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Introduction 

 

Thanks to the structural (crystallography, Nobel prize to Michel, Deisenhofer, Huber) and 

functional (theory, Nobel prize to Marcus) results together with the works of molecular 

biology, computer- and electro- techniques, a wealth of information made a relatively 

clear picture about the kinetics, energetics and stabilization of electron transport within 

the bacterial photosynthetic reaction center (RC) (see e.g. Sebban et al., 1995; Wraight, 

2004). However, several important questions can still be addressed. The physical 

parameters of the electron transport essentially depend on the type of the RC and 

environmental factors. From this point of view, the membrane environment is of special 

interest.  

The kinetics and thermodynamics of the electron transfer reactions in RCs are 

mainly studied in detergents, and the basic processes are already known. However, there 

are more and more pieces of evidences that these parameters have different features in 

artificial and/or in vivo membranes. The reaction center of Rhodobacter (Rb.) 

sphaeroides consists of three polypeptides, known as L, M and H subunits. The electron 

transfer after light excitation is initiated by the primary donor bacteriochlorophyll dimer, 

(P, BChl2) followed by transient reduction of bacteriochlorophyll monomer (BChl) and 

bacteriopheophytine (BPheo). Consequently, the electron is trapped by the primary, QA, 

and the secondary quinone, QB electron acceptor. Absorbing of one photon in the absence 

of secondary donor to P
+

 the electron is stabilized in the P
+
QAQB

-
 state. Depending on the 

free energy of the QB/QB
-
 redox couple the charge pair recombines to the ground state 

PQAQB with characteristic reaction routes and rates.  

If secondary electron donor (e.g. cytochrome in vivo, or ferrocene, DAD, TMPD 

etc. in vitro) is present, a second electron can be stabilized on the secondary quinone by 

accepting two protons in the state of PQAQBH2. The doubly reduced and protonated 

quinone then leaves the RC and is replaced by a fully oxidized quinone, Q, from the 

membrane pool. This cycle can be repeated until one of the reaction components, the 

donor or the quinone acceptor, is exhausted. The function of the quinone acceptor 

complex of the RCs depends both on the redox and binding properties of the quinone 

molecules (Nagy et al., 2004). If the quinones are bound to the reaction center, their 
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redox properties are determined by the environment and the chemical identity of the 

molecule. In this work I offer direct evidence for the role of characteristic native 

phospholipids - phosphatidylcholine (PC), phosphatidylglycerol (PG), and cardiolipin 

(CL) - of the membrane in charge stabilization in RC.  

The one-dimensional structural and electronic properties of carbon nanotubes 

have made them suitable candidates for the promotion of heterogeneous electron transfer 

studies, in which delicate biomolecules “communicate” with the interface of electric 

circuits. There are convincing pieces of evidences that nanotubes are very efficient 

components in devices based on biomatter. For example, bioelectrochemical reactions 

can be driven by attaching small proteins to the surface of carbon nanotubes (Davis et al., 

1997; Britto et al., 1996). Well-controlled aligned carbon nanotubes can be applied as 

immobilization matrices and as mediators for the development of third-generation 

amperometric biosensor devices (Sotiropoulou and Chaniotakis, 2002). It was found that 

the protein structure and function were highly influenced by the nanoscale environment. 

Thirty percent of the activity of the soybean peroxidase and only 1% of the activity of the 

R-chymotrypsin remained if these proteins were bound to single-walled carbon nanotubes 

(SWNT) (Karajanagi et al., 2004). The present work is the first to show experiments 

carried out with photosynthetic RC pigment protein complex, the well-known redox-

active enzyme in which light energy initiates a chain of intraprotein electron transport 

reactions attached to SWNT.  
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Aims 

 

Determining the role of the lipid bilayer 

1) Building RCs into liposomes prepared from PC, PG and PC+CL lipids and showing 

that the liposomes are probably closed bilayer vesicles and the orientation of the RCs 

are probably random. 

2) Determining the secondary quinone activity in PC and PG liposomes in terms of the 

P
+
Q

-
 → PQ charge recombination.  

3) Determining the parameters of components of the QA
-
QB → QAQB

-
 forward electron 

transport in PC and PG liposomes.  

4) Characterizing the binding properties of the anionic lipids (PG and CL) to the RC. 

 

Characterizing the energetics of charge stabilization in lipids 

5) Determining the free energy difference between the QA and QB populations in RCs 

reconstituted in different lipids.  

6) Characterising the thermodynamic requirements (enthalpy and entropy contribution) of 

the QA
-
QB → QAQB

-
 forward electron transport in PC and PG liposomes.  

 

Determining the transmembrane proton gradient 

7) Incorporating fluorescent dye, pyranine, into the internal compartment of the 

liposomes and characterising the light induced proton gradient across the lipoprotein 

bilayer. 

 

Connection RCs to SWNTs 

11) Preparing SWNT/RC bionanocomposite material and determining the spectral 

characteristics of this complex.  
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Materials and methods 

 

Cell cultivation and RC preparations:  

Carotenoidless Rb. sphaeroides R-26 cells were grown photoheterotrophically 

under anaerobic conditions in medium supplemented with potassium succinate. 

Chromatophores and RCs were prepared as described earlier (Tandori et al., 1995). RCs 

were solubilized by LDAO (N,N-dimethyldodecylamine N-oxide; Fluka) and purified by 

ammonium sulfate precipitation followed by DEAE-Sephacel (Sigma) anion-exchange 

chromatography. The fractions of OD280/OD803 ratio between 1.27 and 1.50 were 

collected and used for further experiments. 

 

Proteoliposome preparation:  

RC-proteoliposomes were prepared by gel filtration micelle-to-vesicle transition 

technique. Calculated amount of phospholipid (POPC, Cholesterol, PG, PI) is solved in 

chloroform and dried on the wall of conical tube under nitrogen stream forming a thin 

film. The film is dissolved with 0.5 ml of Na-cholate (1.4% solution) or OG (4%) in 

phosphate buffer (10 µM KPi, 10 mM KCl, 150 µM pyranine, pH 7.2). The solution is 

sonicated in order to form mixed phospholipid/detergent micelles. Small volume of the 

RC solution is added and is vigorously shaken to allow the phospholipid/protein/ 

detergent micelles formation than loaded on Sephadex G-50 column, previously 

equilibrated with phosphate buffer (10 µM KPi, 10 mM KCl, 150 µM pyranine, pH 7.2). 

The fraction containing the liposomes was collected and loaded on a second column 

equilibrated with pyranine free K-phosphate buffer (10 µM KPi, 10 mM KCl, pH 7.2) in 

order to remove the external pyranine (Trotta et al., 2002).  

 

Fluorescence measurements: 

Pyranine is a water-soluble fluorescent dye which is very sensitive to pH in the 

interval close to the pKa = 7.2 of the ionization of the hydroxyl group of the molecule in 

aqueous solution. The ratio between the excitation peaks at 404 and 456 nm can be 

calibrated and used as an internal pH-indicator regardless the absolute value of the 

emission peak, allowing to estimate the initial and final pH values in the liposome. The 
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steady state fluorescence excitation spectra were measured by a Perkin Elmer MPF-44A 

spectrofluorimeter, which was supplied with a home made sample holder assuring 

continuous stirring during pH adjustment. 

 

Kinetic absorption spectrophotometry:  

Excitation-induced absorption changes were measured routinely by a single-beam 

kinetic spectrophotometer of local design (Tandori et al. 1995; Lakatos et al. 2002). The 

P/P
+
 and Q/Q

-
 redox changes of the primary bacteriochlorophyll dimer and the quinones 

at the acceptor complex (Nagy et al., 1999; Tandori et al., 1995) and the electrochromic 

response of the absorption of bacteriopheophytins to the QA
-
QB and QAQB

-
 states (Tiede 

et al., 1996) were detected at 603, 450, and 771 nm, respectively. The apparent one-

electron equilibrium constant in the quinone acceptor complex, KAB = [QAQB
-
]/[QA

-
QB], 

was determined from the rate constants of the fast (kf) and slow (ks) components of the 

P
+
(QAQB)

-
 → PQAQB charge recombination in the dark: KAB = kf/ks - 1. The free energy 

gap between QA
-
QB and QAQB

-
 states is ∆G°AB=-kBT ln KAB, where kB and T are the 

Boltzmann constant and the absolute temperature, respectively (Wraight and Stein, 1980; 

Kleinfeld et al., 1985). The quinone binding equilibrium constant of the QB site, Kq = 

[QAQB]/[QA...] = [QA
-
QB]/[QA

-
...], was obtained from the model of the oscillation pattern 

of the semiquinone signal measured at 450 nm upon subsequent flash excitation of the 

RC (Nagy et al., 1999; Halmschlager et al., 2002). Here [QA...] and [QA
-
...] denote the 

concentrations of the RC in oxidized and reduced states of the primary quinone, 

respectively. These species are able to bind quinone to the temporarily empty QB site. 

 

Binding RC to SWNT:  

Commercially available SWNTs, produced by a high-pressure CO process 

(HiPco), have been purchased from Carbon Nanotechnologies Incorporated Company 

and were purified by wet oxidation technique in the laboratory of László Forró (Institute 

of Physics of Complex Matter, Ecole Polytechnique Fédérale de Lausanne, Switzerland). 

In order to bind RCs to SWNTs purified RCs were incubated with the suspension of 

SWNT and subjected to intensive dialysis against distilled water for three days. The RC 

concentration was kept as high as possible, routinely 80-100 µM. The mass to mass ratio 
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was routinely 10±3 mg RC/mg SWNT. After the dialysis the sample was sedimented by 

ultracentrifuge (100,000 x g, 20 min, SORVALL ULTRA Pro, A-1256 rotor) and the 

precipitate was suspended in distilled water by sonication for 10-20 seconds. Few drops 

of sample was dried onto a glass surface under N2 stream then the optical characteristics 

were measured. 

 

Data evaluation:  

The standard free energy difference of the quinones, ∆GAB
0
 was determined from 

the apparent one-electron equilibrium constant, KAB, in the quinone acceptor complex. 

The standard enthalpy difference of the quinone states were determined from the slope of 

the van't Hoff plot of the temperature dependence of the equilibrium constant: 

d(lnKAB)/dT=∆H
0
/RT

2
. The thermodynamic parameters of activation related to the 

interquinone ET were determined assuming the transition state theory (Eyring's 

equation): 

 

TR

H

R

S

h

R

T

k 1
lnln

##

⋅
∆

−
∆

+
⋅

=
κ

 

 

where k is the observed rate constant, κ is the transmission coefficient (usually equals to 

1, Andreasson et al., 2003), h is the Planck constant, R is the universal gas constant and 

∆H
#
 and ∆S

#
 are the enthalpy and entropy changes of activation, respectively. ∆H

#
 is 

calculated from the slope and ∆S
#
 is determined from the intercept of the best-fit of 

straight lines through the measured data. 
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New results 

 

The role of the lipid bilayer 

1) The RCs were built in liposomes prepared from PC, PG and PC+CL lipids, and we 

have shown that  

a) the liposomes are probably closed bilayer vesicles; 

b) the orientation of the RCs are probably random. 

2) The secondary quinone activity (in terms of the P
+
Q

-
 → PQ charge recombination) is 

larger in PC liposomes (84.4 %) compared to the LDAO detergent (73.9 %), 

however, this value is only 50 % in PG liposomes. This latter effect can be explained 

by the accessibility of the QB site. 

3) We determined the components of the QA
-
 → QB electron transport in PC and PG 

liposomes.  

a) There was no difference in the parameters of the fast phases indicating that the 

mechanism of the intrinsic electron transfer is probably the same in these systems. 

b) There was large difference in the parameters of the slow components. The rate of 

the electron transport was facilitated in PC (with positive head group) and reduced 

in PG (negative head group) compared to the LDAO. 

4) There was only a limited inhibition of the QB site by terbutryn in PG environment. 

5) The lipids with anionic head groups bound to specific sites of the RC. 

a) The binding of PG can be well described by Michaelis-Menten kinetics 

indicating the probably there is only one sepcific binding site. 

b) The binding of CL at low concentration does not follow the Michaelis-Menten 

kinetics. 

6) The rate of the second electron transfer is also increased both in PC and PG. It is 

interesting to note that the rate of the first electron transfer is decreased in this latter 

system. 

7) The multiple turnover of the RC is determined by the KAB electron equilibrium 

constant and the Kq quinone equilibrium constant. It seems that Kq is the determining 

parameter in the membrane environment and it is the smallest in PG. 
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The energetics of the charge stabilization in lipids 

8) By measuring the kinetics of the P
+
Q

-
 → PQ charge recombination I have determined 

the free energy difference between the QA and QB populations. It was -62, -77, -89 

mV in LDAO, PC and PG, respectively.  

9) By using the temperature dependence of KAB I calculated the enthalpy change of the 

QA
-
 → QB electron transport and the entropy contribution to this reaction. I have 

found that  

a) the forward electron transport is driven by the enthalpy change in lipids; 

b) the enthalpy change is reduced considerably by CL; 

c) the entropy contribution was small in every lipids compared to the case of the 

LDAO detergent. It was larger than thermal level (k*T=25 mV/mol) only in 

LDAO. 

 

Transmembrane proton gradient 

10) I managed to incorporate fluorescent dye into the internal compartment of the 

liposomes.  

a) The liposomes prepared this way were stable for long time also at room 

temperature.  

b) The proton conductivity remained at the level of about 15-25%, which can be 

suitable for calculating the different components of the proton motive force after 

careful calibration. 

 

Connection of RCs to SWNTs 

11) We prepared SWNT/RC bionanocomposite material and the spectral characteristics 

of this complex were determined.  

a) The interaction between RCs and SWNTs modifies the electron transport in the 

RCs specifically resulting the accumulation of positive and negative charges.  

b) This interaction affects the charge relaxation processes which accompany the 

electron transport as well.  

c) There is a redox communication between the SWNT and RC after the light excitation, 

which phenomenon can be a model for several possible practical applications. 
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