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Abstract 

For an ordered set { }kwwwW ...,,, 21=  of vertices and a vertex v in a 

connected graph G, the representation of v with respect to W is the ordered 
k-tuple ( ) ( ) ( ) ( )( ),,...,,,,, 21 kwvdwvdwvdWvr =|  where ( )yxd ,  

represents the distance between the vertices x and y. The set W is called a 
resolving set for G if every vertex of G has a distinct representation. A 
resolving set containing a minimum number of vertices is called a basis 
for G. The dimension of G, denoted by ( ),dim G  is the number of vertices 
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in a basis of G. Let { }iG  be a finite collection of graphs and each iG  has 

a fixed vertex oiv  called a terminal. The amalgamation Amal{ }oii vG ,  is 

formed by taking all of the iG ’s and identifying their terminals. In this 

paper, we determine the metric dimension of amalgamation of cycles. 

1. Introduction 

In this paper, we consider finite, simple, and connected graphs. The vertex and 
edge sets of a graph G are denoted by ( )GV  and ( ),GE  respectively. For a further 

reference please see Chartrand and Lesniak [3]. 

The distance ( )vud ,  between two vertices u and v in a connected graph G is 

the length of the shortest vu −  path in G. For an ordered set { }kwwwW ...,,, 21=  

( )GV⊆  of vertices, we refer to the ordered k-tuple ( ) ( ( ) ( ),,,, 21 wvdwvdWvr =|  

( ))kwvd ,...,  as the (metric) representation of v with respect to W. The set W is 

called a resolving set for G if ( ) ( )WvrWur |=|  implies vu =  for all ., Gvu ∈  A 

resolving set with minimum cardinality is called a minimum resolving set or a basis. 
The metric dimension of a graph G, ( ),dim G  is the number of vertices in a basis for 

G. To determine whether W is a resolving set for G, we only need to investigate the 
representations of the vertices in ( ) ,\WGV  since the representation of each Wwi ∈  

has ‘0’ in the ith-ordinate; and so it is always unique. 

The initial papers discussing the notion of a (minimum) resolving set were 
written by Slater in [15] and [16]. Slater introduced the concept of a resolving set for 
a connected graph G under the term location set. He called the cardinality of a 
minimum resolving set by the location number of G. Independently, Harary and 
Melter [7] introduced the same concept, but used the term metric dimension instead. 

The problem of finding a resolving set for a given graph can be found in many 
diverse areas including robotic navigation [12], chemistry [11], or computer science 
[13]. As described in [12], the navigating agent (a point robot) moves from node to 
node in a particular ‘graph space’. The robot can locate itself by the presence of 
distinctively labeled “landmark” nodes in the graph. This suggests the problem: for a 
given graph, what is the smallest number of landmarks needed, and where should 
they be located, so that the distances to the landmarks uniquely determine the robot’s 
position in the graph? 
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In general, finding a resolving set for arbitrary graph is a difficult problem. In 
[6], it is proved that the problem of computing the metric dimension for general 
graphs is NP-complete. Thus, researchers in this area often studied the metric 
dimension for particular classes of graphs or characterized graphs having certain 
metric dimension. Some results on the joint graph and cartesian product graph have 
been obtained by Caceres et al. [1], Khuller et al. [12], and Chartrand et al. [4]. 
Iswadi et al. obtained some results on the corona product of graphs [8, 9]. Saputro et 
al. obtained some results on the decomposition product of graphs [19]. Iswadi et al. 
determined the metric dimension of antipodal and pendant free graph [10]. Further, 
Saputro et al. found some results on the metric dimension of some type of regular 
graphs [17, 18]. 

Chartrand et al. [4] have characterized all graphs having metric dimensions 1, 
,1−n  and .2−n  They also determined the metric dimensions of some well known 

families of graphs such as paths, cycles, complete graphs, and trees. Chartrand et al. 
results are written as follows: 

Theorem A [4]. Let G be a connected graph of order .2≥n  

  (i) ( ) 1dim =G  if and only if .nPG =  

 (ii) ( ) 1dim −= nG  if and only if .nKG =  

(iii) For ( ) 2dim,4 −=≥ nGn  if and only if ( ) rsr KGsrKG =≥= ,1,,,  

,sK+  ( ),2,1 ≥≥ sr  or ( ) ( ).1,,1 ≥+= srKKKG sr ∪  

(iv) For ( ) .2dim,3 =≥ nGn  

 (v) If T is a tree other than a path, then ( ) ( ) ( ),dim TexTT −σ=  where ( )Tσ  

denotes the sum of the terminal degrees of the major vertices of T, and ( )Tex  

denotes the number of the exterior major vertices of T. 

The following identification graph [ ]2121 ,,, vvGGGG =  definition is from 

[14]. 

Definition B. Let 1G  and 2G  be the nontrivial connected graphs where 11 Gv ∈  

and .22 Gv ∈  An identification graph [ ]2121 ,,, vvGGGG =  is obtained from 1G  

and 2G  by identifying 1v  and 2v  such that 21 vv =  in G. 

Poisson and Zhang [14] determined the lower and upper bounds of metric 
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dimension of [ ]2121 ,,, vvGGG  in terms of ( )1dim G  and ( )2dim G  as stated in the 

following theorems: 

Theorem C. Let 1G  and 2G  be the nontrivial connected graphs with 11 Gv ∈  

and 22 Gv ∈  and let [ ].,,, 2121 vvGGGG =  Then 

( ) ( ) ( ) .2dimdimdim 21 −+≥ GGG  

For the upper bound, we define an equivalence class and binary function first. 
For a set W of vertices of G, define a relation on ( )GV  with respect to W by uRv if 

there exists Z∈a  such that ( ) ( ) ( )....,,, aaaWurWvr +|=|  It is easy to check 

that R is an equivalence relation on ( ).GV  Let [ ]Wu  denote the equivalence class of 

u with respect to W. Then 

[ ]Wvv ∈  if and only if ( ) ( ) ( )aaaWurWvr ...,,,+|=|  

for some .Z∈a  For a nontrivial connected graph G, define a binary function 
( ) Z→GVfG :  with 

( )
( )
( )⎩

⎨
⎧

−
=

otherwise.,1dim
,ofvertexbasisanotisif,dim

G
GvG

vfG  

Theorem D. Let 1G  and 2G  be the nontrivial connected graphs with 11 Gv ∈  

and 22 Gv ∈  and let [ ].,,, 2121 vvGGGG =  Suppose that 1G  contains a resolving 

set 1W  such that [ ] { }.11 1
vv W =  Then 

( ) ( )21 2dim vfWG G+≤  

 
( )
( )⎩

⎨
⎧

−+

+
=

.,1dim
,,dim

21

2221

otherwiseGW
GofvertexbasisanotisvifGW

 

In particular, if 1W  is a basis for ,1G  then 

( )
( ) ( )
( ) ( )⎩

⎨
⎧

−+

+
≤

.,1dimdim
,,dimdim

dim
21

2221

otherwiseGG
GofvertexbasisanotisvifGG

G  

The following definition of amalgamation of graphs is taken from [2]. 

Definition E. Let { }iG  be a finite collection of graphs and each iG  has a fixed 
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vertex oiv  called a terminal. The amalgamation Amal{ }oii vG ,  is formed by taking 

of all the iG ’s and identifying their terminals. 

We can consider Definition E as the identification process for all of the 
members in the collection { }iG  consecutively on one identification vertex. 

In this paper, we determine the metric dimension of amalgamation of cycles. 

2. Results 

We could consider amalgamation of cycles on n; that is Amal{ },, oii vG  where 

ni CG =  for all i. In this particular amalgamation, the choice of vertex oiv  is 

irrelevant. So, for simplification, we can denote this amalgamation by ( ) ,tnC  where 

t denotes the number of cycles .nC  For ,1=t  the graphs ( )1nC  are the cycles .nC  

For ,3=n  the graphs ( )tC3  are called the friendship graphs or the Dutch t-

windmills [5]. 

In this paper, we consider a generalization of ( ) ,tnC  where the cycles under 

consideration may be of different lengths. We denote this amalgamation by 
Amal{ } .2,1, ≥≤≤ ttiC in  We call every inC  (including the terminal) in 

Amal{ }inC  as a leaf and a path 1−inP  obtained from inC  by deleting the terminal as 

a nonterminal path. 

Throughout this paper, we will follow the following notations and labels for 
cycles, nonterminal path, and vertices in Amal{ }.inC  For odd ,in  ,12 += ii kn  

1≥ik  and x the terminal vertex, we label all vertices in each leaf inC  such that 

,1121 xwwwvvxvC ii
k

i
k

i
k

ii
n iiii "" −=  

this will give the nonterminal path 

.11211
ii

k
i
k

i
k

ii
n wwwvvvP

iiii "" −− =  

For even ,1,22, ≥+= iiii kknn  and x the terminal vertex, we define the 

labels of all vertices in each leaf inC  as follows: 

,1121 xwwwuvvxvC ii
k

i
k

ii
k

ii
n iiii "" −=  
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which leads to the following labeling of the nonterminal path 

.11211
ii

k
i
k

ii
k

ii
n wwwuvvvP

iiii "" −− =  

The following four lemmas give us some properties of the members of a 
resolving set of amalgamation of cycles. 

Lemma 1. Let S be a resolving set of Amal{ }.inC  Then ,11 ≥− SP in ∩  for 

each i. 

Proof. If S has no vertex in ,1−jnP  for some j, then the vertices ,1
jv  jw1  in 

1−jnP  will have the same distances to S, namely ( ) ( ) .,,, 11 Svvwdvvd jj ∈∀=  

Therefore, ( ) ( ),11 SwrSvr jj |=|  a contradiction. ~ 

Lemma 2. Let S be a resolving set of Amal{ }.inC  If in  is even, ,4≥in  and 

,11 =− SP in ∩  then { }.1
i

n uSP i ≠− ∩  

Proof. Suppose ,Su j ∈  for some j. Since the remaining vertices of S will not be 

in ,1−jnP  ( ) ( ) .,,, Svvwdvvd j
k

j
k jj

∈∀=  Therefore, we have ( ) ( ),SwrSvr j
k

j
k jj

|=|  

a contradiction with S being a resolving set. ~ 

Lemma 3. Let S be a resolving set of Amal{ }.inC  For any even ,jn  ,4≥ln  

( ) .311 ≥−− SPP lj nn ∩∪  

Proof. Let ,22,22 +=+= lljj knkn  and .1, ≥lj kk  By Lemma 1, ( 1−jnP  

) .21 ≥− SP ln ∩∪  Suppose ( ) .211 =−− SPP ji nn ∩∪  By considering Lemma 2 

and the symmetry property, we have (( ) ) { },,11
l
s

j
rnn vvSPP lj =−− ∩∪  with r≤1  

jk≤  and .1 lks ≤≤  Then, ( ) ( ) .,,, 11 Svvwdvwd lj ∈∀=  Therefore, ( ) =| Swr j
1  

( ),1 Swr l |  a contradiction; which gives ( ) .311 ≥−− SPP lj nn ∩∪  ~ 

Now, we will determine the metric dimension of amalgamation of cycles 
Amal{ }.inC  
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Theorem 1. If Amal{ }inC  is an amalgamation of t cycles that consists of 1t  

number of odd cycles and 2t  number of even cycles, then 

( { })
⎩
⎨
⎧

−+

=
=

.,12
,0,

dim
21

21

otherwisett
tt

CAmal in  

Proof. Let B be a basis of Amal{ }.inC  We label the leafs inC ’s of Amal{ }inC  

in such a way that inC  with odd lengths are labeled by 1...,,1 ti =  and jnC  with 

even lengths are labeled by ....,,1 211 ttttj =++=  

Case 1. For .02 =t  Thus all in ’s, ,1 1ti ≤≤  are odd, let .1,12 ≥+= iii kkn  

By using Lemma 1, for every resolving set S of Amal{ },inC  we will have .1tS ≥  

Hence, for every basis B of Amal{ } ., 1tBC in ≥  Choose a set ∪ 1
1

t
i iSS
=

=  with 

{ }.i
ki i

vS =  We will show that S is a resolving set of Amal{ }.inC  The representations 

of vertices of Amal{ }inC  that is not in S, with respect to S, are 

( ) ( ),...,, 11 tkkSxr =|  

( ) ( )rkrkrkSvr t
S

i
i
r

i

+−+=| 1...,,...,,
of.coord

1 
	�  with ,11 −≤≤ ikr  

and 

( ) ( )rkrkrkSwr t
S

i
i
r

i

++−+=| 1...,,1...,,
of.coord

1 �
�	�  with .1 ikr ≤≤  

Since the r’s are all distinct, all of these representations are distinct. Hence, S is a 
resolving set of amalgamation Amal{ }.inC  Since a basis B is a minimum resolving 

set, .1tB ≤  Therefore, .1tB =  

Case 2. For .12 ≥t  Consider an arbitrary resolving set of Amal{ }.inC  By 

Lemma 1, every nonterminal path 1−inP  with in  odd has at least one vertex of S; 

and by Lemma 3, every nonterminal path 1−inP  with in  even has at least two 

vertices of S, except for one of them whom can only contain one vertex of S. These 
lead to ,12 21 −+≥ ttS  for every resolving set S; and so .12 21 −+≤ ttB  
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Next, we will show that .12 21 −+≤ ttB  Choose a set ∪t
i iSS

1=
=  with 

{ },i
ki i

vS =  with ,12,1 1 +=≤≤ ii knti  and ,1≥ik  

{ },1
1

1
111

+
+ +

= t
kt t

vS  with ,22 11 11 += ++ tt kn  and ,111 ≥+tk  

and 

{ },, jj
kj uvS

j
=  with ,22,21 +=≤≤+ jj kntjt  and .1≥jk  

The representations of the other vertices of Amal{ }inC  with respect to S are 

( ) ( ),1,...,,1,,,...,, 2211 1111 ++=| +++ tttttt kkkkkkkSxr  

( ) ( ,,...,,...,, 21
of.coord

1 11 rkrkrkrkSvr tt
S

i
i
r

i

++−+=| ++
	�  

),1,...,,121 ++++++ rkrkrk ttt  

with 11 1 +≤≤ ti  and ,11 −≤≤ ikr  

( ) ( ,1,,...,, 2211 111 +++++=| +++ skskskskSvr ttt
j
s  

),1,...,,1,...,
of.coord

++++−− sksksksk tt

S

jj

j
��� 
��� 	�

 

with tjt ≤≤+ 21  and ,11 −≤≤ jks  

( ) ( ,,...,,1...,, 21
of.coord

1 11 rkrkrkrkSwr tt
S

i
i
r

i

+++−+=| ++�
�	�  

),1,...,,121 ++++++ rkrkrk ttt  

with 11 1 +≤≤ ti  and ,1 ikr ≤≤  

( ) ( ...,,1,,...,, 2211 111 +++++=| +++ skskskskSwr ttt
j
s  

),1,...,,1,
ofcoord.

++++−− sksksksk tt

S

jj

j
��� 
��� 	�

 

with tjt ≤≤+ 21  and ,1 jks ≤≤  
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and 

( ) ( ,1,1,1...,,1 11111
1

11
21

1 ++++++=| +
+
+ ttttt

t
k kkkkkkSwr

t
 

).2,1...,,2 1111 2 +++++++ tttttt kkkkkk  

By direct inspection, all of these representations are distinct. Therefore, S is a 
resolving set. Since a basis B is a minimum resolving set S, .12 21 −+≤ ttB  ~ 

We illustrate both of Cases 1 and 2 in Figures 1 and 2. For Case 1, we consider 
Amal{ }inC  with ,5,2,3 21 === nni  and .53 =n  By choosing a basis =B  

{ },,, 3
1

2
2

1
1 wvv  we have the coordinates of all vertices other than the basis vertices as 

follows: 

( ) ( ) ( ) ( ) ( ) ( ),2,3,1,3,1,3,1,2,1 1
1

2
2 =|=|=| BwrBwrBxr  

( ) ( ) ( ) ( ) ( ) ( ),2,4,3,2,1,2,2,3,2 3
2

2
1

3
1 =|=|=| BvrBvrBvr  

( ) ( ) ( ) ( ).1,4,3,2,2,2 3
2

2
1 =|=| BwrBwr  

For Case 2, we consider Amal{ }inC  with ,6,5,3 21 === nni  and .83 =n  

By choosing a basis { },,,, 3
3

3
2

2
2

1
2 wvvvB =  we have the coordinates of all vertices 

other than the basis vertices in Amal{ }inC  as below: 

 
Figure 1. The coordinates of amalgamation Amal{ }inC  with ,02 =t  ,31 == tt  

,5,3 21 == nn  and .53 =n  

( ) ( ) ( ) ( ) ( ) ( ),5,4,4,1,4,3,3,2,4,3,3,1 1
2

1
1

1
1 =|=|=| BwrBwrBvr  

( ) ( ) ( ) ( ) ( ) ( ),6,5,1,5,4,3,1,3,3,2,2,2 22
1 =|=|=| BurBvrBxr  

( ) ( ) ( ) ( ) ( ) ( ),4,1,3,3,5,4,2,4,4,3,3,3 3
1

2
2

2
1 =|=|=| BvrBwrBwr  
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( ) ( ) ( ) ( ) ( ) ( ),2,3,3,3,1,2,6,6,2,1,5,5 3
1

33
3 =|=|=| BwrBurBvr  

( ) ( ).1,4,4,43
2 =| Bwr  

 

Figure 2. The amalgamation Amal{ }inC  with ,12 ≥t  ,11 =t  ,22 =t  ,51 =n  

,62 =n  and .83 =n  

One of the natural questions we could pose after proving Theorem 1 is: Are 
there any basis other than the basis we constructed in the proof of Theorem 1? We 
will answer the question by identifying all bases of Amal{ }.inC  The following 

lemmas are needed to find such bases: 

Lemma 4. Let B be a basis of Amal{ }.inC  If 11 =− BP jn ∩  and BP ln ∩1−  

1=  for some ,lj ≠  then { }j
kn jj vBP =− ∩1  or { }j

k j
w  or { }l

kn ll vBP =− ∩1  or 

{ }.l
kl

w  

Proof. By Lemma 3, both jn  and ln  cannot be even. Let { }uBP jn =− ∩1  and 

{ }.1 vBP ln =− ∩  Assume that j
avu =  with 11 −≤≤ jka  and l

bvv =  with 

.11 −≤≤ lkb  Then, ( ) ( ) ;,,, 11 Bzzwdzwd lj ∈∀=  a contradiction with B being a 

basis. The result follows by using symmetry property. ~ 

Lemma 5. Let Amal{ }inC  be an amalgamation of t cycles that consists of 1t  

number of odd cycles and 2t  number of even cycles and B be a basis of Amal{ }.inC  

If jn  is odd and ,12 ≥t  then { }l
kn lj vBP =− ∩1  or { }.l

kl
w  

Proof. Since jn  is odd, by using Lemma 1 and Theorem 1, .11 =− BP jn ∩  
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Since ,12 ≥t  there is at least one leaf lnC  with even vertices such that BP jn ∩1−  

.1=  Let { }uBP jn =− ∩1  and { }.1 vBP ln =− ∩  Assume that j
avu =  with ≤≤ a1  

1−jk  and l
bvv =  with .1 lkb ≤≤  We have ( ) ( ),,, 11 zwdzwd lj =  .Bz ∈∀  By 

symmetry property the result follows. ~ 

Lemma 6. Let B be a basis of Amal{ }.inC  If jn  is even and =− BP jn ∩1  

{ },, ba  then neither { } { }j
k

jj
j

vvvba ...,,,, 21⊆  nor { } { }....,,,, 21
j

k
jj

j
wwwba ⊆  

Proof. By Theorem 1, there is at least one leaf lnC  with ln  even and jl ≠  

such that .11 =− BP ln ∩  Let { }.1 uBP ln =− ∩  For the contrary assume that { }ba,  

{ }j
k

jj
j

vvv ...,,, 21⊆  and { }....,,, 21
l
k

ll
l

vvvu∈  Then, ( ) ( ),,, 11 zwdzwd lj =  ;Bz ∈∀  a 

contradiction with B being a basis. By using symmetry property, the result follows. 
 ~ 

Now, we are ready to identify all bases of Amal{ }.inC  We will consider exactly 

two cases; first, 02 =t  and second, .12 ≥t  

Theorem 2. If Amal{ }inC  is an amalgamation of t cycles that consists of 1t  

number of odd cycles and 2t  number of even cycles, then 

{ }
( )

( ) ( ( ) ( ))⎪
⎩

⎪
⎨

⎧

−−−

=⎟
⎠
⎞

⎜
⎝
⎛ −−

=

∏
∑

+=+

=
−

,,2,22,112

,0,212

21

21
1

11
1 otherwisekCnCn

tn
CAmal t

tj jjt
t

t

i i
t

ni  

where ( )abC ,  is the total number of combinations of b objects taken a. 

Proof. Let 1t  be a number of odd cycles and 2t  be number of even cycles of 

Amal{ }.inC  

Case 1. .02 =t  By using Lemma 1 and Theorem 1, every nonterminal path 

1−inP  will contain only one basis vertex. By using Lemma 4, for every pair of odd 

leaves 1−inP  and ,1−jnP  one of them, say ,1−inP  contains a basis vertex i
ki

v  or 

.i
ki

w  Then, for ,21 =t  we can identify the basis B of Amal{ } { },,, baBC in =  where 
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{ }11
11 , kk wva ∈  and ( )12 −∈ nPVb  or ( )11−∈ nPVa  and { }., 22

22 kk wvb ∈  Hence, the 

number of different bases of Amal{ }inC  is ( ) ( ) .41212 21 −−+− nn  By using 

similar reason, we can generalize for 21 >= tt  and we have the number of 

different bases of Amal{ }inC  is ( ) .212 1
1 ⎟

⎠
⎞

⎜
⎝
⎛ −−∑ =

− t
i i

t n  

Case 2. .12 ≥t  By using Lemma 1, Lemma 3, and Theorem 1, every 

nonterminal path with even vertices will have one basis vertex and every 
nonterminal path with odd vertices will have two basis vertices except one only have 
one basis vertex. We label the nonterminal path 1−inP ’s of Amal{ }inC  in such a 

way that 1−inP  with even lengths are labeled by ,...,,1 1ti =  1−inP  with odd lengths 

and contains two basis vertices are labeled by ,...,,2 211 ttttj =++=  and 1−lnP  

with odd length and contains one basis vertex are labeled by .11 += tl  By using 

Lemma 5, the basis vertices of nonterminal paths with even vertices, having either 

ikv ’s or ikw ’s. A nonterminal path 1−jnP  with odd vertices having one basis vertex 

can have every ( ) { }jn uPVz j \1−∈  as its basis vertex. By using Lemma 6, every 

nonterminal path 1−lnP  with odd vertices having two basis vertices cannot have 

both their basis vertices in either { }l
k

ll
l

vvv ...,,, 21  or { }....,,, 21
l
k

ll
l

www  Hence, we 

can count the number of different bases of Amal{ }inC  as follows: 

( ) ( ( ) ( ))∏
+=

+ −−−
t

tj
jjt

t kCnCn
2

1

1
1

1 ,2,22,112  

where ( )abC ,  is the total number of combinations of b objects taken a. ~ 
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