that the ad-

dition of 20 µl gave the right totalt concentration, depending on the wanted MOI. 

20µl of the diluted bacteria was added to all wells were infection were to take 

place. To the control wells with only L. pneumophila the 20 µl of bacteria solution 

were added together with 500 µl rich 1xMB. Infection was then initiated by centri-

fugation at 1000 rpm for 5 min before the plate were incubated at 25.5°C. 

For removal of non-internalized L. pneumophila two different procedures were 

done. 2 hours after initiation of infection Gentamicin to a final concentration of 

100 ug/ml were added to the wells before incubation were continued at 25.5°C. 

After an additional 2 hours the wells were washed 3 times with 500µl 1xMB to 

remove the gentamicin and to remove any non-internalized bacteria not killed by 

the antibiotic. Finally 500µl of 1xMB were added to all wells. In addition IPTG to 

a final concentration of 0,1mM was added to the wells to be screened by micro-

scopy. Subsequently, the plate were incubated for the final 2 hours at 25,5°C. 
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2.7.3 Screening of infection 

To screen for infected D. discoideum two different analytical methods were used, 

one focusing on quantfication of infection and the other on accurate confirmation 

of infection. 

 

2.7.3.1 Confirmation of infection by microscopy 

For analyzis of infection by microscopy round cover slips are placed in the wells 

of interest before infection is started in the 24-well plate. To be certain that the 

cover slips are sterile and un-contaminated, the 24-well plate with cover slips is 

put in UV-light for approximately 20 min before start of infection. After infection 

was completed the wells were aspirated of all solution and 500µl formaldehyd so-

lution (3,7% formaldehyd in 1xPBS (137 mM NaCl, 2,7 mM KCl, 10 mM 

Na2HPO4, 2 mM KH2PO4, pH 7.4) was added, followed by 20 min incubaion at 

room temperature for fixating the D. discoideum cells. The formaldehyd solution 

was then apirated and the wells were immideatly washed with 1xPBS, which was 

repeated three times. 

Next the coverslip with the fixated cells was mounted on a microscope cover 

slide. A drop of Fluoro Guard antifade Reagent (BioRad 170-3140) was added to 

the slide and the coverslip from the 24-well infection plate was put on top of it. 

Nail polish was then put all around the cover slip for fixation before the slide was 

put to dry in a dark drawer for approximately 1 hour. The slides were then stored 

in -20°C and ready to be analyzed by microscopy. A Zeiss Axioskope flourescent 

microscope was used for the microscopy analysis and the program AxioVision 

Rel. 4.8 was used for taking pictures of the infected D. discoideum. 

 

2.7.3.2 Quantitative screening of infection 

To get a quantitative screening of the infection a plating assay was performed. To 

the wells of interest 0,02% saponin was added to break the D. discoideum cells. To 

mix a 200µl pipett was used to suck up and down 10-15 times and all the solution 

in the well were put in a 1,5 ml eppendorf tube. 500µl dH2O was then added to the 

well and mixed before the solution was put in the same tube, which then vortexed 

for 30 sec. The previous intracellular L. pneumophila could be quantified by 

spreading it on CYE plates. To be able to get quantifible data a dilution series 

could be necessesary depending on the MOI used in the infection. For a MOI of 

10:1 no dilution was needed to get a countable amount of colonies on the plates. 

Of the sample, 10µl were added to 90µl sterile 0,9 % NaCl, which were then 
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spread on CYE plates containing Cm (5 µg/ml) and incubated at 37°C for 3-4 

days. The plates were then analyzed by counting the number of colonies which 

then gave approximate results of the infection efficiency. 

2.8 Bacterial predation of D. discoideum 

This method was modified from Shevchuk and Steinert 2009 [62] and is used for 

screening of virulence traits in L. pneumophila and as an analysis of the D. discoi-

deum susceptibility to infection. Different strains of D. discoideum, AX2, 

AX2DrnB
-
 and AX2RdpC

-
, were tested for growth together with only K. pneumo-

niae or with L. pneumophila and K. pneumoniae. 

The D. discoideum strain of interest were grown to a cell density of 1-3·10
6
 

cells/ml and centrifuged at 2000 rpm for 2 min and resuspended and washed in an 

equal volume of 1xSørensen buffer (2.0 g KH2PO4 0.29 g Na2HPO4, pH 6.0). The 

pellet is then resuspended in infection medium (1:1 HL5 and 1xSørensen buffer) 

to a final cell density of 1·10
4
 cells/ml. Both K. pneumoniae and L. pneumophila 

are suspended in 100µl dH2O and centrifuged at 300g for 5 min and the pellets are 

then resuspended in 2 ml dH2O. The bacterial cultures are then diluted to a final 

concentration of 1·10
9
 cells/ml by measuring OD 550nm (OD 1  1,31·10

9
 

cells/ml). 

100µl of the K. pneumoniae suspension is mixed with 100µl of the D. discoi-

deum suspension and 100µl dH2O and spread on a SMM-plate. In addition, 100 µl 

of K. pneumoniae suspension and 100µl D. discoideum and 100 µl L. pneumophila 

is spread on a second SMM-plate. These plates are then incubated at 22°C for 3-5 

days until plaques appear.  

2.9 SOLiD analysis of infected D. discoideum 

The RNA used from uninfected and infected cells for the SOLiD sequencing was a 

generous gift from Professor R. Isberg in the US. The same methods were used as 

in Li et al., [63] to separate and extract the RNA. The RNA was then sent to Upp-

sala Genome Sequencing that performed the preparation of small RNAs and the 

SOLiD sequencing using an ABI SOLiD 3 system (Applied Biosystems), which 

resulted in approximately 3 million sequences for each sample. The SOLiD data 

was then carefully collated and filtrated to divide the sequences into different li-

braries of interest.  
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3 Results 

3.1 Overview 

The first goal of this project was to set up an infection system based on existing 

protocols where the social amoeba D. discoideum is used as a host for L. pneumo-

phila. Adaptation and optimization of the infection system used by other resarch 

groups have given us good insights in what was necessary to succesfully achieve 

infection. However, it has shown to be harder then expected to get high infection 

efficiency and a good detection system. The bioinformatic analysis of RNAs in 

infected and unifected cells presented here give a good first indication of what can 

be found in the upcoming extensive analysis of the huge amount of data that was 

recieved by SOLiD sequencing. 

As for the analysis of the putative promoter element the plasmid with the double 

construct (see below) has been sucesfully created and expression studies was 

started but not finished during the scope of this project.  

3.2 Functional investigation of DUSE 

The function of Class I RNA genes, so far only identified in D. discoideum, is still 

unknown but earlier findings have demonstrated that ncRNAs are involved in in-

fection in plants and bacteria which lead us to the tought of them playing a role in 

the respons to bacterial infection [43,44]. To get a first insight into this we used 

SOLiD sequencing which gave us expression data of RNAs in the size range of 

~10-40 nt (including fragmented longer RNAs). By comparing the RNA popula-

tions derived from infected and non-infected D. discoideum cells, RNAs that were 

up- or down-regulated during infection could be identified. To further study this 

class of long ncRNAs we decided to investigate a potential promoter element, 
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DUSE, which has been found in front of the Class I RNAs genes. This putative 

promoter element could then be used to tinker with the expression of the genes and 

thereby give us a better insight into their function. For this to be possible the ele-

ment had to be confirmed as a promoter element and that was one big part of this 

thesis. This project was previousely started by me as part of a research training 

project a few months before the master thesis started. 

To study the putative promoter element, DUSE, the Class I ncRNA gene DdR-

21 was used as a model gene since it had been well studied in our lab. In addition 

to the upstream promoter region additional sequences surrounding the transcrip-

tional unit of the gene were also included with the model gene. This was done 

since we could not be sure if there are additional regulatory sequences besides the 

DUSE that could affect the experiment if they were left out. To study the function 

of the promoter element our strategy was to create an extrachromosomal plasmid 

containing two modified versions of the DdR-21 gene. This plasmid double con-

truct was then transformed into D. discoideum from which RNA could be ex-

tracted and expression analysis made by northern blot. 

Figure 4. The constructed two cassettes of two differently modified DdR-21 genes with surroundings 

inside a pDXA-HC plasmid. Cassette 1 contains the wild type promoter and loop mutation 1 while the 

second cassette contains a mutated promoter and loop mutation 2. The cassettes are depicted in black 

and the parts of the plasmid included are shown in red. 
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3.2.1 Construction of the extrachromosomal plasmid constructs 

To analyse the putative promoter altered versions of the Class I gene DdR-21 was 

used and inserted into an extra chromosomal plasmid, pDXA-HC. To be able to 

modify the gene it was first inserted into a TOPO-vector where mutations are easi-

er to incorporate by site-directed mutagenesis. The modified genes were cut out of 

the TOPO-vector and subsequently ligated into the pDXA-vector and then succes-

fully transformed into D. discoideum.  

For analysis of the promoter element (DUSE) three nucleotides in the promoter 

element, CCC, were changed to Gs, figure 4. In order to study the effect of this 

promoter mutation the expression of DdR-21 variants preceeded by the wild type 

or mutated DUSE was monitored. To be able to distinguish between the endogen-

ous DdR-21 and the plasmid encoded constructs we also changed four nucleotides 

in the loop sequences of the genes. This made it possible to specifically detect the 

altered extrachromosomal DdR-21 in the gene expression analysis. 

In addition to the insert with the mutated promoter and loop sequence, DdR21-

1**_GGG, another insert with a different loop mutation and a wild type promoter, 

DdR21-2*, was constructed and inserted after the first insert, creating two cas-

settes in the plasmid, figure 4. This was done for quantification purposes and to be 

able to use the other insert as a monitor of copy number effects and to see that the 

transformation was succesful. Hence, if no RNA can be detected from the promo-

ter mutation construct we can determine that this is not due to a low plasmid copy 

number as long as the insert with wild type promoter is expressed. 

A set of primers were designed for site directed mutagenesis to be able to make 

the different constructs, table 7 (appendix). The use of site directed mutagenesis to 

introduce the mutations was harder and more time consuming then expected be-

cause of long A and T-stretches in close proximity to the gene and because of the 

overall high AT-content. However, all the plasmids were successfully created and 

could be transformed into D. discoideum. 

3.2.2 Verification of the double construct 

To confirm that the created extra chromosomal plasmid contained the correct in-

sert an analysis first by restriction digestion and then by sequencing was done. In 

order to see that both cassettes had been introduced correctly into the plasmid, 

cleavage by restriction enzymes were performed giving clear products of the ex-

pected size, data not shown. To confirm that the cassettes contained the correct 

modifications the plasmid was sent for sequencing, figure 5. The first cassette con-
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tained the wild type promoter and loop mutation 1 while the second cassette con-

tained the mutated promoter and loop mutation 2, confirming the intended con-

struct.  

 

Figure 5. Alignment of the interesting parts of the sequences of the two modified constructs com-

pared to the wild type. The DdR-21 gene is marked in grey and the loop sequences are colored pur-

ple. The altered nucleotides of the putative promoter upstream of the gene are marked in yellow. N 

marks uncertain nucleotides in the sequences. 

3.2.3 Tranformation into D. discoideum and screening of single 
colonies 

The constructed plasmids, pDXA_DdR21-1, pDXA_DdR21-2, pDXA_DdR21-

2**, pDXA_DdR21-1*_GGG and pDXA_DdR21_DC were subsequently trans-

formed into a D. discoideum AX3 strain. The first four plasmids were succesfully 

created and stored in -80°C previous to the start of this master thesis. Transforma-

tion was carried out by electroporation and to identify the transformants G418 

(Geneticin) selection was used. Primary transformants were harvested and spread 

on SM-agar plates together with K. pneumoniae to get single clones from which 

DNA could be extracted for screening.  

PCR screening for the double construct was performed with a forward primer 

targeting the vector in front of the first cassette and reverse primers targeting the 

loop mutations within the cassettes, giving expected products of ~400 bp  and 

~1050 bp, respectively. As controls, cells were transformed with pDXA-HC vector 

without insert and these were screened for by a forward and reverse primer within 
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the vector, expected to generate a product of ~750 bp. Five clones of the control 

with only vector were analyzed and three positives were confirmed, figure 6. Only 

two single plaques of the double construct were obtained and screened and one 

was positive for both cassettes and the other only for the first, figure 6. All the 

positive clones were stored in -80°C and will be used in future expression studies. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. PCR identification of single colonies from D. discoideum containing only the pDXA-HC vec-

tor and colonies containing the pDXA-HC vector with the double construct. Lanes 1-5 contains five 

different clones, analyzed with primers 516+517, with just the vector and lanes 3-5 are clearly posi-

tive. Lanes 6-9 contains two different clones containing the double construct. Lanes 6-7 are for one 

clone, lane 6 is analyzed with primers 516 as forward and 493 as reverse primer and lane 7 is ana-

lyzed with 516 as forward and 495 as reverse primer. Lanes 8-9 are for the other clone with the same 

primers used as for lanes 6 and 7. The analysis was made so that both cassettes were searched for 

and it seems as both are at least there in the second clone. 

3.2.4 Expression analysis of the putative promoter element 

Even though all constructs were succefully created and transformed into D. dis-

coideum there was not enough time during the span of this project to perform the 

expression analysis on the final extra chromosomal plasmid containing the double 

construct. To get a first insight into the possibility of the DUSE functioning as a 

promoter an expression analysis (northern blot) was performed on a construct with 

only the mutated promoter, pDXA_DdR21-2_GGG, comparing it to the wild type, 

figure 7.  
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Figure 7. Expression of the extrachromosomal DdR-21 in two different clones containing the same 

construct. Two different versions of the wild type were used because of variations in cloning. The 

AX3 control and size marker (M) are included for reference. Experiment performed by Lotta Avesson. 

The probe used in this northern blot detects both the endogenous DdR-21 and the 

plasmid expressed DdR-21. The loading control, U6 snRNA, shows that the 

amount of RNA loaded in each lane varies very much. The weak bands in lanes 7-

8 with the promoter mutant can be compared with lanes 3-4 containing the wild 

type promoter. A big difference can be seen here with almost no expression of 

DdR-21 when the promoter is mutated while the expression is still high in the wild 

type with the normal promoter. These data clearly points in the direction that the 

DUSE has an important role as a promoter element in front of ncRNA genes like 

DdR-21. Further confirmation will be gained when the plasmid containing the 

double construct can be analyzed in a similar fasion.  

Looking at lanes 2 and 6 that have approximately the same amount of RNA 

loaded and comparing the expression of DdR-21 it can be concluded that there 

seems to be no dfference between the 30T and 29T wild type. This was analyzed 

because the problems with the unstable T stretch located near the putative promo-

ter sequence. 

It can also be clearly seen that endogenous DdR-21 is present in all lanes, which 

should give as strong bands as the loading control. The AX3 which was loaded in 

lane 9 is used as a control for the endogenous expression and as can be seen here 

the bands for the loading control and the DdR-21 are approximately equally 

strong. The DdR-21 gene is transcribed as a precursor before it is cleaved into its 

functional form and the probe also binds to this precursor explaining the third 

bands seen in figure 7.  
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3.3 L.pneumophila infection of D. discoideum 

The aim of this part of the project was to to set up a good infection system in the 

lab with D. discoideum as a host for different bacteria. As stated above (table 1) 

many different bacteria have been succesfully used to infect D. discoideum but so 

far L. pneumophila has been most extensively studied, hence it was a logical 

choice to start with and the only one used in this work. A logical continuation of 

this project will be to try to develop the infection system for other interesting bac-

teria like Mycobacterium marinum and Klebsiella pneumoniae. In addition to set-

ting up the infection system with L. pneumophila we also wanted to investigate the 

RNA interference response in the host upon infection with the use of different 

knock out strains. In connection to this we also analyzed the small RNA popula-

tion in infected and uninfected cells by SOLiD sequencing. 

3.3.1 Optimization of infection 

Infection with L. pneumophila has been performed successfully in other labs with 

similar methods but with a high variation of infection percentage indicating that 

very small differences can lead to big variance in infection efficiency. Previousely 

to this project an infection system was unexisting in the lab meaning that we had 

to start everything up from the beginning and go through lots of adaptation and 

optimization steps to achieve successful and confirmed infection. The infection 

was done by growing L. pneumophila to a certain cell density at which it devel-

oped motility and then adding it at a specific MOI to wells containing D. discoi-

deum at a concentration of 4·10
5
 cells/ml, figure 8. After infection was started by a 

short centrifugation the 24-well plate were incubated at 25.5°C for 6 hours. During 

these 6 hours Gentamicin was added 2 hours after initiation of infection and was 

subsequently removed 2 hours later by a washing procedure. This was done to re-

move non-internalized bacteria. The infection was then either screened by micro-

scopy or quantified by plating. The different parameters that were analyzed for 

optimization were the motility of the bacteria, the concentration of D. discoideum 

and L. pneumophila, the use and concentration of the antibiotic Gentamicin and 

the number of washes needed to kill and remove non-internalized bacteria. 
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Figure 8. Flowchart of infection including a short description of the most important steps. 

The motility of the bacteria is probably the most important parameter determining 

the infection efficiency and motility is dependent on the growth phase of L. pneu-

mophila. By measuring the OD at 600nm of the liquid bacteria cultures and then 

checking the motility we hoped to see a connection between these parameters. 

What was found from this was that the variation was very big between cultures 

with motility varying between 0% and 30% cells for the same OD. What could be 

concluded was that an OD of over 3 was required to obtain more then 10% motili-

ty of the cells. 

Another important parameter for efficient infection is to have a proper concen-

tration of D. discoideum cells in the wells where the infection is performed. Too 

tightly packed cells would lead to the cells being protected by each other from be-

ing infected by the bacteria and therby affect the experiment negatively. Concen-

trations of D.discoideum between 1·10
5
-8·10

5
cells/ml were tested and 

4·10
5
cells/ml were found to be the most suitable. The concentration of L. pneumo-

phila compared to the host give the parameter multiplicites of infection (MOI) and 

we found that 10 times more bacteria to D. discoideum (MOI 10:1) gave the high-

est infection efficiency with the strains used.  
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To be able to quantify the infection efficiency all non-internalized bacteria had to 

be killed and removed. This was achieved by adding the antibiotic Gentamicin 

(100µg/ml) for 2 hours during the infection to kill bacteria outside the host cells, 

followed by at least three washes, adding fresh media and removing the killed 

non-internalized bacteria. It could be confirmed that no living non-internalized 

bacteria were left after this treatment when screening it by plating. 

3.3.2 Screening of infection by microscopy 

A bacterial strain containing a GFP-expressing plasmid with an IPTG inducable 

promoter was used in the experiments to be able to confirm that L. pneumophila 

had succesfully infected D. discoideum. This gave the opportunity to easily identi-

fy very scarce numbers of bacteria with a fluorescence microscope both as free 

living and more importantly post infection within the host, figure 9-11. Growth of 

L. pneumophila showed to be just as good both on plates and in liquid culture. The 

advantage of growing on liquid, AYE-broth, was that it was easy to supply ITPG 

at the desired concentration needed for good GFP induction. The bacteria also 

showed to be more motile, making it more infectious, when grown in liquid me-

dium.  

Figure 9. Microscopy photograph of free living L. pneumophila induced with IPTG, 1mM, at 63x 

magnification. The bacteria expressing GFP can be seen as rods of an approximate size of 5-8µm 

fluorescing GFP. 

D. discoideum cells with internalized bacteria were not detectable with the micro-

scopic settings used for visualizing GFP expressing L. pneumophila. This forced 

us to use a different microscope. Bifocal lighting was used to see the fixed D. dis-

coideum cells, figure 10A. The irregular structures seen in the red ring are two D. 

discoideum cells and they are as expected between 10-20µm long. Visible in the 



43 

 

figures are also many grey dots which are contamination from the microscope. For 

visualizing the GFP fluorescing bacteria the settings of the micropsope were 

switched so that flouresence at 440nm could be detected, figure 10B. The image 

shows two rod-shaped bacteria at approximatly the same position as the D. discoi-

deum cells indicating infection. 

 

(a)                                                       (b)  

Figure 10. Microscopic photograph of D. discoideum infected with L. pneumophila at 40x magnifica-

tion at normal bifocal light, (a), and at 440nm flouresence, (b). The D. discoideum cells are visible at 

bificoal light in the red circle and the bacteria are seen at the 440nm at the same location indicating 

that these cells are infected. 

To get a better view of the probable infection figures 10A and 10B were superim-

posed, figure 11. The image clearly illustrates that the left most bacteria lies at the 

same position as the host, however it cannot be said for sure that the bacteria lies 

within the cell and not on top of it. It is even more difficult to say if the right most 

bacteria have infected the D. discoideum cell or if it is just outside the cell, since it 

is situated at the edge of the D. discoideum cell. Through the microscope screen-

ing it could alsod be seen that the frequency of infection was low. This could be 

said because most of the fixed D. discoideum did not seem to be at the same posi-

tion as any bacteria. To be able to analyze the infection in a more quantitative way 

an additional plating screening method was performed. 
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Figure 11. Illustratic picture of the pictures from figure 13 superimposed. It can clearly be seen that 

the bacterium on the left is at the same position as the host cell, indicating that it is within the host. 

The bacterium to the right is situated at the very edge of the host cell and could possibly also be with-

in the host. 

3.3.3 Screening of infection by plating 

The method chosen to quantify the infection was the plating screening were D. 

discoideum cells are infected by L. pneumophila, treated with antibiotic to kill the 

free bacteria, washed and subsequently treated with saponin to release the intracel-

lular bacteria. This mixture is then diluted and spread on CYE plates on which 

colonies are formed from the living bacteria. From the number of colonies on the 

plates the total number of internalized bacteria can be estimated and the number of 

infected D. discoideum can be determined. Two different wild type strains of D. 

discoideum, AX2 and AX4, and two AX2 knock out strains were used for the in-

fection experiment, table 3. 

Table 3. Data from the plating screening assay where 4·105 D. discoideum cells were infected with 

4·106 L. pneumophila cells, i.e.  MOI 10:1.  

Dicty strain # colonies Infection efficiency 

AX4 250 10,0% 

AX2 85 3.4% 

AX2 RdpC- 80 3.2% 

AX2 DrnB- 30 1.2% 
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The experiments showed that the AX4 strain is clearly more prone to infection 

compared to the AX2 strain, table 3. Another interesting result is that the RdpC
-
 

strain shows approximately the same infectivity as the wild type but the DrnB
-
 

strain is almost three times as resistant to infection. This indicates that Dicer B 

somehow is involved in the hosts’ response to bacterial infection while RdpC is 

not. It should be noted that these experiments were only performed once and they 

need to be repeated. 

3.3.4 L. pneumophila effect on D. discoideum growth 

To further analyze the effect L. pneumophila has on the different strains of D. dis-

coideum a plaque assay was performed were the amoeba was grown on plates with 

a lawn of K. pneumoniae alone or together with L. pneumophila. D. discoideum 

normally grow on K. pneumoniae forming plaques as they consume the bacteria. 

By growing D. discoideum on L. pneumophila mixed with K. pneumoniae and 

comparing the plaque size and number with the ones formed on K. pneumoniae 

only it is easy to see the impact the pathogenic bacteria has on the amoeba. The 

data from the assay shows that all the strains have approximately the same number 

of plaques without L. pneumophila, table 4 and figure 12. A difference can be seen 

when looking at the number of plaques when the different D. discoideum strains 

were grown on a mix of L. pneumophila and K. pneumoniae where the DrnB
-
 

strain has more then 50% fewer plaques then the other strains. This data also 

points in the direction that Dicer B is involved in the response to L. pneumophila. 

Table 4. Results from the plaque assay with the different AX2 strains. These data are the average 

value from two different experiments. 

 

 

 

 

 

 

 

Another test that was made was to grow D. discoideum on a bacterial lawn con-

sisting of only L. pneumophila. No plaques could be seen on these plates indicat-

ing that D. discoideum can not grow on only L. pneumophila. 

 

 

Dicty strain With/Without L. pneumophila # Plaques 

AX2 DrnB- Without 435 

AX2 DrnB- With 97,5 

AX2 RdpC- Without 420 

AX2 RdpC- With 217,5 

AX2 wild type Without 420 

AX2 wild type With 220 
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Figure 12. Plaque assay of the AX2 knock out strains with and without the presence of L. pneumophi-

la. 

An additional difference could be seen in the plate assay when comparing the size 

of the plaques in the assay, figure 13. The Dicer B knock out strains clearly shows 

smaller plaques then the other strains both in the presence and absence of L. 

pneumophila. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Photpgraphs of the plates from a plaque assay after 6 days. A) AX2 wild type without L. 

pneumophila. B) AX2 wild type with L. pneumophila. C) AX2 RdpC
-
 without L. pneumophila. D) AX2 

RdpC
-
 with L. pneumophila. E) AX2 DrnB

-
 without L. pneumophila. F) AX2 DrnB

-
 with L. pneumophi-

la.  

0

100

200

300

400

500

Dicer B- RdpC- AX2wt

P
la

 q
u

e
s

Dicty strains

Without

With



47 

 

3.3.5 The role of small ncRNAs in bacterial infection 

The SOLiD sequencing gave massive amounts of data and making an extensive 

analysis of the SOLiD data was beyond this project. In the analysis in this thesis 

we decided to focus on the distribution of the different classes of RNAs, size dis-

tribution of the different libraries and comparative expression studies of the RNAs 

in infected and uninfected cells.  

The distribution of the different classes of RNAs found in the SOLiD data is il-

lustrated as pie charts in figure 14. In both infected and uninfected cells most of 

the hits belonged to complex repeats regions (60,9% and 40,4% respectively). The 

second largest fraction of hits lies within the coding genes (23,5% and 35,1% re-

spectively). Another rather large portion was derived from possible degradation 

products of rRNA and tRNA (4.3% and 8.7% respectively). An unexpectedly 

small portion hits from the retrotransposon DIRS-1 was found (3,3% in both). In 

similar analyses of small RNAs from growing cells, DIRS derived RNA made up 

>50% of the total population of small RNAs [46] (Avesson, Reimegård and 

Söderbom, unpublished). Putative degradation products of other non-coding RNAs 

like snoRNAs and SRP RNAs constitute only a very small fraction in both libra-

ries (1,1% and 0,44%).  

 

Figure 14. Schematic view of the relative differences between the classes of RNAs found in the 

SOLiD sequencing. To the left are data from uninfected cells and to the right are data from cells 6 

hours after infection. 

Looking at the expression patterns data from the SOLID sequencing there were in 

total 5171 specific gene hits with a threshold value of at least 10 hits per gene. The 

top ten genes, with the largest difference in expression in infected compared to 

uninfected cells are listed in table 5. Out of the ten genes only one was downregu-

lated whereas the rest were upregulated in the infected D. discoideum cells. The 

most interesting finding is that one of the Class I RNAs, DdR-31, is the most af-

fected gene, showing that this class of RNAs might play an important role in the 
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host upon infection. The downregulated gene nad7 together with many other of 

the most downregulated genes are situated on the mitochondrial genome (data not 

shown). 

Table 5. The ten RNA genes with the highest difference in expression in infected cells compared to 

uninfected cells. The ratio is calculated from the natural logarith of the number of hits in uninfected 

cells divided by the number of hits in infected cells. Hence a ratio of 2,90 means that the gene is 

expressed approximately 18 times as much in infected compared to un-infected cells,  

 

A previous study where DNA microarray was used to analyze the gene expression 

of L. pneumophila infected D. discoideum cells showed that there are lots of tran-

sciptional changes upon infection [63]. Comparing the significantly regulated 

genes 6 hours post infection in the microarray experiment to the SOLiD data ana-

lyzed in this project showed that only one of the top matches in the SOLiD expe-

riment matched one of the affected in the microarray study, the DDB_G0286651. 

This gene which was highly overexpressed in infected cells compared to unin-

fected cells in our SOLiD data showed to be downregulated in the microarray 

analysis. This could indicate higher levels of expression but also an increased 

turnover of the gene. 

The filtration steps involved in the bioinformatic analysis of the SOLiD data can 

be seen in figure 15. The analyzis of the size distribution of the sequences in the 

different libraries maping to different regions in the genome are shown in the dia-

grams in figure 16-18. Looking at what the different regions have in common it is 

clear that there is a size bias towards 21 nt, a normal size for siRNAs and miR-

NAs. In three of the diagrams there is a great number of small RNAs in the size 

range of 9-15 nt which may be degradation products. 

Gene  Chromosome Ratio Gene description 

r31 5 2,90 Class I RNA, unknown funtction 

fcf1 1 2,24 FCF1 family protein, unknown function 

DDB_G0291598 6 2,13 Unknown gene 

abpC 1 2,10 Actin-binding  protein C, gelation factor 

DDB_G0286651 4 2,08 Saposin B domain-containing gene, lipid- and sphingolipid metabolism 

tRNA-Ser-AGA-7 3 2,04 Serine transfer RNA 

tRNA-Ile-AAU-14 6 2,03 Isoleucine transfer RNA 

nad7 M -2,01 NADH dehydrogenase subunit 7 

kif11 5 1,97 Kinesin family member 11, microtubule-based movement  

DDB_G0280619 3 1,97 Unknown gene 

http://dictybase.org/db/cgi-bin/dictyBase/GO/go.pl?goid=7018


49 

 

Analysing the size range of all sequences (figure 16) a big difference is seen be-

tween the uninfected, and the infected cells. There are more then twice as many 

sequences at 21 nt in the uninfected compared to the infected which instead has a 

larger fraction of sequences in the 10-12 nt range. This difference is also promi-

nent when looking at the intergenic regions (figure 17) even though the difference 

is not as substantial. As for the library of the ncRNA repeats (figure 18) almost all 

sequences have a size of approximately 21 nt. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Schematic view of the bioinformatic filtration performed on the SOLiD sequencing data. The 

diamonds to the left show what the sequences were searches against and the boxes show the different 

libraries the sequences were put in. 
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Figure 16. Size distribution of all the sequences from the SOLiD sequencing comparing uninfected and 

infected cells. 

 

Figure 17. Size distribution of the sequences in the intergenic library by the SOLiD sequencing com-

paring uninfected and infecteed cells.The sequences in this diagram corresponds to the sequences in 

the rRNA and tRNA Dictybase and complex repeats Dictybase seen in figure 15. 
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Figure 18. Size distribution of the sequences in the ncRNA repeats library from the SOLiD sequncing 

comparing uninfected and infected cells. These sequences correspond to the sequences in the inter-

genic regions seen in figure 15. 

0

2

4

6

8

10

12

14

16

18

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

Fr
ac

ti
o

n
 %

Length (nt)

Intergenic single hits

Uninfected

Infected



52 

 

4 Discussion 

4.1 Expression studies of a putative ncRNA promoter 

To construct an extra chromosomal plasmid containing two modified versions of 

the DdR-21 gene showed to be much harder then expected. Because of the extrem-

ly high A/T richness of the D. discoideum genome it was really difficult to achieve 

specific binding of primers for site-directed mutagenesis and incorporation of the 

wanted mutations. Another problem was that the region in close proximity to the 

putative promoter element contained a stretch of Ts which showed to be very un-

stable. During the mutational PCRs there was often a deletion of a T leaving 29 Ts 

instead of the normal 30 Ts preceding the putative promoter element. Since we 

could not be sure how this would affect the promoter element we had to analyze 

these modifications in case we could not get a construct with the wild type 30 Ts 

for a certain mutation. This led to a lot of extra work for this part of the project 

and in the end we could conclude that the stretch of Ts did not seem to affect the 

function of the promoter if it were 29Ts compared to 30Ts for a certain mutation, 

figure 7.  

Even though there was a lot of trouble in making the double construct it proved 

to be succesfull in the end. This construct will be extremly useful for further de-

tailed functional studies of the promoter and it can also be used for dele-

tion/mutational studies of other interesting elements involved in gene regulation 

identified in the D. discoideum genome. Even though the northern blot from the 

preliminary expression study showed great variance in RNA loading it gave a 

strong first indication that DUSE is a true promoter element. The expression test 

showed a clear loss in expression of the model gene DdR-21 when the promoter 

sequence was mutated. The conclusion that can be drawn from the test is that the 

DUSE does have an effect on the expression levels of the model gene, which a 

promoter element should. Even though no real controls were included in this pre-
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liminary expression, as will be in the final construct with the two cassettes and 

double loop mutations, it still gave some initial results. The upcoming expression 

studies of the double construct will give more decisive evidence and hopefully 

strengtening these preliminary results and confirming the DUSE as a promoter 

element for ncRNAs in D. discoideum. 

4.2 L. pneumophila infection studies  

The infection system set up was based on infection studies performed in other re-

search groups. Even though it had been succesfully performed before, it was much 

harder then expected to get the L. pneumophila infectious enough to get a quantif-

ible infection of D. discoideum. A very important parameter for infection is the 

motility of L. pneumophila which is dependent on the current life phase of the bac-

teria. The bacteria develops flagella when the concentration of bacteria reach a 

certain cell density, giving L. pneumophila motility and the possiblity to infect a 

new host. To get bacteria with a high degree of motility was shown to be a big 

problem and no good correlation was found between motility and exact levels of 

cell density, measured by OD. This made it very hard to get a system that could be 

repeated over and over again with similar levels of motility of the bacteria in each 

experiment. 

A possible explanation to our problems to reach a high motility could be that the 

strain has lost some of its infectious potency. This happens if the bacteria are kept 

running to long and since the L. pneumophilia sample we got were from a lab in 

the US it is hard to know how long that sample had been grown before it were 

sent. It is known that the same train works well in the infectious studies done on it 

in the US indicating that it is not with the strain the problem lies. A good idea 

would be to get an additional sample of the bacteria and compare it with the bacte-

ria used in this study to see if a more motile sample of L. pneumophila can be 

found. Another potenital parameter that could be changed is possibly the growth 

medium. The bacteria seem to be very sensitive to the medium and a small change 

in the medium could lead to a big change in the infectivity of the bacteria.  

Another problem that occured was that it was difficult to exactly determine if a 

bacterial cell was within the D. discoideum cells just by fluorescence microscopy. 

Even though the bacteria could be clearly seen at the same position as the host cell 

it was still a chance that the bacteria might be stuck on the outer membrane and 

had not infected the cell. To overcome this problem a confocal microscope could 
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be used as a further confirmation of infection. A confocal microscope gives an 

increased contrast and the possibility to see the cells in a three-dimensional way. 

For the growth studies of D. discoideum on a lawn of L. pneumophila we found 

that no plaques were formed on these plates. The reason for this could be that D. 

discoideum takes up the bacteria but is kiled by it or that it can not consume the 

bacteria and therefore not grow.  

4.2.1 The role of DrnB and RdpC in L. pneumophila infection 

We also wanted to investigate the RNAi response in D. discoideum upon bacterial 

infection. One way this was done was by utilizing existing strains where important 

genes of the RNAi machinery have been knocked out. Comparative studies were 

then used to find differences with the knock out strains compared to the normal 

wild type strain when infected with L. pneumophila. 

It has previousely been shown that D. discoideum contains two Dicer-like pro-

teins, DrnA and DrnB. Analysis of their involvement in RNAi and miRNA bioge-

nesis showed that only DrnB had an significant effect when knocked out. In the 

strain lacking DrnB the analyzed miRNA could no longer be found indicating that 

DrnB is responsible for the processing of the pre-miRNA [45]. D. discoideum also 

contains three RNA-dependent RNA polymerases, RdpA-C, where only RdpC had 

a clear effect when removed. The strain without active RdpC had upregulated le-

vels of a tested miRNA [45]. From these findings we decided to focus on these 

proteins and work with the DrnB
-
 and RdpC

-
 strains in addition to the wild type 

strain in our infection studies. From the observations made on the RdpC- strain no 

effects could be found on the infection rate or the growth of D. discoideum when 

in proximity to L. peumophilia, figure 12 and 13. This was not unexpected from 

the fact that the loss of RdpC led to higher siRNA and miRNA levels [45]. Puta-

tive miRNAs with possible function in response to infection would then still be 

present in the cells and the response may function as in wild type cells.  

Because of the problems to get the infection system to work properly and that 

the optimized experiments were not repeated as many times as desired, we have no 

solid statistical data. This means that the conclusions drawn here are only a first 

model which has to be further analyzed and more data is desired to get solid proof 

of the results.  
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4.2.2 Working models for DrnB involvment in response to L. 

pneumophila 

In contrast to the RdpC
-
 an effect could be seen both in the infection assay and the 

plaque assay with the DrnB
-
 strain indicating a role for the protein in response to 

bacterial infection. The data from the plaque assay showed an approximate de-

crease of 50% in the number of plaques in the DrnB
-
 strain compared to the other 

strains. This suggests that this strain has a lower survival rate e.g. that L. pneumo-

phila were more pathogenic to this strain. Another clear difference between the 

DrnB
-
 strain and the other strains was the size difference of the plaques both in the 

presence and absence of L. pneumophila, indicating that this strain of bacteria was 

more resistent to predation by D.discoideum. 

Analyzing the results of the infection efficieny of the different strains shows a 

different story. Comparing the two different wild type strains AX2 and AX4 

shows a big difference in how prone they are to infection where the AX4 strain is 

approximately three times easier to infect. This shows that the AX4 would be a 

better strain to work with in future infection studies since higher infection effi-

ciency is strived for. When comparing the two knock out strains to the isogenic 

wild type AX2 strain, it was clear that the infection efficiency is approximately the 

same in the RdpC
-
 strain and the wild type strain but more then 50% lower in the 

DrnB
-
 strain. This indiated that the D. discoideum DrnB

-
 strain is more resistent to 

bacterial infection by L. pneumophila. However, those experiments have to be re-

peated several times to get statistical solid data. The observations from the infec-

tion and the plaque assays seem contradictory since one suggests that the DrnB
-
 

strain is more resistent to infection at the same time as the other implies that the 

survival is lower when grown together with L. pneumophila.  

A normal effect of miRNA(s) is that they cause a down-regulation of target 

genes. This would lead to an up-regulation of these target genes in the DrnB
-
 

strain. A possible explanatory model is that these target genes code for proteins 

that inhibit a gene coding for a receptor protein that is needed for the uptake of 

bacteria. The down-regulation of the receptor protein in this D. discoideum strain 

would then lead to an inhibitied growth and at the same time give a lower suscep-

tibility to infection. 

Another possible model for the observations made with the DrnB
-
 strain is that 

miRNA(s) are involved in D. discoideum survival upon bacterial infection. In the 

DrnB
-
 knock out strain the miRNAs cannot be processed to active miRNA and 

hence, cannot protect the host cell from being killed by L. pneumophila. This 

would mean that the DrnB
-
 strain is not more resistent to infection as the infection 
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data suggests but that the ability of D. discoideum to survive after infection, with 

intracellular L. pneumophila, is decreased. This could be a possible explanation 

since one problem with the experimental set up is that the number of living D. dis-

coideum is not acounted for which could be a big variable. To get around this 

problem a future experiment that should be included is to also quantify the number 

of live D. discoideum after infection and compare that to the number of L. pneu-

mophila. By doing this a more definite and trustworthy infection efficiency of the 

different strains could be calculated. 

4.2.3 SOLiD analysis of ncRNAs and infection 

SOLiD sequencing gives an enormous amount of data so for this thesis project we 

limited the analysis to only include parts of the data that were handlable to analyze 

during the time of this project. Upcoming analyses will certainly give lots of more 

interesting data giving an even clearer view of expression differences of ncRNAs 

in infected and uninfected D. disoideum cells.  

What could be seen in the libraries created from the SOLID data was that there 

is a clear size bias against 21 nt in both uninfected and infecte cells, which was 

expeced since this is the common size for miRNAs and many siRNAs. The largest 

portion of sequences was found in the 9-12 nt size range which most probably is 

degraded RNA. The finding that there is a much higher number of sequences in 

the 21 nt range in non-infected cells compared to infected is very interesting. It 

can also be clearly seen that the number of sequences in the 9-12 range is larger in 

infected cells indicating that there could be some kind of cleavage of the 

mi/siRNA when the cells are infected. This also coincides with the findings by 

Zhang and Kuspa that mitochondrial rRNA is cleaved upon infection and possibly 

this cleavage can happen to many other sorts of ncRNAs in the cells as well [41]. 

Another interesting finding was that most affected gene in the expression analy-

sis (SOLiD) when comparing infected cells to uninfected was the Class I RNA, 

DdR-31. In this thesis the Class I DdR-21 gene was used as a model gene for ana-

lyses of the putative ncRNA promoter (DUSE) and we also had planned to analyze 

the possible involvement of this class of ncRNAs in infection by knock out stu-

dies. From the SOLiD sequencing it seems that at least the DdR-31 is involved in 

the response to infection and it would be a good model gene for the Class I RNAs 

to use for future infection studies.  

The finding that the most downregulated genes were situated on the mitochon-

drial genome is not very unexpected. This also correlates with what Zhang and 
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Kuspa [41] showed, i.e. that the mitochondrial rRNA is cleaved upon infection 

which would lead to a down regulation of these genes in infected cells, corrabora-

lating our findings. 

One problem with the analysis of the SOLiD data is that not all RNA genes are 

found because they are too similar to other genes. Due to the method of analysis 

this will lead to that genes end up among the unmatched sequences and are not 

included in the expression analysis. An example of this is the DdR-21 gene; hence 

no conclusions about its involvement in infection can be drawn. To be able to in-

clude DdR-21 and other genes of interest in future expression analysis, a search 

against the exact sequence of the genes of interest that have not been found needs 

to be performed to fish them out. 
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