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Preface

Revision can be thought of as the update of some existing (but somewhat erroneus)
rule system, like some expert system provided by an expert. This problem arises when
the rule system used to be correct, but the circumstances have changed, or when the
rule system was erroneus initially. The present dissertation discusses this topic from
the theoretical point of view, examining the possibility of efficient revision of some rule
systems based on Boolean formulas, such as read-once formulas, projective DNF and
threshold functions.

Additionally, characterization results are provided for some Boolean functions. Mo-
tivated by one of the revision algorithms, a structural description of a class of projective
DNF is given. We also consider k-term DNF, and give a complete description of those
formulas which have the largest number of prime implicants. This completes a series
of well-known results on this class. A related characterization result is given for a class
of DNF tautologies with a distance condition. Finally, motivated by a problem in belief
revision (an area related to, but distinct from, theory revision), a criterion is given for
the existence of a complement of a Horn formula.

Acknowledgement

First of all | would like to thank my advisor Gyorgy Turan for helping and supporting
me and conducting my research; | feel especially fortunate for having him as an advisor.

| would also like to thank Robert H. Sloan, with whom the work was most inspiring,
and who helped me a lot during the common work and my travels to Chicago.

| am most thankful to Janos Csirik for letting me work at the Research Group on
Artificial Intelligence, making it possible for me to concentrate on my scientific research.

| am also grateful to Boglarka Téth, Zsolt Gazdag and Tamas Vinké, with whom |
shared the same office during the Ph.D. years; their friendship is invaluable.

Finally, my deepest thank goes to my whole family for their unconditional love, constant
support and infinite belief in me.



iv




Contents

Introduction

1.1 Learning and Theory Revision . . . . . . . . . .. ... .. .. ....
1.2 Characterization Results for Boolean Functions . . . . . . . . .. . ..
1.3 Results and the Structure of the Dissertation . . . . . . . . ... ...

General Definitions and Notations

2.1 Syntax . ...
2.1.1 Terms, Clauses, Special Formula Classes . . . . . .. ... ..

2.2 SemantiCs . . . .. ..

2.3 Connecting Syntax and Semantics . . . . . . ... .. ... ... ...
2.3.1 Vectors, Cubes and Subcubes . . . . . . ... ... ... ...

Theory Revision Results

Models and the Vapnik-Chervonenkis Dimension

3.1 Models for Learning . . . . . . . .. .. ...
3.1.1 Probably Approximately Correct Learning (PAC) . . . . . . ..
3.1.2 Query Learning . . . . . ...
3.1.3 Mistake Bounded Learning . . . . . ... ... .. .. .. ...

3.2 Models for Theory Revision . . . . . .. .. ... .. .. .. .....

3.3 Vapnik-Chervonenkis Dimension . . . . . . . ... .. .. ... ....

Read-once Formulas

4.1 Further Definitions and Notations . . . . . . ... .. .. ... ... ..
411 Revision . . . . ..
4.1.2 Sensitization . . . . . ..

4.2 Revision Algorithm for Read-once Formulas . . . . . . .. .. ... ..
4.2.1 Algorithm GrowFormula . . . . . . . ... ... ... .....
4.2.2 Algorithm FindFormula . . . . . . . . . . . . ... ... ...

4.3 Example Run of ReviseReadOnce . . . . ... ... .. .. .....

4.4 Lower Bounds on Revising Read-once Formulas . . . . . . .. ... ..

45 Concluding Remarks . . . . . . . ... ...

Gl BN =

10
11
12
13

15

17
17
18
18
19
19
22



Vi Contents
5 Threshold Formulas 39
5.1 Further Definitions and Notations . . . . . . . .. .. ... .. .... 39
5.1.1 Revision . . . .. .. ... 40

5.2 Revision Algorithm for Threshold Functions . . . . . . . ... ... .. 40
5.3 Example Run of ReviseThreshold . . . . . . . ... ... ...... 46
5.3.1 Adding the Previously Unknown Relevant Variables . . . . . . . 46

5.3.2 Deleting the Irrelevant Variables . . . . . . .. ... ... ... 47

5.4 Lower Bounds on Revising Threshold Formulas . . . . . .. .. .. .. 48
55 Concluding Remarks . . . . . . . .. ... .. 50

6 Projective DNF Formulas 51
6.1 Further Definitions and Notations . . . . . . . . . .. .. ... ... .. 52
6.1.1 Revision . . . . . ... 53

6.2 Revision Algorithm for Disjunctions and for k-PDNF Formulas . . . . . 54
6.2.1 Revising Disjunctions . . . . . . . .. ..o 54

6.2.2 Revising k-PDNF Fromulas . . . . .. .. .. ... ... ... 58

6.3 Exclusion Dimension . . . . . .. ... 60
6.4 Concluding Remarks . . . . . . ... ... ... 65

Il Characterization Results 67
7 1-PDNF Formulas 69
7.1 p-irredundancy and a Characterization of 1-PDNF Formulas . . . . . . 69
7.2 Proof of Theorem 7.3 . . . . . . . . ... . ... ... ... ... .. 70
7.3 Concluding Remarks . . . . . . . .. ... 74

8 k-term-DNF Formulas with Largest Number of Prime Implicants 75
8.1 Nonrepeating Decision Trees and the Characterization of Maximal DNFs 76
8.2 Further Definitions and Notations . . . . . . . .. .. .. ... ... .. 78
8.3 Previous Results on k-term-DNFs and Prime Implicants . . . . . . . . 79
8.4 Proof of Theorem 8.1 . . . . . . .. ... .. ... ... ... .... 80
8.5 A Graph Theoretic Application of the Splitting Lemma . . . . . . . . . 83
8.6 Concluding Remarks . . . . . . ... ... ... ... 85

9 Disjoint DNF Tautologies with Conflict Bound Two 87
9.1 Characterization of DDNF tautologies with Conflict Bound Two . . . . 87
9.1.1 Syntactic View: DDNF tautologies and LBT generated DNFs . 88

9.1.2 Semantic View: The General Splitting Problem for Cube Partitions 90

9.2 Further Definitions and Notations . . . . . . ... ... .. .. ... .. 91
9.3 Proof of Theorem 9.1 . . . . . ... ... .. ... ... ....... 92
9.4 Concluding Remarks . . . . . . . ... ... ... 98



Contents vil

10 Decomposable Horn Formulas 99
10.1 Further Definitions and Notations . . . . . . . . . ... ... .. ... 100
10.2 Characterization of Decomposable Horn Formulas . . . . . . . . . .. 101
10.3 Proof of Theorem 10.10 . . . . . . . . . . . . .. ... ... ..... 104
10.4 Singleton Horn Extensions . . . . . . . . .. ... .. ... ... .. 107
10.5 Concluding Remarks . . . . . . . . . ... 109

Appendices 111

Appendix A Summary 111

Appendix B Osszefoglalas 115

Bibliography 119






Chapter 1
Introduction

The present dissertation, in its first part, considers theoretical results from the field of
theory revision. Theory revision, as part of learning theory, is interested in reconstruct-
ing some unknown function acquiring information about it via some protocol, specified
by the given learning model. However, as opposed to the general learning problem, it
is assumed that the learner is not new to the given task, but it initially has a hypothe-
ses that is assumed to be some rough approximation of the unknown function. As an
analogous real-world example, one can consider an initial version of an expert system
provided by an expert, which needs to be refined using further examples or other in-
formation available. Having some initial hypotheses available should make the learning
problem easier to solve—making the relevance of the model apparent, and motivating
its analysis from the theoretical point of view.

The theory revision results in the present dissertation all consider some Boolean
formula class; read-once, threshold and projective DNF formulas ! are analyzed from
the point of view of efficient revisability.

In the second part characterizational results are presented; all showing equivalence
between some syntactical and some semantical properties of some classes of Boolean
functions. The syntactic properties involve Boolean formula classes, like DNFs satisfying
some syntactic irredundancy notion, Horn formulas (one of the most studied formula
class in artificial intelligence), disjoint DNFs (DNFs with pairwise conflicting terms)
and decision trees (another very important object in computer science—which can also
be thought of as a subclass of DNFs). The semantic properties include restrictions
given for partitioning the n-dimensional cube with subcubes, special local restrictions
given for a Boolean function on its domain, extensions of the truth set of some function
fulfilling some special criteria, and finally some extremal properties.

IThe class of projective DNF formulas form a new subclass of DNF formulas introduced recently
by Valiant [128].



2 Introduction

1.1 Learning and Theory Revision

Theory revision, or more generally, the whole area of learning theory aims to capture
real life learning: to build models for some phenomena by collecting data about it
and trying to generalize from this data by realizing regularities and extracting certain
rules. An obvious and noble motivation for this is to make computers able to learn:
to adapt to new situations in a changing environment. This as is one of the most
fundamental original objectives of artificial intelligence. However, a big majority of
real-world applications nowadays consist of problems that seem a bit different at first
glance: to put up rules for, and to model systems that are way too complex for humans
to do it by hand. Typical examples from everyday life are speech recognition, face
recognition; or applications from bioinformatics like protein classification—and so on.
Many of these tasks can be considered as the problem of finding a classification rule
on a given domain that fits the data (i.e., labeling bitmaps either “woman” or “man”,
or mapping segments of speech to words, etc).

Various definitions and approaches were born to formulate this problem more pre-
cisely, but without a real consensus. However let us quote one (from Mitchell [99]):

“A computer program is said to learn from experience E with respect to some
class of tasks 7" and performance measure P, if its performance at tasks in T,
as measured by P, improves with experience E."

Although it gives some intuition about the nature of learning as a mathematical problem,
apparently it is too general to be applicable for specific problems or situations; so more
formal definitions are needed.

Computational learning theory and its central notion, PAC learnability (established
by the seminal paper [127] of Valiant), approaches learning from complexity theoretic
point of view and is interested in the computational and information theoretic aspects
of learning: what can be learned efficiently, and how much information does the learner
need for this in different settings. (In this case the classification rules are often Boolean
formulas from some predefined class.) Computational learning theory is defined in some
sense as the inverse of cryptography—and indeed, subsequently Kearns and Valiant has
shown that an efficient PAC learning algorithm for general Boolean formulas could be
used for example to break RSA [77].

To mention some other fields also devoted to learning: in the framework of “learning
in the limit” (established by Gold [47]) the learner meets in the course of an infinite
process all the words (or expressions) of some language 2, and is required to set up a
hypotheses: some representation of the language. On the other hand, pattern recogni-
tion, for example (highly influenced by works like that of Vapnik and Chervonenkis [131]
and Stone [120]), is interested in classifiers that (constructing their hypotheses using
randomly generated examples often in a kind of on-line manner) are asymptotically as
good as the best possible (called Bayes classifier).

2And, depending on the specific model, the learner might additionally meet some or all of the
“negative” examples: words or expressions not in the given language.
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The research aimed to analyze different aspects of PAC learnability gave birth to
several other related learning models. On the whole—focusing on the Boolean case—
all of them are interested in finding some representation for an unknown function fi,,
called target concept—representable by some formula from a fixed, predefined formula
class R—, acquiring information about it via some protocol, defined by the given model.
In the present dissertation two of these models are applied.

One such model is query learning (introduced by Angluin [10]), in which an
oracle is assumed to answer (in constant time) questions of the learner via some query
protocol. These questions are typically of the form of a membership query, querying
the value of the target concept on some assignment, or an equivalence query, asking
whether some formula, constructed by the learner is equivalent to the target concept.
The query complexity of the class R is the (maximum of the) number of queries
needed to ask by the learner depending on the size of f,, (i.e., the length of the
shortest formula in R for fi.). A learning algorithm in this model is considered to be
efficient, if both the quey complexity and the running time is polynomial (in the sum
of the number of variables and the size of fi,,).

Another such model is the mistake bounded model (see e.g. [92]) which is defined
in an on-line setting. In this model the learning proceeds in a sequence of rounds. In
each round the learner receives first an instance of the domain (i.e., on which fi,
is defined) then produces a prediction of its classification, and finally receives a label
(which, in a noise-free model is the correct classification—i.e., what f;,, evaluates on
it). If the predicted classification and the received label disagree then the learner made
a mistake. The mistake bound of the learning algorithm is the maximal number of
mistakes, taken over all possible runs, (that is, sequences of instances), depending on
the size of fi,,. A learning algorithm in this model is considered to be efficient, if
both the quey complexity and the running time (in each round) is polynomial (in the
sum of the number of variables and the size of fi,,).

Theory revision, as a special learning problem, assumes that the learner is not
completely new to the given learning problem, hereby it has some initial hypotheses
in the form of some formula that, albeit not equivalent to fi,,, but is thought to
be a “good approximation” of it. A typical example is an initial version of an expert
system provided by an expert, which needs to be refined using further examples or
other information available. It is argued that this is a realistic requirement, as many
complex concepts can only be hoped to be learned efficiently if a reasonably good
initial approximation is available. Descriptions of theory revision systems are given, for
example, in [82; 103; 107; 134; 135]. One of the first papers studying revision from a
theoretical aspect is due to Mooney [100]. He assumed that the target can be obtained
from the initial hypotheses by using revision operators, which are simple, predefined
syntactic modifications, such as the deletion or the addition of a literal, and gave
bounds for the the number of random examples needed in the PAC model for revision
in terms of the number of these modifications necessary. Greiner [57] considered the
computational complexity of hypothesis finding in a related framework.

The models for theory revision used in the present dissertation are extensions of
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Mooney's approach to the query and the mistake bounded model. Actually, the models
for theory revision differ from the corresponding learning models only in the efficiency
criteria as follows: denoting the size of fi,, by s, and the minimal number of revision
operators needed to apply on the initial hypotheses to obtain some representation for
firg by €, the number of queries asked (resp. the number of mistakes made) must be
polynomial in ¢ and in logm for an efficient revision algorithm 3. (Note however
that requirements set for the running time remains unchanged.)

For additional results on theory revision (not discussed in the present dissertation)
the papers [50; 52; 53].

1.2 Characterization Results for Boolean Func-

tions

Characterization results appear (and are applied) in several forms in mathematics and
in computer science; like giving a semantic description for some object defined in a
syntactic way (e.g. that a number, written in decimal form, is divisable by 5 if and only
if its last digit is either 0 or 5), or to give an alternative syntactic description for some
object defined in a syntactic way, and so on. Actually, it is one of the fundamental
tools in the analysis of some mathematical object (like, say, a function, set, formula
class, etc) to give an alternative description or representation for it, and work with
that. It can, on one hand serve with more insight on the given object—which, in
turn, can help solving the given problem—and, on the other hand (as is usual), it
can provide more intriguing questions. A prominent examples for this is the Fourier
transform of functions—i.e., to give an alternative representation for functions as a
linear combination of some orthonormal system—, which is of invaluable importance,
both in case of the real world applications and also on the theoretical level.

Characterization results are highly important for Boolean functions as well. A classi-
cal such result (see [71; 96]) is a semantic characterization of Horn functions (Boolean
functions representable with Horn formulas—i.e., conjunctive normal form formulas
in which every clause contains at most one unnegated variable). This result states that
a function f is Horn if and only if for any pair of assignments on which f evaluates 1
it holds that f evaluates 1 also on their meet (i.e., componentwise A). (This result is
formulated in this dissertation as Theorem 10.2.) This, in turn, is used in the present
dissertation to derive another characterization result involving Horn formulas.

Another classical characterization result (discovered independently several times—
see [58; 74; 102]) considers read-once functions (Boolean functions representable
with read-once formulas—i.e., formulas in which every variable occurs at most once).
This result uses the notion of maxterms an minterms, which—focusing for simplicity
only on monotone functions “— can be defined as follows: a minimal set of variables
S'is a minterm (resp. maxterm) of a monotone function f, if fixing the variables in

3An explanation for this choice of the efficiency criteria is given in Chapter 3.
*A Boolean function is said to be monotone if it is monotonically increasing in the usual sense.
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S to 1 (resp. the variables in 7" to 0) forces f to take the value 1 (resp. 0). Then
the characterization result states that a monotone Boolean function is representable
by a read-once formula if and only if for arbitrary minterm S and maxterm T of it
|T'NS| = 1. A nice application of this result in learning theory is the learning algorithm
constructed for read-once formulas in [13], which (although not applied, but still) is of
special interest for us, as various learnability related properties of this class are analyzed
in the present dissertation.

Finally note how central is the role of characterizing the extreme values and cases
for some problems is in some fields. For instance extemal combinatorics (see e.g. [72])
is typically interested in questions of this sort; like that of determining the maximal
number of prime implicants of Boolean functions. (A term ¢ is an implicant of some
Boolean function f, if any assignment saisfying ¢ also satisfies f, meanwhile ¢ is said
to be a prime implicant of f if, in addition, this does not hold for any term obtained
from ¢ by removing some literals from it.) Considering this problem, it is known that
a Boolean function on n variables can have at most O (\?’/—%) prime implicants, and

that there are functions with Q (£) prime implicants (see, e.g., [31]), but the exact
value for the maximal number of prime implicants is not known for general n. In the
present dissertation a related problem is analyzed, which also takes into consideration
the (minimal) number of terms in a DNF for a given function.

1.3 Results and the Structure of the Dissertation

The first part of the dissertation consists of results from theory revision, dealing with
the revisability of some important formula class in various learning models. The second
part consists of characterization results, some of which are related to some revision
problem, meanwhile the rest is just interesting per se.

The first topic on theory revision in the dissertation is the revision of read-once
functions (functions representable with formulas in which every variable occurs at most
once) in the query model, discussed in Chapter 4. The importance of this formula class
is rather theoretical, being a nontrivial subclass of Boolean formulas that is tractable
from several different aspects, and has a nice semantic characterization [58; 74; 102].
As it has been shown by Angluin et al., this class is also efficiently learnable with
membership and equivalence queries [13] 5, it is thus natural to ask whether also an
efficient revision algorithm exists for this class. This question is answered positively,
but only for a restricted model which assumes that the function to be learned can be
represented by a formula obtained from the initial one by deleting some parts of it.
After that, the optimality of the algorithm is analyzed: a lower bound is shown for the
query complexity of this class, that is of the same order of magnitude as the query
complexity of the algorithm. Finally it is analyzed whether both types of the queries,

SWhat's more, read-twice functions are also efficiently learnable [104]—but read-thrice functions
are not [2]. Here, read-twice (resp. read-thrice) functions (in accordance with the definition of read-
once functions) are defined as functions that are representable with formulas in which every variable
occurs at most twice (resp. three times).
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used in the algorithm, are necessary, and it is shown that indeed, efficient revision is
not possible using only one of the two types of queries.

As the next topic in theory revision, Chapter 5 considers Boolean threshold func-
tions (i.e., functions representable by a set of variables R and a threshold 6, evaluting
to 1 on exactly those assignments which assign 1 to at least # of the variables in R).
Threshold functions (although in a more general form) are famous for being the basic
ingredient of neural networks and support vector machines—and has several other ap-
plications as well. For this class similar questions are asked as above. Again, a revision
algorithm is presented in the query model, which, as shown, is an efficient algorithm
for revising the class of threshold functions (in this case, however, no restriction is set
on the model—i.e., both deletions and additions are allowed), having query complex-
ity essentially optimal up to order of magnitude. Again it is shown that no efficient
revision is possible for this class if one type of the queries gets banned. Finally it
is shown that, somewhat surprisingly, Winnow ®—a kind of multiplicative version of
Perceptron being famous for learning some formula classes highly efficiently 7 using
threshold representation—would not be a good choice for this task, as it would not
work efficiently.

As a closure of the theory revision part, a subclass of the disjunctive normal form
formulas, called projective DNFs, is considered in the mistake bounded model. For
long it was one of the main open problems in computational learning theory, whether
the class of DNFs is efficiently learnable. However recently it was proved that, unless
RP = NP, the answer is no [5]. This motivates the search for subclasses of the DNFs
which are efficiently learnable. The class of projective DNFs was introduced by Valiant
[128] as a class suitable for projective learning—a notion motivated by certain biologi-
cal considerations—; the general idea being that learning, similarly to other biological
processes, should be carried out on multiple levels in a distributed manner. His con-
struction consists of two levels. On the lower level simple learning algorithms are run,
each concentrating on just a small part (or restriction) of the function to be learned.
On the upper level another simple algorithm is run, which, on one hand, learns how to
(re)combine the output of the algorithms on the lower level, and, on the other hand, it
filters the information forwarded to these algorithms such that each one receives only
that part of the information which is supposed to be relevant for it. Given this efficient
algorithm for this class, it is an interesting question whether a natural extension it
would behave as an efficient revision algorithm. After showing that the answer to this
question is positive, some further, learning related features of the class are analyzed.

Being an appearently new class, projective DNFs provide several questions to be
answered. One such that arose during examining this class was that a special subclass
of it, called 1-projective DNFs (or 1-PDNFs for short) have shown some regularities in
their syntax. (A DNF formula ¢ is 1-PDNF if every term ¢ of it contains some literal ¢
such that e and ¢ represent the same function.) Chapter 7 discusses this, and presents
a characterization of this subclass that captures this regularity.

6More precisely a natural extension of it.
"More precisely in a so called attribute efficient manner.
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Continuing the discussion of characterization results, the relation between the num-
ber of terms in a DNF, and the number of prime implicants of it is considered. Earlier
results in computer science imply that if some DNF consists of K terms, then it has at
most 2% — 1 prime implicants [31; 90; 97], and it has also been known previously, that
this bound is sharp [88; 90; 97]. These results get completed in Chapter 8 in which a
charactarization is given for DNFs that have as many prime implicants as this bound
allows. This is shown by reducing the problem to the following problem: if in some
DNF tautology each pair of terms conflict in exactly one variable (i.e., each pair is
resolvable) then it posesses a tree-like structure (i.e., there is some variable v appearing
in each term; there is some variable w appearing in each term that contains v negated,
and there is some variable u in each term that contains v unnegated; and so on)—for
which a new proof is presented.

The next characterization result considered is a generalization of the result, the
previous problem (regarding the number of prime implicants of a DNF) is reduced
to. More precisely it is shown in Chapter 9 that if in some DNF tautology each pair
of terms conflict in at least one but at most two variables, then it also posesses a
tree-like structure. However, further relaxing the bound given for the conflict of the
terms to three, the above mentioned tree-like structure will not be automatic—as is
demonstrated by an example. This problem is also a special case of a problem considered
in [93], that, given a DNF tautology, the task is to construct a decision tree such that
for each term of the DNF generated by it there is a term of the tautology that is a
subterm of it. They have shown that even for some very simple DNFs this problem
requires a decision tree with extremely big complexity; however the result presented in
this chapter implies that for each DNF in the above mentioned restricted class there
exists always some simple decision tree 8.

Finally, decomposable Horn formulas are discussed. Horn formulas, being an ex-
pressive class which also allows for polynomial time inference, and indeed is generally
computationally tractable, play a central role in artificial intelligence and in computer
science. The notion of decomposability comes from belief revision °, a field interested in
revising knowledge base in such a manner that satisfies some “reasonability” properties,
that are typically formulated in the form of postulates. Decomposability was introduced
for general logics in [41], where it was also shown to be equivalent to the existence
of some revision operator satisfying the AGM postulates [4]—one of the most popular
postulates used in belief revision. In Chapter 10 characterizations are given for the exis-
tence of a complement of a Horn function consequence of another Horn function, which
in turn provides a complete description of decomposable Horn formulas. The charac-
terizations lead to efficient algorithms for the construction of a complement whenever
it exists (which is in contrast with a related, but somewhat more stringent complement
notion of [60], the existence of which is occasionally NP-complete to decide). The
result, as is purely combinatiorial, but was meant in [89] as a first step towards what is

8Actually the result states something stronger: for this restricted class basically the DNFs them-
selves can be considered as decision trees in some sense.

9Belief revision is related to theory revision (at least in it topic);thus—as a closure—the two main
topics of the dissertation meet again.
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referred to as “Horn-to-Horn belief revision™: revision of Horn knowledge bases where
the revised knowledge base is also required to be Horn; integrating hopefully efficient
revision (the central notion in theory revision) and common sense reasoning (as a main
goal in belief revision).



Chapter 2
General Definitions and Notations

When analyzing different representational classes it is often convenient (and sometimes
maybe even unavoidable) to view formulas as functions and vice versa: to analyze a
function by examining a formula representing it. Accordingly we frequently and freely
switch between the semantical and the syntactical view. However, trying to keep the
picture clear, we first discuss the two separately, and then discuss some connections of
the two used heavily later on.

2.1 Syntax

V = {vy,v9,v3,...} is the set of propositional variables in our universe, and for any
integer n let V,, = {vy,v9,vs,...,v,}. The negation of a variable v € V is denoted .
A literal is an unnegated or negated variable; unnegated variables are called positive
literals; negated variables negative literals. The negation of the negative literal
e =1, denoted g, is again the positive literal v.

A Boolean formula over variables V' C V' can be defined as the smallest subset
of strings FORMULAS over 1,0, “V", “A”", )", “(", " 7" and V' satisfying:

e 0,1 € FORMULAS !
e Literals v and T are in FORMULAS for any v € V'.
e If © € FORMULAS, then ¥ € FORMULAS.

o If ©1,..., 0, € FORMULAS and k > 2, then o(¢y, ..., ¢x) € FORMULAS, where
o is either \V or A.

(In notation, for formulas greek lower case letters are used, usually ¢ and 1, or some-
times x.) Let Var(y) (resp. Lit(yp)) denote the set of variables (resp. set of lit-
erals) occuring in formula ¢. For example if ¢ = (v V W) A (w V (u V %)), then
Lit(¢) = {v, w,w, u,z}, meanwhile Var(yp) = {v,w, u, z}, where v, w,u,z € V.

LFor technical reasons, we extend the standard notion, which does not allow for constants in the
leaves.
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Besides Boolean formulas we also consider threshold formulas. A threshold for-
mula is simply a pair (U, ), also denoted Th;, where U C V and t is some non-negative
integer.

Both Boolean and threshold formulas are often referred to simply as formulas.

2.1.1 Terms, Clauses, Special Formula Classes

A term (or conjunction) is a formula A(ey, ..., e;)—often written in the form e; A
-+ A\ gg—, where e1,..., ¢, are arbitrary literals. A k-term (or k-conjunction) is a
conjunction of k literals. A clause (or disjunction) is the dual notion, where in the
place of each A there is a V. Denote the empty conjunction (resp. empty disjunction)
by T (resp. _L). It is assumed that terms (resp. clauses) do not contain both a variable
and its negation.

It is often convenient to treat clauses and terms as a set of literals; for example
if ¢ = U1 VsV, then U7 € ¢ denotes that literal 77 appears in clause ¢, and if
t1 = vy Avy and ty = vy ATy A vg A vs, then t; = 19\ {vy, T2, v5} denotes that term
t; can be obtained from t; by removing literal vs and removing variable v, with any
orientation. (As it will always be clear from the text, wether the given formula is a
clause or a term, this does not cause ambiguity.) Accordingly, the size of a term ¢,
denoted by |¢|, is the number of its literals, and some term ¢’ is a subterm of ¢ if ' C ¢
(which is obviously equivalent to Lit(¢') C Lit(t)).

Terms ¢t and ¢’ conflict in variable v if v appears unnegated in one of them, and
negated in the other. (In this case ¢ and ¢’ are also said to collide.) ¢ ® ¢’ denotes the
set of variables ¢ and ' conflict in; thus |t ® /| is the number of conflicts between the
two terms.

A disjunctive normal form formula (or DNF for short) is a disjunction of
terms. A k-DNF is a DNF such that each of its terms contains at most k literals. A
k-term-DNF is a DNF with at most k terms. Let k-DNF,, (resp. k-term-DNF,)
denote the class of n-variable Boolean functions expressible as a k-DNF (resp. as a
k-term-DNF). A DDNF or disjoint DNF is a DNF with pairwise conflicting terms.
A DDNF formula has conflict bound d, if any two terms in it conflicts in at most two
variables.

A Horn clause is a clause containing at most one positive literal. A Horn formula
is a disjunction of Horn-clauses.

A read-once formula is a formula in which every variable occurs at most onnce.

As in the case of terms and clauses, sometimes DNFs are also treated as sets—in
particular as a set of terms. Accordingly ¢ € ¢ is used to denote that ¢ is a term of the
DNF .

A Labeled Binary Tree (or LBT) over variables in V' C V is a rooted binary tree
such that for each inner node the node itself and the edge leading to its right child
are labelled by some v € V', and the edge leading to its left child is labelled by 7. A
Decision Tree (or DT) is an LBT that’s leaves are labelled by 0 or 1.
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2.2 Semantics

An assignment is a function x : V — {0, 1}, a partial assignment is partial function
0 :V < {0, 1}. In the latter case o can also be considered as a function ¢ : Dom(o) —
{0,1} where Dom(c) := o71({0,1}) = {v € V : v is assigned to some variable by o}
is the domain of 0. When o(v) appears in the text for some v € V), then it is
implicitely understood that Dom(o) contains v. The partial assignment with empty
domain is denoted ().

When one focuses on a subset V" of the universe in scope (this often occurs when
working with some (sub)formula ¢, in which case V" is Var(y)), a partial assignment
oV — {0,1} with V' O V" can also be considered as an assignment. This is
stressed in notation using bold face lower case Roman alphabet letters (usually x,y, z,
or sometimes w or u) for these partial assignments, and to use lower case Greek letters
(usually o, or sometimes ) for those that leave some variables in V" unassigned. When
V' is finite, say V' = V,,, o can be written in the form (v — o(v1),...,v, — o(vy,)).
For example if V' = V3, and o(v1) = 1, o(v2) = 0 and o(v3) = 1, then 0 = (v;
1,v9 +— 0,v3 — 1). Also, for some V" C V, let oy denote the partial assignment
that agrees with o on V' N}, and leaves the rest of the variables unassigned.

0 (resp. 1) denotes the assignment that assigns 0 (resp. 1) to each variable in
scope, V", and for some V' C V” let 1y, denote the assignment assigning 1 to the
variables in V' and 0 to the variables in V" \ V.

Given two assignments x,y : V' — {0, 1}, their intersection (or meet) is the
assignment x Ay : V' — {0, 1} assigning x(v) - y(v) (i.e., the minimum of x(v) and
y(v)) to each variable v € V'. Also, the relation x <y holds, if x =xAy,andx <y
holds, if x <y but x # y. Similarly to the meet, let the join of assignments x and y
be the assignment x Vy : V' — {0, 1} assigning x(v) + y(v) — (x Ay)(v) to variable
v €V (i.e., assigning to each variable the maximum assigned to it by x and y), and,
finally, let x @ y : V' — {0, 1} assign (x Vy)(v) — (x Ay)(v) to variable v € V'.

Given some partial assignment o and a variable v € Dom(o), the component of
o corresponding to v (or the v-component of o, for short) is the partial assignment
0lv}. The v-component is said to be on (resp. off) in o, if o(v) =1 (resp. o(v) = 0).
Let futhermore ¢!*! = o[” be the partial assignment obtained from & by flipping its
v-component. For example (v; +— 1,0y +— 0,03 — 1,04 +— 0)2) = (v) = 1,0y —
1,v3 — 1,04 — 0) and also (v; — 1,v5 = 0,03 — 1,04 — 0)" = (v; = 1,05 —
Lvg— 1,04 — 0).

The Hamming distance distH(x,y) of assignments x and y is the number of
variables on which x and y disagree. The weight of an assignment x, denoted as |x

is the number of variables it assigns 1 to.

Given a set of variables V' C V), let A()’) denote the set of assignments with
domain V'. Let furthermore A, := A(V,). A Boolean function f over variables
V' is a zero-one valued function defined over the assignments with domain V'—that is
f: A(V") — {0,1}. An n-variable Boolean function is a Boolean function over
A,.. Boolean functions will often be referred to simply as functions. In notation, plain
lower case Roman alphabet letters (usually f, g or h) are used for Boolean function.
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An assignment x € A()') is said satisy (resp. falsify) function f if f(x) =1 (resp.
f(x) = 0). The truth set of a function f istheset 7(f) :={x € AV : f(x) =1},
and let F(f) := {x € A(V') : f(x) = 0}. The function with truth set A()’) (resp.
())—that is, which evaluates to 1 (resp. to 0) on each assignment—is denoted 1 (resp.
0). Finally note that a Boolean function over variables V' C V can also be considered
as a Boolean function over V" for any V' C V" C V.

For Boolean functions f and g write ¢ < f if every truth assignment satisfying
g also satisfies f (i.e., if 7(g) € 7(f)). When this holds, g is said to imply f, or
also that f is a consequence of ¢. If, in addition, there is a truth assignment x with
g(x) = 0 and f(x) = 1, then g is said to properly imply f, or that f is a proper
consequence of g, and denote it by g < f.

A Boolean function f over variables V' is monotone if x <y implies f(x) < f(y)
forall x,y € A(}V'), itis a-unate for some a € A(V'), if g(x) = f(x®a) is monotone,
and it is unate if it is a-unate for some a € {0, 1}".

Given (partial) assignments oy : V' — {0,1} and oy : V" — {0, 1} with V', V" C V),
let 07 be the (partial) assignment that agrees with o5 on V", with o; on V' \ V”, and
leaves the rest of the variables unassigned. When V' and V" are disjoint, then 7>
is sometimes written as (07, 02). When this is the case, and 072 is an input of some
function f, or protocol MQ 2, then sometimes, instead of f((0y,02)) or MQ((07, 02)),
with a slight abuse of notation, simply f(o1,02), @(01,09) or MQ(0, 02) is used.

2.3 Connecting Syntax and Semantics

Given a partial assignment o : V' — {0, 1} and a Boolean formula ¢ over V, let ¢ be
the formula obtained from ¢ by replacing each variable v € Var(¢)NV’ with the value o
assignes to it. On the other hand, (o) is the formula obtained by iterating the follow-
ing: if the current formula contains some subformula o(1,..., v 1,0, 0i-1,...,¢0)
for some b € {0,1}, o € {A,V, "}, then replace it with

e I, ifoisvVandb=1,orifois“ " and b =0,
e (,ifoisANandb=0,orifois”“ " and b =1,
o V(p1, .oy Pii1,Pi1, .-, pp), ifois Vand b=0,
o A1,y Pic1, Qic1y---,0), ifois Aand b=1,

as long as at least one of the above cases apply. Note that if o is an assignment,
then the resulting formula is either the 0 or the 1. Accordingly, for any formula ¢
there is a naturally associated function over variables Var(y), mapping an assignment
x € A(Var(yp)) to the appropriate constant ¢(x). Conversely, given some formula ¢
with an associated function f, we also say that ¢ represents f. Finally, define the
empty conjunction, T (resp. the empty disjunction, L), to be always true (resp. false).

2See Chapter 3.
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Given some threshold formula Thy,, and some (partial) assignment x with domain
Dom(x) D U, let Th};(x) = 1 if x assigns 1 to at least ¢ of the variables in U, and
let Th,(x) = 0 otherwise. Accordingly, for any threshold formula there is a naturally
associated function over variables U.

Two formulas ¢ and ¢ are equivalent, denoted ¢ = 1), if they represent the same
Boolean function. If we use some formula ¢ in a place where a function is expected,
then ¢ will stand for the function represented by ; accordingly the relations < and
< (i.e., the notions “implies” and “properly implies”, resp. “consequence” and “proper
consequence”) can also be naturally extended for formulas. Now then, if a term ¢ implies
some function f than ¢ is said to be an implicant of f. If, furthermore it also holds
that deleting any literal from ¢ results in a term that is not an implicant of f, then ¢ is
a prime implicant of f. On the other hand, if some clause ¢ is a consequence of the
Boolean function f, then ¢ is called an implicate of f.

A term is monotone if it consists of unnegated variables. Given a € {0,1}", a
term is a-unate if the sign of every literal in it agrees with a—that is, a literal is positive
if and only if the corresponding component of a is 0. (Note that the above definitions
coincide with the corresponding definitions for the associated functions.) For example,
if n =3 and a = 101 then 77 v, is a-unate.

2.3.1 Vectors, Cubes and Subcubes

Let V' C V be finite; for simplicity assume V' =V, for some n.

Note that (using the natural ordering of the variables in V), where v; is the i-th item
in the order) assignments can be thought of as Boolean (or 0-1) vectors; accordingly
A(V') can be identified with the n-dimensional cube, {0,1}". Then, for example,
the assignment 0 = (v; — 1,09 — 1,3 — 1,u4 +— 0,v5 — 1) can be written
as (1,1,1,0,1) or sometimes even as 11101. (Or maybe even using the exponential
notation as o = 1301.)

A subcube (or simply cube) is any set of vectors that is of the form 7 (¢) for some
conjunction (i.e., term) ¢. For terms ty, ¢, where ¢; % 0, the following relations are
equivalent:

o t; <ty
o 7(t;) C7(tz), and
e Lit(t1) D Lit(ts), or in words: t; is subsumed by t,.

For a literal ¢, the £ half cube of A()’) is the (n — 1)-dimensional subcube formed by
the vectors for which ¢ is true. If a term ¢ is an implicant of a DNF o =1¢; V- -+ V 1y,
then we also say that ¢ is a cover of ¢, as the union of the cubes 7 (¢;) covers the

cube 7 ().

Proposition 2.1 A set A C A(V') is a cube if and only if for every x,y € A and
every z € {0,1}" such that x Ny <z < xVy, it also holds that z € A.
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Proof
The “only if”" direction is easy to see.

The “if" direction follows by noting that the condition implies that the A and the
V of all the vectors in A is in A, and every vector between these two vectors is also in
A. The conjunction of those literals to which value 1 is assigned by both of the above
vectors is a term that is satisfied by exactly the vectors in A. O

It follows, in particular, that if a cube contains two vectors with weights w; < w,,
then it also contains vectors of weight w for every w; < w < ws.

Given x,y € A(V’), the term corresponding to the smallest subcube containing
both x and y is obtained by including every literal corresponding to components where
x and y agree. For example, the smallest subcube in A, containing both 1010 and
1100 is v1v;.
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Chapter 3

Models and the

Vapnik-Chervonenkis Dimension

In this chapter first a short description is given of the models used in the present
dissertation. Although all the algorithms discussed in the later chapters are revision
algorithms, the models used are variants of the appropriate models defined for learning.
For this reason first the original variants are discussed shortly (in Section 3.1), and
then the corresponding revision versions are defined (in Section 3.2). Note that, as the
dissertation considers only Boolean functions and formulas, for simplicity the notions
used are defined only for this case. (For a more general setting see e.g. [78].)

Finally, the Vapnik-Chervonenkis dimension is introduced [131]; a common tool used
for proving lower bounds on the amount of information the learner needs to acquire
about the target conecpt during the learning process.

3.1 Models for Learning

The first model discussed is PAC learning. Although it is not applied directly in the
present dissertation, but this model (being the original model in computational learning
theory [127]) gives the clearest (and at the same time: the rawest) picture of the
general goals and nature of computational learning theory. For more on the relation of
the models considered in this chapter and others see [63]. But let us first invoke from
Chapter 1 the definition of learning given by Mitchell [99]:

“A computer program is said to learn from experience E with respect to some
class of tasks 7" and performance measure P, if its performance at tasks in T,
as measured by P, improves with experience E."

As mentioned, it is too general to be applicable for specific problems, but it sums up
nicely what one has to specify, when formalizing a learning framework:

(a) the object for learning (i.e., what one wishes to learn),

(b) the method of acquiring information about it,

17
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(c) some criteria for success, and
(d) (occasionally) some efficiency criteria.

A common feature of the models discussed below is that there assumed to be some
fixed, predefined class of formulas R (e.g. the class of DNFs, or Horn formulas, or read-
once formulas, etc) and some fi,, : A(V') — {0, 1} representable by some formula in
R; the latter, which is referred to as the target concept !, is unknown to the learner.
The general task (thereby specifying (a)) is to find some representation for fi,, or for
some approximation of it. Models requiring the former (i.e., to represent f;,, perfectly)
are called exact learning models.

Another common feature is that the efficiency criteria builds on the size of fi,,
defined as the legth of the shortest formula in R representing fi,,.

3.1.1 Probably Approximately Correct Learning (PAC)

Recall that for the PAC model only a rough description is given, lacking the mere
technicalities required by the exact definition, but sufficient to reveal the the general
idea behind it.

Fix some distribution D over A(V’); this distribution, just like fi,,, is also unknown
to the learner. Then, having access to randomly generated examples in the form
(X, fug(X5)), 7 = 1,2,..., where Xy, X, ... are independent and have distribution
D, the learner is required to, “with high probability” output some formula that “is
a good approximation” of f,, > —and, of course, to do all this efficiently in the
complexity theoretic sense. It is easy to recognize the four items from the beginning of
the chapter: (a) is fi, (b) is random data, (c) is that the probabilistic requirements
are fulfilled and (d) is that the running time is polynomial in the size of the different
parameters 3 (including the size of fi,,, defined as the length of the shortest formula in
R representing it). Note that this bound for the running time also sets an information
theoretic bound: it bounds the number of examples used.

3.1.2 Query Learning

In query learning (introduced by Angluin [10]) the learner collects information about
the target concept through a query protocol (which thus specieis (b)), assuming the
existence of an oracle that answers (in constant time) different type of questions of the
learner. These questions are typically of the form of

e membership query, querying the value of fi,, on some assignment x—asking
for this information is usually denoted MQ(x)—, or

!Note that a Boolean function (interpreting it as a membership function) can be thought of as a
subset of the domain—or in other words as a concept.

2The conditions “with high probability” and “is a good approximation” are formulated in terms of
the distribution D.

3Basically, the size can be thought of as the number of bits needed to encode the different param-
eters, also including the size of a random example.
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e equivalence query, querying for some counterexample: some assignment
x on which f,, and some formula ¢, constructed by the learner, disagrees.
(Counterexample x is called positive, if fi,,(x) = 1, or negative, if f,(x) =
0.) Asking for this information is usually denoted EQ(y). Note that if such
assignment does not exist (signaled by the oracle by returning (), the partial
assignment with empty domain), then the learning process has come to an end:
¢ computes fi,. The equivalence query EQ(¢y) is proper if ¢ € R, otherwise
it is improper.

Query learning is an exact learning model, thereby requiring that the learner learns
fug exactly (again, this specifies (c)). Regarding (d), the efficiency criteria in this
model, in accordance with the philosophy of the PAC model, is that the time required
by the learner is bounded by a polynomial of the size of the parameters: the number
of variables in focus and the length of the smallest formula in R for fi,,. Again, this
bound for the running time also sets an information theoretic bound: it bounds the
number of queries used.

3.1.3 Mistake Bounded Learning

In the mistake bounded model (see [92]) the learning proceeds in a sequence of rounds.
In round r the learner receives an instance x,., and produces a prediction ¢, of its classi-
fication. Then the learner receives a label y,. (This actually completes the description
of (b); in a noise-free model y, is the correct classification of x,, that is, y, = fus(X;).)
If 9. # v, then the learner made a mistake. The mistake bound of the learning
algorithm is the maximal number of mistakes, taken over all possible runs—that is,
sequences of instances. Regarding (d), the efficiency criteria is that both the number
of mistakes and the time required by the learner in a round (but independently of the
given round) can be bounded by a polynomial of the paremeters: the number of vari-
ables in focus and the length of the smallest formula in R for fi,,. (Here, the bound
for the running time does not automatically set an information theoretic bound—i.e.,
for the number of mistakes committed—, this is why it had to be set directly.) As the
model is thought of as an infinite process, it might not be that obvious, but this model
is effectively an exact learning model, accordingly the success criteria (c) is that fi,, is
learned exactly.

A mistake-bounded learning algorithm can be thought of as an equivalence query
learning algorithm, where the equivalence queries correspond to the predictions at each
stage of the algorithm. These queries are usually improper. Thus, proper equivalence
and membership query algorithms and mistake-bounded algorithms are incomparable
in general.

3.2 Models for Theory Revision

In theory revision the general task is the same as in learning: to construct some rep-
resentation for the unknown target concept fi,, (in the dissertation only exact models
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are used for revision) acquiring information about it in the form specified by the given
model. However it is also assumed that the learning does not start from sratch, and
accordingly that the learner has some initial formula ¢ at hand. The general idea be-
hind this (following the idea of Mooney [100]) is that applying some simple, predefined
syntactic modifications (referred to as revision oprations) on ¢ one obtains a repre-
sentation for fi,,. Thus, using ¢, the learning requires less additional information about
the target concept. On the other hand it is also apparent how strongly the learning
task depends on the given initial hypotheses.

The revision operations can, in general, be either deletion or addition type. The
definition of these operators may depend on the target class, but, in general, a deletion
operator removes some literal occurence or some subformula from the given formula
it is applied on, meanwhile an addition operator extends the formula with a literal
occurence *. (Precise definitions for these operators for the different formula classes
are given in the subsequent chapters.) The revision distance between the initial
hypotheses ¢ and the target concept fi,,, denoted dist(¢p, firg), is the minimal number
of revision operations needed to transform ¢ to some formula representing fi,,. Note
that the revision distance depends on the revision operators (differing in the different
models!) and that it is not symmetric. Finally it should be mentioned that in some cases
only one type of revision is considered. Accordingly one can differentiate between three
cases: deletions-only (when only deletion operators are considered) ®, additions-
only (when only addition operators are considered), and general (when both type of
operators are considered).

To gain some intuition why approaching theory revision via the idea of revision
operators is so appealing, note the following. Technically, the task of theory revision
is to learn (i.e., construct some representation for) the “difference” of the initial hy-
potheses ¢ and the target concept fi,,—that is, to learn the set {x : fi (%) # ©(x)}.
To adopt the philosphy behind PAC learnability for this task, one has to assume then
some representation class for the above set. However, there doesn’t seem to be any
natural, generally applicable method for this representation task that also fits the phi-
losophy, other than to simply list the operators needed to apply on ¢ to obtain some
representation ¢ for fi,.

The number of functions representable by some formula in R of size at most m
is 290" (unless using some wasteful representation, which we do not consider), thus,
in general, to identify some formula of size m, one needs ©(m) bits of information.
This is reflected in/is in accordance with that in each learning model the information

“Basically, the addition operator is the inverse of the deletion operator which removes a single
literal occurrence.

®As a technical detail, in this case it can happen that no representation of fi,, can be obtained
from ¢; in this case dist(¢, firg) can be defined to be infinite. However in the deletions-only case it
is is always implicitely assumed that this is not the case. It should also be mentioned that there is a
long history of studying this special case, presumably because of its greater tractability, in, and even
before, the Al literature. Actually “deletions-only” corresponds to the “stuck-at” faults usually studied
in diagnosing faulty circuits in the 1960s and 1970s (e.g., [81]) and, for instance, to the case where
Koppel et al.proved the convergence of their empirical system for theory revision in the 1990s [82].
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theoretic bound is at least linear (but maybe of some higher order polynomial) in the
length of the smallest formula for fi,, °.

In case of revision, the bound for the running time in the efficiency criteria still
needs to be polynomial in the size of fi,, (and of course of ¢ as well), but the amount
of information the learner needs depends on a completely different parameter: the
amount of bits needed to encode fi,,, given ¢. To encode the application of some
revision operator one simply needs to encode where in the formula the revision operator
is applied (and occasionally—in case of addition operators—also to encode some literal);
thus, given ¢, fi,, can be encoded using O(é(logm+logn)) bits of information, where
é denotes the revision distance between ¢ and fi,,, n the number of variables in use,
and m the length of ©. Accordingly, in general, the infomation theoretic bound in
the efficiency criteria for an efficient theory revision algorithm is typically polynomial in
é(logm + logn).

Definition 3.1 (Theory revision in the query learning model) Given some for-
mula class R, an algorithm is a revision algorithm for R with query complexity p,
if, given any concept f,,,—called target concept—representable by some formula in
R, on input p € R—called initial formula—the algorithm outputs some representa-
tion for fi,, using at most p(é,logn) queries about fi.,, where é = dist(¢p, fis). The
algorithm is said to be an efficient revision algorithm for R, if p is a polynomial and
the running time can also be bounded by a polynomial of the size of ¢, the number of
variables and é. It is said that the query complexity of R is at least q, if any revision
algorithm for R is of query complexity Q2(q).

In theory revision equivalence queries are usually used to “detect” some flaw in the
initial formula (i.e., to obtain some assignment on which the learner current hypotheses
and the target concept disagrees), meanwhile membership queries (often applied in
some kind of binary search) are usually used to “locate” the detected flaws (i.e., some
position of the formula where some revision operator should be applied). It is often also
interesting wether both types of queries are necessary for efficient revision of a given
formula class. The thesis considers this problem for both formula classes for which
efficient revision is provided in the query learning model.

Definition 3.2 (Theory revision in the mistake bounded model) Given some
formula class R, an algorithm is a revision algorithm for R with mistake bound p, if,
given any concept f,,—called target concept—representable by some formula in R,
on input ¢ € R—called initial formula—the algorithm outputs some representation
for fi.z making at most p(é,logn) mistakes on instances classified by fi,,, where é =
dist(¢, firg). The algorithm is said to be an efficient revision algorithm for R, if p is
a polynomial and the running time in each round can also be bounded by a polynomial
of the size of v, the number of variables and é.

®Recall that both in query learning and in mistake bounded learning the information theoretic
bound was allowed to depend also on n. However, results in attribute efficient learning (see e.g.
[23; 27; 92]) suggest that this can often be omitted, and that the polynomial bound on the number of
queries should allowed to depend only on the size of the targer concept; accordingly the dependence
on n is not polynomial, only polylogarithmic (i.e., polynomial in logn).
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Finally it should be discussed how—or whether—theory revision results and learn-
ability results imply each other. Obviously theory revision implies learnability (but only
in the general case, allowing both addition and deletion opretors), but so far there are
no satisfactorily general equivalence results for the other direction. And, in fact, it is
not really expected to have one—as some results suggest:

e Read-once formulas (recall their deinition from Chapter 2) can be learned effi-
cifently [13], and can also be revised efficiently in the deletions-only model (see
Chapter 3), but considering the addition, it is not even clear what the right model
should be.

e Horn-formulas (resp. monotone DNF formulas) can be learned efficiently [10; 12],
but the revision problem of finding one deletion in an n-clause (resp. n-term)
formula has query complexity Q(n) [52; 53].

e Threshold functions can be learned using membership queries only, but in case
of theory revision both query types are needed for the efficient revision (see
Chapter 5).

This provides further motivation for researching the revisability of various important
formula classes.

3.3 Vapnik-Chervonenkis Dimension

A common lower bound technique for the query complexity is to use the Vapnik-
Chervonenkis dimension [131], which can be defined as follows.

Let R be a set of Boolean formulas over variables V'. Some Y C A(V’) is said to
be shattered by R if for any Z C Y there is a ¢, € C such that

(x) = 1 ifxeZ,
PZTN 0 fxev )\ 2

Then VC-dim(R) := max{|Y]: Y C A(V’) and Y is shattered by R} is the Vapnik-
Chervonenkis dimension of R 7.

Assume that the target concept is an arbitrary function that can be represented by
some formula in R. It is well known that in this setting any learning algorithm that
uses only equivalence queries will ask at least VC-dim(R) queries in the worst case.
Furthermore (as is shown in [17] and in [94]), there is some universal constant o > 0
such that even if the algorithm is allowed to ask both kind of queries (and even if the
equivalence queries are improper), in the worst case it will ask at least a- VC-dim(R)
queries.

"Note that the Vapnik-Chervonenkis dimension is usually defined for some set of functions, and
not formulas, however this approach seems to fit the presentation of the dissertation better.



Chapter 4
Read-once Formulas

Recall that a Boolean formula ¢ is a read-once formula (sometimes also called a
p-formula or a Boolean tree), if every variable has at most one occurrence in ¢. Such a
formula can be represented as a binary tree where the internal nodes are labeled with A,
V, and the negation and the leaves are labeled with distinct variables or the constants
0 or 1. (That is, for technical reasons—contrary to the general definition—we require
that in read-once formulas all the V and A operations are of arity two. Note, however
that this does not mean the loss of generality; for example the formula v V w V u can
be represented as V(v, V(w,u)).) The internal nodes correspond to the subformulas.

Read-once formulas form a nontrivial class that is tractable from several different
aspects, but slight extensions are already intractable. Boolean functions represented
by read-once formulas have a combinatorial characterization [58; 74; 102], and cer-
tain read restrictions make CNF satisfiability easily decidable in polynomial time (see,
e.g., [79]). It is interesting that the tractable cases for fault testing [81] and Horn
theory revision [40; 82] are also related to read-once formulas.

Read-once formulas are efficiently learnable using equivalence and membership
queries [13]. While read-twice DNF formulas are still efficiently learnable [104], for
read-thrice DNF formulas there are negative results [2].

The main result in this chapter is the efficient revision algorithm for read-once
formulas in the query model for the deletions-only case. Also lower bounds are provided
showing that the algorithm is close to optimal.

4.1 Further Definitions and Notations

We call a subformula of ¢ constant subformula (more specifically; constant 0, resp.
constant 1 subformula) if it computes a constant (constant 0, resp. constant 1) func-
tion. A constant subformula is maximal constant subformula if it is not the sub-
formula of any constant subformula.

For technical reasons it is not the variables of some read-once formula ¢ that is of
interest for us, rather the variables of ( that are not in some constant subformula of it.
We call these variables the relevant variables of ¢, and denote their set as VarR(yp).

23
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Note that VarR(y) can be determined in polynomial time for any read-once formula.

By the de Morgan rules, we may assume that negations are applied only to variables.
As we consider read-once formulas only in the deletions-only model, and thus know the
sign of each variable—we can replace the negated variables with new variables (keeping
in mind that every truth assignment should be handled accordingly). Thus without loss
of generality we can assume that each variable is unnegated (i.e., we use only A and
V in our read-once formulas). A Boolean function is a read-once function if it has
an equivalent read-once formula.

4.1.1 Revision

For read-once formulas we only consider the deletions-only case (for the general case it
is not even clear what the right model should be—recall Chapter 3). Note that for any
formula obtained from some read-once formula ¢ by deleting some subformulas there
is some equivalent formula obtained from ¢ by fixing some variables to 1, and some
others to 0. Accordingly, the revision operators are the fixing of some variable to 0
or 1. Then the target concept is the associated function of ¢ = ° for some partial
assignment &, where the initial hypotheses is ¢, and the the revision distance of ¢
and v is dist(p, 1) := min{|Dom(o)| : ¢ € A(V’) such that v = ¢7}, where V' is
the universe in scope.
Note that this is in accordance with the general approach described in Chapter 3.

4.1.2 Sensitization

Our revision algorithm uses the technique of path sensitization from fault analysis in
switching theory (see, e.g., Kohavi [81]). Let the initial formula be the monotone
read-once formula

0= (p1Vp2) A3,

and let the target formula be

= (Y1 Vb)) Nbg,

where 1) is obtained from ¢ by replacing certain variables by constants. Consider the
partial truth assignment « that fixes all the variables in 5 to 0, and all the variables
in 3 to 1. This fixing of the variables is called sensitizing ¢; , and « is called the
sensitizing partial truth assignment for ¢,. Put x; := 0% and x; := 1.

Asking the membership queries MQ(xo) and MQ(x;), there are three possibilities.

1. If MQ(x71) = 0, then it must be the case that either 1 (1) = 0, in which case v,
is identically 0, or ¥5(1) = 0, in which case the whole target formula is identically
0.

2. If MQ(x0) = 1, then it must be the case that either ¢,(0) = 1, in which case
¥y is identically 1, or 15(0) = 1, in which case v, is identically 1.



4.1 Further Definitions and Notations 25

3. For the revision algorithm it is important to notice that we can also gain infor-
mation in the third case, when MQ(xo) = 0 and MQ(x;) = 1. In this case we
do not observe any “abnormality,” but we can conclude that for every truth as-
signment y : VarR(¢y) — {0, 1} it holds that ¢;(y) = MQ(y, «). Thus we can
simulate membership queries to the subformula v); by membership queries to the
target concept, and this enables the revision algorithm to proceed by recursion.
Also note that in this case it is still possible that 15(1) = 0 and/or 13(0) = 1.

Now we give the general definition of a sensitizing partial truth assignment. Let ¢’
be a subformula of ¢ that is not part of some constant subformula of it. Consider the
binary tree representing o, and let P be the path leading from the root of ¢ to the
root of ©’. Then ¢ can be written as

= (- (¢ or @) or_1 - 033) 02 P2) 01 ¢p1, (4.1)
where ©1, ..., @, are the subformulas corresponding to the siblings of the nodes of P,
and oy,...,0, are either A or V. In this representation we used the commutativity of

A and V; in general ¢’ need not be a leftmost subformula of ¢. Let v) be obtained
from ¢ by replacing certain variables by constants—that is, 1) = 7 for some partial
assignment §. Then, as in (4.1), we can write ¢ as

Y= (- (¢ op1) 0p 1 - 0313) 09 1) 01 V5. (4.2)

where ¢; = 7 fori =1,...,r. Subformula ¢’ is called the subformula correspond-
ing to ¢'.

Definition 4.1 Let ¢ be a read-once formula with subformula ', and write ¢ as in
Equation 4.1. Since ¢ is read-once, VarR(¢') and VarR(y;), i = 1,...,r form a
partition of VarR(y). Now let o be the partial truth assignment that assigns 1 (resp.,
0) to every variable in VarR(p;) if o; is A (resp., V), for every i = 1,...,r. Then « is
called the partial truth assignment sensitizing ¢'.

Generalizing the remarks above, let o be the partial truth assignment sensitizing
¢'. Form the truth assignments xy = 0% (resp. x; = 1%) that extend « by assigning 0
(resp. 1) to the variables occurring in ¢'. Now, if MQ(x;) = 0, then it follows by the
monotonicity of v that either ¢/’ or a subformula ); such that o, = A is constant 0. In
this case, the whole subformula corresponding to (- - (¢ 0, %) 0,1+ 0;_11;_1) 0; ¢;
in the target must be constant 0; thus this whole subformula can be deleted and
replaced by 0. The case is similar when MQ(xy) = 1. On the other hand, when
MQ(x;1) = 1 and MQ(x¢) = 0, we can be sure that for any partial truth assignment
y of the variables in 7', we have ¢/(y) = MQ(y, ). This means that ¢ is not part
of a constant subformula of ). These remarks are summarized in the following lemma,
which is used several times later on, sometimes without mentioning it explicitly.

Lemma 4.2 (a) Let ¢ be the initial formula, ¢’ be a subformula of ¢, let 1,1}’ be
the target formula, resp., its subformula corresponding to ', and let « be the partial
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truth assignment sensitizing p'. Then 1)’ is part of a constant subformula of v if and
only if MQ(0%) = 1 or MQ(1%) = 0. Otherwise ¢'(y) = MQ(y, «) for every truth
assignment y : VarR(¢') — {0, 1}.

(b) If 4" is a maximal constant subformula and o; is A\ (resp. V), then ¢;(1) =1
(resp. ©;(0) =0) foreveryi=1,...,r.

In the rest of this section we formulate some useful properties of subformulas.
Two subformulas are siblings if the corresponding nodes in the tree representation are
siblings. The next lemma follows directly from the definitions.

Lemma 4.3 Two maximal constant subformulas cannot be siblings.

The revision algorithm proceeds by finding maximal constant subformulas, thus it
is important to know that identifying these is sufficient for learning. That is, that
the revised initial hypotheses, ¢ is equivalent to the target, 1) = ¢, if the maximal
constant subformulas of them are identical: correspond to the same inner nodes, and
compute the same constant. For this, let us introduce the following notion. Partial
assignments o7 and o5, are equivalent (with respect to some formula ) if 7 = 72—
or, equivalently, if ©(01) = ¢(02).

Lemma 4.4 (Partial) assignments o1 and o5 are equivalent for formula ¢ if and only
if the maximal constant subformulas of p* and o2 are identical.

Proof

If the maximal constant subformulas are identical, then after replacing them with the
corresponding constants, one obtains the same formula. Thus the “if” direction of the
lemma holds. For the “only if” direction, assume that o, and o5 are equivalent for ¢,
but the maximal constant subformulas are not identical. There are two cases. The
first case is when there is a subformula g of  that turns into a maximal constant
subformula in both ¢7* and ¢72, but ¢J' = 0 and ¢§? = 1. Let « be the partial truth
assignment sensitizing ¢o. Then (¢7')(1%) = 0, while (¢72)(1%) = 1, contradicting the
assumption that o1 and o, are equivalent. In the second case there is a subformula which
is maximal constant in one of 7' and ¢“2, but not for the other. Let oy be a largest
such subformula. We may assume w.l.0.g. that ©J' is a maximal constant subformula,
which computes the constant 0, and ¢J? is not part of a constant subformula. Then
©7(1%) = 0 and ¢?2(1%) = 1, again contradicting the assumption that o and oy are
equivalent. O

Corollary 4.5 By finding a revision of the formula p that has maximal constant sub-
formulas identical to those of the target formula, we get a formula equivalent to the
target formula.

The following lemma can be proved by a simple algorithm that uses recursion on
the structure of the formula ¢.
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Lemma 4.6 Given a non-constant read-once formula ¢ and a constant c, one can
find in polynomial time a partial assignment o such that ©° = ¢ and the number of
variables in the domain of o is minimal.

Let ¢ be a read-once formula with subformula ¢’. We say that ¢’ is an ap-
proximately half-size subformula of ¢ if (1/3) - [VarR(¢)| < |[VarR(¢')| < (2/3) -
|[VarR(p)|. It is a standard fact that such a subformula exists (see, e.g., Wegener [132]).
For example, any minimal subformula that contains at least one-third of the relevant
variables has this property.

4.2 Revision Algorithm for Read-once Formulas

The main result of this section is for Algorithm ReviseReadOnce (Algorithm 1), which
revises read-once formulas in the deletions-only model of revisions.

Algorithm ReviseReadOnce consists of a loop that checks whether the target has
been found, and if not, calls FindConstant. (Recall that () denotes the partial assign-
ment with empty domain, and that receiving it for an equivalence query means that the
queried formula is equivalent to the target formula.) In each call of FindConstant by
ReviseReadOnce, a maximal constant subformula of the target formula ¢ is identified
along with a partial assignment that fixes this subformula to the appropriate constant
value. The maximal constant subformula is then eliminated, thus the updated formula
contains fewer variables. As the membership queries always refer to truth assignments
to the original set of variables, the new membership queries have to assign some values
to the eliminated variables as well. The construction implies that these variables are
irrelevant, therefore their values can be arbitrary. In view of this, these variables will
often be left out of consideration in the later steps.

Algorithm 1 Algorithm ReviseReadOnce(yp)

1. while (x := EQ(p)) # () do
2: o0 :=FindConstant(y, x)
3 =’
4: end while

FindConstant, displayed as Algorithm 2, is a recursive procedure, which takes a
formula ¢ and a counterexample x, and returns a partial assignment o, which fixes
a subformula to a constant c¢. It always holds that the subformula is a maximal con-
stant subformula computing the constant ¢ in any representation of the target con-
cept 1. FindConstant works recursively, always focusing on a faulty subformula (i.e.,
a subformula which contains some variable(s) replaced by a constant) of the previous
level's formula. This subformula may never be a proper subformula of a constant

YIn several places in the proof we will say that a property holds for any representation of the
target concept. Notice that this must be true, as all the information used by the algorithm comes
from membership and equivalence queries about the target, and the responses to such queries are
independent of the particular representation.
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subformula—that is, it is part of a constant subformula if and only if it itself is a max-
imal constant subformula. We assume this property holds at the beginning of every
recursion level, and we maintain it as we go deeper in the recursion. This guaran-
tees that we eventually find a maximal constant subformula. Once such a subformula
is found, we use Lemma 4.6 to return an appropriate partial assignment fixing this
subformula to constant c.

Algorithm 2 The procedure FindConstant(yp, x).

1 if MQ(0) ==1 or MQ(1) == 0 then

2:  return o that fixes © to the appropriate constant

3: end if

4: Let ¢’ be an approximately half-size subformula of

5. Let « be the partial truth assignment sensitizing ¢’

6: if (c:=MQ(0%) == MQ(1%)) then

7:  return GrowFormula(p, ¢, c)

8: else

9. Put Xy := X|varr(p) and Xo; 1= X|varr(p,) fori =1,...,7
10: if MQ(xy,a) # ¢'(x1) then

11: return FindConstant(y', x;) // look in ¢’
12: else

13: i := FindFormula(yp, ¢, x)

14: return FindConstant(y;, X2 ;)

15: end if

16: end if

As we go deeper in the recursion, we will need the ability to ask membership queries
concerning only a subformula of the target. Therefore, when we go to a lower recursion
level with a subformula y of ¢, we determine 3, the partial truth assignment sensitizing
X. This way, whenever a need for a membership query arises on the lower level for a truth
assignment y : VarR(x) — {0, 1}, we need only ask MQ(y, ). Recursion only occurs
when MQ(0°%) = 0 and MQ(17) = 1, thus we can be sure that MQ(y, 3) is equal
to the value of x(y), where x is the subformula of the target formula corresponding
to x (Lemma 4.2). From now on, when talking about membership queries, we always
assume that this technique is used, even when, for simplicity, MQ(y) is written instead

of MQ(y, 3).

Theorem 4.7 Let p be a read-once formula overV),,, and the target formula be ) = ©°
for some partial assignment 6. Then ReviseReadOnce(y), using at most O(élogn)
queries, outputs some partial assignment o’ such that 1) = ¢ , where é = dist(p, 1)) =
min{|Dom(o)| : ¢ € A, such that ) = ¢ }.

The theorem is an easy consequence of the following lemma. (Recall also Lemma
4.4.)

Lemma 4.8 If p(x) # 1(x), then, using p(¢,x) = O(log|VarR(y)|) queries, algo-
rithm FindConstant(p,x) returns a partial assignment o : V' — {0, 1} such that for
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some subformula ¢ of ¢ with VarR(®) 2 V' it holds that the corresponding subfor-
mula ) is a maximal constant subformula in 1), and that (¢)° = 1. Furthermore, the
cardinality of Dom(o) is as small as possible.

Proof

The proof of correctness uses an induction argument (based on the cardinality of
VarR(y)), reflecting the recursive nature of the algorithm. The case when ¢ has
at most one relevant variable, say v, is trivial: in this case ¢ must be constant, which
will be deteceted (using at most p(y,x) = 2 queries) in Line 3, and the algorithm
simply returns some o = (v +— ¢) for the appropriate ¢ € {0, 1}.

For the rest of the proof assume that |VarR(y)| > 1 and that the statement of
the lemma holds for any formula having at most (2/3)|VarR(y)| relevant variables.
Let furthermore ¢’ be an approximately half-size subformula of ©. We also use the
notations introduced in Equations (4.1) and (4.2), and Definition 4.1. Note furthermore
that |VarR(p;)| < (2/3)|VarR(p)| fori=1,...,r.

If v/ is constant zero, or, equivalently, if MQ(0) = 1 or MQ(1) = 0 (see Lemma
4.2), then an appropriate output can be constructed as noted in Lemma 4.6. Again,
plep,x) = 2.

If ¢/ is part of a constant subformula—that is, if MQ(0%) = MQ(1%) (see
Lemma 4.2)—, then (Lines 6-7) one only needs to find the maximal constant subfor-
mula it is in—or, in other words, to find the root of this maximal constant subformula
on the path from the root of 1) to the root of ¥/'. This can be carried out by proce-
dure GrowFormula using O(log [VarR(y)|) queries (see Lemma 4.9 and the preceding
description of the algorithm). It is thus also clear that p(¢,x) = O(log [VarR(p)|).

For the subsequent arguments define x; := X|varr(y) and Xo; = X|varr(s,) for
1=1,...,7.

If 4" is not part of a constant subformula and MQ(x;, ) # ¢(x1,«), then, by
Lemma 4.2, ¢'(x1) # ¢'(x31), and thus 7/’ contains a maximal constant subformula.
By the induction hypthesis the call FindConstant(y’,x;) (Line 11) will determine
one such constant subformula ), and return some partial assignment o fulfilling the
requirements of the lemma. Furthermore this call uses p(¢’, x1) queries, thus p(p, x) =
p(¢',x1) + 5.

On the other hand, if ¢’ is not part of a constant subformula, but MQ(x;,a) =
©(x1, @), then—as MQ(x) # ¢(x)—it must hold that ¢;(x2;) # 1:(x2,) for some
1 < i < r. Note that if some 1); is contained in some constant subformula, then
this v); itself must be a maximal constant subformula, as all other subformulas of
containing 1; also contain ¢/, which is assumed not to be in a constant subformula.
Thus if this 7 is known, a maximal constant subformula can be located by the recur-
sive call FindConstant(y;, Xa;), using p(y;, X2;) queries. Furthermore, FindFormula
can be used to find such an index i using log (|VarR(y)|/[VarR(y;)|) + 2 queries
(see Lemma 4.10 and the preceding description of the algorithm). Thus in this case
Pl %) = plpi, X2.) + log (|VarR(g)]/|VarR(i)]) + 7.

This completes the analysis considering the correctness of the algorithm. In the rest
of the proof we upper bound the number of queries made by FindConstant.
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Denote by ¢ the number of recursive calls, by m; the number of relevant variables of
the subformula in focus on the i-th level of recursion (thus my = log|VarR(y)|), and
by p; the number of queries made in the last ¢ — 1 level of recursion (i = 0,1,...,q).
First note that m; < 2m,;_,/3 fori=1,...,¢, thus ¢ = O(log|VarR(p)|). Also note
that p; < p;_1 + 7 + log(m;/m;y1) for i = 0,1,...,q¢ — 1 (i.e., on levels where some
further recursive call was needed), meanwhile p, = O(logm,). Then

m My
p((p,x)§<7+]og_0) et <7+10g q 1) +p,
mi mq

= O(logmg) + log Mo ** ' M-t | O(logmy)
mima -+ My
= O(logmy)
= O(log|VarR(y)]). O

Remark 4.1

Basically what happens in Lines 1-3 can be considered as part of the test in Line 6
and the binary search carried out by GrowFormula in Line7, but technically it seems
to be easier to handle these cases separately. The same holds for Lines 10-11 and
FindFormula in Line 13 too.

Remark 4.2

The analysis gets significantly more simple if, instead of the weighted binary search
in FindFormula, one uses a simple binary search. However for that version of the
algorithm only the query bound O(élog®n) is proved (see [118]).

4.2.1 Algorithm GrowFormula

Now we give a description and analysis of algorithm GrowFormula. Throughout we
use the notations of Equations (4.1) and (4.2), and Definition 4.1.

GrowFormula gets as input a monotone read-once formula ¢, a subformula of it
¢, and a constant ¢, such that MQ(0%) = MQ(1%*) = ¢ (and thus MQ(y,«a) =
c for any partial truth assignment y : VarR(¢') — {0,1}), where « is the partial
truth assignment sensitizing ¢’. It is also required that 1) is non-constant. Using
O(log |VarR(¢)|) membership queries it determines a subformula ¢ containing ¢’ 2,
such that the corresponding subformula in ¢ is a maximal constant subformula (and
is identical to the constant ¢). Finally GrowFormula outputs an appropriate partial
assignment o : VarR(¢) < {0, 1} such that (¢)7 = ¢. In what follows we show how
GrowFormula works.

Assume for simplicity that ¢ = 1; the case ¢ = 0 is dual. Let o; fori =0,...,r
be the partial truth assignment that is identical to « for variables in VarR(¢;) U---U
VarR(y;), leaves the variables in VarR(’) unassigned, and assigns 0 to all the variables

2Equivalently, as noted earlier, it determines the root of ¢ on the path from the root of 7 to the
root of ¢,



4.2 Revision Algorithm for Read-once Formulas 31

in VarR(¢;41) U -+ - U VarR(g,). Then 0 = 0% < 0™ <0 < --- < 0% = 0% and
it holds that MQ(0%°) = 0 and MQ(0%") = 1.

Asking membership queries MQ(0%), one can use binary search to find an i (1 <
i <) such that MQ(0%*) = 0 and MQ(0%) = 1. The only difference between the
truth assignments 0%-! and 0% is that the variables in VarR(yp;) are off in 0%-! and
they may be on in 0%, In fact, they must be on, as otherwise 0%~' = 0%, contradicting
MQ(0%-1) # MQ(0%). But (recalling the definition of the sensitizing partial truth
assignment) 0%-' #£ 0% also implies that o; is A. Thus, on one hand, it must be the
case that ¢;(0) = 0 and ;(1) = 1 in any representation of the target concept. On the
other hand, it must be the case that the input to o; from its child on the path is equal
to 1 in both cases. As the variables in this subformula are all set to 0, this subformula
must compute the constant 1 function. The inputs 0%-! and 0% demonstrate that no
larger subformula computes a constant function. Thus the subformula rooted at o;_;
is a maximal constant subformula. Once a maximal constant subformula is found, one
can simply apply Lemma 4.6 to construct an appropriate o.

We have thus proved the following lemma.

Lemma 4.9 /f ¢ is non-constant and ¢ = MQ(0%) = MQ(1%), then it holds that
GrowFormula(y, ¢, c) returns a partial assignment o satisfying the requirements of
Lemma 4.8, using O(log |VarR(y)|) queries.

4.2.2 Algorithm FindFormula

Now we give a description and analysis of algorithm FindFormula. Throughout we
use the notations of Equations (4.1) and (4.2), and Definition 4.1.

Assuming that ¢’ is not part of some constant subformula of ), for 1 < i <
r it holds that (as noted in the proof of Lemma 4.8) 1; is part of some constant
subformula of ¢ only if 1); itself is a maximal constant subformula of v). On the other
hand, further assuming that ¥ (x) # ¢(x) but ¢/(x1) = ¢'(x1), it must thus hold
that ¢ has some maximal constant subformula in one of ¢y, ...,. Given this, using
log (|VarR(y)|/|VarR(y;)|) 42 queries FindFormula (¢, ¢, x) outputs one such index
i. In what follows we show how FindFormula works.

Put y,41 := 2,41 := ¢/(x1) and for i = 1,...,r define y; (resp. z;) as

Yi = Yip1 0 ©i(X2,), and z; = zi1 0; Yi(Xa;),

where X1 = X|varr(¢) and Xo; 1= X|varr(p,) for ¢ = 1,...,7. Then y; (resp. z;) is the
value computed at o; in ¢ (resp. 1) on the input vector x, for i = 1,...,r. Since (by
the initial assumptions) vy,+1 = 2,41 and y; # z1, there must be an i (1 < i <) for
which ;1 = 2,1 but y; # z;. The search for such an index i is done using a weighted
binary search as follows. The y; values can be computed using ¢ without any queries.
For the computation of the z;, put 8,11 := xy and §; := (8j41)*7 for j =1,...,r.
Then (recalling that 1); is either a maximal constant subformula of ¢ or is not part of
a constant subformula of 1) z; = MQ(a%).
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Define for j = 2,...,r the weight of ¢; to be w; = [VarR(yp;)| + [VarR(¢;-1)|.
In the binary search we use an interval I = {a,a+1,...,b}. Initially a = 2 and b =r,

as we already know y1, 21, y,41 and z,41. For agiven I let s =) ., w,. In each step

jel
we determine the index ¢ for which 25;2 w; < s/2< Zﬁ:a wj (for this we don’t need
to ask any queries). We determine y, and 2z, (this can be done using one query). If
Yo # 2z, then let [ = {+ 1,0+ 2,... b}, otherwise let [ = {a,a+1,...,0—1}. If
I is nonempty, we compute s again, and continue the search. Otherwise the search is
over, and if y, # z;, then £ is the i index we were looking for, otherwise it is £ — 1.

To see that the above search uses the claimed number of queries, simply note that

e initially s = > ., w; < (4/3)[VarR(yp)], as the variables in ' are not counted,
whereas [VarR(¢')| > [VarR(y)|/3

e in each step the value of the sum reduces to less than its half, and

e throughout the search s > |VarR(y;)|, as even in the last step at least one of i
and ¢+ 1isin I,

so if ¢ queries were made throughout the search, it holds that |VarR(p;)| < |VarR(p)|-
(4/3) - (1/2'71), implying

[VarR(¢)|
[VarR(e:)|

[VarR (¢)|

7 T2
[VarR ()]

t <log + 3 —log3 < log

We have thus proved the following lemma.

Lemma 4.10 /f ¢’ is not part of some constant subformula of v, and also ¢'(x) =
¢'(x1), but (x) # p(x), then v;(x2,) # Vi(x2,) for some 1 < i < r. Furthermore
FindFormula(y, ¢',x), using at most log (|VarR(p)|/|VarR(y;)|) +2 queries, returns
one such index i.

4.3 Example Run of ReviseReadOnce

Here is a detailed example showing how the read-once revision algorithm works. Let
Vy be the set of variables in focus, let the initial formula be

© = ((vy Avg) V (v3 Avg)) A ((((vs Avg) Vur) Awvg) V)
and let the target formula be ¢ := ©7, where
o= (v3+— 1,v5 — 0,06 — 0,vg — 0). (4.3)
Thus the target concept is represented by the formula

’17/) = ((Ul A\ Ug) V (1 A 114)) A\ ((((0 A O) V U7) N 0) V Ug).
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We start by asking the equivalence query EQ(p). Let us assume that we receive the
negative counterexample x = 110011110. In Procedure FindConstant, the member-
ship queries MQ(0) = 0 and MQ(1) = 1 bring us to Line 7. At this point we find an
approximately half-size subformula , for example

0 = (v1 Avg) V (3 A vy).

The corresponding subformula of the target is ¢’ = (v; A vy) V (1 A wvy).

Now we form the sensitizing truth assignment « for ', which in this case simply
sets all variables not in ¢’ to 1, and we ask membership queries for (0, ) and for (1, «).
The answer is MQ(0,«) = 0 and MQ(1,«) = 1, and thus we continue on Line 12.
We have x; = 1100 and x5, = 11110. By asking the membership query MQ(x;, v) we
find that ¢/(x;) = 1. Knowing ¢, we can determine without asking any queries that
O'(x1) = 1. As ¥'(x1) = ¢'(x1), it follows that the x, part of the counterexample is
responsible for the disagreement between ¢(x) and 1 (x). In this particular case, the
variables in x5 happen to induce a subformula of ¢, and so FindFormula does not need
to do anything. We substitute 1 for . Then x, = 11110 is a negative counterexample
for the new target, which is the subformula )" of the target corresponding to

0" = ((((vs Avg) Vur) Aug) Vug).

It is important to note that as ¢ (y) = ¥ (x1,y), we can simulate membership queries
to the new target by membership queries to the original target; thus we can continue
the same procedure recursively.

As the subsequent iterations illustrate additional cases, we give further steps of the
algorithm on the example. In the next call, which is FindConstant(¢”, x2), we again
get to Line 7. The next half size subformula can be v5 A vg. The sensitizing truth
assignment for this subformula is 010. Now, the membership queries to (00,010) and
(11,010) both return 0, indicating that either v5 A vg or some subformula containing
it is turned into the constant 0. Thus we call GrowFormula, which asks the additional
membership queries MQ(11,110) = 0 and MQ(11,111) = 1. This shows that

(((vs A wg) Vu7) Avs)

is a maximal constant O subformula in ¢”. No further recursive calls are needed, we
only need to compute the minimal number of variables that, when turned to 0, make
the subformula identically 0. This can be achieved by fixing the value of one single
variable, that is, using the partial assignment (vg — 0). Now we have completed one
call of the procedure FindConstant by the main program.

The next call of FindConstant start with an equivalence query for the formula
obtained above, that is,

" = ((v1 Ava) V (v3 Avg)) A vg.
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Let us assume that we receive the positive counterexample 000111111, which, restricted
to the five variables in ¢, is 00011. We continue with the half size subformula vy Avs,
which divides the counterexample into 00 and 011. The sensitizing partial truth assign-
ment to the first half is 001. We find that MQ(00,001) = 0 and MQ(11,001) = 1,
thus v; Avy is not turned into a constant subformula. (Notice that our only membership
oracle needs inputs from {0, 1}9; fortunately, we may give any values to the “missing”
variables.) The membership query MQ(00,001) = 0 tells us that the first half of the
counterexample gives the same output in v Av, and in the corresponding subformula of
the target. To recurse, we must find a subformula of ¢ that contains some constant
subformula, but the three variables v3, v, and vy do not induce a subformula of .
This is achieved by the procedure FindFormula.

In this case we need consider only the two subformulas vz Avy and vy, though in gen-
eral there could be ©2(n) such subformulas, necessitating the binary search performed by
FindFormula. By definition, ¢ disagrees with the target on the counterexample, and
we have just concluded that v; A v, agrees with the counterexample. So, if subformula
(v1 Awa) V (v3 A vy) of ¢ disagrees with the corresponding subformula of the target,
then the subformula containing a constant subformula must be v3 A vy. Otherwise it is
vg. To test whether the subformula (vy A vy) V (vs A vy) agrees with the target on the
counterexample, we ask a membership query on an instance formed by setting vy, vs,
v3, and vy to the values they have in the counterexample, and setting the remaining
variable (v9) to the value it had in the sensitizing assignment for v; A vy. That, is we
make the query M@Q(00011) = 1. Since ¢”"(00011) = 0, which disagrees with the
target, there must be a constant subformula in v3 A v4, which is the input subformula
for the next call to FindConstant.

That call will return the partial assignment (v3 +— 1), and the next equivalence
query to the formula

((v1 Avg) Vug) A v

will finally identify the target concept. Notice that we have actually revised fewer
variables than given in Equation 4.3. The number of variables revised is as small as
possible for obtaining the target concept.

4.4 Lower Bounds on Revising Read-once Formu-

las

We prove a lower bound to the query complexity of revising read-once formulas by giving
an example of an n-variable read-once formula, for which Q(élog(n/é)) equivalence
and membership queries are required to find a distance ¢ revision. If ¢ = O(n'~°)
for some fixed ¢ > 0, then this lower bound is of the same order of magnitude, as
the upper bound provided by ReviseReadOnce. It is also shown that both types of
queries are needed for efficient revision. There are n-variable read-once formulas for
which at least 1/2 equivalence queries are required in order to find a single revision. For
membership queries we present an even stronger lower bound, which shows that at least
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n— é membership queries may be necessary, if (instead of not using equivalence queries
at all) one is allowed to use fewer than é equivalence queries. As ReviseReadOnce
uses exactly é equivalence queries to find a distance é revision, this means that just
by allowing one fewer equivalence query, the number of membership queries required
becomes linear. Bshouty and Cleve and Bshouty et al. [28; 29] give somewhat related
constructions and tradeoff results for different query types.

Our first two lower bounds are based on read-once formulas of the form \/(u; Aw;),
using a Vapnik-Chervonenkis dimension, resp. an adversary argument, and the third
lower bound uses an adversary argument for the n-variable disjunction.

Theorem 4.11 The query complexity of revising read-once formulas in the deletions-
only model is Q)(élog(n/é)), where n is the number of variables in the initial formula
and é is the revision distance between the initial formula and the target formula.

Proof
Let us assume that
n=2mé, where m=2"

We use variables u; ; and w; ;, where 1 <i < éand 0 < j <m—1. The initial formula

is
é

m—
=V \/ i A Wig).
i=1 j=0

Assume the u and w variables be arranged in respective é x m matrices called U and
W, respectively. We look at the class of revisions of ,, where in each row of the matrix
U exactly one variable is fixed to 1. Let R,, denote the set of formulas that can be
obtained this way.

Lemma 4.12 VC-dim(R,,) > é - t.

Proof
Fori1<k<éand1</<tlet

(Xk,& Yk,z)

be a truth assignment (to the variable pairs in U x W) that consists of all 0's, with the
exception of some positions in the k'th row of the W matrix: namely, those positions
(k,7), where the ¢'th bit of the binary representation of j is 1. Let the set of these
assignments be S. We claim that S is shattered by R,,.

Consider a subset A C S. For every k (1 < k < é) let a; be the ¢-bit number
describing which truth assignments (x; ¢,y ,) belong to A. (That is, the ('th bit of a;
is 1 iff (xz0, y4e) € A.) We look at the revision ¢4 for which it is the a;'th variable
which is fixed to 1 in row k of the matrix U.

It remains to show that this revision classifies .S in the required manner. If (x4, y}.,) €
A, then bit £ of a is 1. By definition, y, , has a 1 at position (k,ax). In ¢4, the
variable wy ,, is fixed to 1. These observations imply that

@A(Xk,e, Yk,é) = 1.
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On the other hand, if (x4,y},) & A, then bit £ of a;, is 0. The only 1 components
of (Xk,e,¥y,) are in row k of the T matrix: these are those positions (k, j), where the
C'th bit of the binary representation of j is 1. Position (k, ay) is not one of those. Thus
the corresponding u-variables are not fixed to 1 in 4, and as their value is 0, we get

@A(Xk,za Yk,z) =0.

By introducing dummy variables if n is not of the right form, we get

VC-dim(R,) > ¢ Llog lJ .
2e
The theorem now follows using the relation between the Vapnik-Chervonenkis dimension
of a formula class and its query complexity (see Section 3.3). O

The number of formulas within revision distance é of a given read-once formula

is at most 2¢ - (Z) Thus if we allow equivalence queries which are not necessarily
proper, then by using the standard halving algorithm [92] one can learn a revision using
log (Qé . (:)) = O(élogn) many equivalence queries. We now show that such a result
is not possible if the queries are required to be proper.
Theorem 4.13 The query complexity of revising read-once formulas in the deletions-
only model with proper equivalence queries alone is at least |n/2] — 1 (where n is the
number of relevant variables in the initial formula), even when the revision distance is
only one.

Proof
Fix n, let s = [n/2], and let the initial formula be

Y= \/(ul A w;).
i=1

Let furthermore ¢; = =1 fori =1,...,s, and set W = {¢; : i =1,...,5}. (Note
that every element of W is a potential target formula.)

Consider the following scenario. When the learner asks an equivalence query EQ(¢7)
for some partial assignment o, then the assignment returned is x, where

o if 7 = ¢, then x is the positive counterexample 17, ... In this case ¥
remains unchanged.

e otherwise, if o(u;) = 0 or o(w;) = 0 for some 1 < i < s, then x is the positive

counterexample 01w~ Again, U remains unchanged.

e otherwise, if o(w;) = 1forsome 1 < i < s, then x is the negative counterexample
0~ Again, U remains unchanged.
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e otherwise, if for some 1 < i < s it holds that o(u;) = 1 but ¢; & U, then x is

wi»—>1)

the negative counterexample 0 . Again, ¥ remains unchanged.

e otherwise, if || > 1, then x is the negative counterexample 0(~Y for some
1 <4 < s such that o(u;) = 1. Also, remove v; from V.

e otherwise, that is, if 0 = (v; — 1) for some 1 < i < s and ¥ = {1;}, then

x = ().

Note that during the whole process each element of the actual W is consistent with all
the previous informations, and that after each query || decreases by at most one. But,
as the learning process cannot end as long as there are more than one non-equivalent
hypotheses consistent with the previous informations, it follows that the learner must
ask at least [n/2] — 1 queries. O

Now we present a lower bound for the case when only membership queries are
allowed. Actually, we consider a more general scenario, where the learner is allowed to
ask a limited number of equivalence queries. In particular, we assume that the learner
is told in advance that the target is at revision distance é from the initial theory, and
the number of equivalence queries allowed is at most ¢ — 1.

Theorem 4.14 Denote the revision distance between the initial formula and the target
formula by ¢, and assume that the learner is allowed to ask arbitrarily many membership
queries, but only at most ¢ — 1 equivalence queries. Under this restriction the query
complexity of revising read-once formulas in the deletions-only model is at least n — ¢,
where n is the number of relevant variables in the initial formula.

Proof
Let the initial formula be ¢ =/ ), v, and set initially D = R =0 and U = V,,. (D
stands for deleted, R stands for relevant and U stands for uncertain.)

Consider the following scenario. When the learner asks an equivalence query EQ(¢7)
for some partial assignment o, then the assignment returned is x, where

o if it holds that U = () and ¢” =\/, ., v, then x = ().

e otherwise, if ©7 is identically 1 (resp., 0), then x is the negative (resp., positive)
counterexample O (resp., 1). In this case the sets are not changed.

e otherwise, if U\ Dom(c) # (), then x is the negative counterexample 0"~ for
some v € U \ Dom(c). In this case move v from U to D.

e otherwise x is the positive counterexample 1;,. Again, the sets are not changed.

When the learner asks a membership query MQ(x) for some assignment x, then the
answer is

e “1" if x(v) =1 for some v € R. In this case the sets are not changed.
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e “1" otherwise, if x(v) = 1 for some v € U. In this case one such v is moved from
U to R. Furthermore, if now |U U D| = é, then move the rest of the variables
of U to D.

e ‘0" otherwise, and the sets are not changed.

Note that D can only increase after an equivalence query, and even then only by one.
Thus, according to the assumptions of the theorem, the cardinality of D will always be
less then é. It also holds that |U U D| does not change after an equivalence query, and
decreases by at most one after a membership query, as long as |D U U| > é. Finally
note that during the whole process for each V' C U U R of cardinality ¢ it holds that
Vvevn\vv is consistent with all the previous informations. But, as the learning process
cannot end as long as there are more than one non-equivalent hypotheses consistent
with the previous informations, it follows that the learner must ask at least n — ¢
membership queries. O

4.5 Concluding Remarks

All the results presented in this chapter—unless noted otherwise—appeared in the
paper [52], co-authored by the author of the present dissertation.



Chapter 5
T hreshold Formulas

Recall that on assignment x threshold formula Th}, evaluates 1 if x assigns 1 to at
least ¢ variables in U, otherwise it evaluates to 0. A threshold function is a Boolean
function that can be represented with some threshold formula. Functions of this type
are also called Boolean threshold functions and zero-one threshold functions, in order
to distinguish them from the more general kind of threshold functions, where instead
of simply counting the number of variables in U assigned to 1, one associates weights
to variables, and sums the weights of the components that are on. (For example such a
threshold function is applied in Algorithm RevWinn in Section 6.2.) However, as in this
chapter only the former class is considered, throughout this restricted class is referred
to as threshold functions.

Threshold functions (especially in the wider, non-Boolean sense) form a much stud-
ied concept class in computational learning theory. They are also applied in many
learning related results (see e.g. [92; 126; 129]). Heged(s [64] gave O(n) upper and
lower bounds (assuming that V), is the set of variables in focus) for the number of
queries needed to learn threshold functions in the query model; the algorithm uses only
membership queries.

In this chapter an efficient revision algorithm is presented for the class of threshold
function in the query model for the general case (also allowing the modification of the
threshold). Additionally, some negative results are presented showing, for instance, that
threshold functions cannot be revised efficiently from either type of query alone.

5.1 Further Definitions and Notations

For simplicity assume throughout the chapter that V, is the set of variables in focus.
For some threshold function Thy; the variables in U (resp., in V,,\ U) are the rele-
vant (resp., irrelevant) variables of Th{,. Note that for every non-constant threshold
function its set of relevant variables and its threshold are well defined, thus every non-
constant threshold function has a unique representation. We say that aset S C V), is
a positive (resp., negative) set for Thy; if it evaluates to 1 (resp. to 0) on 1g.
A set S C V, is maximal negative (or critical) for threshold function Thj; if

39
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|SNU| =t~ 1; and minimal positive for Th}, if |[SNU| = t.
Given the above, we can state the following proposition which we use implicitly
throughout:

Proposition 5.1 If S is maximal negative for 1 = Thj,, then for every Z C V, \ S
it holds that Z contains at least one variable in U (i.e., relevant variable of 1) if and
only if MQ(1suz) = 1.

5.1.1 Revision

In the case of threshold functions the general model is used, where a deletion operator
is the deletion of a relevant variable and an addition operator is the addition of a new
relevant variable, and, additionally, it is also allowed the modify the threshold. More
precisely, the modification of the threshold by any amount is considered to be a single
operation (as opposed to changing it by one); as for the algorithm upper bounds are
proved, this only makes the results stronger. Thus the revision distance is defined as

. U\R|+|R\U|+1, ift=0
dist (Tht, Th®) = {4 | ’ ’
is ( Us R) { U\ R| + |R\U|, otherwise.
Thus, for example, dist (Th‘l{vl,vz,m}a Th?ULU%UBaUS}) =4

Note that this is in accordance with the general approach described in Chapter 3.

5.2 Revision Algorithm for Threshold Functions

We present a threshold revision algorithm ReviseThreshold. The overall revision
algorithm is given as Algorithm 3, using the procedures described in Algorithms 5 and 6.
Throughout this section, let the initial function be ¢ = Th}; and the target function
be 1) = ThY%. Algorithm ReviseThreshold has three main stages. First it identifies
all the variables that are irrelevant in ¢ but relevant in ¢ (Algorithm FindAdditions).
Then it identifies all the variables that are relevant in ¢ but irrelevant in ¢ (Algorithm
FindDeletions). Finally, it determines the target threshold. (In the pseudocode this
third step is built into Algorithm FindDeletions as the last iteration, after the set of
relevant variables of the target function is identified.)
A sample run of the algorithm is given in Section 5.3.

Algorithm 3 The procedure ReviseThreshold(y), where ¢ = Thi,.
1. Use 2 MQ's to determine if ¢ = ¢ for some ¢ € {0, 1}; if so return ¢
2: V :=FindAdditions(U)
3: 1) := FindDeletions(U U V)
4: return

Before getting into further details, we need to point out an additional subroutine.
Our revision algorithm frequently uses a kind of binary search, presented as Algorithm 4.
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The starting points of the binary search are two sets, a negative one, NV and a positive
one, P such that N C P. The algorithm returns two items: the first is a set of
variables that, when added to NV, make a positive set; the second is a variable that,
when removed from this positive set, turns it into a negative one.

Algorithm 4 BinarySearch(N, P).
Require: MQ(1y) =0 and MQ(1p) =1and NC P
1. Ng:=N
2: while |[P\ N| > 1 do
3:  Partition P\ N into approximately equal-size sets D; and Ds.
4 Put M :=NUD
5. if MQ(1y)==0 then
6
7
8
9

N:=M
else
P=M
end if
10: end while
11: Let v be the one variable in P\ N
12: return (P \ Ny, v)

First we analyze algorithm FindAdditions (Algorithm 5), which is responsible for
finding all missing relevant variables.

Lemma 5.2 Let R be the relevant variables of the nonconstant target function. If
Algorithm FindAdditions is called with input U C V), then it returns R\ U, using
O(|R\ Ullogn) queries.

Proof

The algorithm stores the uncertain but potentially relevant variables in the set POTENTIALS
(thus POTENTIALS is initially set to V,, \ U). The procedure first determines a set
BASE C U such that BASE is negative, and BASE U POTENTIALS is positive (unless
POTENTIALS contains no relevant variables—in which case there are no new relevant
variables used by v, so we quit in Line 8).

Then the search for new relevant variables starts. BinarySearch(BASE, BASE U
POTENTIALS) is used repeatedly to find one relevant variable, and then remove this
variable from POTENTIALS. After removing a certain number of relevant variables from
POTENTIALS, the instance BASEUPOTENTIALS must become minimal positive. After
reaching this point, we do not only remove any newly found relevant variables from
POTENTIALS, but we also add them to the set BASE. From this point on, it holds that
|(BASEUPOTENTIALS)N R| = 0. Thus the indicator that the last relevant variable has
been removed from POTENTIALS is that BASE becomes positive (MQ(15,s) = 1).

As BinarySearch always uses at most [log, n] membership queries per call, and
one addition requires one call to BinarySearch and at most two other membership
queries are made initially, the stated query complexity follows. O

Now we turn to the discussion of procedure FindDeletions (Algorithm 6), which
finds all the irrelevant variables that appear in the initial hypotheses. The procedure
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Algorithm 5 The procedure FindAdditions(U)

Require: the target function is not constant
1. POTENTIALS :=V, \ U
2: if MQ(1y) == 0 then
33 BASE:=U
4: else
5. (BASE,v) := BinarySearch((}, U)
6
7
8
9

BASE := BASE \ {v}
if MQ(]-BASEUPOTENTIALS) == 0 then
return ()
. end if

10: end if
11: NEWRELEVANTS := ()
12: repeat
13:  (V,v) := BinarySearch(BASE, BASE U POTENTIALS)
14:  NEWRELEVANTS := NEWRELEVANTS U {v}
15:  POTENTIALS := POTENTIALS \ {v}
16: if MQ(]-BASEUPOTENTIALS) == 0 then
17: BASE := BASEU {v}
18:  end if
19: until MQ(1p,sp) == 1
20: return NEWRELEVANTS

uses a function called MakeEven, presented as Algorithm 7. MakeEven makes at most
two queries; its main task is to move variables around to ensure needed conditions,
mostly parity, on certain sets. A more detailed prose description of its behavior is given
in the proof of Lemma 5.3.

Lemma 5.3 If the target function y» = ThY is not constant and if R C H C V,, then
if Algorithm FindDeletions is called with input H, it returns 1, using O(|H \ R| logn)
queries.

Proof

First consider the case where no variables need to be deleted from . If the threshold is
either 1 or |H
two threshold functions. (Recall that () denotes the partial assignment with empty

, this will be found by one of the two initial equivalence queries to those

domain, and that receiving it for an equivalence query means that the queried formula
is equivalent to the target formula.) If the threshold is some value in between, then
it will be found by a binary search over threshold values carried out by the first while
loop. Then the correct threshold function is returned (at Line 12).

Otherwise, there are some variables that need to be deleted. In this case, our
short-term goal is to find two sets of variables N and P such that

|N| > |P|, and N is negative and P is positive for Th, . (5.1)

The two initial equivalence queries must have assigned P to be a positive coun-
terexample to Th}, and N to be a negative counterexample to Th‘é{'. In the binary
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Algorithm 6 The procedure FindDeletions(H )

Require: R C H (R = relevant variables in target)

1:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:

2
3
4
5:
6:
7
8
9

if (xp = EQ (Thf')) —— () then

return Th'l_llﬂ

end if
+if (xy := EQ (Thy)) == () then

return Thj,
end if

: P:={ve H:xp(v)=1}, N:={ve H:xy) =1},
0= 1u:=|H|
: while v > ¢+ 1 do

mi= [(u+0)/2]

if (x:=EQ(Th};)) == () then
return Th;

end if

{Variables not in H are irrelevant}

if x is a positive counterexample then

u:=mand P:={ve H:x(v)=1}

else
C:=mand N:={veH:x(v)=1}
end if
end while

(P,0) := BinarySearch((), P)
BASE := PN N, N':= N \ BASE, P':= P\ BASE
while |P'| > 1 do
changed H := MakeEven(BASE, N', P, 0, H) {Uses at most 1 MQ}
if changedH then
goto Line 1
end if
Let Ny, N (resp. Py, P1) be an equal-sized partition of N’ (resp. P’)
Ask MQ (1paseun,up,) for j,k=0,1
Let 7 and k be indices s.t. MQ (1BASEuNjUpk) =0 {such j and k exist}
BASE := BASEU P, P':== P,_j, N':= N;
end while
H:=H\N
goto Line 6
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Algorithm 7 Function MakeEven(BASE, N', P’ v, H)

1. TEST := (BASEU P') \ {0}

{For any v € N, MQ (1TESTU{U}) = 1iff v is relevant}
2: if |P’| is odd then
3: Choose vp € P’ arbitrarily and move vp from P’ to BASE
4. Choose vy € N’ arbitrarily and remove vy from N’
5 if MQ (1TESTU{UN}) # 1 then {vy irrelevant}
6: H:=H\ {uvy}
7: return true {H was modified}
8: end if
9: end if
10: if |N'| is odd then
11:  Choose vy € N’ arbitrarily and remove v/ from N’
12: end if
13: return false {H was not modified.}

search over threshold values in the first while loop (Lines 9-20), N is always assigned
negative counterexamples from equivalence queries and P is always assigned positive
counterexamples from equivalence queries.

Now we need to argue that at the end of that binary search (i.e., after Line 20)
|N| > | P| will hold. Consider the last time that NV is updated. (This could be either
when ¢ = 1 before the while loop or inside the while loop.) After that update, N
will consist of the variables from the negative counterexample that are not known to
be irrelevant. That is, IV is set to be {v € H : xy(v) = 1}, where xx was the
counterexample from the equivalence query to Th7 (or to Th}, if this was before the
while loop). Since xy was a negative counterexample it must be that Th;(1y) = 1.
Thus it must be that |[N| > m. In the control of the binary search over threshold
values, the lower bound ¢ now becomes m, and ¢ is not updated again. Thus this value
of £ is the value of ¢ after the loop has ended, and |N| > ¢ from now on.

Similar conditions hold for P and u, the upper bound in the control of the binary
search. After the last update to P, it must be that |P| < m (since P is a positive
counterexample), u is updated to be this m, and w is not updated again. Thus |P| < u.

When the while loop terminates, u < ¢+ 1. Since |P| < u < ¢+ 1, it holds that
|P| < ¢. Since |[N| > ¢, we now have Equation (5.1).

Now we want to use IV and P to construct three sets with what we call the “key
property:”

Key property: A triple of sets of variables (BASE, N', P’) satisfies the key property
for (target) threshold function Th' if the sets are pairwise disjoint, and it holds that

e BASEU N’ is negative,
o |(BASEUP')N R| =0 (i.e., BASEU P’) is a minimal positive set), and

o« [N'|>|P.
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Given N and P satisfying Equation (5.1), in Line 21 P is set to be the set returned
by BinarySearch((), P), which makes P a minimal positive set. We then set BASE =
NNP,and P'= P\ BASE and N’ = N \ BASE. The key property must hold for this
triple: N = BASE U N’ is negative; P’ = BASE' U P is a minimal positive set, and it
must be that |[N'| > |P'|.

The following claim gives two important features of the key property.

Claim 5.4 (a) If (BASE, N', P’) satisties the key property, then N' contains an irrel-
evant variable and P’ contains a relevant variable.

(b) If (BASE, N', P’) satisfies the key property and |P'| = 1, then every element of N’
is irrelevant.

The overall goal now is to find at least one of the irrelevant variables in N’ and
delete it. From now on the key property is maintained among the three sets, but in such
a way that in each iteration the size of N’ and P’ gets halved. For this the algorithm
splits up N’ (respectively P’) into two equal-sized disjoint subsets Ny and N; (resp. P,
and P;). When both |N’| and |P’| are even then we can do this without any problem;
otherwise we have to make some adjustments to N’ and/or to P’, that will be taken
care of by procedure MakeEven, which we will describe presently.

Assume for now that both |N’| and |P’| are even. Let ¢’ = 6 — |[R N BASE|. It
holds that |[R N (No U Ny)| < 0" and |[RN(FPyU Py)| = 6. Thus for some j, k € {0,1}
we have [RN(N; U Py)| < 0’ (equivalently MQ(1passun;up,) = 0). Note that the sets
BASE := BASEU P, N’ := N; and P’ := P;_y, still have the key property, but the
size of N’ and P’ is reduced by half. Thus after at most logn steps P’ is reduced to

a set consisting of a single (relevant) variable. Thus N’ is a nonempty set of irrelevant
variables (part (b) of Claim 5.4) that can be removed from H (Line 33).

Finally, the function MakeEven(BASE, N', P', 0, H) works as follows. lIts job is to
move variables among sets so as to preserve the key property for BASE, N’, and P/,
while making both N’ and P’ have even size. Sometimes instead, however, it will
remove an irrelevant variable from H—in this case it returns true and its caller restarts
with the smaller H.

First MakeEven checks whether |P’| is odd, and if so, it moves an arbitrary element
vp of P’ to BASE. Note that if vp was relevant, this action might turn BASE U N’
into a positive set; thus the key property might be violated; so an arbitrary element vy
will also be removed from N'. If vy is irrelevant (which can be tested using set TEST
defined at Line 1), MakeEven removes it from H and immediately returns true, so the
overall search can be restarted.

Otherwise (i.e, if vy is relevant, or if MakeEven was called with P’ of even cardi-
nality) the key property holds for the new triple (BASE, N’, P’), and | P'| is even. Then
MakeEven checks if |N'| is odd, and if so, an arbitrary v/y gets removed from N’.

If MakeEven returns false (no irrelevant variable was removed from H), then the
resulting triple will also have the key property.

Now we give the complexity analysis.
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For each deletion found, at most 2 + [log, n| equivalence queries are used to get
the sets V and P, and then one call to BinarySearch to make P a minimal positive
set. Next the algorithm iterates, shrinking both |P’| and | N’| by half in each iteration,
at most [log,n| times. Each such iteration requires at most 5 membership queries.
Thus (as BinarySearch always uses at most [log,n| membership queries per call)
the deletions require at most O(|H \ R|logn) queries. O

Now we can state the main result of the section.

Theorem 5.5 Let the ¢ be the initial and 1) the target formula, where both are
n-variable threshold funtions. Then ReviseThreshold(y), using O(élogn) queries,
outputs 1, where ¢ = dist(p, ).

Proof

First, two membership queries are used to determine if the target is either of the
two constant Boolean functions. For nonconstant functions, the complexity and the
correctness follow from Lemmas 5.2 and 5.3. O

5.3 Example Run of ReviseThreshold

To demonstrate the algorithm, we provide an example run.
Let Vg be the set of variables in focus, furthermore let the initial function ¢ and
the unknown target function ¢ be

1
Y = Th{vl,vz,m}
4
Y = Th{U17U27U37U57U6}.

First, in subsection 5.3.1 we determine all the relevant variables that were left out from
{v1,v9,v4}, then in subsection 5.3.2 we further revise our hypotheses from subsection
5.3.1 by removing those irrelevant variables that appeared in {vy, vo, v4}.

5.3.1 Adding the Previously Unknown Relevant Variables

Two MQ's to 00000000 and 11111111 determine that the target function is noncon-
stant.

We next determine the necessary additions, that is, the relevant variables from
{vs,vs, v, v7, s}, using Procedure FindAdditions. Since assignment 1y, ., ., IS
negative, POTENTIALS = {ws,vs,vg, U7, vs} must contain some unknown relevant
variables.

In Lines 12-19 of Procedure FindAdditions, we repeatedly use BinarySearch
from BASE = {vy,v9,v4} to BASEUPOTENTIALS to find one. Inside BinarySearch
ask MQ(11111100), the answer is 1. Ask M@Q(11111000), the answer is 1. Ask
MQ(11110000), the answer is 0. The last negative and positive examples differ by
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the single variable vs—thus v5 is relevant, and is returned to FindAdditions, and
FindAdditions adds vs to NEWRELEVANTS.

Now exclude the newly found relevant variable vs from consideration. As
1B AseU{vs,v6,07,05) 15 Still positive, we make another similar call to BinarySearch.
Ask MQ(11110100), the answer is 1. Ask MQ(11110000), the answer is 0. The
last positive and negative vectors differ only on v —thus vg is relevant, and is
added to NEWRELEVANTS. Excluding vg from consideration too, we find that
1BaseU{vs,vr,0s} 1S Negative.  This means that the number of relevant variables in
{v1,v9,v4} U {v3, v6,v7,v8} is the same as the unknown threshold. So, we up-
date BASE from {vy,v9,v4} to {v1,v9, 04,06}, and do BinarySearch from BASE
to BASE U {v3,v7,vs}. Ask MQ(11110110), the answer is 1. Ask MQ(11110100),
the answer 1. Ask MQ(11010100), the answer is O0—thus v3 is relevant. Testing
140, v2,03,00,06), We find that it is positive; thus since the number of relevant variables in
{v1, v9, V3,4, Vg, U7, g} is the same as the threshold, we know that {v;,v3} contains
no relevant variables.

5.3.2 Deleting the Irrelevant Variables

Now we know that H = {wvy, vy, v3,v4, 05,06} contains all the relevant variables; all
that left is to get rid of the irrelevant ones (and determine the threshold).

This is done in FindDeletions. Procedure FindDeletions first determines a
“big" positive and a “small” negative set. Suppose that we ask equivalence queries for
ThY, for § = 1,...,|H|. Since ¢ is not constant, we must find two 6-values ¢ and
u, and corresponding counterexamples 1p and 1y, such that uw = ¢ + 1, P is positive,
and N is negative. Then it must also hold that |P| < u — 1= ¢ < |N]|; thus N must
contain an irrelevant element. In fact, we determine the above ¢, u, P and N using
binary search on the threshold value 6.

First, in Lines 1-6 we ask the two extreme cases EQ (Thf') and EQ (Th}q),

getting counterexamples, say, 111110 and 000111 . The remainder of this binary search
over threshold values is carried out in Lines 9-20. Ask EQ (Thé,), and suppose we
receive the negative counterexample 001111. Ask EQ (Th?]), and suppose we receive
the positive counterexample 111010. Now we have u =5, { = 4, P = {vy, vy, v3,v5}
and N = {vs,v4,v5,06}. Because P is already a minimal positive set, it does not
change in the call to BinarySearch at Line 21.

Now, with the help of P, we determine an irrelevant variable of N as follows. We
set their common part to be BASE = {v3,v5}. The remaining parts of P and N,
which are P’ = {vy,v2} and N’ = {uv4,vs} are both even, so the call to MakeEven
makes no changes (and returns false). We cut this remaining part of P’ (resp. N')
in two equal parts: P, = {v1} and P> = {wy} (resp. Ny = {vs} and Ny = {wg}).
Asking membership queries for all combinations BASEU P, U N;, 7, = 1,2, we find
that BASE U P; U Ny is negative, meanwhile BASE U P, U P, is positive. As P, has

LAs v7 and vg are known to be irrelevant, from here on we shall omit the corresponding bits in the
examples.
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cardinality 1, this means that v, is irrelevant; remove it from H.

Now we restart, and conduct a binary search on the threshold value again, with the
difference, that now H = {vy, vs,v3,v5,v6}. Ask EQ (Th};), and suppose we receive
the negative counterexample 111000. Then asking EQ (Thj,) we receive (), meaning
that the learning process has come to a successful end.

5.4 Lower Bounds on Revising Threshold Formu-

las

In this section, we show that both types of queries are needed for the efficient revision
of threshold functions, and that the query complexity of our algorithm is essentially
optimal up to order of magnitude. The first result shows that efficient revision is not
possible with membership queries alone, even if we allow a restricted type of equivalence
queries as well, and the second result shows that efficient revision is not possible with
equivalence queries alone.

Theorem 5.6 Assume that both the initial formula and the target formula have thresh-
old value t, and that the learner is allowed to ask equivalence queries only for threshold
functions also having threshold value t. (On the other hand, no restrictions are set
on the membership queries.) Under this restriction, the query complexity of revising
threshold formulas is at least n — 1 (where n is the number of variables in the universe
in scope), even when the revision distance is only one.

Proof
Let the initial function be Th@:l, let ¢; = Th@:\l{vi} for1 < i <mn, and set ¥ :=
{; : 1 <1 <n}.

Consider the following scenario. When the learner asks a membership query MQ(1y)
for some V C V), , then the answer is

e 0, if [V| <n—1. In this case ¥ remains unchanged.

e 1,if [V|=norif & = {Th{ '}. Again, ¥ remains unchanged.
o 1,if V=V,\{v}and U = {;}.

e 0 otherwise. Also, remove 1; from W for i with {v;} =V, \ V.

When the learner asks an equivalence query EQ(Th}; ") for some U C V,, then the
assignment returned is x, where

o if |[U| <n—1 (i.e., the hypothesis is constant 0), then x is the positive coun-
terexample 1. In this case ¥ remains unchanged.

e if [U| = n then x is the negative counterexample 1"#~9 for some i satisfying
|\ {;}] > 1. Also, remove 1); from V.

o if U = {Th™ '}, then x = ().
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e otherwise x is the negative counterexample 1;;. Also, remove v; from ¥ for ¢

Note that during the whole process each element of the actual W is consistent with all
the previous informations, and that after each query | V| decreases by at most one. But,
as the learning process cannot end as long as there are more than one non-equivalent
hypotheses consistent with the previous informations, it follows that the learner must
ask at least n — 1 queries. O

Theorem 5.7 The query complexity of revising threshold formulas with equivalence
queries alone is at least n — 1 (where n is the number of variables in the universe in
scope), even when the revision distance is only one.

Proof
Set n = 2k, and let the initial function Th@n. Also, for k +1 < i < n, let ¢; :=
Th@n\{vi}, andset U :={¢; : k+1<i<n}

Consider the following scenario. When the learner asks an equivalence query EQ (Thy)
for some U C V,, then the assignment returned is x, where

e if { <k and
— |U| > ¢, then x is the negative counterexample 1y, where U’ is an arbitrary

subset of U with cardinality ¢. In this case W remains unchanged.

— otherwise (i.e., if Th{, is constant 0), then x is the positive counterexample
0r=L-v—1) " Again, W remains unchanged.

vi—1,...,vp—1)

e if { >k, then x is the positive counterexample 0 . Again, ¥ remains

unchanged.
o if {=1Fk and
— if U D {Wkt1, ..., v,}, then x is the negative counterexample 1(v1=0-0k—=0),

Again, ¥ remains unchanged.

— otherwise, if {vy,...,vx} € U, then x is the positive counterexample

0r=Lv=1)  Again, U remains unchanged.

—if U= {Thg}, then x = ().

— otherwise x is the positive counterexample 1y iy for some ¢ with v; €
{Vks1,..-,va} \ U (note that it must be the case that U contains all of
v1,...,Vk, and is missing at least one of v, 1,...,v,). Also, remove 1
from V.

Note that during the whole process each element of the actual W is consistent with all
the previous informations, and that after each query | V| decreases by at most one. But,
as the learning process cannot end as long as there are more than one non-equivalent
hypotheses consistent with the previous informations, it follows that the learner must
ask at least n — 1 queries. O
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Now we show that the query bound of algorithm ReviseThreshold cannot be
improved for small values of é (i.e., constant é), and cannot be much improved in
general. We gave a revision algorithm with query complexity O(élogn); we give here
the close lower bound of Q(élog(n/é)). (We think that the first one is closer to the
real answer)

Proposition 5.8 The query complexity of revising threshold formulas with member-
ship and equivalence queries is )(élog(n/é)), where n is the number of variables in
the universe in scope and ¢ is the revision distance between the initial formula and the
target formula.

Proof

Put ¢ = Thy, and let R = {Th}: R C V,,|R| <é}. Now each element of R is
equivalent to some clause of size at most é over V,.. As the class of these clauses has
Vapnik-Chervonenkis dimension (élog(n/é)) [92], the claimed bound for the query

complexity follows (see Section 3.3).
O

The following result answers the question that arises naturally whenever one is
learning threshold functions: why not use Winnow 2? After all it is one of the most
successful tools for learning threshold functions. Furthermore, it can be successfully
used for revision in some cases (see, e.g. Chapter 6). The answer is simple and somewhat
surprising: under our settings, using Winnow as defined in [92] would result in an
inefficient revision algorithm.

Proposition 5.9 Winnow is not an efhicient revision algorithm for threshold func-
tions. More precisely, for any weight vector representing the initial threshold function

Th! , Winnow can make n mistakes when the target function is Thi1

V1,--+,Un yeensUn”

Proof

The statement follows easily, noting that the weight of each relevant variable is at least
as big as the threshold used by Winnow, thus giving Winnow the negative examples
14,3, .-, 15, one after another, it will evaluate to 1 for each of them. O

5.5 Concluding Remarks

It would be interesting to consider disjunctions of a bounded number of threshold
functions in the revision model. This class is a generalization of monotone DNF with
a bounded number of terms, which can be revised efficiently [53]. It is also related to
the robust logic framework of Valiant [128] mentioned in the introduction.

Finally note that the results presented in this chapter—unless noted otherwise—
appeared in the paper [116], co-authored by the author of the present dissertation.

2See Chapter 6 for more on Winnow.



Chapter 6
Projective DNF Formulas

The notion of projection learning was introduced by Valiant [128], motivated by con-
straints imposed on learnability by biology. Projection learning aims to learn a target
concept over some large domain (in our case A,,), by learning some of its projections—
or rather: restrictions—to a class of smaller domains, and combining these projections.
Valiant proved a general mistake bound for the resulting algorithm under certain con-
ditions. The basic assumption underlying projection learning is that there is a family of
simple projections that cover all positive instances of the target, where simple means
belonging to some efficiently learnable class. The projections describing the target in
this way can also be thought of as a set of experts, each specialized to classify a subset
of the instances, such that whenever two experts overlap they always agree in their
classification.

Perhaps the most natural special case of this framework, also discussed by Valiant,
is when the projection domains are subcubes of a fixed dimension, and the restrictions
of the target to these domains are conjunctions. In this case, the algorithm learns
a class of disjunctive normal forms (DNF) called projective DNF (precise definitions
will be given later). The class of projective DNF expressions does not appear to have
been studied at all before Valiant’s work. As the learnability of DNF is shown to be a
hard problem in computational learning theory !, it is of interest to those who study
computational learning theory to identify new learnable subclasses and to understand
their scope.

In this chapter an efficient revision algorithm is presented for the class of projective
DNFs in the mistake bounded model for the general case. Additionally some (learnabil-
ity related) combinatorial properties of this class is annalyzed. More precisely lower and
upper bounds for the exclusion dimension of projective DNF. The exclusion dimension,
or certificate size [11; 65; 67], of a formula class is closely related to its learning com-
plexity in the model of proper learning with equivalence and membership queries. This
way bounds are obtained for the complexity of learning projective DNF in this model
as well.

Finally, note that this chapter does not contain an example run—contrary to the

! Alekhnovich et al. showed that DNF is not properly PAC learnable in polynomial time unless NP
= RP [5], providing further motivation to find positive learnability results.

51
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two previous ones dealing also with results on revision. The main reason for this is that
the algorithm itself is much more simple than the ones presented in the two previous
chapters (however this does not seem to hold for the analysis of the algorithm), and
thus an example run would not provide further insights about the algorithm.

6.1 Further Definitions and Notations

First we introduce projective disjunctive normal forms and we briefly discuss some of
their properties.

Definition 6.1 A DNF formula o is a k-projective DNF, or k-PDNF if it is of the
form

@ =pit1 V-V pety, (6.1)

where, fori =1,....(, p; is a k-conjunction (called the p-part of the term p;t;), t; is
a conjunction (called the t-part of the term p;t;) and it holds that

A Boolean function f : {0,1}" — {0,1} is k-projective if it can be written as a
k-PDNF formula. The class of n-variable k-projective functions is denoted by k-PDNF,,.

The k-conjunctions p; are also called k-projections, or, when k is clear from
context, simply projections. Conditions (6.1) and (6.2) mean that when restricted
to the subcube 7(p;), the formula ¢ is equivalent to the conjunction ¢;, and every
true point of o arises this way for some restriction. This corresponds to the intuition,
described earlier, that the restrictions to a prespecified set of simple domains are simple,
and the whole function can be patched together from these restrictions.

Note that in order to specify a k-PDNF, it is not sufficient to specify its terms, but
for each term one has to specify its p-part and its ¢-part; that is, the projection and
the corresponding conjunction have to be distinguished. If necessary, we indicate this
distinction by placing a dot between the two parts. For example,

(z-y)V(z-y) and (z-y)V (T y2) (6.3)

are two different 1-PDNF for the same function. The dots are omitted whenever this
does not lead to confusion. The conjunctions p; and ¢; may have common literals. The
requirement (6.2) is equivalent to requiring that

pipiti = pip;t; (6.4)

for every 7 and j. This makes it easy to verify that a given expression, such as those in
(6.3), is indeed a k-PDNF. It also shows that the disjunction of any set of terms of a
k-PDNF is again a k-PDNF.
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If a function is k-projective, then it is k’-projective for every &’ with k < k' < n.
Note that the complete DNF (consisting of n-conjunctions corresponding to the true
points of f) shows that every n-variable function is n-projective.

For more on projective DNFs and their relations with some other basic formula
classes (like k-DNFs, k-term-DNFs and decision lists) see [115].

6.1.1 Revision

In addition to the standard mistake-bounded model, as a technical tool for the learning
result, we also consider a model of learning in the presence of noise. In the model of
learning monotone disjunctions with attribute errors (Auer and Warmuth [18], also
used by Valiant [128] with a different name) it may happen that y is not the correct
classification of x, that is, fi,.(x) # y. It is assumed that the error comes from some
components (or attributes) of x being incorrect, and the number of attribute errors
committed in a round is the minimal number of components that need to be changed
in order to get the correct classification. More precisely, if in round r the classification
y, is not the correct classification of x,, then, if y. = 1 then ATTRERR(r) = 1
(as it is enough to switch one bit on to satisfy a disjunction), and if y, = 0 then
ATTRERR(r) is the number of variables that are included in the target disjunction and
which are set to 1 in x,. The total number of attribute errors for a given run, denoted
#ATTRIBUTEERRORS, is the sum of the attribute errors of the rounds. This notion
is used only for technical purposes: it plays an important role inside some proof, but
does not appear in any results.

The revision operations are the deletion of a literal or a term, the addition of a
new empty term of the form p- T, and the addition of a literal.

The revision distance of two terms ¢ and t* is the number of literals occurring in
exactly one of the two terms, denoted [tAt*|. Similarly, the distance between two dis-
junctions is also the number of literals occurring in exactly one of the two disjunctions.

The revision distance between an initial k-PDNF formula ¢ and a target k-PDNF
formula 1) of the form

o = prita VoV pie NV prpatepr VooV peysleys,
o= pity VoV opety Vot VoV oplt]

a

l a
dist(p, 1) = s+ Y [LALG]+ Y ([t +1),
=1 =1

where {ppi1,.. ., perst NP, ..., 0.} = (. For example, the s term in the definition
of dist(¢, 1) corresponds to the deletion of the s terms pyi1tpi1, -, Porsteors

Given an initial formula ¢ and a target formula ¢, we want our mistake bound to be
polynomial in the revision distance é = dist(¢, ¢), and logarithmic (or polylogarithmic)
in all other parameters. In this case, that means logarithmic in n and, for k&-PDNF, in
the total number of projections of size k, which is 2% (Z)
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Note that this is in accordance with the general approach described in Chapter 3.

6.2 Revision Algorithm for Disjunctions and for
k-PDNF Formulas

The main tool in Valiant's learning algorithm for projective DNFs [128] is Littlestone's
Winnow algorithm [92], which is a kind of multiplicative version of the well-known
Perceptron algorithm. We begin by demonstrating that the original Winnow with
appropriately modified initial weights is an efficient revision algorithm in the mistake
bounded model for disjunctions, even in the presence of attribute errors—if we are
willing to tolerate a number of mistakes polynomial in the number of attribute errors as
well as the usual parameters. We will use this result to show how to use an algorithm
similar to Valiant’'s PDNF learning algorithm to revise PDNF. The overall algorithm
has a two-level structure, with many instances of a revision version of Winnow on the
lower level feeding their outputs to one instance of a revision version of Winnow on
the top level. Note that, even with noise-free data, mistakes made by the lower-level
Winnows will represent attribute errors in the input to the top-level Winnow.

6.2.1 Revising Disjunctions

Algorithm RevWinn (pseudocode displayed as Algorithm 8) revises a monotone disjunc-
tion. It can be applied to revise an arbitrary disjunction by introducing extra variables
for the negated literals, and this in turn can be used to revise arbitrary conjunctions
by applying the De Morgan rules. We now present RevWinn; we will later assume
without further discussion that we have versions available for arbitrary disjunctions and
for conjunctions

Let the set of variables in focus be some finite V' C V. Algorithm RevWinn revises
. which

determines the current hypothesis, and is updated each time a mistake is made. We

an initial disjunction ¢ over V. It maintains a weight vector w of length |V

use w, to denote its value after round r. Accordingly w( denotes the initial weight

vector 2.

The algorithm consists of three main parts: initialization of the weight vector w
(which initializes the hypothesis), prediction (the hypothesis part), and the update part.
Formally, we break out each as a subroutine to make later discussion easier.

Let us now describe these three parts of ReviWinn. The initialization part is done
by using function Init, which, on input V" and ¢ outputs a vector w of length V' (and

2Actually, this is Littlestone’s Winnow2 [92] using different initial weights—with his parameters set
to a« = 2, and 6 = |V|/2—, except that the weights are all devided by |V'|, because this seems to
make the analysis a little easier to follow.
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Algorithm 8 Algorithm RevWinn(V, ¢)

1. w:= Init(V, p) {initialize the weight vector}
2: forround r =1,2,... do

3:  {The input in round 7 is the instance x, with domain V'}
4:  Output prediction ¢, := h(x,, w)

5. if receiving label y, for x, it holds that g, # y, then

6 {the algorithm made a mistake, so update the weights}
7: w := Update(y,, X, W)

8: endif

9: end for

indexed by the variables in V'), with

{1 if variable v appears in ¢,
w(v) =

1/|V|  otherwise,

forveV.
Given weight vector is w, the hypothesis function evaluates

h(x,w) = {0 if (w,x) is less than 1/2,

1  otherwise

on input instance x (with domain V'), where

(w.x) =) w(v) - x(v)

veV

is the dot product of w and x. The hypothesis is used to make predictions; in round
r the algorithm predicts that the label of x, is ¢, = h(x,, w,_1).

Finally the function Update(y,x,w), returns a vector w’, a modification of the
weight vector w:

2-w(v) if y > g and x(v) =1,
w(v) = w(v) - 20790 = 8(1/2) - w(v) ify < and x(v) =1,
w(v) otherwise,

for v € V, where 3 is the output of the hypothesis function on x (i.e., § = h(x, w)).
This function does nothing and need not even be called if there is no mistake; that is,
if g=uy.

Note that throughout, all of the weights are always in the interval (0, 1]. This can
be seen using an induction argument as follows. Initially the statement is true. Now
assume that the weights after round r — 1 are all between 0 and 1. If y, = ¥, then
the weights are not changed. If . = 0 and 3, = 1, then some weights are halved, and
some unchanged—thus the statement will be true after round r. If 5, =1 and g, =0,
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then (w,_1,x,) is less then 1/2, so the sum of the weights of components having 1
in assignment X, is less then 1/2. As RevWinn doubles the weights of exactly these
components, the statement will remain true after round r.

Theorem 6.2 The number of mistakes made by Algorithm RevWinn with initial (mono-
tone) disjunction ¢ and target (monotone) disjunction 1) is

O(#ATTRIBUTEERRORS + élogn),

where é = dist(p, 1), n = |V| and V' is the set of variables in focus.

Proof
Consider any run of the algorithm of length R. Let I be the set of variables v € V/
that appear in both the initial and target disjunctions, such that for at least one round
7 variable x,(v) =1 but v, = 0. Let J C V be the set of variables that appear in the
target disjunction but not in the initial disjunction. Let us also introduce the notation
TUJ=V\({UlJ).

We will use later the fact that any variable in both ¢ and ¢ that is not in I never
has its weight changed from 1.

For the proof we use a potential function ®(w) that is somewhat different from
those used in some other cases for analyzing Winnow (e.g., in [18; 80]). Put ®(w) =

S @, (w), where

veV TU

B, (w) = {w(v) — 1+ In(l/w(v)) foelul,

w(v) otherwise.

It can be verified that ®;(w) > 0 for any w € (0, 1]™.

Let A, = ®(w,_1) — ®(w,) denote the change of the potential function during
round . We will derive both upper and lower bounds on S | A, that will allow us to
relate the number of mistakes made by RevWinn to é, n, and #ATTRIBUTEERRORS.

First we derive an upper bound:

DA = d(wp) - D(wp)
< D(wo) — Z wr(v)

- Z@(WOHZ@(WOH Z_(Wo(v)—wR(v)). (6.5)

For v € I we initialized wy(v) = 1 so ®,(wq) = 0. Also, |J| < é, and &,(wy) =
In(2n) — (2n —1)/2n < In(2n) for v € J, so the sum of the first two terms is at most
¢In(2n). Now we need to bound the third term. The variables that appear neither in

¥ nor in ¢ have initial weights 1/(2n), and so altogether can contribute at most 1/2
to the sum. There are at most ¢é variables in ¢ that are not present in ), so those
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variables can contribute at most é to the sum. Finally, as noted earlier, the weights
never change for those variables in both ¢ and 1 but not in I. Thus we get

R
d A <éln2n+é+1/2 (6.6)
r=1

To get a lower bound on the sum, we begin by deriving a lower bound on the change
in potential in one round. Now

Ar = Z (Wr1<v) - Wr(v> +1In WT(U) ) + Z (Wr71<v) - WT‘(U>)

veluJ wr-1(v) velUJ
= Y (W) —w,(v) + Y In eriiz(jz}) : (6.7)

Examining the ReviWinn code, one can see that there are three cases for updating
weights at the end of a round r: no change in any weights, some or all weights are
decreased—called a demotion round—, and some or all weights are increased—called
a promotion round. Obviously, when no update is done in round r (i.e., . = y,),
then A, = 0.

In a demotion round, 3, = 1 and y, = 0. By the definition of I and J, in this case
ATTRERR(r) = [({ U J) N{v : x,(v) = 1}|. Also, the total weight of components
being on in x, is at least 1/2 (recall how g, is evaluated), and the weight of each of
those components is halved. So, using (6.7),

Az iU n{e: ) = 1) m% _ i  (In2)ATTRERR(r).  (6.8)

A~ =

In a promotion round, ¢, = 0 and y,, = 1. We know that the components of x,
that are on have total weight less than 1/2 (again, by the evaluation rule of ¢,), and
that each of these components is multiplied by 2. So the first term in (6.7) is at least
—1/2. Thus A, > —1/2+ |IU J)N{v : x.(v) = 1}| - In2. Now if y, = ¥(x,),
then [(/UJ) N{v:x,(v) =1}| > 1, because we know that ¢, = 0 and we know that
all the weights of variables in both ¢ and ¢ but not in I are 1. If y, # ¢(x,), then
ATTRERR(r) = 1. Thus, in a promotion round, it always holds that

A, > —1/24 (In2)(1 — ATTRERR(7)). (6.9)

Finally, let M~ denote the total number of demotions and M ™ the total number
of promotions. Then (6.8) and (6.9) give us

rilA, > > (i — (In 2)ATTRERR(7’))

{r:gr=1,y-=0}

+ Z <1n2 - % — (In Q)ATTRERR(T))

{r:g-=0,y,=1}
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M 1
- + (an — 5) M* — (In2)#ATTRIBUTEERRORS.

Combining this with (6.6) gives the desired mistake bound. O

Notice that, unlike other uses of potential functions in mistake-bound proofs, we
do not make any claims about the relation between the value of the potential function
used here and the distance between the actual weight vector w, and a weight vector
for the target. Indeed, we do not see any obvious relation between the value of this
potential function and any measure of distance between w, and a weight vector for the
target.

6.2.2 Revising k--PDNF Fromulas

In this chapter we discuss Algorithm Rev-%k-PDNF (see Figure 9), the revision algorithm
for k-PDNFs. It has the same two-level structure that was also used by Valiant for
learning PDNFs [128], but it uses different initial weights in the individual copies of
Winnow (as it was discussed in the previous subsection). It also requires some variant of
RevWinn applicable for conjunctions (which can be obtained by an easy transformation
from RevWinn as explained at the beginning of the previous subsection, retaining the
mistake bound described in Theorem 6.2); denote it RevWinnC and denote by InitC,
hC, and UpdateC its main functions.

To fill up the details: Rev-k-PDNF consists of a top-level RevWinn algorithm that
handles the selection of the appropriate projections. On the lower level, instances
of RevWinnC are run, one for each of the 2F (Z) projections, to find the appropriate
term for that particular projection. We call this the p instance of RevWinnC, and
denote its weight vector by w”. The input resp. the label for each of these ReviWinnC
instances are x,. and y,. An update is applied to the p instance of RevWinnC only when
p(x,) = 1 (and additionally the top-level algorithm'’s prediction of the label was wrong
and agreed with the prediction of the p-instance of RevWinnC), because in this case, by
Equation (6.2) if p appears in the target formula with ¢-part ¢, then the output of the
target formula agrees with t—and this is the key to the whole algorithm. Intuitively,
we hope that for each term of the form (p - t) in the target formula, where p is a
k-projection, the hypothesis of the p instance of RevWinnC will converge to t. The
prediction of the p instance of RevWWinnC is denoted ¢” and §° = hC(x,, w"_,).

For the top level, introduce a new Boolean variable v, for each k-projection, and
consider an instance of RevWinn run over these variables. In the rest of this section,
w is used to denote the weight vector of this top level ReviWinn instance (and, if we
want to emphasize the round, w, denotes its value after round r). The input for the
top level is denoted u; its value in round r, denoted u,, is defined by

u,(v,) = p(x,) AhC(x,, W)
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The output of the top level in round 7 is

~

Yr = h<ur7 Wr71>-

The top-level RevWinn algorithm learns a disjunction over variables newwvar,, which
would ideally consist of exactly those variables that are indexed by projections appearing
in the target formula.

Algorithm 9 The procedure Rev-k-PDNF(p, V).
L {p=pit1 V-V pgt, is the k-PDNF to be revised.}
2: w = Init ({v, : p is a k-projection over V}, v, V---Vu,)
3: for each k-projection p over V do

4. if p=p; forsomei e {1,...,s} then
5 w? := InitC(V,t;)

6: else

7: w? ;= InitC(V,T)

8: end if

9: end for

10: for round r = 0,1, 2, ... with input x, do

11:  Let u(v,) := p(x,) AhC(x,, w”) for each k-projection p
12:  Output prediction g, := h(u, w)

13: if receiving label y, for x, it holds that ¢, # y, then

14: {The top level algorithm made a mistake}

15: w := Update(y,,u, w)

16: for each k-projection p with p(x,) ==1 and u,(v,) # y, do
17: w? := UpdateC(y,, X, W”)

18: end for

19:  end if

20: end for

Theorem 6.3 Suppose that the initial and target formulas are, respectively, the k-PDNF,,
formulas

o = pita V- VopiteVpepaterr VooV opeysters,
b= VeV BBV AL

and é = dist(¢, 1). Then algorithm Rev-k-PDNF makes O(éklogn) mistakes.

Proof

The top-level Reviinn revises a disjunction over the v,’s. There will be two sources
of mistakes. First, the initial disjunction is not correct; it needs revising. Second, the
values assigned to the v, variables will sometimes be erroneous, because the low-level
RevWinnC's are imperfect—that is, u,(v,) # p(x,) A t(x,) might occur in some round
r for some term (p-t) of vb. (The actual input x, and classification y, are assumed to
be noiseless—that is, 3, = ¥(x,.) is assumed.)
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Theorem 6.2 tells us how to calculate the overall number of mistakes of the top-
level ReviWinn as a function of three quantities: the revision distance, which is s + a,
the total number of variables, both relevant and irrelevant for the disjunction, which is
2¥(7), and the total number of attribute errors, which we will now calculate.

In fact, we will not count all the attribute errors. We will count (actually provide
an upper bound on) only those attribute errors that occur when RevWinn is charged
with a mistake.

For i = 1,...,¢, the RevWinnC instance corresponding to projection p; predicts
9" = hC(x,,w" ;) in round r. That RevWiinnC instance updates for a mistake only
when the overall algorithm makes a mistake (i.e., 4. # v,.), its prediction was different
from y, (i.e., ¥ # 97%), and p;(x,) = 1. Now y, = ¢)(x,) = tf(x,) (the last equation
holds because of projectivity and because p;(x,) = 1). This means that the mistake
bound for this ReviiinnC tells us how many times this RevWinnC can make errors
on rounds when the overall algorithm makes an error; after that number of mistakes,
this RevWinnC will then always predict correctly. According to the discussion at the
beginning of this subsection the mistake bound on this RevWiinnC is O(|t;At!|1nn).

For j =1,...,a asimilar argument shows that there are at most O([t/|Inn) rounds
r where u,(vy ) # pj(x;) A t;(x;) and the top-level Revilinn makes a mistake. Put

Fle) = (X0 606+ i [5]) Inn.

How many times can Rev-k-PDNF err when predicting? We just argued that
the total number of attribute errors that occur when the top-level ReviWinn makes
a mistake is O(F'(y,1)). The total number of variables that the top-level Reviwinn
is working with is 2’“(2) Thus, the overall mistake bound is, by Theorem 6.2,
O (F(p,¥) + (s +a)log (2(}))) = O(éklogn), since F = O(élogn).

Remark 6.1

For learning from scratch a k-PDNF,, consisting of m terms, that is, for revising the
empty k-PDNF,, to a target k-PDNF,,, this algorithm has the same asymptotic mistake
bound as Valiant's learning algorithm [128]: O(kmslogn), where s is the maximum
number of variables in any term in the target.

6.3 Exclusion Dimension

The combinatorial parameter, exclusion dimension of formula classes (for the definition
see below) is in close connection with the query complexity of the given formula class
(see, e.g. [11]). As the revision algorithm for projective DNFs works in the mistake
bounded model, it seems interesting to discuss this parameter for this class. In this
section we follow the terminology of Angluin [11]. (With minor variations, exclusion
dimension is called unique specification dimension by Hegediis [65] and certificate size
by Hellerstein et al. [67].)

Let f be an n-variable Boolean function. A set A C {0,1}" is a specifying set
of f with respect to a class C of Boolean functions if there is at most one function
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in C that agrees with f on A. (So clearly {0,1}" is always a specifying set.) The
specifying set size of f with respect to C is

spece(f) = min{|A| : A is a specifying set for f with respect to C},
and the exclusion dimension of the class C is

XD(C) = max{spece(f): f & C}.

A specifying set A for f & C such that no function in C agrees with f on A is also
called a certificate of exclusion (or simply certificate) for f with respect to C. In
our constructions below, we will usually give certificates of exclusion, which clearly give
upper bound for the specifying set size.

For the rest of this chapter specifying sets are always with respect to k-PDNF, so
we write spec(f), omitting the subscript C.

A function f is minimally non-k-projective if it is not k-projective, but any f’
with 7(f") C T(f) is k-projective.

Proposition 6.4 If f is minimally non-k-projective, then spec(f) > |T(f)| — 1.

Proof

Suppose |A| < |T(f)] — 2 for some A C {0,1}". Let x,y € 7(f) \ A be two
different assignments. As f is minimally non-k-projective, there is g, € k-PDNF,, (resp.
gy € k-PDNF,,) such that 7 (gx) = (ANT (f))U{x} (resp. 7 (gy) = (ANT (f))U{y}).
Now gx and gy are different elements of k-PDNF,, that agree with f on A, thus A is
not a specifying set for f. O

We now present a lower and an upper bound for the exclusion dimension of k-PDNF,,,
which show that for fixed k the exclusion dimension is ©(n*). We begin with a lemma
that characterizes k-PDNF, give some examples, and then continue to the main theorem
of this section that gives the bound.

Lemma 6.5 (a) A function f is k-projective if and only if for every x € T (f) there
is a k-conjunction p such that x € T (p) and T(f) N7 (p) is a cube.

(b) If for every x € T (f) there is a k-conjunction p such that T (f) N7 (p) = {x},
then f is k-projective.

Proof
We show only (a), as (b) follows directly from (a). If f is k-projective then it can be
written as @ = pyt; V -+ -V pety. Consider an x € 7(f). Then p;t;(x) = 1 for some i,
thus x € 7 (p;). The definition of PDNF implies that 7(f) N7 (p;) = T (p;t;), which
is a cube.

For the other direction, let us assume that for every x € 7 (f) there is a k-projection
px such that x € T (px) and 7(f) N7 (px) = Qx is a cube. Then Qx can be written
as T (pxtx) for some conjunction ¢y, and f can be written as the k-PDNF expression

Vier(s) Pxtx: O
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We illustrate Lemma 6.5 with the following example. We claim that the function
f(v1,v9,v3,v4) = vivy V v3vg is not 1-projective. Call an assignment that violates
condition (a) in the lemma k-deviant, or simply deviant. It suffices to show that 1
is deviant. For symmetry reasons, we only need to show that 7 (f) N7 (v;) is not a
cube. Indeed, it contains x; = (v; — 1,v3 — 1,03 — 0,04 — 1) and x3 = (v —
1,09 — 0,v3 — 1,v4 — 1), but it does not contain their meet, x; A X3 = (v] —
L,vg +— 0,03 — 0,04 — 1).

Proposition 6.6 For every k and n > k + 2 there is a non-k-projective function with
T(f)l =k+3.

Proof

Let 7(f) = {1 : 1 <i < k+2}U{0}. Then 0 is k-deviant, as every k-conjunction

p satisfied by 0 contains at least two 1;’s, but 7(f) N7 (p) does not contain the join

of these two assignments, and thus it cannot be a cube according to Proposition 2.1.
O

The proposition gives a (k + 3)-term-DNF function which is not k-projective.

Theorem 6.7 1. For all n and k,
n
XD(k-PDNF,) <3 (k:) +1,

and

2. ifn > 4k(k+ 1), then
XD(k-PDNF,,) > <W4J) —1.

Proof
For the upper bound, we will calculate an upper bound on the size of a certificate of
exclusion for any f & k-PDNF,, with respect to k-PDNF,,.

To show that a a function f is not k-projective, it suffices to present a deviant
assignment x (i.e., x violates Condition (a) of Lemma 6.5) together with a certificate
of x’s deviance. For the certificate of x's deviance it suffices to specify, according to
Proposition 2.1, for every k-conjunction p with p(x) = 1, three assignments x;, X2, X3
such that p(x1) = p(x2) = p(x3) = 1, X1 Ax2 < x3 < x;VXg and f(x1) = f(x2) = 1,
f(x3) = 0. The number of k-conjunctions with p(x) = 1 s (7). Thus the upper bound
follows: 1 for x itself, and then 3 assignments each for at worst all of the k-conjunctions.

For the lower bound, in view of Proposition 6.4, it is sufficient to construct a
minimally non-k-projective n-variable function f, ) that takes the value 1 at many
points. First we describe the construction in the case when n is even and &k = 1. Let
n = 2s, let a = 10170220 for j = 1, ... s, and define f,; by T(fur) = {a; :=
alimtves=0 .y — 1 s} U{0}. We claim that f, is minimally non-1-projective.
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The non-1-projectivity of f,, ; follows from the fact that 0 is deviant: any 1-projection
p containing 0 must be a negative literal, and thus it contains some assignment(s) a;,
but it does not contain any assignment of positive weight less than s. Thus, by the
remark following Proposition 2.1, 7(f,x) N7 (p) is not a cube. On the other hand,
the a;'s are not deviant for f, ;. This holds as they satisfy the condition of part (b)
of Lemma 6.5: the 1-conjunction vy, contains only a; from 7(f, ). Now we show
that every f' with 7(f") C T(f.x) is 1-projective. Indeed, if f/(0) = O then this
follows from part (b) of Lemma 6.5 directly. Otherwise the only thing to note is that
if f’(a;) =0, then the 1-conjunction 7; contains only O from 7 (f’).

For the construction in the general case we use the following lemma. In the lemma
we consider {0, 1}” to be the p-dimensional vector space over GF'(2) and [ to be the
p X p identity matrix.

Lemma 6.8 Let A be a p x p 0—1 matrix such that both A and A® I are nonsingular.
Assume that k(k + 1) < 2P and define the mapping

h({by,...,bg}) ={b; ® Ab,... b, ® Ab},

where by, ..., by are different elements of {0,1}?, and b = b; ® --- ® by. Then it
holds that

(a) h is a bijection, and

(b) for every by,... ,by_1 and dy,...,d; there is a by different from by, ... by 1,
such that the elements of h({by,...,by}) are all different from the d;’s.

Proof

If h({by,...,b}) ={dy,...,d;}, thend; ® - - - ® d), = b ® (k mod 2) Ab, which is
equal to b (resp., (A ® I)b), if k is even (resp., odd). Thus, knowing d, ..., d; we
can first determine b, and then we can determine every b, by b; = d; ® Ab. Hence h
is injective, and thus it is also bijective.

For (b), note that a value for b, can fail to satisfy the requirement only if it is
either equal to one of the b;’s, or if b, ® Ab = d; for some 1 <, j < k. In each case
we can solve for by, thus there are altogether at most k& + k? bad choices. Choosing
any of the other 27 — (k + k?) vectors meets our requirements for by. O

Now we continue the proof of Theorem 6.7 with the general case k > 1. First,
we need a matrix that fulfills the conditions of Lemma 6.8. It is easily verified that,
for example, the matrix A with all 0's except a1; = a,1 = a;;41 = 1 (where i =
1,...,p—1) is such a matrix. It is clear from the definition of & that if the b;’s are all
different, then A({by,...,b}) also consists of s different elements.

Now let p = Uog %J and put s = 2P. If [ is a k-element subset of {1,2,..., s},
put & 1= 0Ws=r=hev2=l) Cdefine ar = Oyyuery and Br = 1y, .iery 5, and put
a; = a1 and define f,x by T(fox) = {a;: 1 € {1,2,...,s},|I| = k} U {0}.

3With a slight abuse of notation the b, vectors are used both to denote elements of {1,2,...,s}
and their binary representations.
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We claim that f,, x is minimally non-k-projective. The argument for this is very
similar to the argument in the special case above. The projection p; = A,y Vst
contains only a; from 7 (f,, ;) by part (a) of Lemma 6.8, and if a; is not contained in
T (f') for some f" with T(f') C T(f,x) then the projection py = A, 7; contains
only 0 from 7(f’). It only needs to be shown that O is deviant for f, . Let p be
any k-conjunction containing 0. We can assume that every literal 7; in p has ¢ < 2s,
as the other literals do not exclude any a;. We show that besides O there is an a; in
7 (p), which implies the claim by the remark following Proposition 2.1. If all the literals
come from the first s variables then a; corresponding to these literals clearly satisfies
the requirements. Otherwise, let us assume that the literals in p are of the form ;, for
iehUly, I C{1,2,...,s}, s C{s+1,s+2,...,2s}, || > 0and ||+ |L]| = k.
By part (b) of Lemma 6.8 there is an [ C {1,2,...,s},|I| = k,I; C I such that
h(I) N Iy =0, and by definition, a; € 7 (p). O

Using the results on the relation between the exclusion dimension and the complexity
of learning with membership and proper equivalence queries [11; 65; 67] we get the
following.

Proposition 6.9 The class k-PDNF,, can be learned with O (n 2k (Z)2> membership

and proper equivalence queries. On the other hand the query complexity of this class
is at least (L"]i“) — 1.

Proof

The query complexity of a formula class R is at most XD(R) - log|R| and at least
XD(R) (see, e.g., [11]). We are interested in the case when R is the set of k-PDNFs.
Since the number of k-conjunctions over n variables is (})2* (choose k variable from
the n and then choose an orientation for each), a k-PDNF consists of at most 2% (7))
terms. Noting that the number of K-term-DNFs is at most (3")", one derives the
upper bound 372 () for the number of k-PDNFs which, combined with Theorem 6.7,
completes the proof. O

The number of queries used by the learning algorithm that the above proposition
referres to, is polynomial in n for every fixed k. On the other hand, the running time
is not necessarily polynomial.

Blum [22], using ideas from Littlestone and Helmbold et al. [69; 91], shows that
a simple subclass of decision lists (called 1-decision lists) is efficiently learnable in the
mistake-bounded model. It follows from a straightforward generalization of this result
and Proposition 4 in [115] (discussing the relation of projective DNFs and decision lists)
that for every fixed &, the class k-PDNF is learnable with polynomially many improper
equivalence queries and with polynomial running time. (Yet another proof for this is
Theorem 6.2: evidently, efficient learnability follows from efficient revision.)

Thus the question wether the class can be learned with proper equivalence queries
in polynomial running time is still open.
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6.4 Concluding Remarks

As mentioned, an interesting direction would be to study the computational complexity
of algorithmic questions related to PDNF. Recall that the discussed results leave open
the question whether there is a computationally efficient equivalence and membership
query learning algorithm for k-PDNF.

Another direction could be to consider noisy model, that is, when in some round r
the label y, is not the correct classifiaction of instance x,, that is, y, # fug(x,) (as
in [113]). A special motivation for this is that, for technical reasons, we had already
considered noise in the intermediate steps in the analysis of algorithm Rev-k-PDNF.
However this model does not seem to be too interesting. Assume that some algorithm
Algo is an efficient learning algorithm for some formula (or concept) class with mistake
bound MB when noise is not allowed. Then this algorithm can be used to learn the same
class in noisy environment making at most MB - FL mistakes, where FL denotes the
number of false labels (i.e., the number of rounds when y, # fi.o(x;)) in a given run,
iterating the following: initialize algorithm Algo, run it as long as its mistake bound is
below MB, then reset. (Note also that if FL. and/or MB is not known in advance, one
can use the usual doubling technique—but this adds an extra logarithmic factor.) For
more on this issue and some other related topics see for example [20; 21].

Finally note that the results presented in this chapter—unless noted otherwise—
appeared in the paper [115], co-authored by the author of the present dissertation.
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Chapter 7

1-PDNF Formulas

Chapter 6 discussed the revision of the k-PDNF formulas, the class introduced by
Valiant [128] motivated by certain biological considerations. During the research aimed
to analyze this apparently new class, a special subclass, the 1-PDNF formulas have
shown some interesting regularities in their form. Further examination of this phe-
nomenon has confirmed that this was not just a mere coincidence, and indeed there is
some nice characterization for the class of 1-PDNFs. In this chapter this result is pre-
sented. Throughout the chapter the notations and terminology introduced in Chapter 6
are used.

7.1 p-irredundancy and a Characterization of 1-
PDNF Formulas

First let us note that if ¢ is a 1-PDNF that includes two complementary projections,
that is, it is of the form ¢ = vt; V Uty V - -+ for some variable v, then by deleting
everything else besides these two terms, we get an equivalent formula. Indeed, by
Equation (6.2) vty V Uty = v V U, which is obviously equivalent to .

We formulate a notion of irredundancy for 1-PDNF, which we call p-irredundancy
to distinguish it from the usual notion of irredundancy for DNF. Unlike the standard
notion, p-irredundancy of a 1-PDNF is easy to decide.

Definition 7.1 A 1-PDNF formula ¢ = pit; V -+ V pyt, is p-irredundant if the
following conditions all hold:

(a) Lit(p;t;) € Lit(p;t;) for each distinct i,j € {1,...,(},
(b) pi, pi & Var(t;) for every 1 <i </,

(c) if ¢ > 3 then p; # p; for each distinct 1,5 € {1,...,(}.
Otherwise, ¢ is called p-redundant.

The first condition says that no term implies another, the second that in each term
the projection and conjunction parts are disjoint (a formula violating any of these two

69
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conditions has a trivial simplification), and the third that if there are at least three
terms, then no two projections are complementary (recall the argument above).

Given a 1-PDNF expression, one can easily transform it into a p-irredundant form
as follows. First delete any term that has the negation of its p-part contained in its
t-part (violating (b)). Next check if there are two complementary projections, and if
there are, then delete all the other terms, thereby guaranteeing (c) (again, recall the
argument from the beginning of the section). Otherwise, delete every term subsumed
by another term, ensuring (a). Finally, if in a remaining term the ¢-part contains the
projection literal, then delete the projection literal from that term. The final expression
is a p-irredundant 1-PDNF, which is equivalent to the original one.

The above algorithm runs in polynomial time, thus we have:

Proposition 7.2 There is a polynomial algorithm which, given a 1-PDNF expression,
transforms it into an equivalent p-irredundant 1-PDNF expression.

In view of this it thus suffices to consider only 1-PDNF expressions in p-irredundant
form for the characterization of 1-PDNF formulas:

Theorem 7.3 A formula p is a p-irredundant 1-PDNF formula if and only if it is either
of the form

Y= \/(pi,lti Ve Vopigti),
i=1
where p;, & Var(t;) and p;, € Lit(t;) for every distinct i,j € {1,...,s} and 1 <r <
¢;, and furthermore the projections are all based on different variables, or it is of the
form
p=vtVot ,

where v ¢ Var(t) and v ¢ Var(t').

Informally, the first case of the theorem says the following. Let us consider a term
in a p-irredundant 1-PDNF to consist of a “stem” ¢ and a “petal” p. Then the petal
of each term is not included in its stem (that much is clear from the definition of
p-irredundancy) and if two terms have different stems then each stem contains the
negation of the other one’s petal. In other words, each stem consists of the negations
of all the petals corresponding to terms with different stems, plus, possibly, some other
literals.

7.2 Proof of Theorem 7.3

First we give a description of those p-irredundant 1-projective DNF that represent
either a monotone or an a-unate function, and then we give the general description.
We assume w.l.0.g. throughout this section that each 1-PDNF in question determines
a non-constant function and has terms that do not contain any complementary literals.
Throughout the proof we also frequently use the fact that for arbitrary terms ¢ and ¢/
it holds that 7 (¢t) C 7 (¢') if and only if Lit(¢') C Lit(¢) (see Section 2.3).
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Lemma 7.4 A formula ¢ is a p-irredundant 1-PDNF formula representing a monotone
(resp. a-unate) function if and only if it is either of the form

Q=pitV---Vpd, (7.1)

where p1, ..., p, are different unnegated variables (resp. literals whose signs agree with
a) not contained in Var(t), and t is a monotone (resp. a-unate) term, or it is of the
form

© = pt \V ptt’, (7.2)

where p is an unnegated variable (resp. its sign agrees with a) and t,t' are monotone
(resp. a-unate) terms not containing p or p.

Proof
We prove only the monotone case, as the a-unate case follows by considering the
monotone function obtained by replacing assignment x with x ® a. (Note that a
function f is k-PDNF if and only if f, is, where f,(x) = f(x® a).) It follows directly
from the definitions that every expression of the form of Equation (7.1) or (7.2) is
indeed a p-irredundant 1-PDNF expression.

Let ¢ be an arbitrary monotone p-irredundant 1-PDNF formula. Separating the
negated and unnegated projections, w.l.o.g. let us write ¢ as

o=\ (-t v\ (@ 1)) (7.3)

iel jet
(This representation of ¢ is convenient for the following series of claims.)

Claim 7.5 For any monotone formula ¢ of the form as in Equation (7.3) it holds that
the index set I is nonempty, and that t, is monotone for allr € I U J.

Proof
The first part of the Claim holds because ¢ determines a non-constant monotone
function, thus ¢(1) = 1.

To prove monotonicity for ¢;, i € I, note that 1 satisfies every monotone projection,
thus by projectivity (v; - ¢;)(1) = ¢(1), which equals 1 (as argued above), thus ¢; must
be monotone.

Finally, let us consider a term T;t; with j € J. Asssume for the contradiction that
term ¢; contains negative literal 7. Let x be any assignment satisfying the term 7j; - ¢;
and thus ¢. By monotonicity x(*"~Y must satisfy ¢. However, then, by projectivity
and because 7 # j (by (b) of p-irredundancy), x(~—1) must satisfy ¢;, a contradiction.

OJ

Claim 7.6 For any monotone formula ¢ of the form as in Equation (7.3) it holds that
T(p) CT(t;) foralliel.
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Proof

Pick an arbitrary i € I. Let x € 7 (¢), so ¢(x) = 1. By monotonicity ¢ (x“~V) =1,
by projectivity ¢; (x*~1) =1, and by (b) of p-irredundancy #;(x) = 1, which proves
the claim. O

Claim 7.6 can be used to show that the ¢-parts of the terms with positive p-parts
are all the same—that is, ¢, = ¢ for i € I for some term ¢:

Claim 7.7 For any monotone formula ¢ of the form as in Equation (7.3) it holds that
there must be a single term t such that

<P:\/(Uz"t)\/\/(v_j‘ i)

iel jed

Proof
Consider any two distinct i, j € I. From projectivity and from Claim 7.6 it follows that
T (vit;) €T (p) C T(t;) and, likewise, that 7 (v;t;) C T (p) € T(t;). Thus

From this and from (a) of p-irredundancy it follows that v; ¢ Lit(v;t;) and v; &
Lit(v;t;). But then Lit(t;) = Lit(¢;). O

Putting together Claims 7.5 and 7.7, it follows that we are done if J = (). The
remaining case (i.e., when J # () is handled by the following Claim.

Claim 7.8 Let m be a monotone p-irredundant 1-PDNF formula of the form

=\ v\ (@ t),

iel jeJ

where I and J are nonempty sets, furthermore t;, for j € J, and t are monotone terms.
Then ©m = vt V u;tt’ for some variable v; and some monotone term t’.

Proof
It follows from projectivity and from Claim 7.6 that 7 (v;t;) C 7 (mw) C 7 (t), thus
Lit(¢) C Lit(7;t;), and so (as t is monotone) Lit(¢) C Lit(¢;). Thus 7 can be written

as
m=\(vi-t) v\ (5 tt)),
i€l jeJ

where now I, .J # () and ,t) are monotone terms. If [ = J = {i} for some 4, then we
are done. For the rest of the proof we assume that this is not the case, and show that
this leads to contradiction.

Now it must be the case, that there are terms (v; - t) and (¥ - t¢}) in 7 such that
i # j. Thus T (vivjtt}) # 0 (by (a) of p-irredundancy), and it also holds (by Equation
(6.4)) that 7 (vjuit) = T (v;vjtt;). Then either t; = v; or t; = T. But ¢} = v; would
violate (a) of p-irredundancy, thus it must be that ¢, = T.
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Let us consider first the case when 7 contains only two terms. Then it must be of
the form m = (v; - ) V (75 - t). Then, on one hand, if v; & t, then it contradicts the
monotonicity of 7 (in variable v;), on the other hand, if v; € ¢, then it contradicts (b)
of p-irredundancy.

Let us consider now the case when 7 has at least three terms. Since t; = T, by
projectivity 7 (7;t) C 7 (m), and thus by monotonicity 7 (t) C 7 (w). With Claim 7.6.
this implies 7 (t) = 7 (7). But then for every other k € J it holds that 7 (vy7m) =
7 (vxt), meanwhile by projectivity 7 (vytt),) = 7 (vgm), so tj, = T. Therefore

tEﬂ’:\/(UZ"t)\/\/(U_j~t)E (\/vi\/\/v_]) t.

iel jeJ il jeJ

This can only hold if some variable occurs both in I and J, contradicting condition (c)
of the definition of p-irredundancy for 7.
This completes the proof of the claim. O

Now the lemma, as mentioned, follows from Claims 7.5, 7.7 and 7.8. O

The example of (6.3) (i.e., that (z-y)V (z-y) = (x-y) V (T - yz)) shows that
the representation as a p-irredundant 1-PDNF is not always unique. Also, it is an
interesting consequence of the theorem that there are monotone 1-PDNF functions,
which cannot be written as a monotone 1-PDNF. Consider, for example, the 1-PDNF

(z-1) V(T -y2),

representing the monotone function = V yz. If there were an equivalent monotone
1-PDNF, then it could be transformed into a monotone p-irredundant 1-PDNF, which
must look like the first case in the theorem. But then the minimal elements of 7 (zVyz)
(where minimality is understood in the partial order defined by “<") must have Hamming
distance at most 2, which is not the case for this function:

distH((x — 1,y — 0,2 +— 0),(x — 0,y — 1,2+— 1)) = 3.

Now we are ready to prove Theorem 7.3

Proof (of Theorem 7.3)

Again, one direction of the theorem follows immediately from the definition of p-
irredundancy. For the other direction, if there are two complementary projections in ¢,
then by condition (c) of p-irredundancy, ¢ must be of the form vtV ot'. Otherwise, let
us assume that ¢ is of the form ¢ = pt; V- -V pty. Consider any two terms p;t; and
piti. £ T (pit;) NT (pit;) # 0, then p;t; V p;t; is unate, and by Lemma 7.4 it must be
the case that ¢; = ¢;. On the other hand, if 7(p;t;) N7 (p;t;) = 0, then by projectivity,
it holds that 7 (p;p;t;) = 0, thus p; € Lit(¢;). Thus for every term p;t;, those terms
p;t; for which T (p;t;) NT (p;t;) # O have the same conjunction part, and all the other
terms contain p; in their conjunction part. O
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7.3 Concluding Remarks

The main result of this chapter is the characterization of the subclass of 1-PDNF
functions. It would be interesting to get a description of k-PDNF functions for larger
k.

Finally note that the results presented in this chapter—unless noted otherwise—
appeared in the paper [115], co-authored by the author of the present dissertation.



Chapter 8

k-term-DNF Formulas with
Largest Number of Prime

Implicants

Prime implicants of a Boolean function (or, in other words, maximal subcubes of a
subset of the n-dimensional hypercube ') form a basic concept for the theory of Boolean
functions and their applications. Concerning the maximal number of prime implicants,
it is known that an n-variable Boolean function can have at most O (%S prime
implicants, and there are n-variable Boolean functions with Q (%) prime implicants
(see, e.g., [31]).

Another case considered is the maximal number of prime implicants of Boolean
functions represented by disjunctive normal forms (DNF) with a bounded number of
terms. The result that a k-term-DNF can have at most 2 — 1 prime implicants was
discovered independently by Chandra and Markowsky [31], Levin [90] and McMullen
and Shearer [97]. (For a recent application in computational learning theory, see Heller-
stein and Raghavan [68].) It was shown by Laborde [88], Levin [90] and McMullen and
Shearer [97] that the bound is sharp, i.e., there are k-term-DNFs with 2¥ — 1 prime
implicants (Chandra and Markowsky gave an example with more than 2/2 prime im-
plicants). In view of these results, we call a DNF maximal if it has k terms and 2% — 1
prime implicants for some k.

In this chapter, on one hand, the above results of [31; 88; 90; 97| (about maximal
DNFs) are presented, and on the other hand, these results get completed by determining
all the maximal disjunctive normal forms.

1This and the following chapter heavily relies on the view discussed in Subsection 2.3.1: to view
A(V') as the n-dimensional cube, and a term as a subcube of it, where V' is some finite subset of V.

75



76 k-term-DNF Formulas with Largest Number of Prime Implicants

U1

w3 Uy WaUIUy  W5UY

WU Wa UgUg

Figure 8.1: A non-repeating, unate-leaf decision tree (NUD). The labels of the edges are
omitted for simplicity.

8.1 Nonrepeating Decision Trees and the Charac-

terization of Maximal DNFs

In order to formulate the description, let us introduce the notion of non-repeating,
unate-leaf decision tree.

For a given £k > 2 and r > 0, let us consider the pairwise distinct variables
V1, vny V1, W1, ..., w; and uq, ..., u,. For each of the w and wu variables, pick an
orientation, i.e., form the literals ¢; and §;, where ¢; is either w; or w; and §; is either
ujoruy, fori =1,...,kand j =1,...,r. A non-repeating unate-leaf decision
tree (NUD) T over these variables and literals is constructed by taking an LBT over
variables vy, ..., v,_1 with & — 1 inner nodes such that each inner node has different
label, also assign to each leaf a distinct w literal from those formed above, and, in
addition, assign to each leaf an arbitrary subset of the w literals formed above. The
set of leaves of 1" is denoted by L. If we want to mention the number of v variables
and w literals used in the construction, then we refer to 7" as a k-NUD (the value r
is irrelevant). Figure 8.1 gives an example of a 5-NUD (the labeling of the edges is
omitted for simplicity).

A k-NUD represents a k-term-DNF, determined as follows. For a leaf £ € L, let
the term ¢, be the conjunction of

e the v literals along the path leading to ¢, and of
e the w and u literals assigned to /.

The k-term-DNF represented by the k-NUD T is
or = \/ Lo
ter

For example, the 5-term-DNF represented by the 5-NUD of Figure 8.1 is

V1V Vg Wy Uy V U1V Vg WaUg Uz V U1 Vo W3 Uy V V1 U3Wa Uy Uy V V1 V3 W5 Us.

The Boolean function represented by o7 can also be thought of in the following way:
given a truth assignment x to all the variables, use the values of the v variables to
determine a path from the root to a leaf. The function value is 1 if x makes all the
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w and wu literals assigned to this leaf true, and it is O otherwise. It is clear from the
definition that the inputs accepted at a leaf ¢ are precisely those assignment which
satisfy the term t,. The function 7 is a generalized addressing function or multiplexer
[109; 132]. If a DNF ¢ comes from a NUD T', then T" can be reconstructed from .
The w and wu literals are those which are unate in ¢, i.e., their negation does not occur
in ¢, while the v variables are those which occur both negated and unnegated. Among
the v variables, the one labeling the root is the only one which occurs in every term
(either unnegated or negated). The left child is the only v variable which occurs in every
term containing the negation of the root variable, etc. In view of this correspondence,
with some abuse of terminology, we can talk about a DNF being a NUD, rather than
corresponding to a NUD. The maximal DNF of [88; 97] (resp., [90]) corresponds to a
tree which is a single path (resp., a complete binary tree), without any u literals. A
NUD generalizes these examples by allowing for an binary arbitrary tree and for the
additional u literals. Now we can formulate the description of maximal DNF.

Theorem 8.1 A DNF is maximal if and only if it corresponds to a NUD.

A closely related class of DNF tautologies is obtained if we consider trees with the
same kind of inner nodes, but without any literals assigned to the leaves. In the case
of the example of Figure 8.1, the corresponding DNF tautology is

10UV V U1 U304 V V1 U2 V U103 VUL V3.

Let us refer to this class of tautologies as non-repeating decision tree tautologies,
or ND’s. The main step in the proof of Theorem 8.1, the ND Lemma (Lemma 8.11)
is to show that for every DNF tautology the following two properties are equivalent:
(a) any two of its terms have exactly one conflicting pair of literals (in other words,
the terms are pairwise neighboring), (b) it is an ND. Lemma 8.11 was proven recently,
independently from our work, by Kullmann [85; 86] 2. Also note that Theorem 9.1
generalizes the result of the ND Lemma, thus the latter simple follows from the former;
however the proof for the former case is more simple, and it seems to worth discussing
it separately.

We note that ND's come up in other contexts as well, e.g., in connection with the
complexity of analytic tableaux (Urquhart [125], referring to earlier unpublished work
of Cook, and Arai et al. [15]).

The characterization of ND’s as pairwise neighboring DNF tautologies is a direct
consequence of the following Splitting Lemma (Lemma 8.10): if the n-dimensional

2Kullmann's proof uses the concept of Hermitian defect and other concepts from linear algebra.
(The Hermitian rank of a symmetric matrix is the maximum of the number of positive and the
number of negative eigenvalues of the matrix (Gregory, Watts and Shader [55]), and the Hermitian
defect is the difference of the order of the matrix and its Hermitian rank [85; 86].) Kullmann also
uses the characterization of ND’s as strongly minimal tautologies with the additional property that
the number of terms is one more than the number of variables (Aharoni and Linial [1], Davydov et
al. [33], Kullmann [84]), proved using Hall's theorem or resolution techniques. (A tautology is strongly
minimal if deleting any term, or adding any literal to a term results in a non-tautology.) Our proof is
an elementary combinatorial argument.
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hypercube is partitioned into subcubes of pairwise distance one, then there is a split of
the whole cube into two half cubes such that every cube of the partition is contained
in one of the two halves. Note that the result presented in the next chapter (Theorem
9.1) generalizes this result; however the proof for is much longer. For this, we present
a separate, simple proof for the Splitting lemma.

Recent related work on the combinatorial aspects of the satisfiability problem (see
Kullmann [86] for a recent survey) makes use of the connection with partitioning com-
plete graphs into complete bipartite graphs (bicliques). This connection, and in partic-
ular, the Graham—-Pollak theorem [54] is used by Laborde [88] to show that a maximal
k-term-DNF contains at least 2k — 1 variables. (This result, in turn, follows immedi-
ately from Theorem 8.1 above without using the Graham—Pollak theorem.) Section 8.5
contains an application of the Splitting Lemma (Lemma 8.10) showing that the family
of recursive partitions into complete bipartite graphs has an extremal property among
all partitions into complete bipartite graphs.

8.2 Further Definitions and Notations

The DNF ¢ is a minimal cover of the term ¢, if ¢ is a cover of ¢ (i.e., ¢ is an implicant
of ), but every DNF obtained from ¢ by deleting a term is not a cover of t.

Let t be a term, and o =t; V- -V, be a DNF. Every term ¢; of  can be uniquely
written in the form
ti=t AL, (8.1)

where t; contains all the literals from t; which also occur in ¢, and ¢/ contains the
remaining literals of ;.

Recall that for a DNF ¢, Var(y) (resp., Lit(y)) denotes the set of variables (resp.,
literals) occurring in any term of . Let

UnateLit(p) = {u € Lit(y) : u ¢ Lit(p)} (8.2)

be the set of unate literals in ¢, i.e. the set of those literals occurring in ¢, for which
their negation does not occur in .

The graph of the n-dimensional cube has A, as vertices, and edges (x,y) for
every x,y € A, of Hamming distance 1. The distance of two subcubes @; and ),
is min{distH(x,y) : x € Q1,y € Q2}. Note that the distance of 7 (¢;) and 7 (t5)
is equal to the number of conflicts between the terms ¢; and ¢,. A partition of the
cube into subcubes can also be viewed as a disjoint DNF tautology. A partition of a
cube into subcubes is pairwise neighboring, if any two subcubes in the partition have
distance 1. A set of terms forms a pairwise neighboring partition if the corresponding
set of cubes forms a pairwise neighboring partition.
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8.3 Previous Results on k-term-DNFs and Prime
Implicants

In this section we describe the results of [31; 88; 90; 97] on prime implicants of
k-term-DNF. We give a complete, self-contained presentation in order to clarify what
are the consequences of the separate assumptions of being an implicant, a prime im-
plicant, resp. a minimal cover, and to give an explicit formulation of results implicit in
[88]. We use the notation introduced above in (8.1) and (8.2).

Proposition 8.2 A term t is an implicant of a DNF ¢ if and only if \/k t!=1.

i=1 i
Proof
For the “if” direction, let x be a truth assignment such that ¢(x) = 1. Then t}(x) =1
for every i and t/(x) = 1 for some i, so ¢;(x) = 1 for some i, and thus ¢(x) = 1.

For the “only if” direction assume \/¥_ ¢/ # 1, i.e., (\/k t’-’) (x) = 0 for some

i=1"1 =1 "
* 1 do not occur in ¢, but it may be the case that the

=1 "1

x. The literals occurring in \/

negation of such a literal occurs in t. Let y be the truth assignment obtained from x by
setting all the literals of ¢ to 1. Then every literal in \/f:1 t” is either unchanged, or is
changed to 0, thus (\/k t’-’) (y) =0, and so ¢(y) = 0. But #(y) = 1, contradicting

=1 "1

the fact that ¢ is an implicant of (. O
Proposition 8.3 Ift is a prime implicant of ¢ then

(a) t= /\le t,

(b) every literal of t occurs in .

Proof
For (a), it follows from the definition that ¢ < A
does not occur in any ¢;. Then v does not occur in ¢ at all, though 7 may occur in

le t.. Assume that a variable v in ¢
some t//. But then ¢ is an implicant of the disjunction of those terms in ¢ which do not
contain 7, and so by deleting v from ¢ we still get an implicant of ¢. Part (b) follows
trivially from (a). O

Proposition 8.4 If ¢ is a minimal cover of t then
(a) Lit(¢) N Lit(¢) = UnateLit(¢p),
(b) \/f:1 t” is a minimal cover of 1.

Proof

To see that Lit(¢) N Lit(¢) C UnateLit(y) note that if ¢ contains a non-unate literal
e of , then terms containing Z can be deleted from ¢ and we still get a cover of ¢,
contradicting the minimality of . For the other direction of (a), assume that a unate
literal € is not contained in t. Then Zt is also an implicant of ¢, which is covered
by the terms of ¢ not containing . As these terms do not contain Z either, their
disjunction covers ¢ as well, again contradicting the minimality of . Part (b) follows
from Proposition 8.2. O



80 k-term-DNF Formulas with Largest Number of Prime Implicants

Putting together Propositions 8.2, 8.3 and 8.4, we get the following.
Theorem 8.5 Ift is a prime implicant of ¢ and ¢ is a minimal cover of t, then
(a) t is the conjunction of the literals in UnateLit(y),

(b) \/%_, ¢/ is a minimal cover of 1.

i=1"1

Theorem 8.6 ([31; 90; 97]) Every k-term-DNF has at most 2*—1 prime implicants.

Proof

Let © be a k-term-DNF and ¢ be a prime implicant of ¢. Consider a minimal set of
terms of ¢ covering t. Then, by Theorem 8.5 (a), ¢ is uniquely determined by this
nonempty set of terms. O

The next result gives important structural information on maximal DNF's.

Theorem 8.7 ([88]) Let ¢ = t; V --- V t; be a k-term-DNF with 2 — 1 prime
implicants, and let t be the term formed by the literals in UnateLit(y). Then

(a) /X, t” is a minimal cover of 1,

(b) t{ and t7 conflict in exactly one variable, for every 1 <i < j <'k.

Proof
By Theorems 8.5 and 8.6, every nonempty subset of the terms of ¢ is a minimal covering
of some prime implicant of . Part (a) follows by applying Theorem 8.5 (b) to all the
terms.

Let us consider now ¢;; = t; V t;. Again, this is a minimal cover of a prime
implicant of ¢. If ¢; and ¢; do not conflict in any variable, then, by Theorem 8.5 (a),
the corresponding prime implicant is the term formed by all the literals in ¢; and ;.
But that term is not a prime implicant. Indeed, it must be the case that ¢; # ¢;, and
sot; Nt; < t;ort; Nt; <t;. Ift; and ¢; conflict in more than one variable, then we
get a contradiction to Theorem 8.5 (b), as the disjunction of two terms with at least
two conflicts cannot be 1. O

8.4 Proof of Theorem 8.1

In this section we prove Theorem 8.1: A DNF is maximal if and only if it corresponds
to a NUD.
First we consider the “if” direction.

Lemma 8.8 Every NUD corresponds to a maximal DNF.
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Proof
Let 7" be a k-NUD, and let H be a nonempty subset of its leaves. Define the term

ty = /\UnateLit({tg 0 e H}).

Let x be a truth assignment satisfying ¢;7. It follows by induction on the number of
inner nodes evaluated, that on input x we arrive at a leaf belonging to H, and it follows
from the definition of ¢j; that x satisfies every literal assigned to that leaf. Thus ¢ is
an implicant of 7.

Assume that we delete a v literal, say ¢ = v; from ty, to get the term ¢'. (The
e = 7; case is symmetric.) As ¢ € UnateLit({t, : ¢ € H}), there is a leaf ¢, belonging
to H below the right child of the inner node labelled v;, but no leaf below the left child
of the node is in H. Let x be the assignment satisfying all the literals in ¢,, and ¢y,
with those w literals that don't occur in these terms set to 0. Let y = x[*/. On the
input y we arrive at a leaf ¢, below the left child of v;. But the w literal assigned to
Uy is set to 0 in y, and hence ¢7(y) = 0. On the other hand, y still satisfies ¢’. Thus
' is not an implicant.

Assume now that we delete a w literal, say ¢ = w,, from ¢y, to get the term ¢
(The ¢ = w; case is symmetric.) Let ¢ be the leaf containing ¢. It follows from the
definition of ¢y that £ € H. Let x be an assignment satisfying t, and ty, and let
y = x[*!. Then the input y leads to ¢, but as the literal & has value 0 for assignment
y, we get pr(y) = 0. On the other hand, y still satisfies #. Thus ¢’ is not an implicant.

The case when we delete a u literal, say 0 = u; or § = w@j, from ty is the same,
except now there may be several leaves in H containing §. We can choose any such
leaf, and repeat the previous argument. It again follows that the term obtained after
deleting the literal is not an implicant.

Thus the term ¢y is a prime implicant of 7. Terms corresponding to different
subsets of L are different, as each leaf has its unique w literal. Hence 7 has at least
2% — 1 prime implicants, and so it is maximal by Theorem 8.6. O

The rest of this section contains the proof of the “only if” direction of Theorem 8.1.
Lemma 8.9 Every maximal DNF corresponds to a NUD.

Proof

Let ¢ = ¢, V ---V t; be a k-term-DNF with 2¥ — 1 prime implicants. Consider
the term ¢ = UnateLit(y), and the decomposition ¢; = t; At/ of the terms of ¢
with respect to ¢, as in (8.1). According to Theorem 8.7, the terms ¢/, ... ¢} form a
pairwise neighboring partition over the non-unate variables occurring in ¢, i.e., over the
s-dimensional cube, A, where s = |Var(y)| — |UnateLit(y)|. The following lemma
states a basic combinatorial property of pairwise neighboring partitions.

Lemma 8.10 (Splitting Lemma) If a set of k > 2 terms forms a pairwise neigh-
boring partition, then there is a variable that occurs (unnegated or negated) in every
term.
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Proof

We proceed by induction on the number of variables; the case of one or two variables
is trivial. Let #1,...,%; be terms forming a pairwise neighboring partition of the s-
dimensional cube A,.

Consider the ¢ half cube corresponding to an arbitrary literal €. The restriction of
t1,...,t, to the ¢ half cube is formed by deleting terms which contain the literal .
It follows directly from the definitions that the restriction gives a pairwise neighboring
partition of the ¢ half cube. If the restriction consists of a single cube then ¢ is a term
of the original partition. In this case every other term of the original partition must
contain £ and we are done. Hence in what follows we may assume that the restrictions
always contain at least two terms.

Applying the induction hypothesis to the pairwise neighboring partition of the s — 1
dimensional cube obtained by deleting the component corresponding to €, and deleting
the literal £ from each of the remaining terms, it follows that there is a variable Split(¢),
different from the variable of ¢, contained (negated or unnegated) in every term covering
a point in the ¢ half cube. As there are 2s literals and s variables, there are literals ¢4
and &5 such that Split(e1) = Split(e2) = u for some variable u.

We claim that u occurs (negated or unnegated) in every term of the partition
t1,...,ts. If 1 is the negation of &5, then u must occur in every term and we are
done; henceforth we can assume that ; and ¢, have different variables. Assume now
for contradiction that w is not in every term of the partition. Let ¢ be a term of the
partition containing neither u nor @, and let x be a point in 7 (t~) Then x belongs to
neither the £; subcube, nor the 5 subcube.

Consider the points x[*1 and x[®2!, covered respectively by terms 7., and #., of the
partition. Note that ., and ., are different. Indeed, if ., = t., then, as x[*1 and x[*2!
differ in both their £; and €, components, 7., (and thus t.,) contains neither £; nor &5,
and hence it covers x as well. This contradicts the definition of x.

The points x1 and x[=2! differ only in their €; and £, components; hence the unique
conflict of the terms ., and ., is either £, or g5. Assume without loss of generality
that the conflict is €1, and that £, contains £, and ., contains 7. By definition, both
t., and £, contain either u or 7. As xl and x/*2! do not conflict on u, both ., and 7.,
must contain variable u with the same orientation; say u appears unnegated in both.
Thus so far we have that 1, u € Lit (f.,) and that

g,u € Lit ({,) .

Now consider the point x1* covered by the term t.,u of the partition. As el
is in the £; subcube, it contains either u or ; but as x[€+% (u) = 0, it must be u. What
is the unique conflict of ¢ (the term covering x) and 7., ,? As x[*1l and x conflict
only on their ¢; and u components, but ¢ contains neither u nor @, thus it must be &;.
Then

e1,7 € Lit (fe,4) ,

which means that 7., and #., ,, conflict in at least two components, a contradiction. O
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The Splitting Lemma is now used to prove the characterization of nonrepeating
decision tree tautologies mentioned in the introduction.

Lemma 8.11 (ND Lemma [85]) A set of k > 2 terms forms a pairwise neighboring
partition if and only if it is an ND.

Proof

Apply Lemma 8.10 to the pairwise neighboring partition to get a variable v; occurring
in every term. It must be the case that v; occurs both unnegated and negated, as
otherwise the cubes would not cover the whole cube. If the 7 (v;) (resp. the 7 (77))
half cube contains just one cube then we stop at that branch, otherwise we use the
lemma again to get a variable which occurs in every subcube of the partition, belonging
to the 7 (vy) (resp. 7 (v7)) half cube, etc. In this way we get a tree, where the inner
nodes are labeled with variables and there are k leaves /1, ..., {; corresponding to the
cubes in the partition. (The tree constructed is (the dual of) a special search tree
in the sense of [93] for the partition.) The labels of the inner nodes are different, as
the same label appearing twice would mean that some pair of cubes have distance at
least 2. Indeed, if variable v; occurs twice then let v; be the variable labeling the least
common ancestor of the two occurrences in the tree. By construction, there are terms
containing 7; Uj, resp. v; v;. Thus the partition is an ND. O

Now we can complete the proof of Lemma 8.9. Lemma 8.11 gives a nonrepeating
decision tree for the pairwise neighboring terms ¢{,...,t/. We claim that by adding
the literals in ¢; to the leaf ¢;, we get a k-NUD for . Consider any truth assignment
x to the variables in . Evaluating the tree on x, we arrive at a leaf corresponding to
aterm t. As p(x) = 1 iff #;(x) = 1, the tree computes ¢ correctly. By construction,
all the literals in the leaves are unate. Thus, in order to verify the NUD-ity of the
tree, it only remains to show that for every leaf there is a literal which occurs only
in that leaf (that literal will be its w literal). Assume that this is not the case, and
every (unate) literal assigned to leaf ¢; occurs in some other leaf. Let ¢ be the last
literal on the path leading to ¢;. Then € € UnateLit(¢ \ {t;}). We claim that
UnateLit(¢ \ {t;}) \ {€} is an implicant of ¢. Let x be a truth assignment satisfying
every literal in UnateLit(¢ \ {¢;}) \ {€}, and let us evaluate the tree on x. If we arrive
at a leaf other than ¢;, then p(x) = 1 by construction. But ¢(x) = 1 if we arrive at ¢;
as well, as all unate literals in ¢; occur in other leaves, and thus they must be set to 1
in x. Thus UnateLit(¢ \ {¢;}) is not a prime implicant of ¢, contradicting Theorems
8.5 and 8.6. O

8.5 A Graph Theoretic Application of the Split-
ting Lemma

Given a set of pairwise disjoint cubes in the n-dimensional cube A, corresponding to
terms ty,...,t;, one can construct a covering

G={Gy,...,G,}
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of the k-vertex complete graph K, by complete bipartite graphs, where G, has an edge
connecting vertices x; and x; if terms ¢; and ¢; conflict in the variable v,. If the set of
cubes is pairwise neighboring, then this covering is a partition, as the complete bipartite
graphs are edge disjoint.

Conversely, given a covering G = {G1, ..., G} of K} by complete bipartite graphs,
we can construct a set of pairwise disjoint cubes t1, ..., in {0,1}". For every G, fix
arbitrarily one of the sides as the left side. The term ¢, contains v, (resp. 7;), if vertex
x; is contained in the left (resp. right) side of G,.. If G is a partition, then it follows
that the ¢;'s are pairwise neighboring. The cubes thus constructed do not necessarily
form a partition of A,, (an example is given below).

The Graham—Pollak theorem [54] states that every partition of K} into complete
bipartite graphs consists of at least k£ — 1 graphs. A large class of such partitions, which
can be called recursive partitions, is obtained as follows. Take a complete bipartite
graph on the whole vertex set. This ‘takes care’ of all edges connecting the two sides. In
order to partition the remaining edges (those having both endpoints in the same side),
repeat the same construction, i.e., recursively add similar partitions of the complete
graphs formed by the two sides of this bipartite graph (see, e.g., [19]).

Consider a partition G = {G1,...,G,} of K; into complete bipartite graphs. Let
the degree of a vertex = with respect to G, denoted by dg(x), be the number of G;’s
containing x, and let the volume Vol(G) of the partition be defined as

Vol(G) = 2%,

In view of the translation into a set of pairwise disjoint cubes in A, described above,
Vol(G) < 1 for every G, as dg(x;) = |t;| for every i = 1,... k, and Vol(G) = 1 if and
only if the cubes form a partition of A,,. For example, the partition of K into the 3
complete bipartite graphs ({1}, {3,4}), ({2},{1,4}), and ({3},{2,4}) (mentioned in
[88]) has volume I. This partition of Ky is not recursive. (It was actually this example
which suggested Lemma 8.10.) As a corollary to the Splitting Lemma (Lemma 8.10)
one gets the following characterization of recursive partitions. This characterization is
also a direct consequence of Kullmann's [84-86] results.

Corollary 8.12 A partition G is recursive if and only if Vol(G) = 1.

Proof
The “only if” direction follows directly by induction on the number of vertices by con-
sidering the bipartite graph from G which contains all the vertices.

For the “if” direction, one only has to note that the set of terms ty,..., ¢, con-
structed above is pairwise neighboring, and by the volume condition it is also a partition
of the whole cube.

Applying Lemma 8.10 we get that there is a variable which occurs (unnegated or
negated) in every term. This means that the corresponding bipartite graph contains all
the k vertices. The remaining partitions of the two sides of this bipartite graph have
total volume 2, and thus each side must have volume 1. The statement then follows
by induction. O
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The corollary shows that among partitions of K into complete bipartite graphs,
recursive ones have the largest possible volume. Among the partitions of K, into k —1
complete bipartite graphs, which ones have minimal volume?

8.6 Concluding Remarks

In this chapter k-term-DNF with the largest number of prime implicants were discussed.
Similar results do not appear to be known for shortest prime implicants, i.e., prime
implicants containing the smallest possible number of literals. The k-term-DNF

VU2 V 0oU3 V - - - V U1V V Ui T,

which is false for 0 and 1, and true everywhere else, has k(k — 1) prime implicants,
namely v;7; for every i # j. These prime implicants are all shortest prime implicants,
as the DNF has no prime implicants consisting of a single literal. How many shortest
prime implicants can a k-term-DNF have in general?

Another question concerns the maximal number of prime implicants of a Boolean
function which is true at a given number of points. As noted by Levin [90], every
implicant is determined by the top and bottom of the corresponding subcube, in the
componentwise partial ordering of the hypercube (the top and bottom may also be
identical). Thus if a function is true at m points, then it has O(m?) prime implicants.
It is also noted in [90] that the n-variable function which is true for assignments of
, has m'°e3=°() prime implicants. (This is the function with

weight between % and %
the largest known number of prime implicants among n-variable functions.) Thus the
maximal number of prime implicants is bounded by two polynomial functions of m, and
the question is to get sharper bounds.

Finally note that the results presented in this chapter—unless noted otherwise (like
in the case of the results dicussed in Section 8.3)—appeared in the paper [114], co-

authored by the author of the present dissertation.






Chapter 9

Disjoint DNF Tautologies with
Conflict Bound Two

One of the main ingredients in the proof of the characterization result in the previous
chapter was the ND Lemma (Lemma 8.11), which can be formulated both using the

e syntactic wiew: that the class of DDNF tautologies with conflict bound one
(i.e., DNFs with terms conflicting in one variable pairwise) are NDs (i.e., DNFs
generated by labeled binary trees with each inner node having a unique label),
and using the

e semantic view: that in every pairwise neighbouring partition of the n-dimensional
cube there is a perfect split: a split of the cube in two complementary half
cubes such that each subcube of the partition is contained in either one of the
half cubes.

These two views offer two effectively different directions for further investigations; these
directions are discussed in the next section. However, somewhat surprisingly, for one
more step these directions do not separate. More precisely, we shall see in this chapter
that the following strengthening of the ND Lemma holds: any DDNF tautology with
conflict bound two can also be generated by some labeled binary trees—or, equivalently,
for any cube partition with pairwise distance bounded by two there is a perfect split
similar as above.

Throughout the notations and terminology introduced in the previous chapter are
used.

9.1 Characterization of DDNF tautologies with
Conflict Bound Two

This section discusses both of the two different directions mentioned above. More
precisely:

87
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e the direction suggested by syntax, considering DDNF and LBT generated tau-
tologies

e the direction suggested by semantics, considering the general splitting problem
for cube partitions,

—furthermore how the strengthening of the ND Lemma gets realized in these two
settings.

9.1.1 Syntactic View: DDNF tautologies and LBT generated
DNFs

A decision tree (and, of course, also an LBT) naturally encodes a DNF tautology
consisting of the terms corresponding to the leaves of the tree, where the term corre-
sponding to a leaf consists of the literals labelling the edges on the path from the root
to the leaf. These DNF tautologies hold the following special properties:

(a) the terms are pairwise conflicting, and

(b) the terms possess a hierarchical structure: there is a variable v that appears in
each of them; there is a variable w that appears in every term containing literal
v and there is a variable u that appears in every term containing literal ¥ (w and
u may be identical); and so on.

Such DNFs are called binary tree generated DNFs, or BT-DNFs for short (for
a formal definition see Section 9.2); recall on the other hand that DNFs possessing
property (a) but not necessarily property (b) are called disjoint DNFs, or DDNFs.
The question thus naturally arises, how special do these properties make a decision
tree, regarding complexity. This question was investigated by Lovasz et al. in [93].
More precisely they were interested in the following problem: given a DNF tautology ¢,
the task is to construct a decision tree such that for each term of the DNF generated
by it there is a term of ¢ that is a subterm of it. They have shown that for some very
“small” DNF tautologies this problem can be solved only with “extremely large” decision
trees 1.

On the other hand, the ND Lemma (Lemma 8.11) states that, when restricting the
DNFs to the subclass posessing property (a) (i.e., the class of DDNFs), and further
bounding the number of conflicts between the terms to one (i.e., for each pair of terms
there is exactly one variable appearing negated in one of them and unnegated in the
other), then the resulting class consists of DNFs that can all be generated by decision
trees.

In this chapter we give a strengthening of the above result, showing that the conflict
bound can be relaxed to two:

1They measure the complexity by the depth of the DNF (resp. decision tree), which is the maximal
number of literals appearing in a term of the given DNF (resp. of the BT-DNF generated by the tree).
What they show is that for some constant depth DNFs one needs decision trees of depth linear (thus
maximal) in the number of variables.
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Theorem 9.1 If ¢ is a DDNF tautology with terms conflicting in one or two variables
pairwise, then ¢ is a BT-DNF.

Example 9.1
The DNF

Pex9.1 =U2 Vg V VU3 Vg V VoU3V4 V V104 V V1V U3V V V10V2U304 V V1U304

is a DDNF with conflict bound two, and Figure 9.2 proves that it is also a BT-DNF—
which is also apparent writing @cx9.1 in the form

Pex9.1 = Vg Vg V 040203 V VU203 V V401 V V40103 U V V4010302 V U401V3,

or also from Figure 9.1, visualizing the relations of the truth sets of the various terms.

Figure 9.1: The assignments to variables v, v9,v3 and vy represented as the vertices of the
4-dimensional hypercube and grouped according to which term of @ecg.1 they satisfy.

T(opwam)  T(w) Tremv)

T (o= T Ny
Vg (v2U3 Vs — L T (v1vs04)
e )
V3 ° .
o1 T (573 U T (0173 5304)
vectors with vy vectors with vy
set to 0 setto 1

Note however that the result of Theorem 9.1 does not generalize to conflict bound
three, as the following example demonstrates.

Example 9.2

DDNF o920 = v103 V T1vg V U303 V U7 U203 V 010973 is a tautology and has terms
conflicting in at most three variables pairwise, but is not a BT-DNF. (Simply note that
there is no variable that appears in every term.)

Note also that heorem 9.1 implies the following characterization result.

Corollary 9.2 ¢ is a DDNF tautology with conflict bound two if and only if ¢ is a
BT-DNF with conflict bound two.

Finally we mention that a related problem is the problem of representing a Boolean
function f as a DNF or as a decision tree—that is, when one needs to construct a
DNF tautology (resp. decision tree) with each term (resp. with each term of the
corresponding BT-DNF) covering only assignments that satisfy f, or only assignments
that falsify f—, and one is interested in comparing the complexity of the two class in
this setting. See for example [73; 110; 121].
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9.1.2 Semantic View: The General Splitting Problem for
Cube Partitions

According to the Splitting Lemma (Lemma 8.10), for every pairwise neighboring cube
partition, the whole cube can be split into two halves in such a way that every cube
of the partition is contained in one of the halves. The following question thus rises
naturally: what can be said without the pairwise neighboring property? Given an
arbitrary partition of the whole cube into subcubes and a split into two halves, let us
say that a cube in the partition is uncut, if it is contained in either one of the halves.
We would like to find a split such that the uncut cubes contain many points.

Thus we consider the following quantities. Given a cube partition ¢ over the vari-
ables vy, ..., v, and a variable v;, let

Vw,j:Z{2_|t‘:tEg0, v; €t orv; €t}

be the fraction of the volume of uncut cubes in ¢ with respect to the v; split of the
cube, and let
Q,, = min max v, ;
T igi<n P

where ¢ ranges over all cube partitions, or in other words, over all disjoint DNF tau-
tologies. Note that as ¢ is a partition it holds that

ng\tl —1. (9.1)

tcyp

Theorem 9.3

logn — loglogn

< §O<n_%>.

n

Proof
Let o =t; V.-V t, be a disjoint DNF tautology over the variables vy, ..., v,. If the
term t; contains v, or 7}, then ¢; contributes 21t o Vyj. 1hus

n T
D v => Il 27,
j=1 i=1

and there is a variable v; with
1 I8
vos 2 3 Il 271

i=1

Let s denote the size of the shortest term in . As every term has size at least s, it
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follows from (9.1) that

SRS

T T

Dol s S —lt:] _ 5
Z|tz\2 ZnZQ =
=1 =1

On the other hand, for every variable v; occurring in a shortest term ¢; it holds that
Ve j > 275 Thus
a;, > min (i, 2*‘9) . (9.2)
n

The lower bound then follows by taking s = logn — loglog n, for which the two terms
in (9.2) are close to each other.

The upper bound follows from a construction of Savicky and Sgall [111], providing
an upper bound on the number of variable occurrences in tautological A-DNF formulas
(a problem introduced by Tovey [122] and Kratochvil, Savicky and Tuza [83]). They
constructed disjoint DNF tautologies over n = 4¢ variables, having 23 terms of size 3¢,
such that every variable occurs in at most a

2\ ¢
(5)
fraction of the terms. The bound then follows by a direct calculation. O

We note that the upper bound of Savicky and Sgall [111] has recently been improved
almost optimally by Hoory and Szeider [70]. The improved constructions do not appear
to improve the bound above, since the DNF constructed are not disjoint.

Already Theorems 8.1 and 9.3 suggest that it may be of interest to consider the
quantity a?, which is defined as «,,, except that ¢ is restricted to cube partitions
with pairwise distances bounded by d. (For example in the construction of [111] the
maximal distance grows linearly with n.) The main result presented in this chapter is
that a2 =1 (for any positive integer n); but note also that this does not generalize to
d = 3: Example 9.2 proves that o} < 1.

9.2 Further Definitions and Notations

In an LBT a path from the root to a leaf naturally determines a term obtained by simply
conjuncting the literals appearing in the labels of the edges along the path. Thus, given
a decision tree, the terms corresponding to its leaves put up a DDNF tautology 2. Recall
that such DDNF tautologies are called binary tree generated DNFs, or BT-DNFs
for short. Alternatively, one can define the class of BT-DNFs as the smallest subset
DT-DNF of the set of DNFs satisfying:

e If z is a variable, then the DNF 2 VV Z is an element of DT-DNF.

2Note that in Chapter 8 non-repeating decision tree tautologies were constructed in the similar
fashion using non-repeating unate-leaf decision trees.
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e If x is a variable and both 7} V- - - VT and T] V- - - V1] are elements of DT-DNF,
then the DNF (z ATy) V-V (x AT) V(T AT])V---V (T AT)) is also an
element of DT-DNF.

Note that in case ¢ is a DDNF tautology, then there is a unique term of ¢ satisfied
by truth assignment x; denote it tx(¢). When it causes no ambiguity, ¢ is omitted and
simply ¢ is used instead.

9.3 Proof of Theorem 9.1

For simplicity assume that V' is the set of variables in focus.

Theorem 9.1 is proved by induction on the number of terms in . In case ¢
contains one or two terms, the statement is obvious. Now we show that ¢ is a BT-
DNF, assuming:

Induction hypothesis: DDNF ¢ with conflict bound two
contains 7 > 3 terms, and the statement holds for any DDNF (9.3)

tautology with conflict bound two having less than r terms.

Let ¢ be an arbitrary term of . Assume without loss of generality that ¢ = vy - - - vy.
Of course, if p is a BT-DNF, then for some 1 < i < k ¢ has a subformula equiva-
lent to vy -+ -v;_1v;41 - - -vx: namely the one induced by the parent node of the leaf
corresponding to ¢t. (For example if ¢ = @exo1 from Example 9.1 and ¢ = vjvsuy,
then i = 3, and the subformula v,73 T3v4 V vivaT3V4 V viv3V4 Of 0 is equivalent to
t\ {v;} = vivy.) The next claim considers the reverse of this implication. (Also, for
an example demonstrating the claim see Example 9.3.)

Claim 9.4 Assume (9.3), and let t = vy - - - vy, be a term of ¢. Suppose that for some
i € {1,...,k} it holds that every term in o that conflicts with t only in v; contains
V1t V_1Uiq1 - Uy as a subterm. Then o is a BT-DNF.

Proof
Consider the following sets

Sy ={x e {0,1}": x" e T(1)},
So =T (v1 -+ V1001 -+ V),

/

SB - Ut’ego:v1~~~vi_1v7vi+1---vk is a subterm of ¢/ T(t )7
!

Sy = Ut’e;;:t@t’:{vi} T(t )

Then S; = S, and S, D S5 always hold, and S3 O S, follows from the condition of
the Claim. However S; C S, is also true because

e since ¢ is a tautology, each element x of S} appears in some 7 (t') for some
t" € p—recall that this ¢’ is the term we denote as ¢, (¢)—, and
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e since ¢ is a DDNF, each of these ¢x(y) terms must conflict with ¢ in some
variable. But this variable must be v;, and only v;, as the first k bit of each
x € S is 1, except for the i-th bit.

Thus all of the above sets are identical. Then defining
o1 :={t' € p:vy v 1Tv - v IS a subterm of '}

and

2 :=(p \ (pr U{t})) U{vr - vi1viq1 - ox}

it holds that both ¢} := {¢/ \ {v1, -+, v 1,05, Vi11, -, 0k} : t' € @1} and s, are
DDNF tautologies. Furthermore both have less terms then ¢, thus by the induction
hypothesis both are BT-DNFs. This immediately implies the Claim: pick an LBT 7 for
¢y and an LBT 7, for ¢, expand 71 to an LBT for v; V{7; At : t' € ¢/} in the natural
way, and paste it into 75 in the place of the leaf corresponding to vy -« - v;_1v; 11 - - V.
O

Example 9.3

Demonstrating Claim 9.4, let ¢ = @.c9.1 from Example 9.1 and let ¢t = vyv3v4. Then
i =3, o1 = VT3 T304 V U VaT30s, ) = Tz V vz and @y = (T373 V 0203 T V 020375 V
T1v4) V v1v4. See also Figure 9.2 for the decision tree 71 (resp. 73) for ¢} (resp. ).

Figure 9.2: Marking 71 and 7 on the decision tree generating @ex9.1 from Example 9.1. The
labels of the nodes are omitted for simplicity.

T2 <

T1

Defining the following directed graph G(V, E) = G +(Vit, Ept):

V={tep:te®t|=1and Var(t') 2 Var(t)},
E={{t,t")€V?*:v; €t and v; € Var(t") for some 1 <i <k}, (9.4)

based on Claim 9.4 one can give the following sufficient condition for ¢ being a BT-DNF
(which, as one can easily show, is also a necessary condition):

Claim 9.5 Assume (9.3), let t = vy --- vy, be a term of p, and let G = G be the
graph defined as in (9.4). If G contains no cycle, then ¢ is a BT-DNF.
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Proof

We show that if ¢ is not a BT-DNF, then GG contains a cycle. Suppose thus that ¢ is
not a BT-DNF. By Claim 9.4 this can only be if for i = 1,... k there is a term t; € ¢
containing 7;, containing no other variable from ¢ negated, and having at least one of
the variables in ¢ missing. Consequently t1,...,t, € V, and in the subgraph induced by
them, each vertex has indegree at least one. The subgraph has thus no sink, implying
that it contains a cycle. (For example if ¢ = ex92 from Example 9.2 and ¢ = vyvs,
then V' consists of the terms t; = T7v, and ¢, = U5 U3, and there is an edge in £ both
from t; to t, and from t, to t;—and thus G contains a cycle 3: t,,ts,11.) O

In the rest of the paper we show that (G indeed contains no cycle. Assume for the
contradiction that this is not the case, and let ¢, ..., ¢, t; be a cycle of minimal length
(then of course ¢ < k), and assume without loss of generality that v; € ¢;, i = 1,..., /.
(Note that no other variable of ¢ appears unnegated in ¢;, as t; € V.) Then for any
distinct indices i,j € {1,...,/},

e if t; follows ¢; in the cycle *, then v; & t; (by the construction of E),

e if not, then v; € t;, as otherwise (¢;,¢;) € E, which would shortcut the cycle,
and contradict that it is of minimal length.

These observations are summarized in Figure 9.3.

Figure 9.3: The cycle t1,...,ts, t1. In the row of a term: “+" means that the given variable
appears unnegated in it, “—" means that it appears negated in it, and “ - " means that it does
not appear in it. Consecutive elements of the cycle might conflict in other variables too, but
non-consecutive elements have no more conflict.

”

V1 V2 U3 U4 - Up—2 U1 Uy
t|+ + + + + + +
|- + + + + +
ta| - — + + + + +
ts|+ - - + + + +
ty | + + - = + + +
te | + + + + - + : —

Let us now investigate how these terms “behave” on the rest of the variables. The
above observation obviously implies that if terms ¢; and ¢; are not consecutive elements
of the cycle, then they do not conflict in variables v/, 1, ..., v,, as otherwise they would
conflict in at least three variables: v;, v; and vy for some ¢ < ¢/ < n. The question
is, whether two consecutive elements of the cycle can (or have to) have some further
conflicts. An equivalent (semantic) formulation of this question is whether there exists
a (partial) assignment to variables vyyq, ..., v, consistent with the two terms. (Again,
for an example demonstrating the claim see Example 9.4.)

3Which is in accordance with the fact that @eyg 2 is not a BT-DNF.
“That is, j— i+ 1ifi<( and j = 1if i (.
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Lemma 9.6 Assume (9.3), let t = vy --- v, be a term of ¢ with k <n, let G = G,
defined as in (9.4), and let ty, ..., t, be a cycle of minimal length in G as in Figure 9.3.

Then there is no partial assignment for variables v, 1, ..., v, that is consistent with t
and all of ty,...,t,.
Proof

Suppose that ¢ is of length less then n and assume for the contradiction that o is
a partial assignment for variables vy, 1,...,v, consistent with ¢,t1,19,... ,t,. Let ¢
be the DDNF consisting of the terms of ¢ that are consistent with o, (thus ¢ and
t1,...,tep arein '), and let ¢ be the DDNF tautology obtained from ¢’ by removing

all occurrances of variables v, 1, . . ., v,. By the induction hypotheses ¢ isa BT-DNF °,
consequently for some i € {1,..., ¢} variable v; occurs (negated or unnegated) in every
term of ", and thus also in every term of '—in particular in each of ¢y, ... ,t,. But the

term following ¢; in the cycle contains neither v; nor T;—a contradiction. (The condition
k < n is necessary since the partial assignment with empty domain is consistent with
all terms.) O

Example 9.4

Let o = exg.1 from Example 9.1, and let ¢ = vyv3v4. Then V' contains terms t; = Ty
and ty = v9v3Ty, and E contains the edge (t1,12). As ¢ is a BT-DNF, by Lemma 9.6
(or, more precisely, by the proof of the lemma), some variable of ¢ (i.e., one of vy, v3
and v4) must occur in t; and t,—and indeed: v, occurs unnegated in ¢; and negated
in ty.

The next lemma rules out another case: when there is exactly one pair of consecutive
elements of the cycle that conflict in two variables.

Lemma 9.7 Assume (9.3), let t = vy - - - v, be a term of ¢ with k <n, let G = G,
defined as in (9.4), and let ¢ be the length of the smallest cycle in G. Unless ¢ = 2,
there is no cycle in G of length ¢ with the property that one pair of consecutive elements
of the cycle conflict in two variables, and all other consecutive pairs conflict in one.

Proof

Assume for the contradiction that ¢q,..., ¢, t; is such a cycle in G with ¢ > 2 and
suppose that ¢; and t, are the only consecutive elements conflicting in two variables,
namely in v; and in some u € {v/y1,...,v,} . Assume without loss of generality that
t1,...,t; behave as in Figure 9.3 and that u € t; and w € ¢,. (Note that neither ¢
nor to,...,t,_1 contains u or u: if t contained u (resp. w) it would conflict with ¢,
(resp. 1) in two variables; if any of t5,... ;o (resp. ts,...,t,_1) contained u, it
would conflict with ¢, (resp. t1) in three variables; finally if ¢5 (resp. t;,_;) contained
u (resp. u), then it would conflict with #; (resp. ;) in two variables, contradicting
the assumption of the lemma.) Then there is some partial assignment to the variables
{ves1, ... v} \ {u} consistent with ¢, ... ¢, and ¢. Denote one such by o.

5Here it is used that & < n and is assumed implicitely that every variable occurs in some of the
terms of .

b1f ¢ = 2, then t; and t, does not conflict in v;—which is the reason for handling this case
separately.
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Figure 9.4: The cycle t1,...,ts, t1. In the row of a term: “+" means that the given variable
appears unnegated in it, “—" means that it appears negated in it, and “ - " means that it
does not appear in it. In the row of an assignment: “+" means that it assigns 1 to the given

variable, “—" means that it assigns 0. Terms ¢,t1,...,t, do not conflict in other variables.

v U2 U3 Vp—2 Uy Vg | U

t |+ + + + + +

] — + + + + o+

ta| - — + + o+ 4]

t |+ + + - - |-

x| - + + + + + |-

y|l+ + + + + |+

Let x := g(v2—lowe=Llivi=0u=0) (see Figure 9.4). Then one can make the following
observations:

o Ty € ty, since x € T(t) and x" € T (1),
o U E ty,since x € T (1) and xI" € T(¢))

e v, & ty, as otherwise—definining y := g1—bvemi=lumlo=0__ ¢ and ¢,
conflicts in three variables, because
— v Ety,asy ¢ T(t) and yld € T (1),
— v €ty,asy € T(t) and yl € T (1)),
—u€ty, asy & T(t)and y € T(t,).

Consequently (as ¢, conflicts with ¢ in exactly one variable and does not contain
Ug) ty eV and (tg,tx), (tx,tz) e kL.

o v €ty fori =2,...0 — 1, as otherwise (t;,tx) € E, which would mean that
ta, ..., ti, tx,ta is a cycle in G shorter then /—a contradiction.

But then iy, to, ..., 1y, tx is a cycle of length ¢ (thus also of minimal length) such that
all consecutive elements conflict in exactly one variable, contradicting Lemma 9.6. O

Based on the two previous Lemmas we can prove the following:

Lemma 9.8 Assume (9.3), let t = vy -- v, be a term of ¢ with k < n, and let
G = G, defined as in (9.4). Then the smallest cycle in G has length at most two.

Proof

Assume for the contradiction that ¢;,..., ¢, t; is a cycle in G of minimal length with
¢ > 2. Assume furthermore w.lo.g. that ¢, ... %, t; is as in Figure 9.3. Then by the
above lemmas there is some 1 < ¢ < £—1 such that ¢; and ¢; 1 conflict in two variables:
in v;41 and in some u € {vgy1,...,v,}. (t contains neither u nor  as otherwise it would



9.3 Proof of Theorem 9.1 97

conflict with ¢;,1 or ¢; in two variables.) Suppose i is the smallest such index. Then
there is some partial assignment of the variables {vy,...,v,} \ {v;, vi11,u} consistent
with ¢, ¢; and t; ;. Denote one such by o, and assume without loss of generality that
t; contains u, and ¢;,; contains u. (See Figure 9.5.)

Figure 9.5: Terms ¢;,t;11,t and assignments x and y.

Vi Vi+1 U

t + +
ti | — + +
big1 | - — —
X — + —
y |+ - +

Let x := gim0u=0vini=l) gpd y .= gUimlu—lvi=0)  Then
o T; € ty, since x ¢ T (t) but xI"] € T(1),

Vit1 € tx, since X ¢ T(terl) but X[vi‘H] € T(tz’Jrl)y

U € ty, since x € T (t;) but xI"l € T(¢,),

e Tii1 € ty, sincey ¢ 7T (t) but yl+1l € T(¢), and
o ucty sincey &7 (ti,) but y € T(t;11).

Thus ¢, does not contain v;, as otherwise ¢y and ty would conflict in three variables.
But then ty, € V, furthermore (¢;,1y), (ty,tiv2) € E, so t1,... ti, ty, tize, ... Loty is
also a cycle in G of minimal length, but with ¢; and ¢, conflicting only in one variable.
That is, in this new cycle one gets further (starting from ¢;) than in the original cycle
without using an edge that's two endpoints conflict in two variables.

Iterating the above process if necessary, proceeding from the smaller indices to the
larger ones, one obtains a cycle t/,...,t,,t]| with consecutive elements conflicting in
only one variable (apart maybe from ¢, and ¢;), contradicting Lemma 9.7. O

Now all that is left to prove is that G contains no cycle of length 2.

Lemma 9.9 Assume (9.3), let t = vy ---v, be a term of ¢ with k < n, and let
G = G, defined as in (9.4). Then G contains no cycle.

Proof
By Lemma 9.8, as noted, it suffices to show that G contains no cycle of length 2.
Assume for the contradiction that ¢q,%,,¢; is a cycle in G and assume furthermore
without loss of generality that 77 € t1, vy & t1, v1 & t5 and U5 € t5. There are two
cases: when t; and ¢, conflict in only one variable and when they conflict in two.

Let us consider the first case. Then ¢; and t5 conflict in some u € {vgi1,...,v,}
(just like before, t cannot contain variable u, as otherwise it would conflict with ¢; or ¢,
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in at least two variables), and let us assume without loss of generality that u € ¢; and
U € ty. Then there is some partial assignment to variables {vs, ..., v,}\ {u} consistent
with t; and t,. Denote one such by o. Let furthermore x := g(1—0u=0v2=1) gpq
y = gr—lu—=Llva=0) (see Figure 9.6(a)). Using a similar argument as before one can
see that U1, ve, T € tx and vy, T3, u € ty, thus the two terms conflict in three variables,
contradiction.

Figure 9.6: Terms t;,¢;11,t and assignments x and y.

v1 v2 U v V2 U v
t |+ + t |+ +
t | — + | — + +
to - - ta - - -
x| - + - x|[- + - +
y| |+ - + y|+ - + =
(a) (b)
The second case is when ¢; and ¢, conflict in some w,v € {vpy1,...,v,} (as in

the previous case ¢ contains neither u nor v). Let us assume without loss of generality
that u,v € t; and w,v € ty. Similarly as above, there is some partial assignment to
variables {vs, ..., v,}\ {u, v} consistent with ¢; and ¢5; denote one such by o, and put
x 1= gr=lumOu=lu—l) gpd v = gi=lu=lv=00:-0) (see Figure 9.6(b)). Again,
one can show that u, 77 € tx and u,v; € ty,. Furthermore vy € tx (resp. vy € ty), as
otherwise ¢, € V' (resp. ty, € V'), and with ¢, (resp. with ¢;) they would form a cycle
of length two conflicting with each other in only one variable, which was ruled out in
the previous case. Consequently ¢, and ¢, conflicts in three variables, contradiction. O

The proof of the Theorem now follows from Claim 9.5 and Lemma 9.9, noting that
if o is a DDNF with conflict bound two that only has terms of length n, then n < 2,
in which case the statement obviously holds.

9.4 Concluding Remarks

Theorem 9.1 considers a very limited class of DDNFs—for which a somewhat surprising
property is proved. Nevertheless this does not bring us any closer to determining ¢
in the general case, or to deriving a sharp bound for «,. Finding answers to these
problems requires further investigations.

Finally note that the results presented in this chapter—unless noted otherwise—
appeared in the paper [119], authored by the author of the present dissertation.



Chapter 10
Decomposable Horn Formulas

Horn formulas (conjunctions of Horn clauses, i.e., clauses containing at most one un-
negated literal—see Chapter 2) play a central role in artificial intelligence and in com-
puter science. This formula class is attractive because it is expressive, allows for poly-
nomial time inference, and indeed is generally computationally tractable. Accordingly
it is one of the most studied Boolean formula classes.

In this chapter the following problem is considered:

Problem 10.1 For Horn formulas o and 1), where 1) is a consequence of @, when does
there exist a proper Horn consequence x of ¢, such that ¢ N\ x is equivalent to ©?

Such a formula x is called a ¢-complement of .

The motivation of this problem leads back to the topic of the first part of the
present dissertation: to revision—or more precisely to belief revision.

Belief revision is interested in revising ! a knowledge base in the presence of a new,
potentially conflicting information, and usually approaches this problem by identifying
postulates that should be satisfied by a rational revision operator, such as the AGM
postulates [4], and characterizing operators that satisfy these postulates [45; 62]. In
recent work, Flouris et al. [41] study belief revision in general logics, and formulate
a property called decomposability of the logic. They show that decomposability
is a necessary and sufficient condition for the existence of an AGM-compliant belief
contraction operator. This framework is used in [42] to study decomposition properties
of description logics, motivated by applications to the Semantic Web.

Problem 10.1 is, in fact, the reformulation of the above mentioned general decom-
posability problem for the class of Horn functions. Applying Horn functions to belief
revision in [89] was intended to serve as a first step towards Horn-to-Horn belief revi-
sion: revision of Horn knowledge bases where the revised knowledge base is also required
to be Horn. Horn-to-Horn belief revision is of interest for the efficient integration of

L Although the terminology is the same, in belief revision the notion of “revision” refers to a different
kind of update method of the given system. However, as this serves only as a motivational background
for the topic of the present chapter, it doesn’t seem to be misleading to refer to this notion also as
“revision”. (On the other hand, when it is not clear from the context which notion is referred to as
“revision”, then it is made clear explicitely). Note furthermore that the original motivation for this
work was exactly to bring theory revision and belief revision together.

99
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various tasks facing a commonsense reasoning agent such as learning and revising its
beliefs.

At this point it should mentioned that the class of Horn formulas has already been
considered in theory revision (see [50; 52])—and of course also in learning (see [8; 44])—
but, as noted in [89], the problem of belief revision that maintains a Horn knowledge
base apparently has not been studied yet.

The main result of the chapter (Theorem 10.10) gives a complete answer to Prob-
lem 10.1 by giving two characterizations of all those pairs ¢ and v for which 1) has
a p-complement. The characterizations give efficiently decidable criteria and lead to
efficient algorithms to construct a complement, if it exists. The complements con-
structed are only polynomially larger than the original knowledge base. As a corollary,
one obtains a complete description of decomposable Horn formulas as well, where a
Horn formula is decomposable if all its Horn consequences have a complement.

Problem 10.1 also has an interesting connection with another problem from a com-
pletely different field. Note that if ¢/ is a single Horn clause implicate C, then Problem
10.1 can be reformulated as follows: does ¢ have an irredundant conjunctive normal
form expression containing C'? According to Corollary 10.12 this problem is decidable
in polynomial time. The related problem, studied by Hammer and Kogan [60], is that
when C'is a prime implicate and the irredundant conjunctive normal form expression
is also assumed to consist of prime implicates only. In [60] such a prime implicate is
called non-redundant, and is shown that non-redundancy is polynomially decidable
for negative clauses, but is NP-complete for definite clauses.

Finally let us mention a related problem. Eiter and Gottlob [38] have shown that
the problem, “Given Horn formulas .1 and Y, is it the case that ¢’ A ¢ < x for
every maximal subformula ¢’ of ¢ consistent with 7" is co-NP-complete. This is a
complexity-theoretic negative result for the revision method proposed by [39; 46], as
formulas y with the above property form the knowledge base obtained by revising the
knowledge base ¢ with .

10.1 Further Definitions and Notations

If a clause contains exactly one unnegated literal, then it is called definite, and if it
contains none, it is called negative. A Horn formula is definite Horn formula if it
consists of definite Horn clauses. A Boolean function is a (definite) Horn function
if it has a (definite) Horn formula. It follows directly from the definitions that a Horn
function f is definite if and only if f(1) = 1.

For a Horn clause C, let its body, denoted Body(C'), be the set of variables
corresponding to the negative literals in C, or their conjunction (which will be clear
from context). Also, let its head, denoted Head(C') be the unnegated variable of C
if C'is a definite clause, and 0 if C is a negative clause. The arrow symbol “—" is
used to denote the Boolean implication operator, so Horn clause C' can be written as
Body(C) — Head(C'). For example, if C'is the Horn clause 7VwVu, then Body(C') =
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{v,w}, Head(C') is u, and C can also be written as v,w — wor (v Aw) — u. If C'is
the Horn clause © V w then it can also be written as v, w — 0 or simply v, w —.

Every clause that is an implicate of a definite Horn function is definite. Implication
between Horn formulas can be decided in polynomial time (see, e.g., [79]).

A function f is anti-monotone if 7(f) is downward closed, i.e., f(x) = 1 and
y < x imply f(y) = 1. This is equivalent to having a conjunctive normal form
for it which consists of negative clauses. Horn functions have the following semantic
characterization.

Theorem 10.2 ([71; 96]) A Boolean function is Horn iff T (f) is closed under inter-
section.

We will use a slight generalization of anti-monotone functions.

Definition 10.3 (almost anti-monotone function) A function is almost anti-
monotone if it is either anti-monotone, or there is an anti-monotone function g such

that T(f) =7 (g) U {1}.
The following is a direct consequence of Theorem 10.2.

Proposition 10.4 Every almost anti-monotone function is Horn.

Now we formulate the central concept discussed in this paper.

Definition 10.5 (f-complement) For Horn functions f and g such that f < g, a
Horn function h is an f-complement of g iff f < h and f = (g A h).

Complements could also be defined assuming f < ¢, but it is somewhat more
convenient to formulate the definition as above. According to the definition, no f-
complements exist if f = 1 (recall that 1 denotes the identically 1 function). This case
is excluded from further consideration and we will always assume f # 1. Also according
to the definition, ¢ = 1 can never have a complement, so this case is also excluded
from consideration in the following definition.

Definition 10.6 (decomposable Horn function) A Horn function f is decom-
posable if every Horn consequence g # 1 of f has an f-complement.

One usually works with formulas as opposed to functions, but as the notions of com-
plement and decomposability depend only on the function represented by the formula,
the definitions are given in a syntax-independent way.

10.2 Characterization of Decomposable Horn For-

mulas

Throughout the chapter let V' C V denote the set of variables in focus.
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For a function f and a set of variables V' C V', we define the f-closure of V' to
be the set of variables

Cy(V)={veV: f<(V—u)l} .

Let us note a direct consequence of this definition.

Proposition 10.7 If a negative clause C' is an implicate of f, then Cl;(Body(C)) =
V.

In order to formulate our main result, we need two definitions. The formula ¢ is
obtained from ¢ by adding to the body of each definite clause in ¢ a variable not
contained in the closure of its body, in all possible ways. For a Horn clause C' of the
form Body(C') — Head(C), we write Body(C),v — Head(C') for the Horn clause
obtained from C' by adding v to its body.

Definition 10.8 (body-building formula @) For a Horn formula ¢ let ¢ be the
formula

A A (Body(C),v — Head(C)).

Ceyp definite v¢Cl,(Body(C))

Proposition 10.7 shows that we could have defined ¢ as a conjunction over all
clauses of ¢, as negative clauses make no contribution. Every clause of ¢ is definite.
It may be the case that ¢ is the empty conjunction. This happens, for example, when
© consists of negative clauses only.

Given a Horn formula ¢ and a Horn clause D, we partition the clauses of ¢ not
colliding with D into two classes.

Definition 10.9 (formulas A, (D) and B,(D)) Given a Horn formula ¢ and a
Horn clause D, let

A (D) = {Ce€¢:C,D don't collide, Body(D) C Cl,(Body(C))} ,
B,(D) = {Ce€¢:C,D don't collide, Body(D) Z Cl,(Body(C))} .
The existence of a complement can now be characterized as follows.

Theorem 10.10 Let ¢ # 1 be a Horn formula, and ¢ be a Horn consequence of .
Then the following are equivalent:

(a) ¢ has a p-complement,
(b) & £ v,
(c) for some clause D of 1 it holds that B,(D) £ D.
Although the definition of ¢ is given in terms of a formula, it follows from this

characterization that it actually depends on the function only (see also Lemma 10.20
below).
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Corollary 10.11 (syntax-independence of @) If ¢, and ¢y are equivalent Horn
formulas then 1 = (s.

Theorem 10.10 is proved in the next section. Another proof of the first charac-
terization (i.e., the equivalence of (a) and (b) in Theorem 10.10) is given in Section
10.4. The following corollary gives the algorithmic aspects of Theorem 10.10. It follows
directly from the statement, resp., the proof(s) of the characterizations.

Corollary 10.12 There is a polynomial time algorithm which, given a Horn formula ¢
and a Horn consequence 1) of p, decides if 1) has a p-complement, and if it does, then
constructs such a p-complement.

The results are illustrated by the following simple example.

Example 10.1
Let V' = {v,w,u}, p = C; A Cy, where C; = (v — w) and Cy = (w — u). Then
Cl,(Body(C1)) = V" and Cl,(Body(Cs)) = {w,u}. So ¢ = (v,w — u).

The clause (v,w — u) is implied by ¢, and so it has no ¢-complement. This is
also shown by the fact that B, (v, w — u) = {w — u}, which implies (v, w — u).

On the other hand, the clause (v — w) is not implied by ¢, so it does have a -
complement. This is also shown by the fact that B,(v — u) = {w — u}, which does
not imply (v — u). Both constructions described in the paper give the ¢-complement
(v,u — w) A (w — u).

Decomposable Horn functions have the following characterization.
Theorem 10.13 For every Boolean function f the following are equivalent:
a) f is a decomposable Horn function,

b) there is a Horn representation ¢ of f such that ¢ =1,

(a)

(b)

(c) for every Horn representation o of f it holds that » = 1,

(d) for every Horn implicate C' of f it holds that Cl;(Body(C)) =V,
(e)

e) f is almost anti-monotone.

Proof
The equivalence of (a), (b) and (c) follows directly from Theorem 10.10 and Corollary
10.11. The equivalence of (c) and (e) follows directly from the definitions.

(d) implies (e):

Assume that f is not almost anti-monotone, and let x,y be truth assignments such
that y < x < 1, f(y) = 0 and f(x) = 1. Then there is a Horn implicate C' of
f such that C(y) = 0. As C(x) = 1, it must be the case that C' is a definite
clause, Body(C')(y) = Body(C)(x) = 1, Head(C)(y) = 0 and Head(C)(x) = 1. As
x < 1, there is a variable v such that x(v) = 0. But then it must be the case that
v ¢ Cly(Body(C')), a contradiction.
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(e) implies (d):

Assume that C'is a Horn implicate of f and v is a variable such that v & Cl;(Body(C)).
Then C'is a definite clause by Proposition 10.7. Let x be a truth assignment such that
f(x) =1, Body(C)(x) = 1 and x(v) = 0. As f(x) = 1 it must be the case that
Head(C')(x) = 1. Consider the truth assignment y obtained from x by switching the
variable Head(C') off. Then f(y) =0. As x(v) = 0, it holds that x < 1, so it follows
that f is not almost anti-monotone. O

10.3 Proof of Theorem 10.10

We take care of the case where ¢ has negative implicates first.

Lemma 10.14 Let ¢, # 1 be Horn formulas such that o < 1), and 1) has a negative
implicate D. Then

e ) has a p-complement,

e oL,
e B,(D) £ D.

Proof
It holds that D(1) = 0, as D is negative. So ¢ < ¢ < D implies p(1) = ¢(1) = 0.
Let A be the Horn function that agrees with ¢ except that h(1) = 1. We claim that
h is a @-complement of 1. Clearly ¢ < h and so ¢ < h A . Now if h(x) = 1, then
either p(x) = 1 or x = 1. Since ¢)(1) = 0, it follows that 2 A 1) < ¢, and hence
h A1 = @ as desired.

Also, (1) = 1, because every clause of ¢ is definite (this includes the case when
¢ is empty), and therefore ¢ £ 1. Similarly, Proposition 10.7 implies that every clause
of B, (D) is definite, so B,(D)(1) =1 and B,(D) £ D. O

We also need to construct a p-complement of ¢). This is a special case of the
construction of Section 10.4.

For the rest of the proof we may assume that 1) is a definite Horn formula. In order
we will show: (a) implies (b), (b) implies (c), and (c) implies (a).

(a) implies (b):

This part is contained in Lemma 10.15, which, in turn, is split up into three lemmas. As
these three lemmas do not actually refer to ¢, they are formulated in terms of functions
rather then formulas.

Lemma 10.15 Let p,7) # 1 be Horn formulas such that 1) is definite and ¢ < 1.
Then 1) does not have a p-complement.

Proof

The first of the three lemmas, Lemma 10.16, shows that clauses of ¢ have no -
complement, and the second (resp., third) lemma extends this statement to ¢ (resp.,
consequences of ).
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Lemma 10.16 Let f be a Horn function and let D; = (B — z) and Dy = (B — u)
be definite Horn clauses with the same body B such that f < Dy and f £ Dy. Then

D = (B,u— z)

has no f-complement.

Proof
Assume that h is an f-complement of D. Thus, f < h, h £ fand hAD < f. It then
follows that

h £ D, (10.1)
h £ D,. (10.2)

Here (10.1) follows as otherwise h < D; < D and so h < h A D < f, and (10.2)
follows as otherwise [ < h < Ds.

Let x be the truth assignment which assigns 1 to the variables in Cl,(B), and
assigns 0 to all the other variables. Then B(x) = 1 and we get from (10.1) and (10.2)
that u, z ¢ Cl,(B), and so x(u) = x(z) = 0. Thus D;(x) = 0, implying f(x) = 0,
and it also holds that D(x) = 1.

It remains to be shown that h(x) = 1, as then (h A D)(x) = 1 and f(x) = 0,
contradicting the definition of the complement. Assume h(x) = 0 and let D’ be an
implicate of h falsified by x.

Case 1: D’ is negative and it is a subclause of B — 0. Then h < D’ < D,
contradicting (10.2).

Case 2: D' is negative and it is not a subclause of B — 0. Then it contains
negated variables 7}, such that v; ¢ B with x(v;) = 1 and hence v; € Cl,(B) by the
construction of x. These can be ‘resolved away’ 2 using the implicates B — v; of h,
and we again get h < (B — 0) < Ds.

Case 3: D' is definite. Then x assigns 0 to its head v, and so v ¢ Cl,(B). Variables
w € (Cl,(B)\ B) in the body of D’ can be ‘resolved away' using the implicates B — w
of h. We then get h < (B — v), contradicting v & Cl,(B). O

Lemma 10.17 /f g, and g, have no f-complement then g, A g has no f-complement.

Proof

Assume that his an f-complement of g1 Ags, thatis, f < h, h £ fand (hA(g1/Ags)) <
fo I (hAg) < f then his an f-complement of g;, a contradiction. Otherwise
(hAg1) £ f, and then h A g is an f-complement of g5, again a contradiction. O

Lemma 10.18 /fg; < g9 and g, has no f-complement, then g, has no f-complement.

Proof
Assume that h is an f-complement of ¢o, thatis, f < h, h £ fand hAgy < f. Then
hAgi <hAgy < f, and so his also an f-complement of ¢;. O

%In this case and the next one it is convenient to refer to resolution but one could also argue
directly about truth assignments as in the rest of the proof.
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This completes the proof of Lemma 10.15. O

(b) implies (c):
For this part of the proof of Theorem 10.10 we show that if ¢ £ D then /\068 O &
D.

Let x be a truth assignment such that ¢(x) = 1 and D(x) = 0. Then it also holds
that Body(D)(x) = 1 and Head(D)(x) = 0. It is sufficient to show that C'(x) = 1
for every C' € B, (D). By definition, there is a variable v € Body(D) \ Cl,(Body(C)).
Thus Body(C),v — Head(C) is a clause of ¢ and therefore it is satisfied by x. But
Body(D)(x) = 1 implies x(v) = 1, and so indeed C'(x) =

(c) implies (a):
Let D be a clause in ¢ such that A\ycp ) C £ D. We claim that A, (D) # 0.
Consider an assignment x that satisfies /\CE&D(D C' but has D(x) = 0. Now ¢ < D,
so ¢(x) = 0. Thus there is some clause C' of ¢ such that C'(x) = 0. As D(x) = 0,
the clauses C' and D cannot collide; thus C' € A, (D).

Now we can define a ¢-complement of v. For each clause C' € A, (D) let

Yo = N\ (Body(C) - 2),

z€Body(D)

X& = (Body(C),Head(D) — Head(C)),

and finally put

x=1 A xerxt|n AN ¢
CeAy(D) Ce(p\Ap (D))

Thus x is formed from ¢ by replacing clauses C' € A, (D) by xi A x¢., and leaving
the rest of the formula unchanged. Note that in the definition of x7,, if C'is a negative
clause then Head(C') = 0. We claim that x is a p-complement of 9.

¢ < x: We need to show that for every C' € A,(D) it holds that ¢ < x{ and
© < x¢:. The definition of A, (D) implies Body(D) C Cl,(Body(C')), thus for every
z € Body(D) it holds that z € Cl,(Body(C)), and so every clause of x{ is an
implicate of . It is obvious that ¢ < x{, as x(, is obtained from an implicate of ¢ by
adding a literal to its body.

X £ ¢: It is sufficient to show that x(x) = 1 for the truth assignment x above.
As D(x) = 0 and each clause in x{, and 7. collides with D, x satisfies x;. and x/..
The remaining clauses in y come from ¢: they either belong to B,(D) (in which case
x satisfies them by definition), or they collide with D (and then x satisfies them as
D(x) = 0).

X AN < o it is sufficient to show that for every C' € A, (D) it holds that
Xe A XxGAND < C. Let y be any truth assignment satisfying x- A x¢2 A D.

Let us assume first that C is definite. We need to show that if Body(C)(y) =1
(which includes the case when Body(C) is empty), then Head(C)(y) = 1. But
Body(C)(y) = 1 implies Body(D)(y) = 1 (which includes the case when Body(D) is
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empty). Hence Head(D)(y) = 1, and so (since x{.(y) = 1) it holds that Head(C')(y) =
1, as required. If C'is negative then we need to show that Body(C')(y) = 0. Otherwise
Body(D)(y) = 1, and so Head(D)(y) = 1 and thus x7.(y) = 0, a contradiction.

Example 10.2

Consider ¢ = (v — w) A u and ¢» = w. Then both clauses of ¢ are in A,(u), and so
the p-complement of ¢ provided by the construction (after deleting redundant clauses)
is (v, w — u).

10.4 Singleton Horn Extensions

We give a different proof of the equivalence (a) and (b) in Theorem 10.10, which
also provides a semantic characterization of the body building formula. The proof is
divided into two lemmas. Throughout the proof we use Theorem 10.2 without explicitly
referring to it.

Lemma 10.19 Let f,g be Horn functions such that f < g. Then g has an f-
complement if and only if there is an x € F(f)NF(g) such that T (f)U{x} is a Horn
function.

Proof

The “if" direction follows by noting that 7 (f) U {x} is an f-complement of g. For the
“only if" direction assume that A is an f-complement of g. Let x be a minimal point
(in the ordering defined by “<") in 7(h) \ 7(f). Then since h A g < f it must be
the case that g(x) = 0. To show that 7(f) U {x} is a Horn function, assume that
x ANy € T(f)U{x} for somey € 7(f). Then x Ay < x and h(x Ay) = 1 would
contradict the minimality of x. O

The next lemma gives the semantic characterization of ¢. It shows that 7 () \
7T () consists of precisely the singleton Horn extensions of ¢, i.e., of those points
which can be added to the set 7 (¢) maintaining the Horn property. This is a natural
generalization of the minimal false points of an anti-monotone function.

Lemma 10.20 Let ¢ be a Horn formula and x € F(p). Then T (¢) U {x} is a Horn
function if and only if p(x) = 1.

Proof
First we prove the “only if” direction. Assume for contradiction that ¢(x) = 0. Then
there is a definite Horn implicate C' of ¢ such that

(Body(C),v — Head(C))(x) =0,

where
v £ (Body(C) — v). (10.3)

Thus
Body(C)(x) =1, x(v) =1 and Head(C)(x) = 0. (10.4)
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According to (10.3), there is a truth assignment y € 7 () falsifying Body(C) — wv.
Hence, taking into account that y must satisfy C, one has

Body(C)(y) =1, y(v) =0 and Head(C)(y) = 1. (10.5)
Consider now the truth assignment z = x A'y. From (10.4) and (10.5) we get
Body(C)(z) =1, z(v) =0 and Head(C)(z) = 0.

As z falsifies C, it holds that z € F(p). Looking at the v-bits of z and x one gets
z < x, implying that 7 (¢) U {x} is not closed under intersection, a contradiction.

Let us now prove the “if" direction. Assume for contradiction that 7 () U {x} is
not Horn. Then there is a point y € 7 (¢) such that for z = x Ay it holds that z < x
and ¢(z) = 0. As z <y and ¢(z) # ¢(y), it must also be the case that z < y. Let
C' be a clause of ¢ falsified by z. Then C'(y) = 1 and with z < y this implies that C
is definite. As z falsifies C, it holds that

Body(C)(z) =1 and Head(C')(z) = 0.
Also, as z <y, and y satisfies C
Body(C)(y) =1 and Head(C)(y) = 1.

As z < x, and Head(C)(x) = 1 would imply Head(C)(z) = Head(C)(x Ay) =1, it
follows that
Body(C)(x) =1 and Head(C')(x) = 0.

As x and y are incomparable, there is a variable u such that x(u) =1 and y(u) = 0.
Hence Body(C') — wu is falsified by y, and so it is not an implicate of ¢. Thus
Body(C),u — Head(C) is a clause of ¢ falsified by x, a contradiction. O

The “if" direction of Lemma 10.20 can also be proved by constructing a Horn
formula for 7 () U{x} for every truth assignment x € 7 () \ 7 (). Let C be a Horn
clause falsified by x and v # Head(C') be a variable. Then let

Body(C),v — Head(C) if v € Cl,(Body

d
X¢ =14 Body(C)—wv if v € Cl,(Body(C)), x(v) =1,
Body(C),v — Head(C) if v € Cl,(Bod

C(x)=0 v#Head(C) C(x)=1

Thus xy is formed from ¢ by replacing clauses C' falsified by x with /\#Head(c) X&

Put

and leaving the rest of the formula unchanged. We claim that v, is a Horn formula for
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7T (p) U{x}. Itis clear from the definitions that ¢ < yx and yx(x) = 1.

It remains to be shown that 7 (xx) \ 7 (¢) = {x}. If y is a truth assignment with
Xx(¥) = 1 and ¢(y) = 0 then y must falsify a clause C' of ¢ also falsified by x.
Thus Body(C)(x) = Body(C)(y) = 1 and Head(C')(x) = Head(C)(y) = 0. Now
Xx(x) = xx(y) = 1 implies that x(v) = y(v) = 0 for every v ¢ Cl,(Body(C)), by
considering the first case in the definition of x¢. Similarly, x(v) = y(v) for variables
v € Cl,(Body(C)) \ Head(C) follows by considering the second and third cases in the
definition of x¢.

Thus, given a consequence 1) of ¢ such that ¢ £ 1, a p-complement y, of ¥
can be constructed by first finding a truth assignment x with ¢(x) = 1,p(x) = 0
and 1(x) = 0. Such a truth assignment can be found using a polynomial time Horn
satisfiability algorithm in the usual manner. The formula Y, is then a p-complement

of 1.

Example 10.3

Let ¢ = (v — w) Au and ¢ = u, as in Example 10.2. Then ¢ = (v,u — w) A (v —
u) A (w — u). So 0 is a truth assignment satisfying ¢ and falsifying ¢ and 1), and the
-complement of ¢ provided by the construction (after deleting redundant clauses) is
(v — w) A (w — u), which differs from the p-complement of Example 10.2.

Both constructions presented for the complement may increase the size of the
formula by a linear factor, and it is not known whether this increase is necessary.
(Similar questions for DNFs are studied in [101].)

10.5 Concluding Remarks

Regarding the original motivation of the work presented in this chapter, the result
that the only decomposable Horn formulas are the almost antimonotone ones are less
satisfactory. The paper [89] proposes some directions to resolve this dilemma somehow.
Related to the result of this chapter, the above paper also contains some experimental
results about what fraction of implicates of a random Horn formula have complements.
Finally note that the results presented in this chapter—unless noted otherwise—
appeared in the paper [89], co-authored by the author of the present dissertation.






Appendix A
Summary

Theory revision, as part of learning theory is interested in reconstructing some unknown
function acquiring information about it via some protocol, specified by the given learning
model. However, as opposed to the general learning problem, it is assumed that the
learner is not new to the given task, but it initially has a hypotheses (in form of some
formula) that is assumed to be some rough approximation of the unknown function.
The efficiency criteria is that the running time is polynomial in the size of the different
parameters, and that the amount of extra information, aquired via the protocol is also
polynomial in the amount of information needed to represent the unknown function
given the initial formula. In the first part of the dissertation theoretical results are
considered from the field of theory revision.

In the second part characterizational results are presented; all showing equivalence
between some syntactical and some semantical properties of some classes of Boolean
functions.

Chapters 1-3 are introductory.

In Chapter 4 read-once functions are considered (a function is read-once function
if it is representable with a formula in which every variable occurs at most once), dis-
cussing the corresponding results appeared in the paper [52]. The importance of this
formula class is rather theoretical, being a nontrivial subclass of Boolean formulas that
is tractable from several different aspects, and has a nice semantic characterization
[568; 74; 102]. This class is shown to be efficiently learnable in the query model us-
ing membership and equivalence querie [13], which motivated the research aimed to
construct an efficient algorithm for it. The main result of this chapter is a revision
algorithm for this class in the deletions-only case (Algorithm ReviseReadOnce), which
is shown to be an efficient revision algorithm (Theorem 4.7). Additionaly it was shown
that the algorithm is optimal in the sense that both type of query used by Algorithm
ReviseReadOnce is necessary for the efficiency (Theorem 4.13 and Theorem 4.14),
and that the query complexity of any revision algorithm for this class is more or less of
the same order of magnitude as that of Algorithm ReviseReadOnce—or worse (The-
orem 4.11).

In Chapter 5 the revisability of Boolean threshold functions are considered, dis-
cussing the results appeared in the paper [116]. (A Boolean function is said to be a
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threshold function if it can be represented by a set of variables R and a threshold 0,
such that it evalutes 1 on exactly those assignments which assign 1 to at least 6 of the
variables in R.) Threshold functions (although in a more general form) are famous for
being the basic ingredient of neural networks and support vector machines—and has
several other applications as well. Boolean threshold functions are also known to be
efficiently learnable in the query learning model [64] (however the learning algorithm
presented in [64] uses only membership functions). The main result is again an algo-
rithm (Algorithm ReviseThreshold) which is an efficient revision algorithm for the
class of Boolean threshold functions in the query model (see Theorem 5.5). Again, it is
also examined whether the query complexity of the algorithm is (more or less) as good
as the optimal, and the answer was found to be positive (Proposition 5.8). In view
of that the learning algorithm of Hegediis for this class uses only membership queries,
the question whether both type of queries are necessary for the efficient revision seems
even more appropriate. However, as it is shown by Theorem 5.6 and Theorem 5.7, the
answer is again positive. Finally it is shown that the natural extension of Algorithm
Winnow [92] does not give an efficient revision algorithm for the class of threshold for-
mulas (Proposition 5.9). This is interesting in view of that this algorithm is famous for
learning some formula classes highly efficiently using some (general) threshold function
representation.

As a closure of the first part dealing with theory revision, in Chapter 6 the revisability
projective DNFs is considered, discussing the corresponding results appeared in [115].
Projective DNF formulas form a subclass of the disjunctive normal form formulas,
introduced recently Valiant [128]. (The motivation for considering subclasses of the
DNFs has substantially grown after the recent result of Alekhnovich et al. proving that,
unless RP = NP, the class of DNFs is not efficient learnable [5].) This class was found
by Valiant to be suitable for a special form of learning, called projective learning, the
general behind it being that learning, similarly to other biological processes, should be
carried out on multiple levels in a distributed manner. The main result of this chapter
is that a natural extension (Algorithm RevWinn) of Valiant's algorithm is an efficent
revision algorithm for the class of k-projective DNFs in the mistake bonded model
(Theorem 6.3). The algorithm (just like the one used by Valiant [128]) consists of
two levels. On the lower level simple learning algorithms are run, each concentrating
on just a small part (or restriction) of the function to be learned. On the upper level
another simple algorithm is run, which, on one hand, learns how to (re)combine the
output of the algorithms on the lower level, and, on the other hand, it filters the
information forwarded to these algorithms such that each one receives only that part
of the information which is supposed to be relevant for it. In the second part of the
Chapter a learnability related parameter, the so called exclusion dimension of the class
is examined. This parameter is known to be related to the query complexity of the best
learning algorithms for a given class (see [11; 67]) which, combined with the result on

the exclusion dimension derived in the chapter implies the lower bound (Lnﬁ) — 1 for
the query complexity of this class (Proposition 6.9).

In Chapter 7 a further, characterization result is presented for projective DNF formu-
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las, discussing the corresponding result appeared in [115]. Projective DNFs are defined
in a rather semantic way (which is more apparent from part (a) of Lemma 6.5 from
the preceding chapter), however the main result of this chapter, Theorem 7.3 gives a
simple syntactic description for a subclass of this class, called 1-projective DNFs.

In Chapter 8 the relation between the number of terms in a DNF and the number of
prime implicants of it is considered, discussing the results appeared in [114]. (A term ¢
is an implicant of some Boolean function f, if any assignment saisfying ¢ also satisfies
f, meanwhile ¢ is said to be a prime implicant of f if, in addition, this does not hold
for any term obtained from ¢ by removing some literals from it.) Section 8.3 discusses
previoulsy known results on the topic: that if some DNF consists of K terms, then it
has at most 2 — 1 prime implicants [31; 90; 97], and it is also mentioned that this
bound is known to be sharp [88; 90; 97]. The results get completed in the subsequent
sections by giving a charactarization DNFs that have as many prime implicants as this
bound allows (Theorem 8.1). This is shown by reducing the problem to the following
problem: if in some DNF tautology each pair of terms conflict in exactly one variable
(i.e., each pair is resolvable) then it posesses a tree-like structure (i.e., there is some
variable v appearing in each term; there is some variable w appearing in each term
that contains v negated, and there is some variable u in each term that contains v
unnegated; and so on).

Chapter 9 considers a generalization of the intermediate result in the previous chap-
ter (about that DNF tautologies with terms conflicting in exactly one variable pairwise
possess a tree-like structure), discussing the results appeared in [119]. More precisely
in Theorem 9.1 it is shown that if in some DNF tautology each pair of terms conflict
in at least one but at most two variables, then it also posesses a tree-like structure
(also mentioning how it relates to various generalizations motivated by semantic resp.
syntactic considerations). However, further relaxing the bound given for the conflict of
the terms to three, the above mentioned tree-like structure will not be automatic—as is
demonstrated by an example. This problem is also a special case of a problem consid-
ered in [93], that, given a DNF tautology, the task is to construct a decision tree such
that for each term of the DNF generated by it there is a term of the tautology that is
a subterm of it. They have shown that even for some very simple DNFs this problem
requires a decision tree with extremely big complexity; however the result presented in
this chapter implies that for each DNF in the above mentioned restricted class there
exists always some simple decision tree !.

Finally, in Chapter 10 decomposable Horn formulas are considered (conjunctive
normal form formulas in which every clause contains at most one unnegated variable),
discussing the results from [89]. Horn formulas, being an expressive class which also
allows for polynomial time inference, and indeed is generally computationally tractable,
play a central role in artificial intelligence and in computer science. The notion of

2

decomposability comes from belief revision #, a field interested in revising knowledge

!Actually the result states something stronger: for this restricted class basically the DNFs them-
selves can be considered as decision trees in some sense.

2Belief revision is related to theory revision (at least in it topic);thus—as a closure—the two main
topics of the dissertation meet again.
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base in such a manner that satisfies some “reasonability” properties, that are typically
formulated in the form of postulates. Decomposability was introduced for general
logics in [41], where it was also shown to be equivalent to the existence of some
revision operator satisfying the AGM postulates [4]—one of the most popular postulates
used in belief revision. The main result of the chapter is Theorem 10.10, showing
characterizations for the existence of a complement of a Horn function consequence of
another Horn function, which in turn provides a complete description of decomposable
Horn formulas. The characterizations lead to efficient algorithms for the construction
of a complement whenever it exists (which is in contrast with a related, but somewhat
more stringent complement notion of [60], the existence of which is occasionally NP-
complete to decide). The result, as is purely combinatiorial, but was meant in [89]
as a first step towards what is referred to as “Horn-to-Horn belief revision™ revision
of Horn knowledge bases where the revised knowledge base is also required to be
Horn; integrating hopefully efficient revision (the central notion in theory revision) and
common sense reasoning (as a main goal in belief revision).



Appendix B

Osszefoglalas

Az elméletrevizi6 — a tanulaselmélet részeként — azt vizsgalja, hogyan rekonstrualhaté
hatékonyan valamely ismeretlen fiiggvény kiilonb6z8 (az adott tanulasi modell altal
meghatarozott) protokollokon keresztiil informaciét szerezve a fiiggvényrsl. A tanu-
las szokasos alapszintuaci6jatél eltéréen azonban itt feltesszitk, hogy a tanulé mar
rendelkezik valamilyen elGismerettel errsl a fiiggvényrsl, pontosabban, hogy van egy
kiindulé hipotézise (valamilyen formula képében), mely a tanulandé fiiggvényt bizonyos
értelemben jél kdzeliti. A futasidére vonatkozé hatékonysagi kritérium az, hogy legyen
polinomalisan korlatos a probléma kiilonb6z& paramétereinek méretében, az informa-
civelméleti pedig az, hogy a protokollon keresztiil szerzett informacié mennyisége legyen
polinomialisan korlatos azon informacié mennyiségében, amennyivel az ismeretlen fligg-
vény leirhaté a kezdeti hipotézis ismeretében. A disszertacio elsé felében elméleti ered-
ményeket targyaltunk az elméletrevizié témakorébdl.

A disszertacié masodik felében karakterizaciés eredményeket vizsgaltunk, melyek
mind Boole-fliggvények valamely szemantikus illetve szintaktikus tulajdonsagai kozott
mutattak ekvivalenciat.

Az elsg harom fejezet bevezetd jellegii.

A 4. fejezetben read-once fiiggvényekkel foglalkoztunk (egy fliggvény read-once
— azaz egyszer olvasé —, ha reprezentalhat6é olyan formulaval, melyben minden val-
tozé legfeljebb egyszer fordul el§); ezen vizsgalatok alapjaul az [52] cikk idevagé
eredményei szolgaltak. Ezen fiiggvényosztaly elméleti szempontbdl igen jelent8s, tek-
intve, hogy Boole-fliggvényeknek egy olyan, nemtrividlis részhalmaza, melynek elemei
(sok tekintetben) algoritmikusan hatékonyan kezelhet6k, raadasul egy kellemes szeman-
tikus karakterizacidja is ismert [58; 74; 102]. A fiiggvényosztalyrél az is ismert (lasd
[13]), hogy hatékonyan tanulhaté az Ggynevezett query model (tanulas kérdések altal)
keretein beliil, ha a tanulé hasznalhat mind membership query-t (értékre kérdezés)
mind equivalence query-t (ekvivalenciara kérdezés). A fejezet f& eredménye, hogy
az ott ismertetett ReviseReadOnce algoritmus a fiiggvényosztaly hatékony revizi6jat
valésitja meg a csak-torléses esetben (lasd a 4.7. tételt). Tovabbi eredményként is-
mertetésre keriilt, hogy az algoritmusban hasznalatos két kérdéstipus barmelyikét mel-
|6zve a fliggvényosztaly reviziéja nem val6sithaté meg hatékonyan (lasd a 4.13 és a
4.14 tételeket), illetve hogy az algoritmus altal hasznalt kérdések mennyisége nagysa-
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grendileg |ényegében szintén optimalis (lasd a 4.11 tételt).

Az 5. fejezetben kiiszobfiiggvényekkel foglalkoztunk; ezen vizsgéalatok alapjaul
a [116] cikk idevagé eredményei szolgaltak. (Egy fiiggvényt kiiszobfiiggvénynek te-
kintiink, ha reprezentalhat6 valtozék egy R halmazaval és egy 0 kiiszob értékkel olyan
médon, hogy a fliggvény pontosan azon értékadasok esetén ad 1-et, melyek az R-
beli valtozok koziil legalabb #-hoz 1-et rendelnek értékiil.) A kiiszobfiiggvények je-
lentéségét jelzi, hogy (habar a fentinél altalanosabb formaban megadva) a mester-
séges neuronhaldk illetve SVM-ek (support vector machine-ek) egyik alap épitskdveként
hasznalatosak. Kiiszobfiiggvényekrdl is ismert, hogy hatékonyan tanulhaték a query
model keretein beliil, am ezen fliggvényosztaly esetén ehhez elég csak a member-
ship query-k hasznalata (lasd a [64] cikkben ismertetett algoritmust). A fejezet f6
eredménye, hogy az ott ismertetett ReviseThreshold algoritmus a fiiggvényosztaly
hatékony revizigjat valésitja meg az altalanos esetben (lasd az 5.5. tételt). Ezen felil
megintcsak bizonyitasra keriilt, hogy az algoritmus altal hasznalt kérdések mennyi-
sége nagysagrendileg lényegében optimalis (lasd az 5.8. allitast). Figyelembe véve,
hogy — amint az fent emlitetésre keriilt — a filiggvényosztaly hatékonyan tanulhaté
csak membership query-k hasznalataval is, ebben az esetben még aktualisabb a kérdés,
hogy vajon a hatékony revizi6hoz sziikség van-e mindkettére. A valasz, mint azt az
5.6. és 5.7. tételek mutatjak, igenl6. Végezetiil megmutattuk, hogy Littlestone
hires Winnow Algoritmusa (mely a [92] cikkben keriilt ismertetésre), illetve annak
egy megfelels, természetes elméletreviziés kiterjesztése nem hatékony reviziés algo-
ritmus ezen fliggvényosztalyra. Ez azért is meglepd, mert ezen algoritmus az altal valt
hiressé, hogy bizonyos fiiggvények tanulasat kimagasléan hatékonyan valésitja meg, és
raadasul (altalanosabb értelemben vett) kiiszobfiiggvényként reprezentalja a mindenkori
hipotézisét.

A 6. fejezetben, az elméletrevizidval foglalkozé elsd rész zarasaként projektiv DNF
formulakkal foglalkoztunk; ezen vizsgalatok alapjaul a [115] cikk idevagd eredményei
szolgaltak. A diszjunktiv normalformaja formulak részosztalyat alkoté projektiv DNF
formulak Valiant [128] cikkében keriiltek bevezetésre. (A DNF-ek kiilonb6z8 rész-
osztalyainak vizsgalata azaltal kapott még nagyobb hangsalyt, hogy Alekhnovich-ék [5]
cikkiikben megmutattak, hogy — hacsak az NP és RP osztalyok nem egyenléek — a
DNF-ek osztalya nem tanulhaté hatékonyan.) A formulaosztaly jelent&ségét az szol-
galtatta Valiant szdmara, hogy alkalmasnak bizonyultak az Gn. projektiv tanulasra,
melynek lényege, hogy a tanulas, a biolégiaban megfigyelheté mas folyamatokhoz ha-
sonléan, tébb szinten, osztott médon torténik. A fejezet f6 eredménye, hogy az ott
ismertetett RevWinn algoritmus, mely Valiant tanuléalgoritmusanak egy természetes
kiterjesztése, a projektiv DNF formuldk hatékony revizi6jat valésitja meg a mistake
bounded model (hibakorlatozott modell) keretein beliil (lasd a 6.3. tételt). Az al-
goritmus, Valiant eredeti algoritmusadhoz hasonléan, két szintbdl tevédik dssze. Az
alsé szinten egy egyszer(i tanul6algoritmus tobb példanya keriil futtatasra, melyek mind
a tanulandé fiiggvény (pontosabban a fiiggvény értelmezési tartomanyanak) egy kis
szeletére (avagy projekcidjara) figyelnek csak. A fels§ szinten megintcsak egy egyszer(
tanul6algoritmus hasznalatos (ezattal viszont csak egy darab), egyrészt azzal a céllal,
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hogy megtanulja, hogyan kell az alsé szinten futtatott egyszer(i tanul6algoritmusok altal
reprezentalt hipotéziseket 6sszekapcsolni, masrészt azzal, hogy — megsziirve az infor-
maciét — az alsé szinten lévé minden egyes algoritmusnak csak az 6 szamara relevans
informaciét tovabbitsa. A fejezet masodik részében a formulaosztaly egy, a tanulassal
kapcsolatos paraméterét, az an. exclusion dimension (kizarasi dimenzid) paraméterét
vizsgaltuk (ezen paraméterrél bévebben lasd a [11; 67] cikkeket). Ezen eredményt,
valamint az exclusion dimension és a query complexity (kérdési bonyolultsag) kozott
fennalls, ismert Gsszefliggéseket felhasznalva megmutatjuk, hogy a formulaosztaly nem

tanulhaté kevesebb mint (L"IQA‘J) — 1 kérdést hasznalva (a legrosszabb eset analizisben).

A 7. fejezetben tovabbi, karakterizacios jellegli kérdéseket vizsgaltunk a projektiv
DNF formulakkal kapcsolatosan; ezen vizsgalatok alapjaul a [115] cikk idevagd ered-
ménye szolgalt. A projektiv DNF-ek szemantikus jellegli médon lettek definidlva (melyet
talan a 6.5 Lemma (a) pontja hangsalyoz ki a leglatvanyosabban), ezért is érdekes a
7.3 tétel eredménye, mely ezen formulaosztaly egy részosztalyanak, az 1-projektiv DNF-
eknek egy szemantikus leirasat adja meg.

A 8. fejezetben egy DNF termjeinek illetve primimplikansainak szama kozti kap-
csolatot vizsgaltuk; ezen vizsgalatok alapjaul a [114] cikk eredményei szolgaltak. (Egy
t term implikansa egy Boole fiiggvénynek, a -t kielégitd értékadasok a fiiggvényt is
mind kielégitik, illetve primimplikansa, ha ez a tulajdonsdg mar egy olyan termre sem
teljesiil, melyet ¢-bdl literalok elhagyasaval kaphatunk.) A 8.3. részben a téméaban
ismert korabbi eredményeket ismertettitk (a teljesség kedvéért bizonyitassal egyiitt);
tobbek kozt azt, hogy egy K tagi DNF-nek legfeljebb 2% — 1 primimplikansa lehet
[31; 90; 97], és hogy ez a korlat éles [88; 90; 97]. A fejezet f6 eredménye, hogy
teljes karakterizaciéjat adja azon DNF-eknek, melyek primimplikdnsainak szdma eléri
ezt a fels korlatot (lasd a 8.1. tételt). A bizonyitas soran a problémat visszavezettiik
arra, hogy ha egy DNF tautolégiaban minden tag minden masik taggal pontosan egy
valtozéban utkozik, akkor a DNF-nek egy specialis fa struktaraja van.

A 9. fejezetben azon probléma keriilt altalanositasra, melyre az el6z8 fejezet ere-
deti problémaja vissza lett vezetve; ezen vizsgalatok alapjaul a [119] cikk eredményei
szolgaltak. Pontosabban azt mutattuk meg (lasd a 9.1. tételt), hogy ha egy DNF-ben
minden tag minden masik taggal legalabb egy, de legfeljebb két valtozéban iitkozik,
akkor szintén rendelkezik a fent emlitett fa jellegli struktaraval, de ha a megengedett
itkozések szamat mar haromra noveljik, akkor ez a struktira mar nem jelenik meg
minden esetben. Kifejtére keriilt tovabba az is, hogy ez az eredmény hogyan vis-
zonyul kiildnb6z8 tovabbi, szemantikus illetve szintaktikus megfontolasok altal vezérelt
altalanositasokhoz. Megemlitettiik azt is, hogy ez a probléma egy specilis esete a [93]
cikkben targyalt problémanak, mely azzal foglalkozik, hogy egy adott DNF tautolégia
esetén mekkora a legkisebb olyan dontési fa, amely olyan DNF tautolégiat general,
aminek minden tagja az adott DNF valamely termjének kibvitése plusz literalokkal.

Végezetiil, a 10. fejezetben an. felbonthaté Horn fromulakat vizsgaltunk (Horn
formula egy olyan CNF, amelyben minden kl6z legfeljebb egy negalatlan valtozét tartal-
maz); ezen vizsgalatok alapjaul a [89] cikk eredményei szolgaltak. A Horn formulak igen
fontos szerepet jatszanak a mesterséges intelligenciaban, illetve altalaban a szamitas-
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tudomanyban, melynek alapja, hogy a formulaosztaly kifejez6képessége relative igen
j6, és emellett algoritmikusan hatékonyan kezelhets. A felbonthatésag fogalma a be-
lief revision témakorébsl szarmazik ', mely témakor féként tudasbazisok (hétkdznapi
értelemben vett) racionalitasi tulajdonsagokat teljesits reviziéjaval foglalkozik, melyeket
tipikusan posztulatumok formajaban fogalmaznak meg. A felbonthatésag fogalmat al-
talanos logikakra fogalmaztak meg a [41] cikkben, ahol megmutattak, hogy az AGM
posztuldtumok [4] (a legismertebb posztuldtumok egyike a témakdrben) teljesiilésének
szitkséges és elégséges feltétele, hogy az adott logikaban létezzen felbonthaté reviz-
i6s operator. A fejezet f6 eredményeként a 10.10. tételben karakterizaltuk, hogy
milyen esetkben van egy Horn formulanak egy masik (6t implikalé) Horn formulara
nézve komplemense. Ezt felhasznalva végiil megadtuk a felbonthaté Horn formulak
egy jellemzését. Mint megmutattuk, ha létezik, a komplemens hatékony konstrualhato,
szemben az irodalolmban egy korabban vizsgalt, valamelyest szigoriibb komplemens fo-
galommal, melynek meglétének eldontése bizonyos esetekben NP-nehéz. Az eredmény
a kozolt formaban pusztan kombinatorikai jellegii, am mindez egy Horn formula alapa
modszer els6 |épéseként keriilt vizsgalatra a a [89] cikkben, melynek jovébeni célja a
hatékony revizi6 6tvozése a belief revison altal vizsgalt racionalitasi tulajdonsagokkal.

1Ezen témakdr rokon az elméletreviziéval, igy a disszertacié végén egy fejezet erejéig bizonyos
értelemben 0jra talalkozik a disszertacié két f& témaja.
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