
Learnability and Chara
terizationResultsfor Classes of Boolean Fun
tions
Balázs SzörényiResear
h Group on Arti�
ial Intelligen
e
Advisor: György TuránNovember 2007

A dissertation submitted for the degree of do
tor of philosophyof the University of Szeged
University of SzegedDo
toral S
hool in Mathemati
s and Computer S
ien
ePh.D. Program in Informati
s

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SZTE  Doktori Értekezések Repozitórium (SZTE Repository of Dissertations)

https://core.ac.uk/display/11979785?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




Prefa
eRevision 
an be thought of as the update of some existing (but somewhat erroneus)rule system, like some expert system provided by an expert. This problem arises whenthe rule system used to be 
orre
t, but the 
ir
umstan
es have 
hanged, or when therule system was erroneus initially. The present dissertation dis
usses this topi
 fromthe theoreti
al point of view, examining the possibility of e�
ient revision of some rulesystems based on Boolean formulas, su
h as read-on
e formulas, proje
tive DNF andthreshold fun
tions.Additionally, 
hara
terization results are provided for some Boolean fun
tions. Mo-tivated by one of the revision algorithms, a stru
tural des
ription of a 
lass of proje
tiveDNF is given. We also 
onsider k-term DNF, and give a 
omplete des
ription of thoseformulas whi
h have the largest number of prime impli
ants. This 
ompletes a seriesof well-known results on this 
lass. A related 
hara
terization result is given for a 
lassof DNF tautologies with a distan
e 
ondition. Finally, motivated by a problem in beliefrevision (an area related to, but distin
t from, theory revision), a 
riterion is given forthe existen
e of a 
omplement of a Horn formula.
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Chapter 1
Introdu
tion
The present dissertation, in its �rst part, 
onsiders theoreti
al results from the �eld oftheory revision. Theory revision, as part of learning theory, is interested in re
onstru
t-ing some unknown fun
tion a
quiring information about it via some proto
ol, spe
i�edby the given learning model. However, as opposed to the general learning problem, itis assumed that the learner is not new to the given task, but it initially has a hypothe-ses that is assumed to be some rough approximation of the unknown fun
tion. As ananalogous real-world example, one 
an 
onsider an initial version of an expert systemprovided by an expert, whi
h needs to be re�ned using further examples or other in-formation available. Having some initial hypotheses available should make the learningproblem easier to solve�making the relevan
e of the model apparent, and motivatingits analysis from the theoreti
al point of view.The theory revision results in the present dissertation all 
onsider some Booleanformula 
lass; read-on
e, threshold and proje
tive DNF formulas 1 are analyzed fromthe point of view of e�
ient revisability.In the se
ond part 
hara
terizational results are presented; all showing equivalen
ebetween some synta
ti
al and some semanti
al properties of some 
lasses of Booleanfun
tions. The synta
ti
 properties involve Boolean formula 
lasses, like DNFs satisfyingsome synta
ti
 irredundan
y notion, Horn formulas (one of the most studied formula
lass in arti�
ial intelligen
e), disjoint DNFs (DNFs with pairwise 
on�i
ting terms)and de
ision trees (another very important obje
t in 
omputer s
ien
e�whi
h 
an alsobe thought of as a sub
lass of DNFs). The semanti
 properties in
lude restri
tionsgiven for partitioning the n-dimensional 
ube with sub
ubes, spe
ial lo
al restri
tionsgiven for a Boolean fun
tion on its domain, extensions of the truth set of some fun
tionful�lling some spe
ial 
riteria, and �nally some extremal properties.

1The 
lass of proje
tive DNF formulas form a new sub
lass of DNF formulas introdu
ed re
entlyby Valiant [128℄. 1



2 Introdu
tion1.1 Learning and Theory RevisionTheory revision, or more generally, the whole area of learning theory aims to 
apturereal life learning: to build models for some phenomena by 
olle
ting data about itand trying to generalize from this data by realizing regularities and extra
ting 
ertainrules. An obvious and noble motivation for this is to make 
omputers able to learn:to adapt to new situations in a 
hanging environment. This as is one of the mostfundamental original obje
tives of arti�
ial intelligen
e. However, a big majority ofreal-world appli
ations nowadays 
onsist of problems that seem a bit di�erent at �rstglan
e: to put up rules for, and to model systems that are way too 
omplex for humansto do it by hand. Typi
al examples from everyday life are spee
h re
ognition, fa
ere
ognition; or appli
ations from bioinformati
s like protein 
lassi�
ation�and so on.Many of these tasks 
an be 
onsidered as the problem of �nding a 
lassi�
ation ruleon a given domain that �ts the data (i.e., labeling bitmaps either �woman� or �man�,or mapping segments of spee
h to words, et
).Various de�nitions and approa
hes were born to formulate this problem more pre-
isely, but without a real 
onsensus. However let us quote one (from Mit
hell [99℄):�A 
omputer program is said to learn from experien
e E with respe
t to some
lass of tasks T and performan
e measure P , if its performan
e at tasks in T ,as measured by P , improves with experien
e E.�Although it gives some intuition about the nature of learning as a mathemati
al problem,apparently it is too general to be appli
able for spe
i�
 problems or situations; so moreformal de�nitions are needed.Computational learning theory and its 
entral notion, PAC learnability (establishedby the seminal paper [127℄ of Valiant), approa
hes learning from 
omplexity theoreti
point of view and is interested in the 
omputational and information theoreti
 aspe
tsof learning: what 
an be learned e�
iently, and how mu
h information does the learnerneed for this in di�erent settings. (In this 
ase the 
lassi�
ation rules are often Booleanformulas from some prede�ned 
lass.) Computational learning theory is de�ned in somesense as the inverse of 
ryptography�and indeed, subsequently Kearns and Valiant hasshown that an e�
ient PAC learning algorithm for general Boolean formulas 
ould beused for example to break RSA [77℄.To mention some other �elds also devoted to learning: in the framework of �learningin the limit� (established by Gold [47℄) the learner meets in the 
ourse of an in�nitepro
ess all the words (or expressions) of some language 2, and is required to set up ahypotheses: some representation of the language. On the other hand, pattern re
ogni-tion, for example (highly in�uen
ed by works like that of Vapnik and Chervonenkis [131℄and Stone [120℄), is interested in 
lassi�ers that (
onstru
ting their hypotheses usingrandomly generated examples often in a kind of on-line manner) are asymptoti
ally asgood as the best possible (
alled Bayes 
lassi�er).2And, depending on the spe
i�
 model, the learner might additionally meet some or all of the�negative� examples: words or expressions not in the given language.



1.1 Learning and Theory Revision 3The resear
h aimed to analyze di�erent aspe
ts of PAC learnability gave birth toseveral other related learning models. On the whole�fo
using on the Boolean 
ase�all of them are interested in �nding some representation for an unknown fun
tion ftrg,
alled target 
on
ept�representable by some formula from a �xed, prede�ned formula
lassR�, a
quiring information about it via some proto
ol, de�ned by the given model.In the present dissertation two of these models are applied.One su
h model is query learning (introdu
ed by Angluin [10℄), in whi
h anora
le is assumed to answer (in 
onstant time) questions of the learner via some queryproto
ol. These questions are typi
ally of the form of a membership query, queryingthe value of the target 
on
ept on some assignment, or an equivalen
e query, askingwhether some formula, 
onstru
ted by the learner is equivalent to the target 
on
ept.The query 
omplexity of the 
lass R is the (maximum of the) number of queriesneeded to ask by the learner depending on the size of ftrg (i.e., the length of theshortest formula in R for ftrg). A learning algorithm in this model is 
onsidered to bee�
ient, if both the quey 
omplexity and the running time is polynomial (in the sumof the number of variables and the size of ftrg).Another su
h model is themistake bounded model (see e.g. [92℄) whi
h is de�nedin an on-line setting. In this model the learning pro
eeds in a sequen
e of rounds. Inea
h round the learner re
eives �rst an instan
e of the domain (i.e., on whi
h ftrgis de�ned) then produ
es a predi
tion of its 
lassi�
ation, and �nally re
eives a label(whi
h, in a noise-free model is the 
orre
t 
lassi�
ation�i.e., what ftrg evaluates onit). If the predi
ted 
lassi�
ation and the re
eived label disagree then the learner madea mistake. The mistake bound of the learning algorithm is the maximal number ofmistakes, taken over all possible runs, (that is, sequen
es of instan
es), depending onthe size of ftrg. A learning algorithm in this model is 
onsidered to be e�
ient, ifboth the quey 
omplexity and the running time (in ea
h round) is polynomial (in thesum of the number of variables and the size of ftrg).Theory revision, as a spe
ial learning problem, assumes that the learner is not
ompletely new to the given learning problem, hereby it has some initial hypothesesin the form of some formula that, albeit not equivalent to ftrg, but is thought tobe a �good approximation� of it. A typi
al example is an initial version of an expertsystem provided by an expert, whi
h needs to be re�ned using further examples orother information available. It is argued that this is a realisti
 requirement, as many
omplex 
on
epts 
an only be hoped to be learned e�
iently if a reasonably goodinitial approximation is available. Des
riptions of theory revision systems are given, forexample, in [82; 103; 107; 134; 135℄. One of the �rst papers studying revision from atheoreti
al aspe
t is due to Mooney [100℄. He assumed that the target 
an be obtainedfrom the initial hypotheses by using revision operators, whi
h are simple, prede�nedsynta
ti
 modi�
ations, su
h as the deletion or the addition of a literal, and gavebounds for the the number of random examples needed in the PAC model for revisionin terms of the number of these modi�
ations ne
essary. Greiner [57℄ 
onsidered the
omputational 
omplexity of hypothesis �nding in a related framework.The models for theory revision used in the present dissertation are extensions of



4 Introdu
tionMooney's approa
h to the query and the mistake bounded model. A
tually, the modelsfor theory revision di�er from the 
orresponding learning models only in the e�
ien
y
riteria as follows: denoting the size of ftrg by s, and the minimal number of revisionoperators needed to apply on the initial hypotheses to obtain some representation for
ftrg by ê, the number of queries asked (resp. the number of mistakes made) must bepolynomial in ê and in logm for an e�
ient revision algorithm 3. (Note howeverthat requirements set for the running time remains un
hanged.)For additional results on theory revision (not dis
ussed in the present dissertation)the papers [50; 52; 53℄.1.2 Chara
terization Results for Boolean Fun
-tionsChara
terization results appear (and are applied) in several forms in mathemati
s andin 
omputer s
ien
e; like giving a semanti
 des
ription for some obje
t de�ned in asynta
ti
 way (e.g. that a number, written in de
imal form, is divisable by 5 if and onlyif its last digit is either 0 or 5), or to give an alternative synta
ti
 des
ription for someobje
t de�ned in a synta
ti
 way, and so on. A
tually, it is one of the fundamentaltools in the analysis of some mathemati
al obje
t (like, say, a fun
tion, set, formula
lass, et
) to give an alternative des
ription or representation for it, and work withthat. It 
an, on one hand serve with more insight on the given obje
t�whi
h, inturn, 
an help solving the given problem�and, on the other hand (as is usual), it
an provide more intriguing questions. A prominent examples for this is the Fouriertransform of fun
tions�i.e., to give an alternative representation for fun
tions as alinear 
ombination of some orthonormal system�, whi
h is of invaluable importan
e,both in 
ase of the real world appli
ations and also on the theoreti
al level.Chara
terization results are highly important for Boolean fun
tions as well. A 
lassi-
al su
h result (see [71; 96℄) is a semanti
 
hara
terization of Horn fun
tions (Booleanfun
tions representable with Horn formulas�i.e., 
onjun
tive normal form formulasin whi
h every 
lause 
ontains at most one unnegated variable). This result states thata fun
tion f is Horn if and only if for any pair of assignments on whi
h f evaluates 1it holds that f evaluates 1 also on their meet (i.e., 
omponentwise ∧). (This result isformulated in this dissertation as Theorem 10.2.) This, in turn, is used in the presentdissertation to derive another 
hara
terization result involving Horn formulas.Another 
lassi
al 
hara
terization result (dis
overed independently several times�see [58; 74; 102℄) 
onsiders read-on
e fun
tions (Boolean fun
tions representablewith read-on
e formulas�i.e., formulas in whi
h every variable o

urs at most on
e).This result uses the notion of maxterms an minterms, whi
h�fo
using for simpli
ityonly on monotone fun
tions 4� 
an be de�ned as follows: a minimal set of variables
S is a minterm (resp. maxterm) of a monotone fun
tion f , if �xing the variables in3An explanation for this 
hoi
e of the e�
ien
y 
riteria is given in Chapter 3.4A Boolean fun
tion is said to be monotone if it is monotoni
ally in
reasing in the usual sense.



1.3 Results and the Stru
ture of the Dissertation 5
S to 1 (resp. the variables in T to 0) for
es f to take the value 1 (resp. 0). Thenthe 
hara
terization result states that a monotone Boolean fun
tion is representableby a read-on
e formula if and only if for arbitrary minterm S and maxterm T of it
|T ∩S| = 1. A ni
e appli
ation of this result in learning theory is the learning algorithm
onstru
ted for read-on
e formulas in [13℄, whi
h (although not applied, but still) is ofspe
ial interest for us, as various learnability related properties of this 
lass are analyzedin the present dissertation.Finally note how 
entral is the role of 
hara
terizing the extreme values and 
asesfor some problems is in some �elds. For instan
e extemal 
ombinatori
s (see e.g. [72℄)is typi
ally interested in questions of this sort; like that of determining the maximalnumber of prime impli
ants of Boolean fun
tions. (A term t is an impli
ant of someBoolean fun
tion f , if any assignment saisfying t also satis�es f , meanwhile t is saidto be a prime impli
ant of f if, in addition, this does not hold for any term obtainedfrom t by removing some literals from it.) Considering this problem, it is known thata Boolean fun
tion on n variables 
an have at most O ( 3n√

n

) prime impli
ants, andthat there are fun
tions with Ω
(

3n

n

) prime impli
ants (see, e.g., [31℄), but the exa
tvalue for the maximal number of prime impli
ants is not known for general n. In thepresent dissertation a related problem is analyzed, whi
h also takes into 
onsiderationthe (minimal) number of terms in a DNF for a given fun
tion.1.3 Results and the Stru
ture of the DissertationThe �rst part of the dissertation 
onsists of results from theory revision, dealing withthe revisability of some important formula 
lass in various learning models. The se
ondpart 
onsists of 
hara
terization results, some of whi
h are related to some revisionproblem, meanwhile the rest is just interesting per se.The �rst topi
 on theory revision in the dissertation is the revision of read-on
efun
tions (fun
tions representable with formulas in whi
h every variable o

urs at moston
e) in the query model, dis
ussed in Chapter 4. The importan
e of this formula 
lassis rather theoreti
al, being a nontrivial sub
lass of Boolean formulas that is tra
tablefrom several di�erent aspe
ts, and has a ni
e semanti
 
hara
terization [58; 74; 102℄.As it has been shown by Angluin et al., this 
lass is also e�
iently learnable withmembership and equivalen
e queries [13℄ 5, it is thus natural to ask whether also ane�
ient revision algorithm exists for this 
lass. This question is answered positively,but only for a restri
ted model whi
h assumes that the fun
tion to be learned 
an berepresented by a formula obtained from the initial one by deleting some parts of it.After that, the optimality of the algorithm is analyzed: a lower bound is shown for thequery 
omplexity of this 
lass, that is of the same order of magnitude as the query
omplexity of the algorithm. Finally it is analyzed whether both types of the queries,5What's more, read-twi
e fun
tions are also e�
iently learnable [104℄�but read-thri
e fun
tionsare not [2℄. Here, read-twi
e (resp. read-thri
e) fun
tions (in a

ordan
e with the de�nition of read-on
e fun
tions) are de�ned as fun
tions that are representable with formulas in whi
h every variableo

urs at most twi
e (resp. three times).



6 Introdu
tionused in the algorithm, are ne
essary, and it is shown that indeed, e�
ient revision isnot possible using only one of the two types of queries.As the next topi
 in theory revision, Chapter 5 
onsiders Boolean threshold fun
-tions (i.e., fun
tions representable by a set of variables R and a threshold θ, evalutingto 1 on exa
tly those assignments whi
h assign 1 to at least θ of the variables in R).Threshold fun
tions (although in a more general form) are famous for being the basi
ingredient of neural networks and support ve
tor ma
hines�and has several other ap-pli
ations as well. For this 
lass similar questions are asked as above. Again, a revisionalgorithm is presented in the query model, whi
h, as shown, is an e�
ient algorithmfor revising the 
lass of threshold fun
tions (in this 
ase, however, no restri
tion is seton the model�i.e., both deletions and additions are allowed), having query 
omplex-ity essentially optimal up to order of magnitude. Again it is shown that no e�
ientrevision is possible for this 
lass if one type of the queries gets banned. Finally itis shown that, somewhat surprisingly, Winnow 6�a kind of multipli
ative version ofPer
eptron being famous for learning some formula 
lasses highly e�
iently 7 usingthreshold representation�would not be a good 
hoi
e for this task, as it would notwork e�
iently.As a 
losure of the theory revision part, a sub
lass of the disjun
tive normal formformulas, 
alled proje
tive DNFs, is 
onsidered in the mistake bounded model. Forlong it was one of the main open problems in 
omputational learning theory, whetherthe 
lass of DNFs is e�
iently learnable. However re
ently it was proved that, unlessRP = NP, the answer is no [5℄. This motivates the sear
h for sub
lasses of the DNFswhi
h are e�
iently learnable. The 
lass of proje
tive DNFs was introdu
ed by Valiant[128℄ as a 
lass suitable for proje
tive learning�a notion motivated by 
ertain biologi-
al 
onsiderations�; the general idea being that learning, similarly to other biologi
alpro
esses, should be 
arried out on multiple levels in a distributed manner. His 
on-stru
tion 
onsists of two levels. On the lower level simple learning algorithms are run,ea
h 
on
entrating on just a small part (or restri
tion) of the fun
tion to be learned.On the upper level another simple algorithm is run, whi
h, on one hand, learns how to(re)
ombine the output of the algorithms on the lower level, and, on the other hand, it�lters the information forwarded to these algorithms su
h that ea
h one re
eives onlythat part of the information whi
h is supposed to be relevant for it. Given this e�
ientalgorithm for this 
lass, it is an interesting question whether a natural extension itwould behave as an e�
ient revision algorithm. After showing that the answer to thisquestion is positive, some further, learning related features of the 
lass are analyzed.Being an appearently new 
lass, proje
tive DNFs provide several questions to beanswered. One su
h that arose during examining this 
lass was that a spe
ial sub
lassof it, 
alled 1-proje
tive DNFs (or 1-PDNFs for short) have shown some regularities intheir syntax. (A DNF formula ϕ is 1-PDNF if every term t of it 
ontains some literal εsu
h that εϕ and t represent the same fun
tion.) Chapter 7 dis
usses this, and presentsa 
hara
terization of this sub
lass that 
aptures this regularity.6More pre
isely a natural extension of it.7More pre
isely in a so 
alled attribute e�
ient manner.



1.3 Results and the Stru
ture of the Dissertation 7Continuing the dis
ussion of 
hara
terization results, the relation between the num-ber of terms in a DNF, and the number of prime impli
ants of it is 
onsidered. Earlierresults in 
omputer s
ien
e imply that if some DNF 
onsists of K terms, then it has atmost 2K − 1 prime impli
ants [31; 90; 97℄, and it has also been known previously, thatthis bound is sharp [88; 90; 97℄. These results get 
ompleted in Chapter 8 in whi
h a
hara
tarization is given for DNFs that have as many prime impli
ants as this boundallows. This is shown by redu
ing the problem to the following problem: if in someDNF tautology ea
h pair of terms 
on�i
t in exa
tly one variable (i.e., ea
h pair isresolvable) then it posesses a tree-like stru
ture (i.e., there is some variable v appearingin ea
h term; there is some variable w appearing in ea
h term that 
ontains v negated,and there is some variable u in ea
h term that 
ontains v unnegated; and so on)�forwhi
h a new proof is presented.The next 
hara
terization result 
onsidered is a generalization of the result, theprevious problem (regarding the number of prime impli
ants of a DNF) is redu
edto. More pre
isely it is shown in Chapter 9 that if in some DNF tautology ea
h pairof terms 
on�i
t in at least one but at most two variables, then it also posesses atree-like stru
ture. However, further relaxing the bound given for the 
on�i
t of theterms to three, the above mentioned tree-like stru
ture will not be automati
�as isdemonstrated by an example. This problem is also a spe
ial 
ase of a problem 
onsideredin [93℄, that, given a DNF tautology, the task is to 
onstru
t a de
ision tree su
h thatfor ea
h term of the DNF generated by it there is a term of the tautology that is asubterm of it. They have shown that even for some very simple DNFs this problemrequires a de
ision tree with extremely big 
omplexity; however the result presented inthis 
hapter implies that for ea
h DNF in the above mentioned restri
ted 
lass thereexists always some simple de
ision tree 8.Finally, de
omposable Horn formulas are dis
ussed. Horn formulas, being an ex-pressive 
lass whi
h also allows for polynomial time inferen
e, and indeed is generally
omputationally tra
table, play a 
entral role in arti�
ial intelligen
e and in 
omputers
ien
e. The notion of de
omposability 
omes from belief revision 9, a �eld interested inrevising knowledge base in su
h a manner that satis�es some �reasonability� properties,that are typi
ally formulated in the form of postulates. De
omposability was introdu
edfor general logi
s in [41℄, where it was also shown to be equivalent to the existen
eof some revision operator satisfying the AGM postulates [4℄�one of the most popularpostulates used in belief revision. In Chapter 10 
hara
terizations are given for the exis-ten
e of a 
omplement of a Horn fun
tion 
onsequen
e of another Horn fun
tion, whi
hin turn provides a 
omplete des
ription of de
omposable Horn formulas. The 
hara
-terizations lead to e�
ient algorithms for the 
onstru
tion of a 
omplement wheneverit exists (whi
h is in 
ontrast with a related, but somewhat more stringent 
omplementnotion of [60℄, the existen
e of whi
h is o

asionally NP-
omplete to de
ide). Theresult, as is purely 
ombinatiorial, but was meant in [89℄ as a �rst step towards what is8A
tually the result states something stronger: for this restri
ted 
lass basi
ally the DNFs them-selves 
an be 
onsidered as de
ision trees in some sense.9Belief revision is related to theory revision (at least in it topi
);thus�as a 
losure�the two maintopi
s of the dissertation meet again.



8 Introdu
tionreferred to as �Horn-to-Horn belief revision�: revision of Horn knowledge bases wherethe revised knowledge base is also required to be Horn; integrating hopefully e�
ientrevision (the 
entral notion in theory revision) and 
ommon sense reasoning (as a maingoal in belief revision).



Chapter 2General De�nitions and NotationsWhen analyzing di�erent representational 
lasses it is often 
onvenient (and sometimesmaybe even unavoidable) to view formulas as fun
tions and vi
e versa: to analyze afun
tion by examining a formula representing it. A

ordingly we frequently and freelyswit
h between the semanti
al and the synta
ti
al view. However, trying to keep thepi
ture 
lear, we �rst dis
uss the two separately, and then dis
uss some 
onne
tions ofthe two used heavily later on.2.1 Syntax
V = {v1, v2, v3, . . . } is the set of propositional variables in our universe, and for anyinteger n let Vn = {v1, v2, v3, . . . , vn}. The negation of a variable v ∈ V is denoted v.A literal is an unnegated or negated variable; unnegated variables are 
alled positiveliterals; negated variables negative literals. The negation of the negative literal
ε = v, denoted ε, is again the positive literal v.A Boolean formula over variables V ′ ⊆ V 
an be de�ned as the smallest subsetof strings formulas over 1, 0, �∨�, �∧�, �)�, �(�, � ¯ � and V ′ satisfying:

• 0, 1 ∈ formulas 1.
• Literals v and v are in formulas for any v ∈ V ′.
• If ϕ ∈ formulas, then ϕ ∈ formulas.
• If ϕ1, . . . , ϕk ∈ formulas and k ≥ 2, then ◦(ϕ1, . . . , ϕk) ∈ formulas, where
◦ is either ∨ or ∧.(In notation, for formulas greek lower 
ase letters are used, usually ϕ and ψ, or some-times χ.) Let Var(ϕ) (resp. Lit(ϕ)) denote the set of variables (resp. set of lit-erals) o

uring in formula ϕ. For example if ϕ = (v ∨ w) ∧ (w ∨ (u ∨ z)), then

Lit(ϕ) = {v, w, w, u, z}, meanwhile Var(ϕ) = {v, w, u, z}, where v, w, u, z ∈ V.1For te
hni
al reasons, we extend the standard notion, whi
h does not allow for 
onstants in theleaves. 9



10 General De�nitions and NotationsBesides Boolean formulas we also 
onsider threshold formulas. A threshold for-mula is simply a pair (U, t), also denoted Tht
U , where U ⊆ V and t is some non-negativeinteger.Both Boolean and threshold formulas are often referred to simply as formulas.2.1.1 Terms, Clauses, Spe
ial Formula ClassesA term (or 
onjun
tion) is a formula ∧(ε1, . . . , εk)�often written in the form ε1 ∧

· · · ∧ εk�, where ε1, . . . , εk are arbitrary literals. A k-term (or k-
onjun
tion) is a
onjun
tion of k literals. A 
lause (or disjun
tion) is the dual notion, where in thepla
e of ea
h ∧ there is a ∨. Denote the empty 
onjun
tion (resp. empty disjun
tion)by ⊤ (resp. ⊥). It is assumed that terms (resp. 
lauses) do not 
ontain both a variableand its negation.It is often 
onvenient to treat 
lauses and terms as a set of literals; for exampleif c = v1 ∨ v3 ∨ v4, then v1 ∈ c denotes that literal v1 appears in 
lause c, and if
t1 = v1 ∧ v4 and t2 = v1 ∧ v2 ∧ v4 ∧ v5, then t1 = t2 \ {v2, v2, v5} denotes that term
t1 
an be obtained from t2 by removing literal v5 and removing variable v2 with anyorientation. (As it will always be 
lear from the text, wether the given formula is a
lause or a term, this does not 
ause ambiguity.) A

ordingly, the size of a term t,denoted by |t|, is the number of its literals, and some term t′ is a subterm of t if t′ ⊆ t(whi
h is obviously equivalent to Lit(t′) ⊆ Lit(t)).Terms t and t′ 
on�i
t in variable v if v appears unnegated in one of them, andnegated in the other. (In this 
ase t and t′ are also said to 
ollide.) t⊗ t′ denotes theset of variables t and t′ 
on�i
t in; thus |t⊗ t′| is the number of 
on�i
ts between thetwo terms.A disjun
tive normal form formula (or DNF for short) is a disjun
tion ofterms. A k-DNF is a DNF su
h that ea
h of its terms 
ontains at most k literals. A
k-term-DNF is a DNF with at most k terms. Let k-DNFn (resp. k-term-DNFn)denote the 
lass of n-variable Boolean fun
tions expressible as a k-DNF (resp. as a
k-term-DNF). A DDNF or disjoint DNF is a DNF with pairwise 
on�i
ting terms.A DDNF formula has 
on�i
t bound d, if any two terms in it 
on�i
ts in at most twovariables.A Horn 
lause is a 
lause 
ontaining at most one positive literal. A Horn formulais a disjun
tion of Horn-
lauses.A read-on
e formula is a formula in whi
h every variable o

urs at most onn
e.As in the 
ase of terms and 
lauses, sometimes DNFs are also treated as sets�inparti
ular as a set of terms. A

ordingly t ∈ ϕ is used to denote that t is a term of theDNF ϕ.A Labeled Binary Tree (or LBT) over variables in V ′ ⊆ V is a rooted binary treesu
h that for ea
h inner node the node itself and the edge leading to its right 
hildare labelled by some v ∈ V ′, and the edge leading to its left 
hild is labelled by v. ADe
ision Tree (or DT) is an LBT that's leaves are labelled by 0 or 1.



2.2 Semanti
s 112.2 Semanti
sAn assignment is a fun
tion x : V → {0, 1}, a partial assignment is partial fun
tion
σ : V →֒ {0, 1}. In the latter 
ase σ 
an also be 
onsidered as a fun
tion σ : Dom(σ) →

{0, 1} where Dom(σ) := σ−1({0, 1}) = {v ∈ V : v is assigned to some variable by σ}is the domain of σ. When σ(v) appears in the text for some v ∈ V, then it isimpli
itely understood that Dom(σ) 
ontains v. The partial assignment with emptydomain is denoted ().When one fo
uses on a subset V ′′ of the universe in s
ope (this often o

urs whenworking with some (sub)formula ϕ, in whi
h 
ase V ′′ is Var(ϕ)), a partial assignment
σ : V ′ → {0, 1} with V ′ ⊇ V ′′ 
an also be 
onsidered as an assignment. This isstressed in notation using bold fa
e lower 
ase Roman alphabet letters (usually x,y, z,or sometimes w or u) for these partial assignments, and to use lower 
ase Greek letters(usually σ, or sometimes α) for those that leave some variables in V ′′ unassigned. When
V ′ is �nite, say V ′ = Vn, σ 
an be written in the form (v1 7→ σ(v1), . . . , vn 7→ σ(vn)).For example if V ′ = V3, and σ(v1) = 1, σ(v2) = 0 and σ(v3) = 1, then σ = (v1 7→

1, v2 7→ 0, v3 7→ 1). Also, for some V ′′′ ⊆ V, let σ|V ′′′ denote the partial assignmentthat agrees with σ on V ′′′ ∩ V ′, and leaves the rest of the variables unassigned.
0 (resp. 1) denotes the assignment that assigns 0 (resp. 1) to ea
h variable ins
ope, V ′′, and for some V ⊆ V ′′ let 1V denote the assignment assigning 1 to thevariables in V and 0 to the variables in V ′′ \ V .Given two assignments x,y : V ′ → {0, 1}, their interse
tion (or meet) is theassignment x ∧ y : V ′ → {0, 1} assigning x(v) · y(v) (i.e., the minimum of x(v) and

y(v)) to ea
h variable v ∈ V ′. Also, the relation x ≤ y holds, if x = x∧y, and x � yholds, if x ≤ y but x 6= y. Similarly to the meet, let the join of assignments x and ybe the assignment x ∨ y : V ′ → {0, 1} assigning x(v) + y(v)− (x ∧ y)(v) to variable
v ∈ V ′ (i.e., assigning to ea
h variable the maximum assigned to it by x and y), and,�nally, let x ⊗ y : V ′ → {0, 1} assign (x ∨ y)(v) − (x ∧ y)(v) to variable v ∈ V ′.Given some partial assignment σ and a variable v ∈ Dom(σ), the 
omponent of
σ 
orresponding to v (or the v-
omponent of σ, for short) is the partial assignment
σ|{v}. The v-
omponent is said to be on (resp. o�) in σ, if σ(v) = 1 (resp. σ(v) = 0).Let futhermore σ[v] = σ[v] be the partial assignment obtained from σ by �ipping its
v-
omponent. For example (v1 7→ 1, v2 7→ 0, v3 7→ 1, v4 7→ 0)[v2] = (v1 7→ 1, v2 7→

1, v3 7→ 1, v4 7→ 0) and also (v1 7→ 1, v2 7→ 0, v3 7→ 1, v4 7→ 0)[v2] = (v1 7→ 1, v2 7→

1, v3 7→ 1, v4 7→ 0).The Hamming distan
e distH(x,y) of assignments x and y is the number ofvariables on whi
h x and y disagree. The weight of an assignment x, denoted as |x|,is the number of variables it assigns 1 to.Given a set of variables V ′ ⊆ V, let A(V ′) denote the set of assignments withdomain V ′. Let furthermore An := A(Vn). A Boolean fun
tion f over variables
V ′ is a zero-one valued fun
tion de�ned over the assignments with domain V ′�that is
f : A(V ′) → {0, 1}. An n-variable Boolean fun
tion is a Boolean fun
tion over
An. Boolean fun
tions will often be referred to simply as fun
tions. In notation, plainlower 
ase Roman alphabet letters (usually f, g or h) are used for Boolean fun
tion.



12 General De�nitions and NotationsAn assignment x ∈ A(V ′) is said satisy (resp. falsify) fun
tion f if f(x) = 1 (resp.
f(x) = 0). The truth set of a fun
tion f is the set T (f) := {x ∈ A(V ′) : f(x) = 1},and let F(f) := {x ∈ A(V ′) : f(x) = 0}. The fun
tion with truth set A(V ′) (resp.
∅)�that is, whi
h evaluates to 1 (resp. to 0) on ea
h assignment�is denoted 1 (resp.
0). Finally note that a Boolean fun
tion over variables V ′ ⊆ V 
an also be 
onsideredas a Boolean fun
tion over V ′′ for any V ′ ⊆ V ′′ ⊆ V.For Boolean fun
tions f and g write g ≤ f if every truth assignment satisfying
g also satis�es f (i.e., if T (g) ⊆ T (f)). When this holds, g is said to imply f , oralso that f is a 
onsequen
e of g. If, in addition, there is a truth assignment x with
g(x) = 0 and f(x) = 1, then g is said to properly imply f , or that f is a proper
onsequen
e of g, and denote it by g � f .A Boolean fun
tion f over variables V ′ is monotone if x ≤ y implies f(x) ≤ f(y)for all x,y ∈ A(V ′), it is a-unate for some a ∈ A(V ′), if g(x) = f(x⊗a) is monotone,and it is unate if it is a-unate for some a ∈ {0, 1}n.Given (partial) assignments σ1 : V ′ → {0, 1} and σ2 : V ′′ → {0, 1} with V ′,V ′′ ⊆ V,let σσ2

1 be the (partial) assignment that agrees with σ2 on V ′′, with σ1 on V ′ \ V ′′, andleaves the rest of the variables unassigned. When V ′ and V ′′ are disjoint, then σσ2

1is sometimes written as (σ1, σ2). When this is the 
ase, and σσ2

1 is an input of somefun
tion f , or proto
olMQ 2, then sometimes, instead of f((σ1, σ2)) orMQ((σ1, σ2)),with a slight abuse of notation, simply f(σ1, σ2), ϕ(σ1, σ2) or MQ(σ1, σ2) is used.2.3 Conne
ting Syntax and Semanti
sGiven a partial assignment σ : V ′ → {0, 1} and a Boolean formula ϕ over V, let ϕσ bethe formula obtained from ϕ by repla
ing ea
h variable v ∈ Var(ϕ)∩V ′ with the value σassignes to it. On the other hand, ϕ(σ) is the formula obtained by iterating the follow-ing: if the 
urrent formula 
ontains some subformula ◦(ϕ1, . . . , ϕi−1, b, ϕi−1, . . . , ϕℓ)for some b ∈ {0, 1}, ◦ ∈ {∧,∨,¯}, then repla
e it with
• 1, if ◦ is ∨ and b = 1, or if ◦ is � ¯ � and b = 0,
• 0, if ◦ is ∧ and b = 0, or if ◦ is � ¯ � and b = 1,
• ∨(ϕ1, . . . , ϕi−1, ϕi−1, . . . , ϕℓ), if ◦ is ∨ and b = 0,
• ∧(ϕ1, . . . , ϕi−1, ϕi−1, . . . , ϕℓ), if ◦ is ∧ and b = 1,as long as at least one of the above 
ases apply. Note that if σ is an assignment,then the resulting formula is either the 0 or the 1. A

ordingly, for any formula ϕthere is a naturally asso
iated fun
tion over variables Var(ϕ), mapping an assignment

x ∈ A(Var(ϕ)) to the appropriate 
onstant ϕ(x). Conversely, given some formula ϕwith an asso
iated fun
tion f , we also say that ϕ represents f . Finally, de�ne theempty 
onjun
tion, ⊤ (resp. the empty disjun
tion, ⊥), to be always true (resp. false).2See Chapter 3.



2.3 Conne
ting Syntax and Semanti
s 13Given some threshold formula Tht
U , and some (partial) assignment x with domain

Dom(x) ⊇ U , let Tht
U(x) = 1 if x assigns 1 to at least t of the variables in U , andlet Tht

U(x) = 0 otherwise. A

ordingly, for any threshold formula there is a naturallyasso
iated fun
tion over variables U .Two formulas ϕ and ψ are equivalent, denoted ϕ ≡ ψ, if they represent the sameBoolean fun
tion. If we use some formula ϕ in a pla
e where a fun
tion is expe
ted,then ϕ will stand for the fun
tion represented by ϕ; a

ordingly the relations ≤ and
� (i.e., the notions �implies� and �properly implies�, resp. �
onsequen
e� and �proper
onsequen
e�) 
an also be naturally extended for formulas. Now then, if a term t impliessome fun
tion f than t is said to be an impli
ant of f . If, furthermore it also holdsthat deleting any literal from t results in a term that is not an impli
ant of f , then t isa prime impli
ant of f . On the other hand, if some 
lause c is a 
onsequen
e of theBoolean fun
tion f , then c is 
alled an impli
ate of f .A term is monotone if it 
onsists of unnegated variables. Given a ∈ {0, 1}n, aterm is a-unate if the sign of every literal in it agrees with a�that is, a literal is positiveif and only if the 
orresponding 
omponent of a is 0. (Note that the above de�nitions
oin
ide with the 
orresponding de�nitions for the asso
iated fun
tions.) For example,if n = 3 and a = 101 then v1 v2 is a-unate.2.3.1 Ve
tors, Cubes and Sub
ubesLet V ′ ⊆ V be �nite; for simpli
ity assume V ′ = Vn for some n.Note that (using the natural ordering of the variables in V, where vi is the i-th itemin the order) assignments 
an be thought of as Boolean (or 0-1) ve
tors; a

ordingly
A(V ′) 
an be identi�ed with the n-dimensional 
ube, {0, 1}n. Then, for example,the assignment σ = (v1 7→ 1, v2 7→ 1, v3 7→ 1, v4 7→ 0, v5 7→ 1) 
an be writtenas (1, 1, 1, 0, 1) or sometimes even as 11101. (Or maybe even using the exponentialnotation as σ = 1301.)A sub
ube (or simply 
ube) is any set of ve
tors that is of the form T (t) for some
onjun
tion (i.e., term) t. For terms t1, t2, where t1 6≡ 0, the following relations areequivalent:

• t1 ≤ t2,
• T (t1) ⊆ T (t2), and
• Lit(t1) ⊇ Lit(t2), or in words: t1 is subsumed by t2.For a literal ε, the ε half 
ube of A(V ′) is the (n−1)-dimensional sub
ube formed bythe ve
tors for whi
h ε is true. If a term t is an impli
ant of a DNF ϕ = t1 ∨ · · · ∨ tk,then we also say that ϕ is a 
over of t, as the union of the 
ubes T (ti) 
overs the
ube T (t).Proposition 2.1 A set A ⊆ A(V ′) is a 
ube if and only if for every x,y ∈ A andevery z ∈ {0, 1}n su
h that x ∧ y ≤ z ≤ x ∨ y, it also holds that z ∈ A.



14 General De�nitions and NotationsProofThe �only if� dire
tion is easy to see.The �if� dire
tion follows by noting that the 
ondition implies that the ∧ and the
∨ of all the ve
tors in A is in A, and every ve
tor between these two ve
tors is also in
A. The 
onjun
tion of those literals to whi
h value 1 is assigned by both of the aboveve
tors is a term that is satis�ed by exa
tly the ve
tors in A. 2It follows, in parti
ular, that if a 
ube 
ontains two ve
tors with weights w1 < w2,then it also 
ontains ve
tors of weight w for every w1 < w < w2.Given x,y ∈ A(V ′), the term 
orresponding to the smallest sub
ube 
ontainingboth x and y is obtained by in
luding every literal 
orresponding to 
omponents where
x and y agree. For example, the smallest sub
ube in A4 
ontaining both 1010 and
1100 is v1v4.
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Chapter 3Models and theVapnik-Chervonenkis DimensionIn this 
hapter �rst a short des
ription is given of the models used in the presentdissertation. Although all the algorithms dis
ussed in the later 
hapters are revisionalgorithms, the models used are variants of the appropriate models de�ned for learning.For this reason �rst the original variants are dis
ussed shortly (in Se
tion 3.1), andthen the 
orresponding revision versions are de�ned (in Se
tion 3.2). Note that, as thedissertation 
onsiders only Boolean fun
tions and formulas, for simpli
ity the notionsused are de�ned only for this 
ase. (For a more general setting see e.g. [78℄.)Finally, the Vapnik-Chervonenkis dimension is introdu
ed [131℄; a 
ommon tool usedfor proving lower bounds on the amount of information the learner needs to a
quireabout the target 
one
pt during the learning pro
ess.3.1 Models for LearningThe �rst model dis
ussed is PAC learning. Although it is not applied dire
tly in thepresent dissertation, but this model (being the original model in 
omputational learningtheory [127℄) gives the 
learest (and at the same time: the rawest) pi
ture of thegeneral goals and nature of 
omputational learning theory. For more on the relation ofthe models 
onsidered in this 
hapter and others see [63℄. But let us �rst invoke fromChapter 1 the de�nition of learning given by Mit
hell [99℄:�A 
omputer program is said to learn from experien
e E with respe
t to some
lass of tasks T and performan
e measure P , if its performan
e at tasks in T ,as measured by P , improves with experien
e E.�As mentioned, it is too general to be appli
able for spe
i�
 problems, but it sums upni
ely what one has to spe
ify, when formalizing a learning framework:(a) the obje
t for learning (i.e., what one wishes to learn),(b) the method of a
quiring information about it,17



18 Models and the Vapnik-Chervonenkis Dimension(
) some 
riteria for su

ess, and(d) (o

asionally) some e�
ien
y 
riteria.A 
ommon feature of the models dis
ussed below is that there assumed to be some�xed, prede�ned 
lass of formulas R (e.g. the 
lass of DNFs, or Horn formulas, or read-on
e formulas, et
) and some ftrg : A(V ′) → {0, 1} representable by some formula in
R; the latter, whi
h is referred to as the target 
on
ept 1, is unknown to the learner.The general task (thereby spe
ifying (a)) is to �nd some representation for ftrg or forsome approximation of it. Models requiring the former (i.e., to represent ftrg perfe
tly)are 
alled exa
t learning models.Another 
ommon feature is that the e�
ien
y 
riteria builds on the size of ftrg,de�ned as the legth of the shortest formula in R representing ftrg.3.1.1 Probably Approximately Corre
t Learning (PAC)Re
all that for the PAC model only a rough des
ription is given, la
king the merete
hni
alities required by the exa
t de�nition, but su�
ient to reveal the the generalidea behind it.Fix some distribution D over A(V ′); this distribution, just like ftrg, is also unknownto the learner. Then, having a

ess to randomly generated examples in the form
(Xi, ftrg(Xi)), i = 1, 2, . . ., where X1,X2, . . . are independent and have distribution
D, the learner is required to, �with high probability� output some formula that �isa good approximation� of ftrg

2 �and, of 
ourse, to do all this e�
iently in the
omplexity theoreti
 sense. It is easy to re
ognize the four items from the beginning ofthe 
hapter: (a) is ftrg , (b) is random data, (
) is that the probabilisti
 requirementsare ful�lled and (d) is that the running time is polynomial in the size of the di�erentparameters 3 (in
luding the size of ftrg, de�ned as the length of the shortest formula in
R representing it). Note that this bound for the running time also sets an informationtheoreti
 bound: it bounds the number of examples used.3.1.2 Query LearningIn query learning (introdu
ed by Angluin [10℄) the learner 
olle
ts information aboutthe target 
on
ept through a query proto
ol (whi
h thus spe
ieis (b)), assuming theexisten
e of an ora
le that answers (in 
onstant time) di�erent type of questions of thelearner. These questions are typi
ally of the form of

• membership query, querying the value of ftrg on some assignment x�askingfor this information is usually denoted MQ(x)�, or1Note that a Boolean fun
tion (interpreting it as a membership fun
tion) 
an be thought of as asubset of the domain�or in other words as a 
on
ept.2The 
onditions �with high probability� and �is a good approximation� are formulated in terms ofthe distribution D.3Basi
ally, the size 
an be thought of as the number of bits needed to en
ode the di�erent param-eters, also in
luding the size of a random example.
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• equivalen
e query, querying for some 
ounterexample: some assignment

x on whi
h ftrg and some formula ϕ, 
onstru
ted by the learner, disagrees.(Counterexample x is 
alled positive, if ftrg(x) = 1, or negative, if ftrg(x) =

0.) Asking for this information is usually denoted EQ(ϕ). Note that if su
hassignment does not exist (signaled by the ora
le by returning (), the partialassignment with empty domain), then the learning pro
ess has 
ome to an end:
ϕ 
omputes ftrg. The equivalen
e query EQ(ϕ) is proper if ϕ ∈ R, otherwiseit is improper.Query learning is an exa
t learning model, thereby requiring that the learner learns

ftrg exa
tly (again, this spe
i�es (
)). Regarding (d), the e�
ien
y 
riteria in thismodel, in a

ordan
e with the philosophy of the PAC model, is that the time requiredby the learner is bounded by a polynomial of the size of the parameters: the numberof variables in fo
us and the length of the smallest formula in R for ftrg. Again, thisbound for the running time also sets an information theoreti
 bound: it bounds thenumber of queries used.3.1.3 Mistake Bounded LearningIn the mistake bounded model (see [92℄) the learning pro
eeds in a sequen
e of rounds.In round r the learner re
eives an instan
e xr, and produ
es a predi
tion ŷr of its 
lassi-�
ation. Then the learner re
eives a label yr. (This a
tually 
ompletes the des
riptionof (b); in a noise-free model yr is the 
orre
t 
lassi�
ation of xr, that is, yr = ftrg(xr).)If ŷr 6= yr then the learner made a mistake. The mistake bound of the learningalgorithm is the maximal number of mistakes, taken over all possible runs�that is,sequen
es of instan
es. Regarding (d), the e�
ien
y 
riteria is that both the numberof mistakes and the time required by the learner in a round (but independently of thegiven round) 
an be bounded by a polynomial of the paremeters: the number of vari-ables in fo
us and the length of the smallest formula in R for ftrg. (Here, the boundfor the running time does not automati
ally set an information theoreti
 bound�i.e.,for the number of mistakes 
ommitted�, this is why it had to be set dire
tly.) As themodel is thought of as an in�nite pro
ess, it might not be that obvious, but this modelis e�e
tively an exa
t learning model, a

ordingly the su

ess 
riteria (
) is that ftrg islearned exa
tly.A mistake-bounded learning algorithm 
an be thought of as an equivalen
e querylearning algorithm, where the equivalen
e queries 
orrespond to the predi
tions at ea
hstage of the algorithm. These queries are usually improper. Thus, proper equivalen
eand membership query algorithms and mistake-bounded algorithms are in
omparablein general.3.2 Models for Theory RevisionIn theory revision the general task is the same as in learning: to 
onstru
t some rep-resentation for the unknown target 
on
ept ftrg (in the dissertation only exa
t models



20 Models and the Vapnik-Chervonenkis Dimensionare used for revision) a
quiring information about it in the form spe
i�ed by the givenmodel. However it is also assumed that the learning does not start from srat
h, anda

ordingly that the learner has some initial formula ϕ at hand. The general idea be-hind this (following the idea of Mooney [100℄) is that applying some simple, prede�nedsynta
ti
 modi�
ations (referred to as revision oprations) on ϕ one obtains a repre-sentation for ftrg. Thus, using ϕ, the learning requires less additional information aboutthe target 
on
ept. On the other hand it is also apparent how strongly the learningtask depends on the given initial hypotheses.The revision operations 
an, in general, be either deletion or addition type. Thede�nition of these operators may depend on the target 
lass, but, in general, a deletionoperator removes some literal o

uren
e or some subformula from the given formulait is applied on, meanwhile an addition operator extends the formula with a literalo

uren
e 4. (Pre
ise de�nitions for these operators for the di�erent formula 
lassesare given in the subsequent 
hapters.) The revision distan
e between the initialhypotheses ϕ and the target 
on
ept ftrg, denoted dist(ϕ, ftrg), is the minimal numberof revision operations needed to transform ϕ to some formula representing ftrg. Notethat the revision distan
e depends on the revision operators (di�ering in the di�erentmodels!) and that it is not symmetri
. Finally it should be mentioned that in some 
asesonly one type of revision is 
onsidered. A

ordingly one 
an di�erentiate between three
ases: deletions-only (when only deletion operators are 
onsidered) 5, additions-only (when only addition operators are 
onsidered), and general (when both type ofoperators are 
onsidered).To gain some intuition why approa
hing theory revision via the idea of revisionoperators is so appealing, note the following. Te
hni
ally, the task of theory revisionis to learn (i.e., 
onstru
t some representation for) the �di�eren
e� of the initial hy-potheses ϕ and the target 
on
ept ftrg�that is, to learn the set {x : ftrg(x) 6= ϕ(x)}.To adopt the philosphy behind PAC learnability for this task, one has to assume thensome representation 
lass for the above set. However, there doesn't seem to be anynatural, generally appli
able method for this representation task that also �ts the phi-losophy, other than to simply list the operators needed to apply on ϕ to obtain somerepresentation ψ for ftrg.The number of fun
tions representable by some formula in R of size at most mis 2Θ(m) (unless using some wasteful representation, whi
h we do not 
onsider), thus,in general, to identify some formula of size m, one needs Θ(m) bits of information.This is re�e
ted in/is in a

ordan
e with that in ea
h learning model the information4Basi
ally, the addition operator is the inverse of the deletion operator whi
h removes a singleliteral o

urren
e.5As a te
hni
al detail, in this 
ase it 
an happen that no representation of ftrg 
an be obtainedfrom ϕ; in this 
ase dist(ϕ, ftrg) 
an be de�ned to be in�nite. However in the deletions-only 
ase itis is always impli
itely assumed that this is not the 
ase. It should also be mentioned that there is along history of studying this spe
ial 
ase, presumably be
ause of its greater tra
tability, in, and evenbefore, the AI literature. A
tually �deletions-only� 
orresponds to the �stu
k-at� faults usually studiedin diagnosing faulty 
ir
uits in the 1960s and 1970s (e.g., [81℄) and, for instan
e, to the 
ase whereKoppel et al.proved the 
onvergen
e of their empiri
al system for theory revision in the 1990s [82℄.
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 bound is at least linear (but maybe of some higher order polynomial) in thelength of the smallest formula for ftrg
6.In 
ase of revision, the bound for the running time in the e�
ien
y 
riteria stillneeds to be polynomial in the size of ftrg (and of 
ourse of ϕ as well), but the amountof information the learner needs depends on a 
ompletely di�erent parameter: theamount of bits needed to en
ode ftrg, given ϕ. To en
ode the appli
ation of somerevision operator one simply needs to en
ode where in the formula the revision operatoris applied (and o

asionally�in 
ase of addition operators�also to en
ode some literal);thus, given ϕ, ftrg 
an be en
oded using O(ê(logm+logn)) bits of information, where

ê denotes the revision distan
e between ϕ and ftrg, n the number of variables in use,and m the length of ϕ. A

ordingly, in general, the infomation theoreti
 bound inthe e�
ien
y 
riteria for an e�
ient theory revision algorithm is typi
ally polynomial in
ê(logm+ logn).De�nition 3.1 (Theory revision in the query learning model) Given some for-mula 
lass R, an algorithm is a revision algorithm for R with query 
omplexity p,if, given any 
on
ept ftrg�
alled target 
on
ept�representable by some formula in
R, on input ϕ ∈ R�
alled initial formula�the algorithm outputs some representa-tion for ftrg using at most p(ê, logn) queries about ftrg, where ê = dist(ϕ, ftrg). Thealgorithm is said to be an e�
ient revision algorithm for R, if p is a polynomial andthe running time 
an also be bounded by a polynomial of the size of ϕ, the number ofvariables and ê. It is said that the query 
omplexity of R is at least q, if any revisionalgorithm for R is of query 
omplexity Ω(q).In theory revision equivalen
e queries are usually used to �dete
t� some �aw in theinitial formula (i.e., to obtain some assignment on whi
h the learner 
urrent hypothesesand the target 
on
ept disagrees), meanwhile membership queries (often applied insome kind of binary sear
h) are usually used to �lo
ate� the dete
ted �aws (i.e., someposition of the formula where some revision operator should be applied). It is often alsointeresting wether both types of queries are ne
essary for e�
ient revision of a givenformula 
lass. The thesis 
onsiders this problem for both formula 
lasses for whi
he�
ient revision is provided in the query learning model.De�nition 3.2 (Theory revision in the mistake bounded model) Given someformula 
lassR, an algorithm is a revision algorithm forR withmistake bound p, if,given any 
on
ept ftrg�
alled target 
on
ept�representable by some formula in R,on input ϕ ∈ R�
alled initial formula�the algorithm outputs some representationfor ftrg making at most p(ê, log n) mistakes on instan
es 
lassi�ed by ftrg, where ê =

dist(ϕ, ftrg). The algorithm is said to be an e�
ient revision algorithm forR, if p isa polynomial and the running time in ea
h round 
an also be bounded by a polynomialof the size of ϕ, the number of variables and ê.6Re
all that both in query learning and in mistake bounded learning the information theoreti
bound was allowed to depend also on n. However, results in attribute e�
ient learning (see e.g.[23; 27; 92℄) suggest that this 
an often be omitted, and that the polynomial bound on the number ofqueries should allowed to depend only on the size of the targer 
on
ept; a

ordingly the dependen
eon n is not polynomial, only polylogarithmi
 (i.e., polynomial in logn).



22 Models and the Vapnik-Chervonenkis DimensionFinally it should be dis
ussed how�or whether�theory revision results and learn-ability results imply ea
h other. Obviously theory revision implies learnability (but onlyin the general 
ase, allowing both addition and deletion opretors), but so far there areno satisfa
torily general equivalen
e results for the other dire
tion. And, in fa
t, it isnot really expe
ted to have one�as some results suggest:
• Read-on
e formulas (re
all their deinition from Chapter 2) 
an be learned e�-
ifently [13℄, and 
an also be revised e�
iently in the deletions-only model (seeChapter 3), but 
onsidering the addition, it is not even 
lear what the right modelshould be.
• Horn-formulas (resp. monotone DNF formulas) 
an be learned e�
iently [10; 12℄,but the revision problem of �nding one deletion in an n-
lause (resp. n-term)formula has query 
omplexity Ω(n) [52; 53℄.
• Threshold fun
tions 
an be learned using membership queries only, but in 
aseof theory revision both query types are needed for the e�
ient revision (seeChapter 5).This provides further motivation for resear
hing the revisability of various importantformula 
lasses.3.3 Vapnik-Chervonenkis DimensionA 
ommon lower bound te
hnique for the query 
omplexity is to use the Vapnik-Chervonenkis dimension [131℄, whi
h 
an be de�ned as follows.Let R be a set of Boolean formulas over variables V ′. Some Y ⊆ A(V ′) is said tobe shattered by R if for any Z ⊆ Y there is a ϕZ ∈ C su
h that

ϕZ(x) =

{

1 if x ∈ Z,

0 if x ∈ Y \ Z.Then VC-dim(R) := max{|Y | : Y ⊆ A(V ′) and Y is shattered by R} is the Vapnik-Chervonenkis dimension of R 7.Assume that the target 
on
ept is an arbitrary fun
tion that 
an be represented bysome formula in R. It is well known that in this setting any learning algorithm thatuses only equivalen
e queries will ask at least VC-dim(R) queries in the worst 
ase.Furthermore (as is shown in [17℄ and in [94℄), there is some universal 
onstant α > 0su
h that even if the algorithm is allowed to ask both kind of queries (and even if theequivalen
e queries are improper), in the worst 
ase it will ask at least α ·VC-dim(R)queries.7Note that the Vapnik-Chervonenkis dimension is usually de�ned for some set of fun
tions, andnot formulas, however this approa
h seems to �t the presentation of the dissertation better.



Chapter 4Read-on
e FormulasRe
all that a Boolean formula ϕ is a read-on
e formula (sometimes also 
alled a
µ-formula or a Boolean tree), if every variable has at most one o

urren
e in ϕ. Su
h aformula 
an be represented as a binary tree where the internal nodes are labeled with ∧,
∨, and the negation and the leaves are labeled with distin
t variables or the 
onstants0 or 1. (That is, for te
hni
al reasons�
ontrary to the general de�nition�we requirethat in read-on
e formulas all the ∨ and ∧ operations are of arity two. Note, howeverthat this does not mean the loss of generality; for example the formula v ∨ w ∨ u 
anbe represented as ∨(v,∨(w, u)).) The internal nodes 
orrespond to the subformulas.Read-on
e formulas form a nontrivial 
lass that is tra
table from several di�erentaspe
ts, but slight extensions are already intra
table. Boolean fun
tions representedby read-on
e formulas have a 
ombinatorial 
hara
terization [58; 74; 102℄, and 
er-tain read restri
tions make CNF satis�ability easily de
idable in polynomial time (see,e.g., [79℄). It is interesting that the tra
table 
ases for fault testing [81℄ and Horntheory revision [40; 82℄ are also related to read-on
e formulas.Read-on
e formulas are e�
iently learnable using equivalen
e and membershipqueries [13℄. While read-twi
e DNF formulas are still e�
iently learnable [104℄, forread-thri
e DNF formulas there are negative results [2℄.The main result in this 
hapter is the e�
ient revision algorithm for read-on
eformulas in the query model for the deletions-only 
ase. Also lower bounds are providedshowing that the algorithm is 
lose to optimal.4.1 Further De�nitions and NotationsWe 
all a subformula of ϕ 
onstant subformula (more spe
i�
ally; 
onstant 0, resp.
onstant 1 subformula) if it 
omputes a 
onstant (
onstant 0, resp. 
onstant 1) fun
-tion. A 
onstant subformula is maximal 
onstant subformula if it is not the sub-formula of any 
onstant subformula.For te
hni
al reasons it is not the variables of some read-on
e formula ϕ that is ofinterest for us, rather the variables of ϕ that are not in some 
onstant subformula of it.We 
all these variables the relevant variables of ϕ, and denote their set as VarR(ϕ).23



24 Read-on
e FormulasNote that VarR(ϕ) 
an be determined in polynomial time for any read-on
e formula.By the de Morgan rules, we may assume that negations are applied only to variables.As we 
onsider read-on
e formulas only in the deletions-only model, and thus know thesign of ea
h variable�we 
an repla
e the negated variables with new variables (keepingin mind that every truth assignment should be handled a

ordingly). Thus without lossof generality we 
an assume that ea
h variable is unnegated (i.e., we use only ∧ and
∨ in our read-on
e formulas). A Boolean fun
tion is a read-on
e fun
tion if it hasan equivalent read-on
e formula.4.1.1 RevisionFor read-on
e formulas we only 
onsider the deletions-only 
ase (for the general 
ase itis not even 
lear what the right model should be�re
all Chapter 3). Note that for anyformula obtained from some read-on
e formula ϕ by deleting some subformulas thereis some equivalent formula obtained from ϕ by �xing some variables to 1, and someothers to 0. A

ordingly, the revision operators are the �xing of some variable to 0or 1. Then the target 
on
ept is the asso
iated fun
tion of ψ = ϕσ̂ for some partialassignment σ̂, where the initial hypotheses is ϕ, and the the revision distan
e of ϕand ψ is dist(ϕ, ψ) := min{|Dom(σ)| : σ ∈ A(V ′) su
h that ψ ≡ ϕσ}, where V ′ isthe universe in s
ope.Note that this is in a

ordan
e with the general approa
h des
ribed in Chapter 3.4.1.2 SensitizationOur revision algorithm uses the te
hnique of path sensitization from fault analysis inswit
hing theory (see, e.g., Kohavi [81℄). Let the initial formula be the monotoneread-on
e formula

ϕ = (ϕ1 ∨ ϕ2) ∧ ϕ3 ,and let the target formula be
ψ = (ψ1 ∨ ψ2) ∧ ψ3 ,where ψ is obtained from ϕ by repla
ing 
ertain variables by 
onstants. Consider thepartial truth assignment α that �xes all the variables in ϕ2 to 0, and all the variablesin ϕ3 to 1. This �xing of the variables is 
alled sensitizing ϕ1 , and α is 
alled thesensitizing partial truth assignment for ϕ1. Put x0 := 0α and x1 := 1α.Asking the membership queries MQ(x0) and MQ(x1), there are three possibilities.1. IfMQ(x1) = 0, then it must be the 
ase that either ψ1(1) = 0, in whi
h 
ase ψ1is identi
ally 0, or ψ3(1) = 0, in whi
h 
ase the whole target formula is identi
ally0.2. If MQ(x0) = 1, then it must be the 
ase that either ψ1(0) = 1, in whi
h 
ase

ψ1 is identi
ally 1, or ψ2(0) = 1, in whi
h 
ase ψ2 is identi
ally 1.



4.1 Further De�nitions and Notations 253. For the revision algorithm it is important to noti
e that we 
an also gain infor-mation in the third 
ase, when MQ(x0) = 0 and MQ(x1) = 1. In this 
ase wedo not observe any �abnormality,� but we 
an 
on
lude that for every truth as-signment y : VarR(ψ1) → {0, 1} it holds that ψ1(y) = MQ(y, α). Thus we 
ansimulate membership queries to the subformula ψ1 by membership queries to thetarget 
on
ept, and this enables the revision algorithm to pro
eed by re
ursion.Also note that in this 
ase it is still possible that ψ2(1) = 0 and/or ψ3(0) = 1.Now we give the general de�nition of a sensitizing partial truth assignment. Let ϕ′be a subformula of ϕ that is not part of some 
onstant subformula of it. Consider thebinary tree representing ϕ, and let P be the path leading from the root of ϕ to theroot of ϕ′. Then ϕ 
an be written as
ϕ = (· · · (ϕ′ ◦r ϕr) ◦r−1 · · · ◦3 ϕ3) ◦2 ϕ2) ◦1 ϕ1, (4.1)where ϕ1, . . . , ϕr are the subformulas 
orresponding to the siblings of the nodes of P ,and ◦1, . . . , ◦r are either ∧ or ∨. In this representation we used the 
ommutativity of

∧ and ∨; in general ϕ′ need not be a leftmost subformula of ϕ. Let ψ be obtainedfrom ϕ by repla
ing 
ertain variables by 
onstants�that is, ψ = ϕσ̂ for some partialassignment σ̂. Then, as in (4.1), we 
an write ψ as
ψ = (· · · (ψ′ ◦r ψr) ◦r−1 · · · ◦3 ψ3) ◦2 ψ2) ◦1 ψ1. (4.2)where ψi = ϕσ̂

i for i = 1, . . . , r. Subformula ψ′ is 
alled the subformula 
orrespond-ing to ϕ′.De�nition 4.1 Let ϕ be a read-on
e formula with subformula ϕ′, and write ϕ as inEquation 4.1. Sin
e ϕ is read-on
e, VarR(ϕ′) and VarR(ϕi), i = 1, . . . , r form apartition of VarR(ϕ). Now let α be the partial truth assignment that assigns 1 (resp.,0) to every variable in VarR(ϕi) if ◦i is ∧ (resp., ∨), for every i = 1, . . . , r. Then α is
alled the partial truth assignment sensitizing ϕ′.Generalizing the remarks above, let α be the partial truth assignment sensitizing
ϕ′. Form the truth assignments x0 = 0α (resp. x1 = 1α) that extend α by assigning 0(resp. 1) to the variables o

urring in ϕ′. Now, if MQ(x1) = 0, then it follows by themonotoni
ity of ψ that either ψ′ or a subformula ψi su
h that ◦i = ∧ is 
onstant 0. Inthis 
ase, the whole subformula 
orresponding to (· · · (ψ′ ◦r ψr) ◦r−1 · · · ◦i−1 ψi−1) ◦i ψiin the target must be 
onstant 0; thus this whole subformula 
an be deleted andrepla
ed by 0. The 
ase is similar when MQ(x0) = 1. On the other hand, whenMQ(x1) = 1 and MQ(x0) = 0, we 
an be sure that for any partial truth assignment
y of the variables in ψ′, we have ψ′(y) = MQ(y, α). This means that ψ′ is not partof a 
onstant subformula of ψ. These remarks are summarized in the following lemma,whi
h is used several times later on, sometimes without mentioning it expli
itly.Lemma 4.2 (a) Let ϕ be the initial formula, ϕ′ be a subformula of ϕ, let ψ, ψ′ bethe target formula, resp., its subformula 
orresponding to ϕ′, and let α be the partial



26 Read-on
e Formulastruth assignment sensitizing ϕ′. Then ψ′ is part of a 
onstant subformula of ψ if andonly if MQ(0α) = 1 or MQ(1α) = 0. Otherwise ψ′(y) = MQ(y, α) for every truthassignment y : VarR(ϕ′) → {0, 1}.(b) If ψ′ is a maximal 
onstant subformula and ◦i is ∧ (resp. ∨), then ϕi(1) = 1(resp. ϕi(0) = 0) for every i = 1, . . . , r.In the rest of this se
tion we formulate some useful properties of subformulas.Two subformulas are siblings if the 
orresponding nodes in the tree representation aresiblings. The next lemma follows dire
tly from the de�nitions.Lemma 4.3 Two maximal 
onstant subformulas 
annot be siblings.The revision algorithm pro
eeds by �nding maximal 
onstant subformulas, thus itis important to know that identifying these is su�
ient for learning. That is, thatthe revised initial hypotheses, ϕ is equivalent to the target, ψ = ϕσ̂, if the maximal
onstant subformulas of them are identi
al: 
orrespond to the same inner nodes, and
ompute the same 
onstant. For this, let us introdu
e the following notion. Partialassignments σ1 and σ2 are equivalent (with respe
t to some formula ϕ) if ϕσ1 ≡ ϕσ2�or, equivalently, if ϕ(σ1) ≡ ϕ(σ2).Lemma 4.4 (Partial) assignments σ1 and σ2 are equivalent for formula ϕ if and onlyif the maximal 
onstant subformulas of ϕσ1 and ϕσ2 are identi
al.ProofIf the maximal 
onstant subformulas are identi
al, then after repla
ing them with the
orresponding 
onstants, one obtains the same formula. Thus the �if� dire
tion of thelemma holds. For the �only if� dire
tion, assume that σ1 and σ2 are equivalent for ϕ,but the maximal 
onstant subformulas are not identi
al. There are two 
ases. The�rst 
ase is when there is a subformula ϕ0 of ϕ that turns into a maximal 
onstantsubformula in both ϕσ1 and ϕσ2 , but ϕσ1

0 ≡ 0 and ϕσ2

0 ≡ 1. Let α be the partial truthassignment sensitizing ϕ0. Then (ϕσ1)(1α) = 0, while (ϕσ2)(1α) = 1, 
ontradi
ting theassumption that σ1 and σ2 are equivalent. In the se
ond 
ase there is a subformula whi
his maximal 
onstant in one of ϕσ1 and ϕσ2 , but not for the other. Let ϕ0 be a largestsu
h subformula. We may assume w.l.o.g. that ϕσ1

0 is a maximal 
onstant subformula,whi
h 
omputes the 
onstant 0, and ϕσ2

0 is not part of a 
onstant subformula. Then
ϕσ1(1α) = 0 and ϕσ2(1α) = 1, again 
ontradi
ting the assumption that σ1 and σ2 areequivalent. 2Corollary 4.5 By �nding a revision of the formula ϕ that has maximal 
onstant sub-formulas identi
al to those of the target formula, we get a formula equivalent to thetarget formula.The following lemma 
an be proved by a simple algorithm that uses re
ursion onthe stru
ture of the formula ϕ.



4.2 Revision Algorithm for Read-on
e Formulas 27Lemma 4.6 Given a non-
onstant read-on
e formula ϕ and a 
onstant c, one 
an�nd in polynomial time a partial assignment σ su
h that ϕσ ≡ c and the number ofvariables in the domain of σ is minimal.Let ϕ be a read-on
e formula with subformula ϕ′. We say that ϕ′ is an ap-proximately half-size subformula of ϕ if (1/3) · |VarR(ϕ)| ≤ |VarR(ϕ′)| ≤ (2/3) ·

|VarR(ϕ)|. It is a standard fa
t that su
h a subformula exists (see, e.g., Wegener [132℄).For example, any minimal subformula that 
ontains at least one-third of the relevantvariables has this property.4.2 Revision Algorithm for Read-on
e FormulasThe main result of this se
tion is for Algorithm ReviseReadOn
e (Algorithm 1), whi
hrevises read-on
e formulas in the deletions-only model of revisions.Algorithm ReviseReadOn
e 
onsists of a loop that 
he
ks whether the target hasbeen found, and if not, 
alls FindConstant. (Re
all that () denotes the partial assign-ment with empty domain, and that re
eiving it for an equivalen
e query means that thequeried formula is equivalent to the target formula.) In ea
h 
all of FindConstant byReviseReadOn
e, a maximal 
onstant subformula of the target formula ψ is identi�edalong with a partial assignment that �xes this subformula to the appropriate 
onstantvalue. The maximal 
onstant subformula is then eliminated, thus the updated formula
ontains fewer variables. As the membership queries always refer to truth assignmentsto the original set of variables, the new membership queries have to assign some valuesto the eliminated variables as well. The 
onstru
tion implies that these variables areirrelevant, therefore their values 
an be arbitrary. In view of this, these variables willoften be left out of 
onsideration in the later steps.Algorithm 1 Algorithm ReviseReadOn
e(ϕ)1: while (x := EQ(ϕ)) 6= () do2: σ := FindConstant(ϕ,x)3: ϕ := ϕσ4: end whileFindConstant, displayed as Algorithm 2, is a re
ursive pro
edure, whi
h takes aformula ϕ and a 
ounterexample x, and returns a partial assignment σ, whi
h �xesa subformula to a 
onstant c. It always holds that the subformula is a maximal 
on-stant subformula 
omputing the 
onstant c in any representation of the target 
on-
ept 1. FindConstant works re
ursively, always fo
using on a faulty subformula (i.e.,a subformula whi
h 
ontains some variable(s) repla
ed by a 
onstant) of the previouslevel's formula. This subformula may never be a proper subformula of a 
onstant1In several pla
es in the proof we will say that a property holds for any representation of thetarget 
on
ept. Noti
e that this must be true, as all the information used by the algorithm 
omesfrom membership and equivalen
e queries about the target, and the responses to su
h queries areindependent of the parti
ular representation.
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e Formulassubformula�that is, it is part of a 
onstant subformula if and only if it itself is a max-imal 
onstant subformula. We assume this property holds at the beginning of everyre
ursion level, and we maintain it as we go deeper in the re
ursion. This guaran-tees that we eventually �nd a maximal 
onstant subformula. On
e su
h a subformulais found, we use Lemma 4.6 to return an appropriate partial assignment �xing thissubformula to 
onstant c.Algorithm 2 The pro
edure FindConstant(ϕ,x).1: if MQ(0) == 1 or MQ(1) == 0 then2: return σ that �xes ϕ to the appropriate 
onstant3: end if4: Let ϕ′ be an approximately half-size subformula of ϕ5: Let α be the partial truth assignment sensitizing ϕ′6: if ( c := MQ(0α) == MQ(1α) ) then7: return GrowFormula(ϕ, ϕ′, c)8: else9: Put x1 := x|VarR(ϕ′) and x2,i := x|VarR(ϕi) for i = 1, . . . , r10: if MQ(x1, α) 6= ϕ′(x1) then11: return FindConstant(ϕ′,x1) // look in ϕ′12: else13: i := FindFormula(ϕ, ϕ′,x)14: return FindConstant(ϕi,x2,i)15: end if16: end ifAs we go deeper in the re
ursion, we will need the ability to ask membership queries
on
erning only a subformula of the target. Therefore, when we go to a lower re
ursionlevel with a subformula χ of ϕ, we determine β, the partial truth assignment sensitizing
χ. This way, whenever a need for a membership query arises on the lower level for a truthassignment y : VarR(χ) → {0, 1}, we need only askMQ(y, β). Re
ursion only o

urswhen MQ(0β) = 0 and MQ(1β) = 1, thus we 
an be sure that MQ(y, β) is equalto the value of χ(y), where χ is the subformula of the target formula 
orrespondingto χ (Lemma 4.2). From now on, when talking about membership queries, we alwaysassume that this te
hnique is used, even when, for simpli
ity, MQ(y) is written insteadof MQ(y, β).Theorem 4.7 Let ϕ be a read-on
e formula over Vn, and the target formula be ψ = ϕσ̂for some partial assignment σ̂. Then ReviseReadOn
e(ϕ), using at most O(ê log n)queries, outputs some partial assignment σ′ su
h that ψ ≡ ϕσ′ , where ê = dist(ϕ, ψ) =

min{|Dom(σ)| : σ ∈ An su
h that ψ ≡ ϕσ}.The theorem is an easy 
onsequen
e of the following lemma. (Re
all also Lemma4.4.)Lemma 4.8 If ϕ(x) 6= ψ(x), then, using p(ϕ,x) = O(log |VarR(ϕ)|) queries, algo-rithm FindConstant(ϕ,x) returns a partial assignment σ : V ′ → {0, 1} su
h that for
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e Formulas 29some subformula ϕ̃ of ϕ with VarR(ϕ̃) ⊇ V ′ it holds that the 
orresponding subfor-mula ψ̂ is a maximal 
onstant subformula in ψ, and that (ϕ̃)σ ≡ ψ̂. Furthermore, the
ardinality of Dom(σ) is as small as possible.ProofThe proof of 
orre
tness uses an indu
tion argument (based on the 
ardinality of
VarR(ϕ)), re�e
ting the re
ursive nature of the algorithm. The 
ase when ϕ hasat most one relevant variable, say v, is trivial: in this 
ase ψ must be 
onstant, whi
hwill be dete
eted (using at most p(ϕ,x) = 2 queries) in Line 3, and the algorithmsimply returns some σ = (v 7→ c) for the appropriate c ∈ {0, 1}.For the rest of the proof assume that |VarR(ϕ)| > 1 and that the statement ofthe lemma holds for any formula having at most (2/3)|VarR(ϕ)| relevant variables.Let furthermore ϕ′ be an approximately half-size subformula of ϕ. We also use thenotations introdu
ed in Equations (4.1) and (4.2), and De�nition 4.1. Note furthermorethat |VarR(ϕi)| ≤ (2/3)|VarR(ϕ)| for i = 1, . . . , r.If ψ is 
onstant zero, or, equivalently, if MQ(0) = 1 or MQ(1) = 0 (see Lemma4.2), then an appropriate output 
an be 
onstru
ted as noted in Lemma 4.6. Again,
p(ϕ,x) = 2.If ψ′ is part of a 
onstant subformula�that is, if MQ(0α) = MQ(1α) (seeLemma 4.2)�, then (Lines 6�7) one only needs to �nd the maximal 
onstant subfor-mula it is in�or, in other words, to �nd the root of this maximal 
onstant subformulaon the path from the root of ψ to the root of ψ′. This 
an be 
arried out by pro
e-dure GrowFormula using O(log |VarR(ϕ)|) queries (see Lemma 4.9 and the pre
edingdes
ription of the algorithm). It is thus also 
lear that p(ϕ,x) = O(log |VarR(ϕ)|).For the subsequent arguments de�ne x1 := x|VarR(ϕ′) and x2,i := x|VarR(ϕi) for
i = 1, . . . , r.If ψ′ is not part of a 
onstant subformula and MQ(x1, α) 6= ϕ(x1, α), then, byLemma 4.2, ϕ′(x1) 6= ψ′(x1), and thus ψ′ 
ontains a maximal 
onstant subformula.By the indu
tion hypthesis the 
all FindConstant(ϕ′,x1) (Line 11) will determineone su
h 
onstant subformula ψ̂, and return some partial assignment σ ful�lling therequirements of the lemma. Furthermore this 
all uses p(ϕ′,x1) queries, thus p(ϕ,x) =

p(ϕ′,x1) + 5.On the other hand, if ψ′ is not part of a 
onstant subformula, but MQ(x1, α) =

ϕ(x1, α), then�as MQ(x) 6= ϕ(x)�it must hold that ϕi(x2,i) 6= ψi(x2,i) for some
1 ≤ i ≤ r. Note that if some ψi is 
ontained in some 
onstant subformula, thenthis ψi itself must be a maximal 
onstant subformula, as all other subformulas of ψ
ontaining ψi also 
ontain ψ′, whi
h is assumed not to be in a 
onstant subformula.Thus if this i is known, a maximal 
onstant subformula 
an be lo
ated by the re
ur-sive 
all FindConstant(ϕi,x2,i), using p(ϕi,x2,i) queries. Furthermore, FindFormula
an be used to �nd su
h an index i using log

(

|VarR(ϕ)|/|VarR(ϕi)|
)

+ 2 queries(see Lemma 4.10 and the pre
eding des
ription of the algorithm). Thus in this 
ase
p(ϕ,x) = p(ϕi,x2,i) + log

(

|VarR(ϕ)|/|VarR(ϕi)|
)

+ 7.This 
ompletes the analysis 
onsidering the 
orre
tness of the algorithm. In the restof the proof we upper bound the number of queries made by FindConstant.
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e FormulasDenote by q the number of re
ursive 
alls, by mi the number of relevant variables ofthe subformula in fo
us on the i-th level of re
ursion (thus m0 = log |VarR(ϕ)|), andby pi the number of queries made in the last q − 1 level of re
ursion (i = 0, 1, . . . , q).First note that mi ≤ 2mi−1/3 for i = 1, . . . , q, thus q = O(log |VarR(ϕ)|). Also notethat pi ≤ pi−1 + 7 + log(mi/mi+1) for i = 0, 1, . . . , q − 1 (i.e., on levels where somefurther re
ursive 
all was needed), meanwhile pq = O(logmq). Then
p(ϕ,x) ≤

(

7 + log
m0

m1

)

+ · · ·+

(

7 + log
mq−1

mq

)

+ pq

=O(logm0) + log
m0m1 · · ·mq−1

m1m2 · · ·mq

+O(logmq)

=O(logm0)

=O(log |VarR(ϕ)|). 2Remark 4.1Basi
ally what happens in Lines 1�3 
an be 
onsidered as part of the test in Line 6and the binary sear
h 
arried out by GrowFormula in Line7, but te
hni
ally it seemsto be easier to handle these 
ases separately. The same holds for Lines 10�11 andFindFormula in Line 13 too.Remark 4.2The analysis gets signi�
antly more simple if, instead of the weighted binary sear
hin FindFormula, one uses a simple binary sear
h. However for that version of thealgorithm only the query bound O(ê log2 n) is proved (see [118℄).4.2.1 Algorithm GrowFormulaNow we give a des
ription and analysis of algorithm GrowFormula. Throughout weuse the notations of Equations (4.1) and (4.2), and De�nition 4.1.GrowFormula gets as input a monotone read-on
e formula ϕ, a subformula of it
ϕ′, and a 
onstant c, su
h that MQ(0α) = MQ(1α) = c (and thus MQ(y, α) =

c for any partial truth assignment y : VarR(ϕ′) → {0, 1}), where α is the partialtruth assignment sensitizing ϕ′. It is also required that ψ is non-
onstant. Using
O(log |VarR(ϕ)|) membership queries it determines a subformula ϕ̃ 
ontaining ϕ′ 2,su
h that the 
orresponding subformula in ψ is a maximal 
onstant subformula (andis identi
al to the 
onstant c). Finally GrowFormula outputs an appropriate partialassignment σ : VarR(ϕ̃) →֒ {0, 1} su
h that (ϕ̃)σ ≡ c. In what follows we show howGrowFormula works.Assume for simpli
ity that c = 1; the 
ase c = 0 is dual. Let αi for i = 0, . . . , rbe the partial truth assignment that is identi
al to α for variables in VarR(ϕ1) ∪ · · · ∪

VarR(ϕi), leaves the variables in VarR(ϕ′) unassigned, and assigns 0 to all the variables2Equivalently, as noted earlier, it determines the root of ϕ̃ on the path from the root of ψ to theroot of ψ′.
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e Formulas 31in VarR(ϕi+1) ∪ · · · ∪ VarR(ϕr). Then 0 = 0α0 ≤ 0α1 ≤ 0α2 ≤ · · · ≤ 0αr = 0α, andit holds that MQ(0α0) = 0 and MQ(0αr) = 1.Asking membership queries MQ(0αj ), one 
an use binary sear
h to �nd an i (1 ≤

i ≤ r) su
h that MQ(0αi−1) = 0 and MQ(0αi) = 1. The only di�eren
e between thetruth assignments 0αi−1 and 0αi is that the variables in VarR(ϕi) are o� in 0αi−1 andthey may be on in 0αi . In fa
t, they must be on, as otherwise 0αi−1 = 0αi, 
ontradi
tingMQ(0αi−1) 6= MQ(0αi). But (re
alling the de�nition of the sensitizing partial truthassignment) 0αi−1 6= 0αi also implies that ◦i is ∧. Thus, on one hand, it must be the
ase that ψi(0) = 0 and ψi(1) = 1 in any representation of the target 
on
ept. On theother hand, it must be the 
ase that the input to ◦i from its 
hild on the path is equalto 1 in both 
ases. As the variables in this subformula are all set to 0, this subformulamust 
ompute the 
onstant 1 fun
tion. The inputs 0αi−1 and 0αi demonstrate that nolarger subformula 
omputes a 
onstant fun
tion. Thus the subformula rooted at ◦i−1is a maximal 
onstant subformula. On
e a maximal 
onstant subformula is found, one
an simply apply Lemma 4.6 to 
onstru
t an appropriate σ.We have thus proved the following lemma.Lemma 4.9 If ψ is non-
onstant and c = MQ(0α) = MQ(1α), then it holds thatGrowFormula(ϕ, ϕ′, c) returns a partial assignment σ satisfying the requirements ofLemma 4.8, using O(log |VarR(ϕ)|) queries.4.2.2 Algorithm FindFormulaNow we give a des
ription and analysis of algorithm FindFormula. Throughout weuse the notations of Equations (4.1) and (4.2), and De�nition 4.1.Assuming that ψ′ is not part of some 
onstant subformula of ψ, for 1 ≤ i ≤

r it holds that (as noted in the proof of Lemma 4.8) ψi is part of some 
onstantsubformula of ψ only if ψi itself is a maximal 
onstant subformula of ψ. On the otherhand, further assuming that ψ(x) 6= ϕ(x) but ψ′(x1) = ϕ′(x1), it must thus holdthat ψ has some maximal 
onstant subformula in one of ψ1, . . . ψr. Given this, using
log
(

|VarR(ϕ)|/|VarR(ϕi)|
)

+2 queries FindFormula(ϕ, ϕ′,x) outputs one su
h index
i. In what follows we show how FindFormula works.Put yr+1 := zr+1 := ϕ′(x1) and for i = 1, . . . , r de�ne yi (resp. zi) as

yi = yi+1 ◦i ϕi(x2,i), and zi = zi+1 ◦i ψi(x2,i),where x1 := x|VarR(ϕ′) and x2,i := x|VarR(ϕi) for i = 1, . . . , r. Then yi (resp. zi) is thevalue 
omputed at ◦i in ϕ (resp. ψ) on the input ve
tor x, for i = 1, . . . , r. Sin
e (bythe initial assumptions) yr+1 = zr+1 and y1 6= z1, there must be an i (1 ≤ i ≤ r) forwhi
h yi+1 = zi+1 but yi 6= zi. The sear
h for su
h an index i is done using a weightedbinary sear
h as follows. The yi values 
an be 
omputed using ϕ without any queries.For the 
omputation of the zi, put βr+1 := x1 and βj := (βj+1)
x2,j for j = 1, . . . , r.Then (re
alling that ψi is either a maximal 
onstant subformula of ψ or is not part ofa 
onstant subformula of ψ) zi = MQ(αβi).
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e FormulasDe�ne for j = 2, . . . , r the weight of ϕj to be wj = |VarR(ϕj)| + |VarR(ϕj−1)|.In the binary sear
h we use an interval I = {a, a+ 1, . . . , b}. Initially a = 2 and b = r,as we already know y1, z1, yr+1 and zr+1. For a given I let s =
∑

j∈I wj. In ea
h stepwe determine the index ℓ for whi
h∑ℓ−1
j=awj < s/2 ≤

∑ℓ
j=awj (for this we don't needto ask any queries). We determine yℓ and zℓ (this 
an be done using one query). If

yℓ 6= zℓ, then let I = {ℓ + 1, ℓ + 2, . . . , b}, otherwise let I = {a, a + 1, . . . , ℓ− 1}. If
I is nonempty, we 
ompute s again, and 
ontinue the sear
h. Otherwise the sear
h isover, and if yℓ 6= zℓ, then ℓ is the i index we were looking for, otherwise it is ℓ− 1.To see that the above sear
h uses the 
laimed number of queries, simply note that

• initially s =
∑

j∈I wj ≤ (4/3)|VarR(ϕ)|, as the variables in ϕ′ are not 
ounted,whereas |VarR(ϕ′)| ≥ |VarR(ϕ)|/3

• in ea
h step the value of the sum redu
es to less than its half, and
• throughout the sear
h s ≥ |VarR(ϕi)|, as even in the last step at least one of iand i+ 1 is in I,so if t queries were made throughout the sear
h, it holds that |VarR(ϕi)| ≤ |VarR(ϕ)| ·

(4/3) · (1/2t−1), implying
t ≤ log

|VarR(ϕ)|

|VarR(ϕi)|
+ 3 − log 3 < log

|VarR(ϕ)|

|VarR(ϕi)|
+ 2.We have thus proved the following lemma.Lemma 4.10 If ψ′ is not part of some 
onstant subformula of ψ, and also ψ′(x1) =

ϕ′(x1), but ψ(x) 6= ϕ(x), then ϕi(x2,i) 6= ψi(x2,i) for some 1 ≤ i ≤ r. FurthermoreFindFormula(ϕ, ϕ′,x), using at most log
(

|VarR(ϕ)|/|VarR(ϕi)|
)

+2 queries, returnsone su
h index i.4.3 Example Run of ReviseReadOn
eHere is a detailed example showing how the read-on
e revision algorithm works. Let
V9 be the set of variables in fo
us, let the initial formula be

ϕ = ((v1 ∧ v2) ∨ (v3 ∧ v4)) ∧ ((((v5 ∧ v6) ∨ v7) ∧ v8) ∨ v9)and let the target formula be ψ := ϕσ, where
σ = (v3 7→ 1, v5 7→ 0, v6 7→ 0, v8 7→ 0). (4.3)Thus the target 
on
ept is represented by the formula

ψ = ((v1 ∧ v2) ∨ (1 ∧ v4)) ∧ ((((0 ∧ 0) ∨ v7) ∧ 0) ∨ v9).
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e 33We start by asking the equivalen
e query EQ(ϕ). Let us assume that we re
eive thenegative 
ounterexample x = 110011110. In Pro
edure FindConstant, the member-ship queries MQ(0) = 0 and MQ(1) = 1 bring us to Line 7. At this point we �nd anapproximately half-size subformula , for example
ϕ′ = (v1 ∧ v2) ∨ (v3 ∧ v4).The 
orresponding subformula of the target is ψ′ = (v1 ∧ v2) ∨ (1 ∧ v4).Now we form the sensitizing truth assignment α for ϕ′, whi
h in this 
ase simplysets all variables not in ϕ′ to 1, and we ask membership queries for (0, α) and for (1, α).The answer is MQ(0, α) = 0 and MQ(1, α) = 1, and thus we 
ontinue on Line 12.We have x1 = 1100 and x2 = 11110. By asking the membership query MQ(x1, α) we�nd that ψ′(x1) = 1. Knowing ϕ, we 
an determine without asking any queries that

ϕ′(x1) = 1. As ψ′(x1) = ϕ′(x1), it follows that the x2 part of the 
ounterexample isresponsible for the disagreement between ϕ(x) and ψ(x). In this parti
ular 
ase, thevariables in x2 happen to indu
e a subformula of ϕ, and so FindFormula does not needto do anything. We substitute 1 for ϕ′. Then x2 = 11110 is a negative 
ounterexamplefor the new target, whi
h is the subformula ψ′′ of the target 
orresponding to
ϕ′′ = ((((v5 ∧ v6) ∨ v7) ∧ v8) ∨ v9).It is important to note that as ψ′′(y) = ψ(x1,y), we 
an simulate membership queriesto the new target by membership queries to the original target; thus we 
an 
ontinuethe same pro
edure re
ursively.As the subsequent iterations illustrate additional 
ases, we give further steps of thealgorithm on the example. In the next 
all, whi
h is FindConstant(ϕ′′,x2), we againget to Line 7. The next half size subformula 
an be v5 ∧ v6. The sensitizing truthassignment for this subformula is 010. Now, the membership queries to (00, 010) and

(11, 010) both return 0, indi
ating that either v5 ∧ v6 or some subformula 
ontainingit is turned into the 
onstant 0. Thus we 
all GrowFormula, whi
h asks the additionalmembership queries MQ(11, 110) = 0 and MQ(11, 111) = 1. This shows that
(((v5 ∧ v6) ∨ v7) ∧ v8)is a maximal 
onstant 0 subformula in ϕ′′. No further re
ursive 
alls are needed, weonly need to 
ompute the minimal number of variables that, when turned to 0, makethe subformula identi
ally 0. This 
an be a
hieved by �xing the value of one singlevariable, that is, using the partial assignment (v8 7→ 0). Now we have 
ompleted one
all of the pro
edure FindConstant by the main program.The next 
all of FindConstant start with an equivalen
e query for the formulaobtained above, that is,

ϕ′′′ = ((v1 ∧ v2) ∨ (v3 ∧ v4)) ∧ v9.
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e FormulasLet us assume that we re
eive the positive 
ounterexample 000111111, whi
h, restri
tedto the �ve variables in ϕ′′′, is 00011. We 
ontinue with the half size subformula v1∧v2,whi
h divides the 
ounterexample into 00 and 011. The sensitizing partial truth assign-ment to the �rst half is 001. We �nd that MQ(00, 001) = 0 and MQ(11, 001) = 1,thus v1∧v2 is not turned into a 
onstant subformula. (Noti
e that our only membershipora
le needs inputs from {0, 1}9; fortunately, we may give any values to the �missing�variables.) The membership query MQ(00, 001) = 0 tells us that the �rst half of the
ounterexample gives the same output in v1∧v2 and in the 
orresponding subformula ofthe target. To re
urse, we must �nd a subformula of ϕ′′′ that 
ontains some 
onstantsubformula, but the three variables v3, v4, and v9 do not indu
e a subformula of ϕ′′′.This is a
hieved by the pro
edure FindFormula.In this 
ase we need 
onsider only the two subformulas v3∧v4 and v9, though in gen-eral there 
ould be Ω(n) su
h subformulas, ne
essitating the binary sear
h performed byFindFormula. By de�nition, ϕ′′′ disagrees with the target on the 
ounterexample, andwe have just 
on
luded that v1 ∧ v2 agrees with the 
ounterexample. So, if subformula
(v1 ∧ v2) ∨ (v3 ∧ v4) of ϕ′′′ disagrees with the 
orresponding subformula of the target,then the subformula 
ontaining a 
onstant subformula must be v3 ∧ v4. Otherwise it is
v9. To test whether the subformula (v1 ∧ v2) ∨ (v3 ∧ v4) agrees with the target on the
ounterexample, we ask a membership query on an instan
e formed by setting v1, v2,
v3, and v4 to the values they have in the 
ounterexample, and setting the remainingvariable (v9) to the value it had in the sensitizing assignment for v1 ∧ v2. That, is wemake the query MQ(00011) = 1. Sin
e ϕ′′′(00011) = 0, whi
h disagrees with thetarget, there must be a 
onstant subformula in v3 ∧ v4, whi
h is the input subformulafor the next 
all to FindConstant.That 
all will return the partial assignment (v3 7→ 1), and the next equivalen
equery to the formula

((v1 ∧ v2) ∨ v4) ∧ v9will �nally identify the target 
on
ept. Noti
e that we have a
tually revised fewervariables than given in Equation 4.3. The number of variables revised is as small aspossible for obtaining the target 
on
ept.4.4 Lower Bounds on Revising Read-on
e Formu-lasWe prove a lower bound to the query 
omplexity of revising read-on
e formulas by givingan example of an n-variable read-on
e formula, for whi
h Ω(ê log(n/ê)) equivalen
eand membership queries are required to �nd a distan
e ê revision. If ê = O(n1−ε)for some �xed ε > 0, then this lower bound is of the same order of magnitude, asthe upper bound provided by ReviseReadOn
e. It is also shown that both types ofqueries are needed for e�
ient revision. There are n-variable read-on
e formulas forwhi
h at least n/2 equivalen
e queries are required in order to �nd a single revision. Formembership queries we present an even stronger lower bound, whi
h shows that at least
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n− ê membership queries may be ne
essary, if (instead of not using equivalen
e queriesat all) one is allowed to use fewer than ê equivalen
e queries. As ReviseReadOn
euses exa
tly ê equivalen
e queries to �nd a distan
e ê revision, this means that justby allowing one fewer equivalen
e query, the number of membership queries requiredbe
omes linear. Bshouty and Cleve and Bshouty et al. [28; 29℄ give somewhat related
onstru
tions and tradeo� results for di�erent query types.Our �rst two lower bounds are based on read-on
e formulas of the form ∨(ui∧wi),using a Vapnik-Chervonenkis dimension, resp. an adversary argument, and the thirdlower bound uses an adversary argument for the n-variable disjun
tion.Theorem 4.11 The query 
omplexity of revising read-on
e formulas in the deletions-only model is Ω(ê log(n/ê)), where n is the number of variables in the initial formulaand ê is the revision distan
e between the initial formula and the target formula.ProofLet us assume that

n = 2m ê, where m = 2t.We use variables ui,j and wi,j, where 1 ≤ i ≤ ê and 0 ≤ j ≤ m−1. The initial formulais
ϕn =

ê
∨

i=1

m−1
∨

j=0

(ui,j ∧ wi,j).Assume the u and w variables be arranged in respe
tive ê×m matri
es 
alled U and
W , respe
tively. We look at the 
lass of revisions of ϕn where in ea
h row of the matrix
U exa
tly one variable is �xed to 1. Let Rn denote the set of formulas that 
an beobtained this way.Lemma 4.12 VC-dim(Rn) ≥ ê · t.ProofFor 1 ≤ k ≤ ê and 1 ≤ ℓ ≤ t let

(xk,ℓ,yk,ℓ)be a truth assignment (to the variable pairs in U ×W ) that 
onsists of all 0's, with theex
eption of some positions in the k'th row of the W matrix: namely, those positions
(k, j), where the ℓ'th bit of the binary representation of j is 1. Let the set of theseassignments be S. We 
laim that S is shattered by Rn.Consider a subset A ⊆ S. For every k (1 ≤ k ≤ ê) let ak be the t-bit numberdes
ribing whi
h truth assignments (xk,ℓ,yk,ℓ) belong to A. (That is, the ℓ'th bit of akis 1 i� (xk,ℓ,yk,ℓ) ∈ A.) We look at the revision ϕA for whi
h it is the ak'th variablewhi
h is �xed to 1 in row k of the matrix U .It remains to show that this revision 
lassi�es S in the required manner. If (xk,ℓ,yk,ℓ) ∈

A, then bit ℓ of ak is 1. By de�nition, yk,ℓ has a 1 at position (k, ak). In ϕA, thevariable uk,ak
is �xed to 1. These observations imply that

ϕA(xk,ℓ,yk,ℓ) = 1.
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e FormulasOn the other hand, if (xk,ℓ,yk,ℓ) 6∈ A, then bit ℓ of ak is 0. The only 1 
omponentsof (xk,ℓ,yk,ℓ) are in row k of the W matrix: these are those positions (k, j), where the
ℓ'th bit of the binary representation of j is 1. Position (k, ak) is not one of those. Thusthe 
orresponding u-variables are not �xed to 1 in ϕA, and as their value is 0, we get

ϕA(xk,ℓ,yk,ℓ) = 0.

2By introdu
ing dummy variables if n is not of the right form, we get
VC-dim(Rn) ≥ ê

⌊

log
n

2ê

⌋

.The theorem now follows using the relation between the Vapnik-Chervonenkis dimensionof a formula 
lass and its query 
omplexity (see Se
tion 3.3). 2The number of formulas within revision distan
e ê of a given read-on
e formulais at most 2ê ·
(

n
ê

). Thus if we allow equivalen
e queries whi
h are not ne
essarilyproper, then by using the standard halving algorithm [92℄ one 
an learn a revision using
log
(

2ê ·
(

n
ê

))

= O(ê log n) many equivalen
e queries. We now show that su
h a resultis not possible if the queries are required to be proper.Theorem 4.13 The query 
omplexity of revising read-on
e formulas in the deletions-only model with proper equivalen
e queries alone is at least ⌊n/2⌋ − 1 (where n is thenumber of relevant variables in the initial formula), even when the revision distan
e isonly one.ProofFix n, let s = ⌊n/2⌋, and let the initial formula be
ϕ =

s
∨

i=1

(ui ∧ wi).Let furthermore ψi = ϕ(ui 7→1) for i = 1, . . . , s, and set Ψ = {ψi : i = 1, . . . , s}. (Notethat every element of Ψ is a potential target formula.)Consider the following s
enario. When the learner asks an equivalen
e query EQ(ϕσ)for some partial assignment σ, then the assignment returned is x, where
• if ϕσ ≡ ϕ, then x is the positive 
ounterexample 1{w1,...,ws}. In this 
ase Ψremains un
hanged.
• otherwise, if σ(ui) = 0 or σ(wi) = 0 for some 1 ≤ i ≤ s, then x is the positive
ounterexample 0(ui 7→1,wi 7→1) Again, Ψ remains un
hanged.
• otherwise, if σ(wi) = 1 for some 1 ≤ i ≤ s, then x is the negative 
ounterexample

0(ui 7→1). Again, Ψ remains un
hanged.
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• otherwise, if for some 1 ≤ i ≤ s it holds that σ(ui) = 1 but ϕi 6∈ Ψ, then x isthe negative 
ounterexample 0(wi 7→1). Again, Ψ remains un
hanged.
• otherwise, if |Ψ| > 1, then x is the negative 
ounterexample 0(wi 7→1) for some

1 ≤ i ≤ s su
h that σ(ui) = 1. Also, remove ψi from Ψ.
• otherwise, that is, if σ = (vi 7→ 1) for some 1 ≤ i ≤ s and Ψ = {ψi}, then

x = ().Note that during the whole pro
ess ea
h element of the a
tual Ψ is 
onsistent with allthe previous informations, and that after ea
h query |Ψ| de
reases by at most one. But,as the learning pro
ess 
annot end as long as there are more than one non-equivalenthypotheses 
onsistent with the previous informations, it follows that the learner mustask at least ⌊n/2⌋ − 1 queries. 2Now we present a lower bound for the 
ase when only membership queries areallowed. A
tually, we 
onsider a more general s
enario, where the learner is allowed toask a limited number of equivalen
e queries. In parti
ular, we assume that the learneris told in advan
e that the target is at revision distan
e ê from the initial theory, andthe number of equivalen
e queries allowed is at most ê− 1.Theorem 4.14 Denote the revision distan
e between the initial formula and the targetformula by ê, and assume that the learner is allowed to ask arbitrarily many membershipqueries, but only at most ê − 1 equivalen
e queries. Under this restri
tion the query
omplexity of revising read-on
e formulas in the deletions-only model is at least n− ê,where n is the number of relevant variables in the initial formula.ProofLet the initial formula be ϕ =
∨

v∈Vn
v, and set initially D = R = ∅ and U = Vn. (Dstands for deleted, R stands for relevant and U stands for un
ertain.)Consider the following s
enario. When the learner asks an equivalen
e query EQ(ϕσ)for some partial assignment σ, then the assignment returned is x, where

• if it holds that U = ∅ and ϕσ ≡
∨

v∈R v, then x = ().
• otherwise, if ϕσ is identi
ally 1 (resp., 0), then x is the negative (resp., positive)
ounterexample 0 (resp., 1). In this 
ase the sets are not 
hanged.
• otherwise, if U \Dom(σ) 6= ∅, then x is the negative 
ounterexample 0(v 7→1) forsome v ∈ U \ Dom(σ). In this 
ase move v from U to D.
• otherwise x is the positive 
ounterexample 1U . Again, the sets are not 
hanged.When the learner asks a membership query MQ(x) for some assignment x, then theanswer is
• �1� if x(v) = 1 for some v ∈ R. In this 
ase the sets are not 
hanged.
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• �1� otherwise, if x(v) = 1 for some v ∈ U . In this 
ase one su
h v is moved from
U to R. Furthermore, if now |U ∪ D| = ê, then move the rest of the variablesof U to D.

• �0� otherwise, and the sets are not 
hanged.Note that D 
an only in
rease after an equivalen
e query, and even then only by one.Thus, a

ording to the assumptions of the theorem, the 
ardinality of D will always beless then ê. It also holds that |U ∪D| does not 
hange after an equivalen
e query, andde
reases by at most one after a membership query, as long as |D ∪ U | > ê. Finallynote that during the whole pro
ess for ea
h V ⊆ U ∪ R of 
ardinality ê it holds that
∨

v∈Vn\V v is 
onsistent with all the previous informations. But, as the learning pro
ess
annot end as long as there are more than one non-equivalent hypotheses 
onsistentwith the previous informations, it follows that the learner must ask at least n − êmembership queries. 24.5 Con
luding RemarksAll the results presented in this 
hapter�unless noted otherwise�appeared in thepaper [52℄, 
o-authored by the author of the present dissertation.



Chapter 5Threshold FormulasRe
all that on assignment x threshold formula Tht
U evaluates 1 if x assigns 1 to atleast t variables in U , otherwise it evaluates to 0. A threshold fun
tion is a Booleanfun
tion that 
an be represented with some threshold formula. Fun
tions of this typeare also 
alled Boolean threshold fun
tions and zero-one threshold fun
tions, in orderto distinguish them from the more general kind of threshold fun
tions, where insteadof simply 
ounting the number of variables in U assigned to 1, one asso
iates weightsto variables, and sums the weights of the 
omponents that are on. (For example su
h athreshold fun
tion is applied in Algorithm RevWinn in Se
tion 6.2.) However, as in this
hapter only the former 
lass is 
onsidered, throughout this restri
ted 
lass is referredto as threshold fun
tions.Threshold fun
tions (espe
ially in the wider, non-Boolean sense) form a mu
h stud-ied 
on
ept 
lass in 
omputational learning theory. They are also applied in manylearning related results (see e.g. [92; 126; 129℄). Heged¶s [64℄ gave Θ(n) upper andlower bounds (assuming that Vn is the set of variables in fo
us) for the number ofqueries needed to learn threshold fun
tions in the query model; the algorithm uses onlymembership queries.In this 
hapter an e�
ient revision algorithm is presented for the 
lass of thresholdfun
tion in the query model for the general 
ase (also allowing the modi�
ation of thethreshold). Additionally, some negative results are presented showing, for instan
e, thatthreshold fun
tions 
annot be revised e�
iently from either type of query alone.5.1 Further De�nitions and NotationsFor simpli
ity assume throughout the 
hapter that Vn is the set of variables in fo
us.For some threshold fun
tion Tht

U the variables in U (resp., in Vn \U) are the rele-vant (resp., irrelevant) variables of Tht
U . Note that for every non-
onstant thresholdfun
tion its set of relevant variables and its threshold are well de�ned, thus every non-
onstant threshold fun
tion has a unique representation. We say that a set S ⊆ Vn isa positive (resp., negative) set for Tht
U if it evaluates to 1 (resp. to 0) on 1S.A set S ⊆ Vn is maximal negative (or 
riti
al) for threshold fun
tion Tht

U if39
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|S ∩ U | = t− 1; and minimal positive for Tht

U if |S ∩ U | = t.Given the above, we 
an state the following proposition whi
h we use impli
itlythroughout:Proposition 5.1 If S is maximal negative for ψ = Tht
U , then for every Z ⊆ Vn \ Sit holds that Z 
ontains at least one variable in U (i.e., relevant variable of ψ) if andonly if MQ(1S∪Z) = 1.5.1.1 RevisionIn the 
ase of threshold fun
tions the general model is used, where a deletion operatoris the deletion of a relevant variable and an addition operator is the addition of a newrelevant variable, and, additionally, it is also allowed the modify the threshold. Morepre
isely, the modi�
ation of the threshold by any amount is 
onsidered to be a singleoperation (as opposed to 
hanging it by one); as for the algorithm upper bounds areproved, this only makes the results stronger. Thus the revision distan
e is de�ned as

dist
(

Tht
U ,Thθ

R

)

=

{

|U \R| + |R \ U | + 1, if t = θ,

|U \R| + |R \ U |, otherwise.Thus, for example, dist
(

Th1
{v1,v2,v4},Th3

{v1,v2,v3,v5}
)

= 4.Note that this is in a

ordan
e with the general approa
h des
ribed in Chapter 3.5.2 Revision Algorithm for Threshold Fun
tionsWe present a threshold revision algorithm ReviseThreshold. The overall revisionalgorithm is given as Algorithm 3, using the pro
edures des
ribed in Algorithms 5 and 6.Throughout this se
tion, let the initial fun
tion be ϕ = Tht
U and the target fun
tionbe ψ = Thθ

R. Algorithm ReviseThreshold has three main stages. First it identi�esall the variables that are irrelevant in ϕ but relevant in ψ (Algorithm FindAdditions).Then it identi�es all the variables that are relevant in ϕ but irrelevant in ψ (AlgorithmFindDeletions). Finally, it determines the target threshold. (In the pseudo
ode thisthird step is built into Algorithm FindDeletions as the last iteration, after the set ofrelevant variables of the target fun
tion is identi�ed.)A sample run of the algorithm is given in Se
tion 5.3.Algorithm 3 The pro
edure ReviseThreshold(ϕ), where ϕ = Tht
U .1: Use 2 MQ's to determine if ψ ≡ c for some c ∈ {0, 1}; if so return 
2: V := FindAdditions(U)3: ψ := FindDeletions(U ∪ V )4: return ψBefore getting into further details, we need to point out an additional subroutine.Our revision algorithm frequently uses a kind of binary sear
h, presented as Algorithm 4.



5.2 Revision Algorithm for Threshold Fun
tions 41The starting points of the binary sear
h are two sets, a negative one, N and a positiveone, P su
h that N ⊆ P . The algorithm returns two items: the �rst is a set ofvariables that, when added to N , make a positive set; the se
ond is a variable that,when removed from this positive set, turns it into a negative one.Algorithm 4 BinarySear
h(N,P ).Require: MQ(1N) = 0 and MQ(1P ) = 1 and N ⊆ P1: N0 := N2: while |P \N | > 1 do3: Partition P \N into approximately equal-size sets D1 and D2.4: Put M := N ∪D15: if MQ(1M) == 0 then6: N := M7: else8: P := M9: end if10: end while11: Let v be the one variable in P \N12: return (P \N0, v)First we analyze algorithm FindAdditions (Algorithm 5), whi
h is responsible for�nding all missing relevant variables.Lemma 5.2 Let R be the relevant variables of the non
onstant target fun
tion. IfAlgorithm FindAdditions is 
alled with input U ⊆ Vn, then it returns R \ U , using
O(|R \ U | logn) queries.ProofThe algorithm stores the un
ertain but potentially relevant variables in the set Potentials(thus Potentials is initially set to Vn \ U). The pro
edure �rst determines a setBase ⊆ U su
h that Base is negative, and Base ∪ Potentials is positive (unlessPotentials 
ontains no relevant variables�in whi
h 
ase there are no new relevantvariables used by ψ, so we quit in Line 8).Then the sear
h for new relevant variables starts. BinarySear
h(Base,Base ∪Potentials) is used repeatedly to �nd one relevant variable, and then remove thisvariable from Potentials. After removing a 
ertain number of relevant variables fromPotentials, the instan
e Base∪Potentialsmust be
ome minimal positive. Afterrea
hing this point, we do not only remove any newly found relevant variables fromPotentials, but we also add them to the set Base. From this point on, it holds that
|(Base∪Potentials)∩R| = θ. Thus the indi
ator that the last relevant variable hasbeen removed from Potentials is that Base be
omes positive (MQ(1Base) = 1).As BinarySear
h always uses at most ⌈log2 n⌉ membership queries per 
all, andone addition requires one 
all to BinarySear
h and at most two other membershipqueries are made initially, the stated query 
omplexity follows. 2Now we turn to the dis
ussion of pro
edure FindDeletions (Algorithm 6), whi
h�nds all the irrelevant variables that appear in the initial hypotheses. The pro
edure



42 Threshold FormulasAlgorithm 5 The pro
edure FindAdditions(U)Require: the target fun
tion is not 
onstant1: Potentials := Vn \ U2: if MQ(1U) == 0 then3: Base := U4: else5: (Base, v) := BinarySear
h(∅, U)6: Base := Base \ {v}7: if MQ(1Base∪Potentials) == 0 then8: return ∅9: end if10: end if11: NewRelevants := ∅12: repeat13: (V, v) := BinarySear
h(Base,Base ∪ Potentials)14: NewRelevants := NewRelevants ∪ {v}15: Potentials := Potentials \ {v}16: if MQ(1Base∪Potentials) == 0 then17: Base := Base ∪ {v}18: end if19: until MQ(1Base) == 120: return NewRelevantsuses a fun
tion 
alled MakeEven, presented as Algorithm 7. MakeEven makes at mosttwo queries; its main task is to move variables around to ensure needed 
onditions,mostly parity, on 
ertain sets. A more detailed prose des
ription of its behavior is givenin the proof of Lemma 5.3.Lemma 5.3 If the target fun
tion ψ = Thθ
R is not 
onstant and if R ⊆ H ⊆ Vn, thenif Algorithm FindDeletions is 
alled with inputH , it returns ψ, using O(|H\R| logn)queries.ProofFirst 
onsider the 
ase where no variables need to be deleted from H . If the threshold iseither 1 or |H|, this will be found by one of the two initial equivalen
e queries to thosetwo threshold fun
tions. (Re
all that () denotes the partial assignment with emptydomain, and that re
eiving it for an equivalen
e query means that the queried formulais equivalent to the target formula.) If the threshold is some value in between, thenit will be found by a binary sear
h over threshold values 
arried out by the �rst whileloop. Then the 
orre
t threshold fun
tion is returned (at Line 12).Otherwise, there are some variables that need to be deleted. In this 
ase, ourshort-term goal is to �nd two sets of variables N and P su
h that

|N | ≥ |P |, and N is negative and P is positive for Thθ
R . (5.1)The two initial equivalen
e queries must have assigned P to be a positive 
oun-terexample to Th1

H and N to be a negative 
ounterexample to Th
|H|
H . In the binary
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tions 43
Algorithm 6 The pro
edure FindDeletions(H)Require: R ⊆ H (R = relevant variables in target)1: if (xP := EQ(Th

|H|
H

))

== () then2: return Th
|H|
H3: end if4: if (xN := EQ (Th1

H

))

== () then5: return Th1
H6: end if7: P := {v ∈ H : xP (v) = 1}, N := {v ∈ H : xN (v) = 1},8: ℓ := 1; u := |H|9: while u > ℓ + 1 do10: m := ⌈(u+ ℓ)/2⌉11: if (x := EQ (Thm

H)) == () then12: return Thm
H13: end if14: {Variables not in H are irrelevant}15: if x is a positive 
ounterexample then16: u := m and P := {v ∈ H : x(v) = 1}17: else18: ℓ := m and N := {v ∈ H : x(v) = 1},19: end if20: end while21: (P, v̂) := BinarySear
h(∅, P )22: Base := P ∩N , N ′ := N \Base, P ′ := P \Base23: while |P ′| > 1 do24: changedH := MakeEven(Base, N ′, P ′, v̂, H) {Uses at most 1 MQ}25: if changedH then26: goto Line 127: end if28: Let N0, N1 (resp. P0, P1) be an equal-sized partition of N ′ (resp. P ′)29: Ask MQ (1Base∪Nj∪Pk

) for j, k = 0, 130: Let j and k be indi
es s.t. MQ (1Base∪Nj∪Pk

)

= 0 {su
h j and k exist}31: Base := Base ∪ Pk, P ′ := P1−k, N ′ := Nj32: end while33: H := H \N ′34: goto Line 6



44 Threshold FormulasAlgorithm 7 Fun
tion MakeEven(Base, N ′, P ′, v̂, H)1: Test := (Base ∪ P ′) \ {v̂}{For any v ∈ N ′, MQ (1Test∪{v}) = 1 i� v is relevant}2: if |P ′| is odd then3: Choose vP ∈ P ′ arbitrarily and move vP from P ′ to Base4: Choose vN ∈ N ′ arbitrarily and remove vN from N ′5: if MQ (1Test∪{vN}
)

6= 1 then {vN irrelevant}6: H := H \ {vN}7: return true {H was modi�ed}8: end if9: end if10: if |N ′| is odd then11: Choose v′N ∈ N ′ arbitrarily and remove v′N from N ′12: end if13: return false {H was not modi�ed.}sear
h over threshold values in the �rst while loop (Lines 9�20), N is always assignednegative 
ounterexamples from equivalen
e queries and P is always assigned positive
ounterexamples from equivalen
e queries.Now we need to argue that at the end of that binary sear
h (i.e., after Line 20)
|N | ≥ |P | will hold. Consider the last time that N is updated. (This 
ould be eitherwhen ℓ = 1 before the while loop or inside the while loop.) After that update, Nwill 
onsist of the variables from the negative 
ounterexample that are not known tobe irrelevant. That is, N is set to be {v ∈ H : xN(v) = 1}, where xN was the
ounterexample from the equivalen
e query to Thm

H (or to Th1
H if this was before thewhile loop). Sin
e xN was a negative 
ounterexample it must be that Thm

H(1N) = 1.Thus it must be that |N | ≥ m. In the 
ontrol of the binary sear
h over thresholdvalues, the lower bound ℓ now be
omes m, and ℓ is not updated again. Thus this valueof ℓ is the value of ℓ after the loop has ended, and |N | ≥ ℓ from now on.Similar 
onditions hold for P and u, the upper bound in the 
ontrol of the binarysear
h. After the last update to P , it must be that |P | < m (sin
e P is a positive
ounterexample), u is updated to be this m, and u is not updated again. Thus |P | < u.When the while loop terminates, u ≤ ℓ + 1. Sin
e |P | < u ≤ ℓ+ 1, it holds that
|P | ≤ ℓ. Sin
e |N | ≥ ℓ , we now have Equation (5.1).Now we want to use N and P to 
onstru
t three sets with what we 
all the �keyproperty:�Key property: A triple of sets of variables (Base, N ′, P ′) satis�es the key propertyfor (target) threshold fun
tion ThR

θ if the sets are pairwise disjoint, and it holds that
• Base ∪N ′ is negative,
• |(Base ∪ P ′) ∩ R| = θ (i.e., Base ∪ P ′) is a minimal positive set), and
• |N ′| ≥ |P ′|.



5.2 Revision Algorithm for Threshold Fun
tions 45Given N and P satisfying Equation (5.1), in Line 21 P is set to be the set returnedby BinarySear
h(∅, P ), whi
h makes P a minimal positive set. We then set Base =

N ∩P , and P ′ = P \Base and N ′ = N \Base. The key property must hold for thistriple: N = Base ∪ N ′ is negative; P ′ = Base′ ∪ P is a minimal positive set, and itmust be that |N ′| ≥ |P ′|.The following 
laim gives two important features of the key property.Claim 5.4 (a) If (Base, N ′, P ′) satis�es the key property, then N ′ 
ontains an irrel-evant variable and P ′ 
ontains a relevant variable.(b) If (Base, N ′, P ′) satis�es the key property and |P ′| = 1, then every element of N ′is irrelevant.The overall goal now is to �nd at least one of the irrelevant variables in N ′ anddelete it. From now on the key property is maintained among the three sets, but in su
ha way that in ea
h iteration the size of N ′ and P ′ gets halved. For this the algorithmsplits up N ′ (respe
tively P ′) into two equal-sized disjoint subsets N1 and N1 (resp. P0and P1). When both |N ′| and |P ′| are even then we 
an do this without any problem;otherwise we have to make some adjustments to N ′ and/or to P ′, that will be taken
are of by pro
edure MakeEven, whi
h we will des
ribe presently.Assume for now that both |N ′| and |P ′| are even. Let θ′ = θ − |R ∩ Base|. Itholds that |R∩ (N0 ∪N1)| < θ′ and |R∩ (P0 ∪P1)| = θ′. Thus for some j, k ∈ {0, 1}we have |R∩ (Nj ∪Pk)| < θ′ (equivalentlyMQ(1Base∪Nj∪Pk
) = 0). Note that the setsBase := Base ∪ Pk, N ′ := Nj and P ′ := P1−k still have the key property, but thesize of N ′ and P ′ is redu
ed by half. Thus after at most log n steps P ′ is redu
ed toa set 
onsisting of a single (relevant) variable. Thus N ′ is a nonempty set of irrelevantvariables (part (b) of Claim 5.4) that 
an be removed from H (Line 33).Finally, the fun
tion MakeEven(Base, N ′, P ′, v̂, H) works as follows. Its job is tomove variables among sets so as to preserve the key property for Base, N ′, and P ′,while making both N ′ and P ′ have even size. Sometimes instead, however, it willremove an irrelevant variable from H�in this 
ase it returns true and its 
aller restartswith the smaller H .First MakeEven 
he
ks whether |P ′| is odd, and if so, it moves an arbitrary element

vP of P ′ to Base. Note that if vP was relevant, this a
tion might turn Base ∪ N ′into a positive set; thus the key property might be violated; so an arbitrary element vNwill also be removed from N ′. If vN is irrelevant (whi
h 
an be tested using set Testde�ned at Line 1), MakeEven removes it from H and immediately returns true, so theoverall sear
h 
an be restarted.Otherwise (i.e, if vN is relevant, or if MakeEven was 
alled with P ′ of even 
ardi-nality) the key property holds for the new triple (Base, N ′, P ′), and |P ′| is even. ThenMakeEven 
he
ks if |N ′| is odd, and if so, an arbitrary v′N gets removed from N ′.If MakeEven returns false (no irrelevant variable was removed from H), then theresulting triple will also have the key property.Now we give the 
omplexity analysis.
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h deletion found, at most 2 + ⌈log2 n⌉ equivalen
e queries are used to getthe sets N and P , and then one 
all to BinarySear
h to make P a minimal positiveset. Next the algorithm iterates, shrinking both |P ′| and |N ′| by half in ea
h iteration,at most ⌈log2 n⌉ times. Ea
h su
h iteration requires at most 5 membership queries.Thus (as BinarySear
h always uses at most ⌈log2 n⌉ membership queries per 
all)the deletions require at most O(|H \R| logn) queries. 2Now we 
an state the main result of the se
tion.Theorem 5.5 Let the ϕ be the initial and ψ the target formula, where both are
n-variable threshold funtions. Then ReviseThreshold(ϕ), using O(ê log n) queries,outputs ψ, where ê = dist(ϕ, ψ).ProofFirst, two membership queries are used to determine if the target is either of thetwo 
onstant Boolean fun
tions. For non
onstant fun
tions, the 
omplexity and the
orre
tness follow from Lemmas 5.2 and 5.3. 25.3 Example Run of ReviseThresholdTo demonstrate the algorithm, we provide an example run.Let V8 be the set of variables in fo
us, furthermore let the initial fun
tion ϕ andthe unknown target fun
tion ψ be

ϕ = Th1
{v1,v2,v4}

ψ = Th4
{v1,v2,v3,v5,v6} .First, in subse
tion 5.3.1 we determine all the relevant variables that were left out from

{v1, v2, v4}, then in subse
tion 5.3.2 we further revise our hypotheses from subse
tion5.3.1 by removing those irrelevant variables that appeared in {v1, v2, v4}.5.3.1 Adding the Previously Unknown Relevant VariablesTwo MQ's to 00000000 and 11111111 determine that the target fun
tion is non
on-stant.We next determine the ne
essary additions, that is, the relevant variables from
{v3, v5, v6, v7, v8}, using Pro
edure FindAdditions. Sin
e assignment 1{v1,v2,v4} isnegative, Potentials = {v3, v5, v6, v7, v8} must 
ontain some unknown relevantvariables.In Lines 12�19 of Pro
edure FindAdditions, we repeatedly use BinarySear
hfrom Base = {v1, v2, v4} to Base∪Potentials to �nd one. Inside BinarySear
hask MQ(11111100), the answer is 1. Ask MQ(11111000), the answer is 1. AskMQ(11110000), the answer is 0. The last negative and positive examples di�er by



5.3 Example Run of ReviseThreshold 47the single variable v5�thus v5 is relevant, and is returned to FindAdditions, andFindAdditions adds v5 to NewRelevants.Now ex
lude the newly found relevant variable v5 from 
onsideration. As
1Base∪{v3,v6,v7,v8} is still positive, we make another similar 
all to BinarySear
h.Ask MQ(11110100), the answer is 1. Ask MQ(11110000), the answer is 0. Thelast positive and negative ve
tors di�er only on v6 �thus v6 is relevant, and isadded to NewRelevants. Ex
luding v6 from 
onsideration too, we �nd that
1Base∪{v3,v7,v8} is negative. This means that the number of relevant variables in
{v1, v2, v4} ∪ {v3, v6, v7, v8} is the same as the unknown threshold. So, we up-date Base from {v1, v2, v4} to {v1, v2, v4, v6}, and do BinarySear
h from Baseto Base ∪ {v3, v7, v8}. Ask MQ(11110110), the answer is 1. Ask MQ(11110100),the answer 1. Ask MQ(11010100), the answer is 0�thus v3 is relevant. Testing
1{v1,v2,v3,v4,v6}, we �nd that it is positive; thus sin
e the number of relevant variables in
{v1, v2, v3, v4, v6, v7, v8} is the same as the threshold, we know that {v7, v8} 
ontainsno relevant variables.5.3.2 Deleting the Irrelevant VariablesNow we know that H = {v1, v2, v3, v4, v5, v6} 
ontains all the relevant variables; allthat left is to get rid of the irrelevant ones (and determine the threshold).This is done in FindDeletions. Pro
edure FindDeletions �rst determines a�big� positive and a �small� negative set. Suppose that we ask equivalen
e queries for
Thθ

H , for θ = 1, . . . , |H|. Sin
e ψ is not 
onstant, we must �nd two θ-values ℓ and
u, and 
orresponding 
ounterexamples 1P and 1N , su
h that u = ℓ+ 1, P is positive,and N is negative. Then it must also hold that |P | ≤ u− 1 = ℓ ≤ |N |; thus N must
ontain an irrelevant element. In fa
t, we determine the above ℓ, u, P and N usingbinary sear
h on the threshold value θ.First, in Lines 1�6 we ask the two extreme 
ases EQ (Th

|H|
H

) and EQ (Th1
H

),getting 
ounterexamples, say, 111110 and 000111 1. The remainder of this binary sear
hover threshold values is 
arried out in Lines 9�20. Ask EQ (Th4
H

), and suppose were
eive the negative 
ounterexample 001111. Ask EQ (Th5
U

), and suppose we re
eivethe positive 
ounterexample 111010. Now we have u = 5, ℓ = 4, P = {v1, v2, v3, v5}and N = {v3, v4, v5, v6}. Be
ause P is already a minimal positive set, it does not
hange in the 
all to BinarySear
h at Line 21.Now, with the help of P , we determine an irrelevant variable of N as follows. Weset their 
ommon part to be Base = {v3, v5}. The remaining parts of P and N ,whi
h are P ′ = {v1, v2} and N ′ = {v4, v6} are both even, so the 
all to MakeEvenmakes no 
hanges (and returns false). We 
ut this remaining part of P ′ (resp. N ′)in two equal parts: P1 = {v1} and P2 = {v2} (resp. N1 = {v4} and N2 = {v6}).Asking membership queries for all 
ombinations Base ∪ Pi ∪ Nj, i, j = 1, 2, we �ndthat Base ∪ P1 ∪ N1 is negative, meanwhile Base ∪ P1 ∪ P2 is positive. As P2 has1As v7 and v8 are known to be irrelevant, from here on we shall omit the 
orresponding bits in theexamples.
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ardinality 1, this means that v4 is irrelevant; remove it from H .Now we restart, and 
ondu
t a binary sear
h on the threshold value again, with thedi�eren
e, that now H = {v1, v2, v3, v5, v6}. Ask EQ (Th3
H

), and suppose we re
eivethe negative 
ounterexample 111000. Then asking EQ (Th4
H

) we re
eive (), meaningthat the learning pro
ess has 
ome to a su

essful end.5.4 Lower Bounds on Revising Threshold Formu-lasIn this se
tion, we show that both types of queries are needed for the e�
ient revisionof threshold fun
tions, and that the query 
omplexity of our algorithm is essentiallyoptimal up to order of magnitude. The �rst result shows that e�
ient revision is notpossible with membership queries alone, even if we allow a restri
ted type of equivalen
equeries as well, and the se
ond result shows that e�
ient revision is not possible withequivalen
e queries alone.Theorem 5.6 Assume that both the initial formula and the target formula have thresh-old value t, and that the learner is allowed to ask equivalen
e queries only for thresholdfun
tions also having threshold value t. (On the other hand, no restri
tions are seton the membership queries.) Under this restri
tion, the query 
omplexity of revisingthreshold formulas is at least n− 1 (where n is the number of variables in the universein s
ope), even when the revision distan
e is only one.ProofLet the initial fun
tion be Thn−1
Vn

, let ψi := Thn−1
Vn\{vi} for 1 ≤ i ≤ n, and set Ψ :=

{ψi : 1 ≤ i ≤ n}.Consider the following s
enario. When the learner asks a membership queryMQ(1V )for some V ⊆ Vn , then the answer is
• 0, if |V | < n− 1. In this 
ase Ψ remains un
hanged.
• 1, if |V | = n or if Ψ = {Thn−1

V }. Again, Ψ remains un
hanged.
• 1, if V = Vn \ {vi} and Ψ = {ψi}.
• 0 otherwise. Also, remove ψi from Ψ for i with {vi} = Vn \ V .When the learner asks an equivalen
e query EQ(Thn−1

U ) for some U ⊆ Vn , then theassignment returned is x, where
• if |U | < n − 1 (i.e., the hypothesis is 
onstant 0), then x is the positive 
oun-terexample 1. In this 
ase Ψ remains un
hanged.
• if |U | = n then x is the negative 
ounterexample 1(vi 7→0) for some i satisfying
|Ψ \ {ψi}| ≥ 1. Also, remove ψi from Ψ.

• if Ψ = {Thn−1
U }, then x = ().
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• otherwise x is the negative 
ounterexample 1U . Also, remove ψi from Ψ for iwith {vi} = Vn \ V .Note that during the whole pro
ess ea
h element of the a
tual Ψ is 
onsistent with allthe previous informations, and that after ea
h query |Ψ| de
reases by at most one. But,as the learning pro
ess 
annot end as long as there are more than one non-equivalenthypotheses 
onsistent with the previous informations, it follows that the learner mustask at least n− 1 queries. 2Theorem 5.7 The query 
omplexity of revising threshold formulas with equivalen
equeries alone is at least n − 1 (where n is the number of variables in the universe ins
ope), even when the revision distan
e is only one.ProofSet n = 2k, and let the initial fun
tion Thk

Vn
. Also, for k + 1 ≤ i ≤ n, let ψi :=

Thk
Vn\{vi}, and set Ψ := {ψi : k + 1 ≤ i ≤ n}Consider the following s
enario. When the learner asks an equivalen
e query EQ (Thℓ

U

)for some U ⊆ Vn , then the assignment returned is x, where
• if ℓ < k and� |U | ≥ ℓ, then x is the negative 
ounterexample 1U ′, where U ′ is an arbitrarysubset of U with 
ardinality ℓ. In this 
ase Ψ remains un
hanged.� otherwise (i.e., if Thℓ

U is 
onstant 0), then x is the positive 
ounterexample
0(v1 7→1,...,vk 7→1). Again, Ψ remains un
hanged.

• if ℓ > k, then x is the positive 
ounterexample 0(v1 7→1,...,vk 7→1). Again, Ψ remainsun
hanged.
• if ℓ = k and� if U ⊇ {vk+1, . . . , vn}, then x is the negative 
ounterexample 1(v1 7→0,...,vk 7→0).Again, Ψ remains un
hanged.� otherwise, if {v1, . . . , vk} 6⊆ U , then x is the positive 
ounterexample

0(v1 7→1,...,vk 7→1). Again, Ψ remains un
hanged.� if Ψ =
{

Thℓ
U

}, then x = ().� otherwise x is the positive 
ounterexample 1{2,...,k}∪{i} for some i with vi ∈

{vk+1, . . . , vn} \ U (note that it must be the 
ase that U 
ontains all of
v1, . . . , vk, and is missing at least one of vk+1, . . . , vn). Also, remove ψifrom Ψ.Note that during the whole pro
ess ea
h element of the a
tual Ψ is 
onsistent with allthe previous informations, and that after ea
h query |Ψ| de
reases by at most one. But,as the learning pro
ess 
annot end as long as there are more than one non-equivalenthypotheses 
onsistent with the previous informations, it follows that the learner mustask at least n− 1 queries. 2



50 Threshold FormulasNow we show that the query bound of algorithm ReviseThreshold 
annot beimproved for small values of ê (i.e., 
onstant ê), and 
annot be mu
h improved ingeneral. We gave a revision algorithm with query 
omplexity O(ê log n); we give herethe 
lose lower bound of Ω(ê log(n/ê)). (We think that the �rst one is 
loser to thereal answer)Proposition 5.8 The query 
omplexity of revising threshold formulas with member-ship and equivalen
e queries is Ω(ê log(n/ê)), where n is the number of variables inthe universe in s
ope and ê is the revision distan
e between the initial formula and thetarget formula.ProofPut ϕ = Th1
∅, and let R =

{

Thê
R : R ⊆ Vn, |R| ≤ ê

}. Now ea
h element of R isequivalent to some 
lause of size at most ê over Vn. As the 
lass of these 
lauses hasVapnik-Chervonenkis dimension Ω(ê log(n/ê)) [92℄, the 
laimed bound for the query
omplexity follows (see Se
tion 3.3).
2The following result answers the question that arises naturally whenever one islearning threshold fun
tions: why not use Winnow 2? After all it is one of the mostsu

essful tools for learning threshold fun
tions. Furthermore, it 
an be su

essfullyused for revision in some 
ases (see, e.g. Chapter 6). The answer is simple and somewhatsurprising: under our settings, using Winnow as de�ned in [92℄ would result in anine�
ient revision algorithm.Proposition 5.9 Winnow is not an e�
ient revision algorithm for threshold fun
-tions. More pre
isely, for any weight ve
tor representing the initial threshold fun
tion

Th1
v1,...,vn

, Winnow 
an make n mistakes when the target fun
tion is Th2
v1,...,vn

.ProofThe statement follows easily, noting that the weight of ea
h relevant variable is at leastas big as the threshold used by Winnow, thus giving Winnow the negative examples
1{v1}, . . . , 1{vn} one after another, it will evaluate to 1 for ea
h of them. 25.5 Con
luding RemarksIt would be interesting to 
onsider disjun
tions of a bounded number of thresholdfun
tions in the revision model. This 
lass is a generalization of monotone DNF witha bounded number of terms, whi
h 
an be revised e�
iently [53℄. It is also related tothe robust logi
 framework of Valiant [128℄ mentioned in the introdu
tion.Finally note that the results presented in this 
hapter�unless noted otherwise�appeared in the paper [116℄, 
o-authored by the author of the present dissertation.2See Chapter 6 for more on Winnow.



Chapter 6Proje
tive DNF FormulasThe notion of proje
tion learning was introdu
ed by Valiant [128℄, motivated by 
on-straints imposed on learnability by biology. Proje
tion learning aims to learn a target
on
ept over some large domain (in our 
ase An), by learning some of its proje
tions�or rather: restri
tions�to a 
lass of smaller domains, and 
ombining these proje
tions.Valiant proved a general mistake bound for the resulting algorithm under 
ertain 
on-ditions. The basi
 assumption underlying proje
tion learning is that there is a family ofsimple proje
tions that 
over all positive instan
es of the target, where simple meansbelonging to some e�
iently learnable 
lass. The proje
tions des
ribing the target inthis way 
an also be thought of as a set of experts, ea
h spe
ialized to 
lassify a subsetof the instan
es, su
h that whenever two experts overlap they always agree in their
lassi�
ation.Perhaps the most natural spe
ial 
ase of this framework, also dis
ussed by Valiant,is when the proje
tion domains are sub
ubes of a �xed dimension, and the restri
tionsof the target to these domains are 
onjun
tions. In this 
ase, the algorithm learnsa 
lass of disjun
tive normal forms (DNF) 
alled proje
tive DNF (pre
ise de�nitionswill be given later). The 
lass of proje
tive DNF expressions does not appear to havebeen studied at all before Valiant's work. As the learnability of DNF is shown to be ahard problem in 
omputational learning theory 1, it is of interest to those who study
omputational learning theory to identify new learnable sub
lasses and to understandtheir s
ope.In this 
hapter an e�
ient revision algorithm is presented for the 
lass of proje
tiveDNFs in the mistake bounded model for the general 
ase. Additionally some (learnabil-ity related) 
ombinatorial properties of this 
lass is annalyzed. More pre
isely lower andupper bounds for the ex
lusion dimension of proje
tive DNF. The ex
lusion dimension,or 
erti�
ate size [11; 65; 67℄, of a formula 
lass is 
losely related to its learning 
om-plexity in the model of proper learning with equivalen
e and membership queries. Thisway bounds are obtained for the 
omplexity of learning proje
tive DNF in this modelas well.Finally, note that this 
hapter does not 
ontain an example run�
ontrary to the1Alekhnovi
h et al. showed that DNF is not properly PAC learnable in polynomial time unless NP= RP [5℄, providing further motivation to �nd positive learnability results.51



52 Proje
tive DNF Formulastwo previous ones dealing also with results on revision. The main reason for this is thatthe algorithm itself is mu
h more simple than the ones presented in the two previous
hapters (however this does not seem to hold for the analysis of the algorithm), andthus an example run would not provide further insights about the algorithm.6.1 Further De�nitions and NotationsFirst we introdu
e proje
tive disjun
tive normal forms and we brie�y dis
uss some oftheir properties.De�nition 6.1 A DNF formula ϕ is a k-proje
tive DNF, or k-PDNF if it is of theform
ϕ = ρ1t1 ∨ · · · ∨ ρℓtℓ, (6.1)where, for i = 1, . . . , ℓ, ρi is a k-
onjun
tion (
alled the ρ-part of the term ρiti), ti isa 
onjun
tion (
alled the t-part of the term ρiti) and it holds that

ρiϕ ≡ ρiti. (6.2)A Boolean fun
tion f : {0, 1}n → {0, 1} is k-proje
tive if it 
an be written as a
k-PDNF formula. The 
lass of n-variable k-proje
tive fun
tions is denoted by k-PDNFn.The k-
onjun
tions ρi are also 
alled k-proje
tions, or, when k is 
lear from
ontext, simply proje
tions. Conditions (6.1) and (6.2) mean that when restri
tedto the sub
ube T (ρi), the formula ϕ is equivalent to the 
onjun
tion ti, and everytrue point of ϕ arises this way for some restri
tion. This 
orresponds to the intuition,des
ribed earlier, that the restri
tions to a prespe
i�ed set of simple domains are simple,and the whole fun
tion 
an be pat
hed together from these restri
tions.Note that in order to spe
ify a k-PDNF, it is not su�
ient to spe
ify its terms, butfor ea
h term one has to spe
ify its ρ-part and its t-part; that is, the proje
tion andthe 
orresponding 
onjun
tion have to be distinguished. If ne
essary, we indi
ate thisdistin
tion by pla
ing a dot between the two parts. For example,

(x · y) ∨ (z · y) and (x · y) ∨ (x · yz) (6.3)are two di�erent 1-PDNF for the same fun
tion. The dots are omitted whenever thisdoes not lead to 
onfusion. The 
onjun
tions ρi and ti may have 
ommon literals. Therequirement (6.2) is equivalent to requiring that
ρjρiti ≡ ρiρjtj (6.4)for every i and j. This makes it easy to verify that a given expression, su
h as those in(6.3), is indeed a k-PDNF. It also shows that the disjun
tion of any set of terms of a

k-PDNF is again a k-PDNF.



6.1 Further De�nitions and Notations 53If a fun
tion is k-proje
tive, then it is k′-proje
tive for every k′ with k ≤ k′ ≤ n.Note that the 
omplete DNF (
onsisting of n-
onjun
tions 
orresponding to the truepoints of f) shows that every n-variable fun
tion is n-proje
tive.For more on proje
tive DNFs and their relations with some other basi
 formula
lasses (like k-DNFs, k-term-DNFs and de
ision lists) see [115℄.6.1.1 RevisionIn addition to the standard mistake-bounded model, as a te
hni
al tool for the learningresult, we also 
onsider a model of learning in the presen
e of noise. In the model oflearning monotone disjun
tions with attribute errors (Auer and Warmuth [18℄, alsoused by Valiant [128℄ with a di�erent name) it may happen that y is not the 
orre
t
lassi�
ation of x, that is, ftrg(x) 6= y. It is assumed that the error 
omes from some
omponents (or attributes) of x being in
orre
t, and the number of attribute errors
ommitted in a round is the minimal number of 
omponents that need to be 
hangedin order to get the 
orre
t 
lassi�
ation. More pre
isely, if in round r the 
lassi�
ation
yr is not the 
orre
t 
lassi�
ation of xr, then, if yr = 1 then AttrErr(r) = 1(as it is enough to swit
h one bit on to satisfy a disjun
tion), and if yr = 0 thenAttrErr(r) is the number of variables that are in
luded in the target disjun
tion andwhi
h are set to 1 in xr. The total number of attribute errors for a given run, denoted#AttributeErrors, is the sum of the attribute errors of the rounds. This notionis used only for te
hni
al purposes: it plays an important role inside some proof, butdoes not appear in any results.The revision operations are the deletion of a literal or a term, the addition of anew empty term of the form ρ · ⊤, and the addition of a literal.The revision distan
e of two terms t and t∗ is the number of literals o

urring inexa
tly one of the two terms, denoted |t△t∗|. Similarly, the distan
e between two dis-jun
tions is also the number of literals o

urring in exa
tly one of the two disjun
tions.The revision distan
e between an initial k-PDNF formula ϕ and a target k-PDNFformula ψ of the form

ϕ = ρ1t1 ∨ · · · ∨ ρℓtℓ ∨ ρℓ+1tℓ+1 ∨ · · · ∨ ρℓ+stℓ+s,

ψ = ρ1t
∗
1 ∨ · · · ∨ ρℓt

∗
ℓ ∨ ρ

′
1t

′
1 ∨ · · · ∨ ρ′at

′
ais

dist(ϕ, ψ) = s+

ℓ
∑

i=1

|ti△t
∗
i | +

a
∑

i=1

(|t′i| + 1),where {ρℓ+1, . . . , ρℓ+s} ∩ {ρ′1, . . . , ρ
′
a} = ∅. For example, the s term in the de�nitionof dist(ϕ, ψ) 
orresponds to the deletion of the s terms ρℓ+1tℓ+1, · · · , ρℓ+stℓ+s.Given an initial formula ϕ and a target formula ψ, we want our mistake bound to bepolynomial in the revision distan
e ê = dist(ϕ, ψ), and logarithmi
 (or polylogarithmi
)in all other parameters. In this 
ase, that means logarithmi
 in n and, for k-PDNF, inthe total number of proje
tions of size k, whi
h is 2k

(

n
k

).



54 Proje
tive DNF FormulasNote that this is in a

ordan
e with the general approa
h des
ribed in Chapter 3.
6.2 Revision Algorithm for Disjun
tions and for

k-PDNF FormulasThe main tool in Valiant's learning algorithm for proje
tive DNFs [128℄ is Littlestone'sWinnow algorithm [92℄, whi
h is a kind of multipli
ative version of the well-knownPer
eptron algorithm. We begin by demonstrating that the original Winnow withappropriately modi�ed initial weights is an e�
ient revision algorithm in the mistakebounded model for disjun
tions, even in the presen
e of attribute errors�if we arewilling to tolerate a number of mistakes polynomial in the number of attribute errors aswell as the usual parameters. We will use this result to show how to use an algorithmsimilar to Valiant's PDNF learning algorithm to revise PDNF. The overall algorithmhas a two-level stru
ture, with many instan
es of a revision version of Winnow on thelower level feeding their outputs to one instan
e of a revision version of Winnow onthe top level. Note that, even with noise-free data, mistakes made by the lower-levelWinnows will represent attribute errors in the input to the top-level Winnow.6.2.1 Revising Disjun
tionsAlgorithm RevWinn (pseudo
ode displayed as Algorithm 8) revises a monotone disjun
-tion. It 
an be applied to revise an arbitrary disjun
tion by introdu
ing extra variablesfor the negated literals, and this in turn 
an be used to revise arbitrary 
onjun
tionsby applying the De Morgan rules. We now present RevWinn; we will later assumewithout further dis
ussion that we have versions available for arbitrary disjun
tions andfor 
onjun
tionsLet the set of variables in fo
us be some �nite V ⊆ V. Algorithm RevWinn revisesan initial disjun
tion ϕ over V . It maintains a weight ve
tor w of length |V |, whi
hdetermines the 
urrent hypothesis, and is updated ea
h time a mistake is made. Weuse wr to denote its value after round r. A

ordingly w0 denotes the initial weightve
tor 2.The algorithm 
onsists of three main parts: initialization of the weight ve
tor w(whi
h initializes the hypothesis), predi
tion (the hypothesis part), and the update part.Formally, we break out ea
h as a subroutine to make later dis
ussion easier.Let us now des
ribe these three parts of RevWinn. The initialization part is doneby using fun
tion Init, whi
h, on input V and ϕ outputs a ve
tor w of length V (and2A
tually, this is Littlestone's Winnow2 [92℄ using di�erent initial weights�with his parameters setto α = 2, and θ = |V |/2�, ex
ept that the weights are all devided by |V |, be
ause this seems tomake the analysis a little easier to follow.



6.2 Revision Algorithm for Disjun
tions and for k-PDNF Formulas 55Algorithm 8 Algorithm RevWinn(V, ϕ)1: w := Init(V, ϕ) {initialize the weight ve
tor}2: for round r = 1, 2, . . . do3: {The input in round r is the instan
e xr with domain V }4: Output predi
tion ŷr := h(xr,w)5: if re
eiving label yr for xr it holds that ŷr 6= yr then6: {the algorithm made a mistake, so update the weights}7: w := Update(yr,xr,w)8: end if9: end forindexed by the variables in V ), with
w(v) =

{

1 if variable v appears in ϕ,1/|V| otherwise,for v ∈ V .Given weight ve
tor is w, the hypothesis fun
tion evaluatesh(x,w) =

{

0 if 〈w,x〉 is less than 1/2,

1 otherwiseon input instan
e x (with domain V ), where
〈w,x〉 =

∑

v∈V

w(v) · x(v)is the dot produ
t of w and x. The hypothesis is used to make predi
tions; in round
r the algorithm predi
ts that the label of xr is ŷr = h(xr,wr−1).Finally the fun
tion Update(y,x,w), returns a ve
tor w′, a modi�
ation of theweight ve
tor w:

w′(v) = w(v) · 2(y−ŷ)·x(v) =















2 · w(v) if y > ŷ and x(v) = 1,

(1/2) · w(v) if y < ŷ and x(v) = 1,

w(v) otherwise,for v ∈ V , where ŷ is the output of the hypothesis fun
tion on x (i.e., ŷ = h(x,w)).This fun
tion does nothing and need not even be 
alled if there is no mistake; that is,if ŷ = y.Note that throughout, all of the weights are always in the interval (0, 1]. This 
anbe seen using an indu
tion argument as follows. Initially the statement is true. Nowassume that the weights after round r − 1 are all between 0 and 1. If yr = ŷr, thenthe weights are not 
hanged. If yr = 0 and ŷr = 1, then some weights are halved, andsome un
hanged�thus the statement will be true after round r. If yr = 1 and ŷr = 0,



56 Proje
tive DNF Formulasthen 〈wr−1,xr〉 is less then 1/2, so the sum of the weights of 
omponents having 1in assignment xr is less then 1/2. As RevWinn doubles the weights of exa
tly these
omponents, the statement will remain true after round r.Theorem 6.2 The number of mistakes made by Algorithm RevWinn with initial (mono-tone) disjun
tion ϕ and target (monotone) disjun
tion ψ is
O(#AttributeErrors+ ê log n),where ê = dist(ϕ, ψ), n = |V | and V is the set of variables in fo
us.ProofConsider any run of the algorithm of length R. Let I be the set of variables v ∈ Vthat appear in both the initial and target disjun
tions, su
h that for at least one round

r variable xr(v) = 1 but yr = 0. Let J ⊆ V be the set of variables that appear in thetarget disjun
tion but not in the initial disjun
tion. Let us also introdu
e the notation
I ∪ J = V \ (I ∪ J).We will use later the fa
t that any variable in both ϕ and ψ that is not in I neverhas its weight 
hanged from 1.For the proof we use a potential fun
tion Φ(w) that is somewhat di�erent fromthose used in some other 
ases for analyzing Winnow (e.g., in [18; 80℄). Put Φ(w) =
∑n

v∈V Φv(w), where
Φv(w) =

{

w(v) − 1 + ln(1/w(v)) if v ∈ I ∪ J,

w(v) otherwise.It 
an be veri�ed that Φi(w) ≥ 0 for any w ∈ (0, 1]n.Let ∆r = Φ(wr−1) − Φ(wr) denote the 
hange of the potential fun
tion duringround r. We will derive both upper and lower bounds on∑R
r=1 ∆r that will allow us torelate the number of mistakes made by RevWinn to ê, n, and #AttributeErrors.First we derive an upper bound:

R
∑

r=1

∆r = Φ(w0) − Φ(wR)

≤ Φ(w0) −
∑

v∈I∪J

wR(v)

=
∑

i∈I

Φi(w0) +
∑

j∈J

Φj(w0) +
∑

v∈I∪J

(w0(v) − wR(v)). (6.5)For v ∈ I we initialized w0(v) = 1 so Φv(w0) = 0. Also, |J | ≤ ê, and Φv(w0) =

ln(2n)− (2n− 1)/2n < ln(2n) for v ∈ J , so the sum of the �rst two terms is at most
ê ln(2n). Now we need to bound the third term. The variables that appear neither in
ψ nor in ϕ have initial weights 1/(2n), and so altogether 
an 
ontribute at most 1/2to the sum. There are at most ê variables in ϕ that are not present in ψ, so those
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tions and for k-PDNF Formulas 57variables 
an 
ontribute at most ê to the sum. Finally, as noted earlier, the weightsnever 
hange for those variables in both ϕ and ψ but not in I. Thus we get
R
∑

r=1

∆r ≤ ê ln 2n+ ê+ 1/2. (6.6)To get a lower bound on the sum, we begin by deriving a lower bound on the 
hangein potential in one round. Now
∆r =

∑

v∈I∪J

(

wr−1(v) −wr(v) + ln
wr(v)

wr−1(v)

)

+
∑

v∈I∪J

(wr−1(v) − wr(v))

=
∑

v∈V

(wr−1(v) − wr(v)) +
∑

v∈I∪J

ln
wr(v)

wr−1(v)
. (6.7)Examining the RevWinn 
ode, one 
an see that there are three 
ases for updatingweights at the end of a round r: no 
hange in any weights, some or all weights arede
reased�
alled a demotion round�, and some or all weights are in
reased�
alleda promotion round. Obviously, when no update is done in round r (i.e., ŷr = yr),then ∆r = 0.In a demotion round, ŷr = 1 and yr = 0. By the de�nition of I and J , in this 
aseAttrErr(r) = |(I ∪ J) ∩ {v : xr(v) = 1}|. Also, the total weight of 
omponentsbeing on in xr is at least 1/2 (re
all how ŷr is evaluated), and the weight of ea
h ofthose 
omponents is halved. So, using (6.7),

∆r ≥
1

4
+ |(I ∪ J) ∩ {v : xr(v) = 1}| ln

1

2
=

1

4
− (ln 2)AttrErr(r) . (6.8)In a promotion round, ŷr = 0 and yr = 1. We know that the 
omponents of xrthat are on have total weight less than 1/2 (again, by the evaluation rule of ŷr), andthat ea
h of these 
omponents is multiplied by 2. So the �rst term in (6.7) is at least

−1/2. Thus ∆r ≥ −1/2 + |(I ∪ J) ∩ {v : xr(v) = 1}| · ln 2. Now if yr = ψ(xr),then |(I ∪ J) ∩ {v : xr(v) = 1}| ≥ 1, be
ause we know that ŷr = 0 and we know thatall the weights of variables in both ϕ and ψ but not in I are 1. If yr 6= ψ(xr), thenAttrErr(r) = 1. Thus, in a promotion round, it always holds that
∆r ≥ −1/2 + (ln 2)(1 −AttrErr(r)). (6.9)Finally, let M− denote the total number of demotions and M+ the total numberof promotions. Then (6.8) and (6.9) give us

R
∑

r=1

∆r ≥
∑

{r:ŷr=1,yr=0}

(

1

4
− (ln 2)AttrErr(r)

)

+
∑

{r:ŷr=0,yr=1}

(

ln 2 −
1

2
− (ln 2)AttrErr(r)

)
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=

M−

4
+

(

ln 2 −
1

2

)

M+ − (ln 2)#AttributeErrors.Combining this with (6.6) gives the desired mistake bound. 2Noti
e that, unlike other uses of potential fun
tions in mistake-bound proofs, wedo not make any 
laims about the relation between the value of the potential fun
tionused here and the distan
e between the a
tual weight ve
tor wr and a weight ve
torfor the target. Indeed, we do not see any obvious relation between the value of thispotential fun
tion and any measure of distan
e between wr and a weight ve
tor for thetarget.6.2.2 Revising k-PDNF FromulasIn this 
hapter we dis
uss Algorithm Rev-k-PDNF (see Figure 9), the revision algorithmfor k-PDNFs. It has the same two-level stru
ture that was also used by Valiant forlearning PDNFs [128℄, but it uses di�erent initial weights in the individual 
opies ofWinnow (as it was dis
ussed in the previous subse
tion). It also requires some variant ofRevWinn appli
able for 
onjun
tions (whi
h 
an be obtained by an easy transformationfrom RevWinn as explained at the beginning of the previous subse
tion, retaining themistake bound des
ribed in Theorem 6.2); denote it RevWinnC and denote by InitC,hC, and UpdateC its main fun
tions.To �ll up the details: Rev-k-PDNF 
onsists of a top-level RevWinn algorithm thathandles the sele
tion of the appropriate proje
tions. On the lower level, instan
esof RevWinnC are run, one for ea
h of the 2k
(

n
k

) proje
tions, to �nd the appropriateterm for that parti
ular proje
tion. We 
all this the ρ instan
e of RevWinnC, anddenote its weight ve
tor by wρ. The input resp. the label for ea
h of these RevWinnCinstan
es are xr and yr. An update is applied to the ρ instan
e of RevWinnC only when
ρ(xr) = 1 (and additionally the top-level algorithm's predi
tion of the label was wrongand agreed with the predi
tion of the ρ-instan
e of RevWinnC), be
ause in this 
ase, byEquation (6.2) if ρ appears in the target formula with t-part t, then the output of thetarget formula agrees with t�and this is the key to the whole algorithm. Intuitively,we hope that for ea
h term of the form (ρ · t) in the target formula, where ρ is a
k-proje
tion, the hypothesis of the ρ instan
e of RevWinnC will 
onverge to t. Thepredi
tion of the ρ instan
e of RevWinnC is denoted ŷρ and ŷρ

r = hC(xr,w
ρ
r−1).For the top level, introdu
e a new Boolean variable vρ for ea
h k-proje
tion, and
onsider an instan
e of RevWinn run over these variables. In the rest of this se
tion,

w is used to denote the weight ve
tor of this top level RevWinn instan
e (and, if wewant to emphasize the round, wr denotes its value after round r). The input for thetop level is denoted u; its value in round r, denoted ur, is de�ned by
ur(vρ) = ρ(xr) ∧ hC(xr,w

ρ
r−1).



6.2 Revision Algorithm for Disjun
tions and for k-PDNF Formulas 59The output of the top level in round r is
ŷr = h(ur,wr−1).The top-level RevWinn algorithm learns a disjun
tion over variables newvarρ, whi
hwould ideally 
onsist of exa
tly those variables that are indexed by proje
tions appearingin the target formula.Algorithm 9 The pro
edure Rev-k-PDNF(ϕ, V ).1: {ϕ = ρ1t1 ∨ · · · ∨ ρℓtℓ is the k-PDNF to be revised.}2: w := Init ({vρ : ρ is a k-proje
tion over V}, vρ1

∨ · · · ∨ vρℓ
)3: for ea
h k-proje
tion ρ over V do4: if ρ = ρi for some i ∈ {1, . . . , s} then5: wρ := InitC(V, ti)6: else7: wρ := InitC(V,⊤)8: end if9: end for10: for round r = 0, 1, 2, . . . with input xr do11: Let u(vρ) := ρ(xr) ∧ hC(xr,w

ρ) for ea
h k-proje
tion ρ12: Output predi
tion ŷr := h(u,w)13: if re
eiving label yr for xr it holds that ŷr 6= yr then14: {The top level algorithm made a mistake}15: w := Update(yr,u,w)16: for ea
h k-proje
tion ρ with ρ(xr) == 1 and ur(vρ) 6= yr do17: wρ := UpdateC(yr,xr,w
ρ)18: end for19: end if20: end forTheorem 6.3 Suppose that the initial and target formulas are, respe
tively, the k-PDNFnformulas

ϕ = ρ1t1 ∨ · · · ∨ ρℓtℓ ∨ ρℓ+1tℓ+1 ∨ · · · ∨ ρℓ+stℓ+s,

ψ = ρ1t
∗
1 ∨ · · · ∨ ρℓt

∗
ℓ ∨ ρ

′
1t

′
1 ∨ · · · ∨ ρ′at

′
a,and ê = dist(ϕ, ψ). Then algorithm Rev-k-PDNF makes O(êk log n) mistakes.ProofThe top-level RevWinn revises a disjun
tion over the vρ's. There will be two sour
esof mistakes. First, the initial disjun
tion is not 
orre
t; it needs revising. Se
ond, thevalues assigned to the vρ variables will sometimes be erroneous, be
ause the low-levelRevWinnC's are imperfe
t�that is, ur(vρ) 6= ρ(xr)∧ t(xr) might o

ur in some round

r for some term (ρ · t) of ψ. (The a
tual input xr and 
lassi�
ation yr are assumed tobe noiseless�that is, yr = ψ(xr) is assumed.)



60 Proje
tive DNF FormulasTheorem 6.2 tells us how to 
al
ulate the overall number of mistakes of the top-level RevWinn as a fun
tion of three quantities: the revision distan
e, whi
h is s + a,the total number of variables, both relevant and irrelevant for the disjun
tion, whi
h is
2k
(

n
k

), and the total number of attribute errors, whi
h we will now 
al
ulate.In fa
t, we will not 
ount all the attribute errors. We will 
ount (a
tually providean upper bound on) only those attribute errors that o

ur when RevWinn is 
hargedwith a mistake.For i = 1, . . . , ℓ, the RevWinnC instan
e 
orresponding to proje
tion ρi predi
ts
ŷρi

r = hC(xr,w
ρi

r−1) in round r. That RevWinnC instan
e updates for a mistake onlywhen the overall algorithm makes a mistake (i.e., ŷr 6= yr), its predi
tion was di�erentfrom yr (i.e., ŷr 6= ŷρi
r ), and ρi(xr) = 1. Now yr = ψ(xr) = t∗i (xr) (the last equationholds be
ause of proje
tivity and be
ause ρi(xr) = 1). This means that the mistakebound for this RevWinnC tells us how many times this RevWinnC 
an make errorson rounds when the overall algorithm makes an error; after that number of mistakes,this RevWinnC will then always predi
t 
orre
tly. A

ording to the dis
ussion at thebeginning of this subse
tion the mistake bound on this RevWinnC is O(|ti△t

∗
i | lnn).For j = 1, . . . , a a similar argument shows that there are at most O(|t′j| lnn) rounds

r where ur(vρ′j
) 6= ρ′j(xr) ∧ t′j(xr) and the top-level RevWinn makes a mistake. Put

F (ϕ, ψ) =
(

∑ℓ
i=1 |ti△t

∗
i | +

∑a
j=1 |t

′
j|
)

lnn.How many times 
an Rev-k-PDNF err when predi
ting? We just argued thatthe total number of attribute errors that o

ur when the top-level RevWinn makesa mistake is O(F (ϕ, ψ)). The total number of variables that the top-level RevWinnis working with is 2k
(

n
k

). Thus, the overall mistake bound is, by Theorem 6.2,
O
(

F (ϕ, ψ) + (s+ a) log
(

2k
(

n
k

)))

= O(êk log n), sin
e F = O(ê log n).Remark 6.1For learning from s
rat
h a k-PDNFn 
onsisting of m terms, that is, for revising theempty k-PDNFn to a target k-PDNFn, this algorithm has the same asymptoti
 mistakebound as Valiant's learning algorithm [128℄: O(kms logn), where s is the maximumnumber of variables in any term in the target.6.3 Ex
lusion DimensionThe 
ombinatorial parameter, ex
lusion dimension of formula 
lasses (for the de�nitionsee below) is in 
lose 
onne
tion with the query 
omplexity of the given formula 
lass(see, e.g. [11℄). As the revision algorithm for proje
tive DNFs works in the mistakebounded model, it seems interesting to dis
uss this parameter for this 
lass. In thisse
tion we follow the terminology of Angluin [11℄. (With minor variations, ex
lusiondimension is 
alled unique spe
i�
ation dimension by Heged¶s [65℄ and 
erti�
ate sizeby Hellerstein et al. [67℄.)Let f be an n-variable Boolean fun
tion. A set A ⊆ {0, 1}n is a spe
ifying setof f with respe
t to a 
lass C of Boolean fun
tions if there is at most one fun
tion



6.3 Ex
lusion Dimension 61in C that agrees with f on A. (So 
learly {0, 1}n is always a spe
ifying set.) Thespe
ifying set size of f with respe
t to C is
specC(f) = min{|A| : A is a spe
ifying set for f with respe
t to C},and the ex
lusion dimension of the 
lass C is

XD(C) = max{specC(f) : f 6∈ C}.A spe
ifying set A for f 6∈ C su
h that no fun
tion in C agrees with f on A is also
alled a 
erti�
ate of ex
lusion (or simply 
erti�
ate) for f with respe
t to C. Inour 
onstru
tions below, we will usually give 
erti�
ates of ex
lusion, whi
h 
learly giveupper bound for the spe
ifying set size.For the rest of this 
hapter spe
ifying sets are always with respe
t to k-PDNF, sowe write spec(f), omitting the subs
ript C.A fun
tion f is minimally non-k-proje
tive if it is not k-proje
tive, but any f ′with T (f ′) ⊂ T (f) is k-proje
tive.Proposition 6.4 If f is minimally non-k-proje
tive, then spec(f) ≥ |T (f)| − 1.ProofSuppose |A| ≤ |T (f)| − 2 for some A ⊆ {0, 1}n. Let x,y ∈ T (f) \ A be twodi�erent assignments. As f is minimally non-k-proje
tive, there is gx ∈ k-PDNFn (resp.
gy ∈ k-PDNFn) su
h that T (gx) = (A∩T (f))∪{x} (resp. T (gy) = (A∩T (f))∪{y}).Now gx and gy are di�erent elements of k-PDNFn that agree with f on A, thus A isnot a spe
ifying set for f . 2We now present a lower and an upper bound for the ex
lusion dimension of k-PDNFn,whi
h show that for �xed k the ex
lusion dimension is Θ(nk). We begin with a lemmathat 
hara
terizes k-PDNF, give some examples, and then 
ontinue to the main theoremof this se
tion that gives the bound.Lemma 6.5 (a) A fun
tion f is k-proje
tive if and only if for every x ∈ T (f) thereis a k-
onjun
tion ρ su
h that x ∈ T (ρ) and T (f) ∩ T (ρ) is a 
ube.(b) If for every x ∈ T (f) there is a k-
onjun
tion ρ su
h that T (f) ∩ T (ρ) = {x},then f is k-proje
tive.ProofWe show only (a), as (b) follows dire
tly from (a). If f is k-proje
tive then it 
an bewritten as ϕ = ρ1t1 ∨ · · · ∨ ρℓtℓ. Consider an x ∈ T (f). Then ρiti(x) = 1 for some i,thus x ∈ T (ρi). The de�nition of PDNF implies that T (f) ∩ T (ρi) = T (ρiti), whi
his a 
ube.For the other dire
tion, let us assume that for every x ∈ T (f) there is a k-proje
tion
ρx su
h that x ∈ T (ρx) and T (f) ∩ T (ρx) = Qx is a 
ube. Then Qx 
an be writtenas T (ρxtx) for some 
onjun
tion tx, and f 
an be written as the k-PDNF expression
∨

x∈T (f) ρxtx. 2



62 Proje
tive DNF FormulasWe illustrate Lemma 6.5 with the following example. We 
laim that the fun
tion
f(v1, v2, v3, v4) = v1v2 ∨ v3v4 is not 1-proje
tive. Call an assignment that violates
ondition (a) in the lemma k-deviant, or simply deviant. It su�
es to show that 1is deviant. For symmetry reasons, we only need to show that T (f) ∩ T (v1) is not a
ube. Indeed, it 
ontains x1 = (v1 7→ 1, v2 7→ 1, v3 7→ 0, v4 7→ 1) and x2 = (v1 7→

1, v2 7→ 0, v3 7→ 1, v4 7→ 1), but it does not 
ontain their meet, x1 ∧ x2 = (v1 7→

1, v2 7→ 0, v3 7→ 0, v4 7→ 1).Proposition 6.6 For every k and n ≥ k + 2 there is a non-k-proje
tive fun
tion with
|T (f)| = k + 3.ProofLet T (f) = {1{i} : 1 ≤ i ≤ k+ 2}∪ {0}. Then 0 is k-deviant, as every k-
onjun
tion
ρ satis�ed by 0 
ontains at least two 1{i}'s, but T (f)∩T (ρ) does not 
ontain the joinof these two assignments, and thus it 
annot be a 
ube a

ording to Proposition 2.1.

2The proposition gives a (k + 3)-term-DNF fun
tion whi
h is not k-proje
tive.Theorem 6.7 1. For all n and k,
XD(k-PDNFn) ≤ 3

(

n

k

)

+ 1,and2. if n ≥ 4k(k + 1), then
XD(k-PDNFn) ≥

(

⌊n/4⌋

k

)

− 1.ProofFor the upper bound, we will 
al
ulate an upper bound on the size of a 
erti�
ate ofex
lusion for any f 6∈ k-PDNFn with respe
t to k-PDNFn.To show that a a fun
tion f is not k-proje
tive, it su�
es to present a deviantassignment x (i.e., x violates Condition (a) of Lemma 6.5) together with a 
erti�
ateof x's devian
e. For the 
erti�
ate of x's devian
e it su�
es to spe
ify, a

ording toProposition 2.1, for every k-
onjun
tion ρ with ρ(x) = 1, three assignments x1,x2,x3su
h that ρ(x1) = ρ(x2) = ρ(x3) = 1, x1∧x2 ≤ x3 ≤ x1∨x2 and f(x1) = f(x2) = 1,
f(x3) = 0. The number of k-
onjun
tions with ρ(x) = 1 is (n

k

). Thus the upper boundfollows: 1 for x itself, and then 3 assignments ea
h for at worst all of the k-
onjun
tions.For the lower bound, in view of Proposition 6.4, it is su�
ient to 
onstru
t aminimally non-k-proje
tive n-variable fun
tion fn,k that takes the value 1 at manypoints. First we des
ribe the 
onstru
tion in the 
ase when n is even and k = 1. Let
n = 2s, let â = 1(v1 7→0,...,vs 7→0) for i = 1, . . . , s, and de�ne fn,k by T (fn,k) = {ai :=

â(vi 7→1,vs+i 7→0) : i = 1, . . . , s} ∪ {0}. We 
laim that fn,k is minimally non-1-proje
tive.



6.3 Ex
lusion Dimension 63The non-1-proje
tivity of fn,k follows from the fa
t that 0 is deviant: any 1-proje
tion
ρ 
ontaining 0 must be a negative literal, and thus it 
ontains some assignment(s) ai,but it does not 
ontain any assignment of positive weight less than s. Thus, by theremark following Proposition 2.1, T (fn,k) ∩ T (ρ) is not a 
ube. On the other hand,the ai's are not deviant for fn,k. This holds as they satisfy the 
ondition of part (b)of Lemma 6.5: the 1-
onjun
tion vs+i 
ontains only ai from T (fn,k). Now we showthat every f ′ with T (f ′) ⊂ T (fn,k) is 1-proje
tive. Indeed, if f ′(0) = 0 then thisfollows from part (b) of Lemma 6.5 dire
tly. Otherwise the only thing to note is thatif f ′(ai) = 0, then the 1-
onjun
tion vi 
ontains only 0 from T (f ′).For the 
onstru
tion in the general 
ase we use the following lemma. In the lemmawe 
onsider {0, 1}p to be the p-dimensional ve
tor spa
e over GF (2) and I to be the
p× p identity matrix.Lemma 6.8 Let A be a p×p 0�1 matrix su
h that both A and A⊗I are nonsingular.Assume that k(k + 1) < 2p and de�ne the mapping

h({b1, . . . ,bk}) = {b1 ⊗ Ab, . . . ,bk ⊗Ab},where b1, . . . ,bk are di�erent elements of {0, 1}p, and b = b1 ⊗ · · · ⊗ bk. Then itholds that(a) h is a bije
tion, and(b) for every b1, . . . ,bk−1 and d1, . . . ,dk there is a bk di�erent from b1, . . . ,bk−1,su
h that the elements of h({b1, . . . ,bk}) are all di�erent from the di's.ProofIf h({b1, . . . ,bk}) = {d1, . . . ,dk}, then d1 ⊗ · · · ⊗ dk = b⊗ (k mod 2)Ab, whi
h isequal to b (resp., (A ⊗ I)b), if k is even (resp., odd). Thus, knowing d1, . . . ,dk we
an �rst determine b, and then we 
an determine every bi by bi = di ⊗Ab. Hen
e his inje
tive, and thus it is also bije
tive.For (b), note that a value for bk 
an fail to satisfy the requirement only if it iseither equal to one of the bi's, or if bi ⊗Ab = dj for some 1 ≤ i, j ≤ k. In ea
h 
asewe 
an solve for bk, thus there are altogether at most k + k2 bad 
hoi
es. Choosingany of the other 2p − (k + k2) ve
tors meets our requirements for bk. 2Now we 
ontinue the proof of Theorem 6.7 with the general 
ase k > 1. First,we need a matrix that ful�lls the 
onditions of Lemma 6.8. It is easily veri�ed that,for example, the matrix A with all 0's ex
ept a1,1 = ap,1 = ai,i+1 = 1 (where i =

1, . . . , p− 1) is su
h a matrix. It is 
lear from the de�nition of h that if the bi's are alldi�erent, then h({b1, . . . ,bs}) also 
onsists of s di�erent elements.Now let p =
⌊

log n
2

⌋, and put s = 2p. If I is a k-element subset of {1, 2, . . . , s},put â := 0(vs+1 7→1,...,v2s 7→1), de�ne αI := 0{vi:i∈I} and βI := 1{vs+i:i∈I} 3, and put
aI = â(αI ,βI) and de�ne fn,k by T (fn,k) = {aI : I ⊆ {1, 2, . . . , s}, |I| = k} ∪ {0}.3With a slight abuse of notation the bi ve
tors are used both to denote elements of {1, 2, . . . , s}and their binary representations.



64 Proje
tive DNF FormulasWe 
laim that fn,k is minimally non-k-proje
tive. The argument for this is verysimilar to the argument in the spe
ial 
ase above. The proje
tion ρI =
∧

i∈h(I) vs+i
ontains only aI from T (fn,k) by part (a) of Lemma 6.8, and if aI is not 
ontained in
T (f ′) for some f ′ with T (f ′) ⊆ T (fn,k), then the proje
tion ρ0 =

∧

i∈I vi 
ontainsonly 0 from T (f ′). It only needs to be shown that 0 is deviant for fn,k. Let ρ beany k-
onjun
tion 
ontaining 0. We 
an assume that every literal vi in ρ has i ≤ 2s,as the other literals do not ex
lude any aI . We show that besides 0 there is an aI in
T (ρ), whi
h implies the 
laim by the remark following Proposition 2.1. If all the literals
ome from the �rst s variables then aI 
orresponding to these literals 
learly satis�esthe requirements. Otherwise, let us assume that the literals in ρ are of the form vi, for
i ∈ I1 ∪ I2, I1 ⊆ {1, 2, . . . , s}, I2 ⊆ {s+1, s+2, . . . , 2s}, |I2| > 0 and |I1|+ |I2| = k.By part (b) of Lemma 6.8 there is an I ⊆ {1, 2, . . . , s}, |I| = k, I1 ⊂ I su
h that
h(I) ∩ I2 = ∅, and by de�nition, aI ∈ T (ρ). 2Using the results on the relation between the ex
lusion dimension and the 
omplexityof learning with membership and proper equivalen
e queries [11; 65; 67℄ we get thefollowing.Proposition 6.9 The 
lass k-PDNFn 
an be learned with O (n 2k

(

n
k

)2
) membershipand proper equivalen
e queries. On the other hand the query 
omplexity of this 
lassis at least (⌊n/4⌋

k

)

− 1.ProofThe query 
omplexity of a formula 
lass R is at most XD(R) · log |R| and at least
XD(R) (see, e.g., [11℄). We are interested in the 
ase when R is the set of k-PDNFs.Sin
e the number of k-
onjun
tions over n variables is (n

k

)

2k (
hoose k variable fromthe n and then 
hoose an orientation for ea
h), a k-PDNF 
onsists of at most 2k
(

n
k

)terms. Noting that the number of K-term-DNFs is at most (3n)K , one derives theupper bound 3n2k(n
k) for the number of k-PDNFs whi
h, 
ombined with Theorem 6.7,
ompletes the proof. 2The number of queries used by the learning algorithm that the above propositionreferres to, is polynomial in n for every �xed k. On the other hand, the running timeis not ne
essarily polynomial.Blum [22℄, using ideas from Littlestone and Helmbold et al. [69; 91℄, shows thata simple sub
lass of de
ision lists (
alled 1-de
ision lists) is e�
iently learnable in themistake-bounded model. It follows from a straightforward generalization of this resultand Proposition 4 in [115℄ (dis
ussing the relation of proje
tive DNFs and de
ision lists)that for every �xed k, the 
lass k-PDNF is learnable with polynomially many improperequivalen
e queries and with polynomial running time. (Yet another proof for this isTheorem 6.2: evidently, e�
ient learnability follows from e�
ient revision.)Thus the question wether the 
lass 
an be learned with proper equivalen
e queriesin polynomial running time is still open.



6.4 Con
luding Remarks 656.4 Con
luding RemarksAs mentioned, an interesting dire
tion would be to study the 
omputational 
omplexityof algorithmi
 questions related to PDNF. Re
all that the dis
ussed results leave openthe question whether there is a 
omputationally e�
ient equivalen
e and membershipquery learning algorithm for k-PDNF.Another dire
tion 
ould be to 
onsider noisy model, that is, when in some round rthe label yr is not the 
orre
t 
lassi�a
tion of instan
e xr, that is, yr 6= ftrg(xr) (asin [113℄). A spe
ial motivation for this is that, for te
hni
al reasons, we had already
onsidered noise in the intermediate steps in the analysis of algorithm Rev-k-PDNF.However this model does not seem to be too interesting. Assume that some algorithmAlgo is an e�
ient learning algorithm for some formula (or 
on
ept) 
lass with mistakebound mb when noise is not allowed. Then this algorithm 
an be used to learn the same
lass in noisy environment making at most mb · fl mistakes, where fl denotes thenumber of false labels (i.e., the number of rounds when yr 6= ftrg(xr)) in a given run,iterating the following: initialize algorithm Algo, run it as long as its mistake bound isbelow mb, then reset. (Note also that if fl and/or mb is not known in advan
e, one
an use the usual doubling te
hnique�but this adds an extra logarithmi
 fa
tor.) Formore on this issue and some other related topi
s see for example [20; 21℄.Finally note that the results presented in this 
hapter�unless noted otherwise�appeared in the paper [115℄, 
o-authored by the author of the present dissertation.
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Chapter 71-PDNF FormulasChapter 6 dis
ussed the revision of the k-PDNF formulas, the 
lass introdu
ed byValiant [128℄ motivated by 
ertain biologi
al 
onsiderations. During the resear
h aimedto analyze this apparently new 
lass, a spe
ial sub
lass, the 1-PDNF formulas haveshown some interesting regularities in their form. Further examination of this phe-nomenon has 
on�rmed that this was not just a mere 
oin
iden
e, and indeed there issome ni
e 
hara
terization for the 
lass of 1-PDNFs. In this 
hapter this result is pre-sented. Throughout the 
hapter the notations and terminology introdu
ed in Chapter 6are used.7.1 p-irredundan
y and a Chara
terization of 1-PDNF FormulasFirst let us note that if ϕ is a 1-PDNF that in
ludes two 
omplementary proje
tions,that is, it is of the form ϕ = vt1 ∨ vt2 ∨ · · · for some variable v, then by deletingeverything else besides these two terms, we get an equivalent formula. Indeed, byEquation (6.2) vt1 ∨ vt2 ≡ vϕ ∨ vϕ, whi
h is obviously equivalent to ϕ.We formulate a notion of irredundan
y for 1-PDNF, whi
h we 
all p-irredundan
yto distinguish it from the usual notion of irredundan
y for DNF. Unlike the standardnotion, p-irredundan
y of a 1-PDNF is easy to de
ide.De�nition 7.1 A 1-PDNF formula ϕ = ρ1t1 ∨ · · · ∨ ρℓtℓ is p-irredundant if thefollowing 
onditions all hold:(a) Lit(ρiti) 6⊆ Lit(ρjtj) for ea
h distin
t i, j ∈ {1, . . . , ℓ},(b) ρi, ρi 6∈ Var(ti) for every 1 ≤ i ≤ ℓ,(
) if ℓ ≥ 3 then ρi 6= ρj for ea
h distin
t i, j ∈ {1, . . . , ℓ}.Otherwise, ϕ is 
alled p-redundant.The �rst 
ondition says that no term implies another, the se
ond that in ea
h termthe proje
tion and 
onjun
tion parts are disjoint (a formula violating any of these two69
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onditions has a trivial simpli�
ation), and the third that if there are at least threeterms, then no two proje
tions are 
omplementary (re
all the argument above).Given a 1-PDNF expression, one 
an easily transform it into a p-irredundant formas follows. First delete any term that has the negation of its ρ-part 
ontained in its
t-part (violating (b)). Next 
he
k if there are two 
omplementary proje
tions, and ifthere are, then delete all the other terms, thereby guaranteeing (
) (again, re
all theargument from the beginning of the se
tion). Otherwise, delete every term subsumedby another term, ensuring (a). Finally, if in a remaining term the t-part 
ontains theproje
tion literal, then delete the proje
tion literal from that term. The �nal expressionis a p-irredundant 1-PDNF, whi
h is equivalent to the original one.The above algorithm runs in polynomial time, thus we have:Proposition 7.2 There is a polynomial algorithm whi
h, given a 1-PDNF expression,transforms it into an equivalent p-irredundant 1-PDNF expression.In view of this it thus su�
es to 
onsider only 1-PDNF expressions in p-irredundantform for the 
hara
terization of 1-PDNF formulas:Theorem 7.3 A formula ϕ is a p-irredundant 1-PDNF formula if and only if it is eitherof the form

ϕ =

s
∨

i=1

(ρi,1ti ∨ · · · ∨ ρi,ℓi
ti),where ρi,r 6∈ Var(ti) and ρi,r ∈ Lit(tj) for every distin
t i, j ∈ {1, . . . , s} and 1 ≤ r ≤

ℓi, and furthermore the proje
tions are all based on di�erent variables, or it is of theform
ϕ = vt ∨ vt′ ,where v 6∈ Var(t) and v 6∈ Var(t′).Informally, the �rst 
ase of the theorem says the following. Let us 
onsider a termin a p-irredundant 1-PDNF to 
onsist of a �stem� t and a �petal� ρ. Then the petalof ea
h term is not in
luded in its stem (that mu
h is 
lear from the de�nition ofp-irredundan
y) and if two terms have di�erent stems then ea
h stem 
ontains thenegation of the other one's petal. In other words, ea
h stem 
onsists of the negationsof all the petals 
orresponding to terms with di�erent stems, plus, possibly, some otherliterals.7.2 Proof of Theorem 7.3First we give a des
ription of those p-irredundant 1-proje
tive DNF that representeither a monotone or an a-unate fun
tion, and then we give the general des
ription.We assume w.l.o.g. throughout this se
tion that ea
h 1-PDNF in question determinesa non-
onstant fun
tion and has terms that do not 
ontain any 
omplementary literals.Throughout the proof we also frequently use the fa
t that for arbitrary terms t and t′it holds that T (t) ⊆ T (t′) if and only if Lit(t′) ⊆ Lit(t) (see Se
tion 2.3).



7.2 Proof of Theorem 7.3 71Lemma 7.4 A formula ϕ is a p-irredundant 1-PDNF formula representing a monotone(resp. a-unate) fun
tion if and only if it is either of the form
ϕ = ρ1t ∨ · · · ∨ ρℓt, (7.1)where ρ1, . . . , ρℓ are di�erent unnegated variables (resp. literals whose signs agree with

a) not 
ontained in Var(t), and t is a monotone (resp. a-unate) term, or it is of theform
ϕ = ρt ∨ ρtt′, (7.2)where ρ is an unnegated variable (resp. its sign agrees with a) and t, t′ are monotone(resp. a-unate) terms not 
ontaining ρ or ρ.ProofWe prove only the monotone 
ase, as the a-unate 
ase follows by 
onsidering themonotone fun
tion obtained by repla
ing assignment x with x ⊗ a. (Note that afun
tion f is k-PDNF if and only if fa is, where fa(x) = f(x⊗ a).) It follows dire
tlyfrom the de�nitions that every expression of the form of Equation (7.1) or (7.2) isindeed a p-irredundant 1-PDNF expression.Let ϕ be an arbitrary monotone p-irredundant 1-PDNF formula. Separating thenegated and unnegated proje
tions, w.l.o.g. let us write ϕ as

ϕ =
∨

i∈I

(vi · ti) ∨
∨

j∈J

(vj · tj). (7.3)(This representation of ϕ is 
onvenient for the following series of 
laims.)Claim 7.5 For any monotone formula ϕ of the form as in Equation (7.3) it holds thatthe index set I is nonempty, and that tr is monotone for all r ∈ I ∪ J .ProofThe �rst part of the Claim holds be
ause ϕ determines a non-
onstant monotonefun
tion, thus ϕ(1) = 1.To prove monotoni
ity for ti, i ∈ I, note that 1 satis�es every monotone proje
tion,thus by proje
tivity (vi · ti)(1) = ϕ(1), whi
h equals 1 (as argued above), thus ti mustbe monotone.Finally, let us 
onsider a term vjtj with j ∈ J . Asssume for the 
ontradi
tion thatterm tj 
ontains negative literal vr. Let x be any assignment satisfying the term vj · tjand thus ϕ. By monotoni
ity x(vr 7→1) must satisfy ϕ. However, then, by proje
tivityand be
ause r 6= j (by (b) of p-irredundan
y), x(vr 7→1) must satisfy tj , a 
ontradi
tion.
2Claim 7.6 For any monotone formula ϕ of the form as in Equation (7.3) it holds that

T (ϕ) ⊆ T (ti) for all i ∈ I.



72 1-PDNF FormulasProofPi
k an arbitrary i ∈ I. Let x ∈ T (ϕ), so ϕ(x) = 1. By monotoni
ity ϕ (x(vi 7→1)
)

= 1,by proje
tivity ti (x(vi 7→1)
)

= 1, and by (b) of p-irredundan
y ti(x) = 1, whi
h provesthe 
laim. 2Claim 7.6 
an be used to show that the t-parts of the terms with positive ρ-partsare all the same�that is, ti = t for i ∈ I for some term t:Claim 7.7 For any monotone formula ϕ of the form as in Equation (7.3) it holds thatthere must be a single term t su
h that
ϕ =

∨

i∈I

(vi · t) ∨
∨

j∈J

(vj · tj).ProofConsider any two distin
t i, j ∈ I. From proje
tivity and from Claim 7.6 it follows that
T (viti) ⊆ T (ϕ) ⊆ T (tj) and, likewise, that T (vjtj) ⊆ T (ϕ) ⊆ T (ti). Thus

Lit(tj) ⊆ Lit(viti) and Lit(ti) ⊆ Lit(vjtj). (7.4)From this and from (a) of p-irredundan
y it follows that vj 6∈ Lit(viti) and vi 6∈

Lit(vjtj). But then Lit(tj) = Lit(ti). 2Putting together Claims 7.5 and 7.7, it follows that we are done if J = ∅. Theremaining 
ase (i.e., when J 6= ∅) is handled by the following Claim.Claim 7.8 Let π be a monotone p-irredundant 1-PDNF formula of the form
π =

∨

i∈I

(vi · t) ∨
∨

j∈J

(vj · tj),where I and J are nonempty sets, furthermore tj , for j ∈ J , and t are monotone terms.Then π = vit ∨ vitt
′ for some variable vi and some monotone term t′.ProofIt follows from proje
tivity and from Claim 7.6 that T (vjtj) ⊆ T (π) ⊆ T (t), thus

Lit(t) ⊆ Lit(vjtj), and so (as t is monotone) Lit(t) ⊆ Lit(tj). Thus π 
an be writtenas
π =

∨

i∈I

(vi · t) ∨
∨

j∈J

(vj · tt
′
j),where now I, J 6= ∅ and t, t′j are monotone terms. If I = J = {i} for some i, then weare done. For the rest of the proof we assume that this is not the 
ase, and show thatthis leads to 
ontradi
tion.Now it must be the 
ase, that there are terms (vi · t) and (vj · tt

′
j) in π su
h that

i 6= j. Thus T (vivjtt
′
j) 6= ∅ (by (a) of p-irredundan
y), and it also holds (by Equation(6.4)) that T (vjvit) = T (vivjtt

′
j). Then either t′j = vi or t′j = ⊤. But t′j = vi wouldviolate (a) of p-irredundan
y, thus it must be that t′j = ⊤.



7.2 Proof of Theorem 7.3 73Let us 
onsider �rst the 
ase when π 
ontains only two terms. Then it must be ofthe form π = (vi · t) ∨ (vj · t). Then, on one hand, if vj 6∈ t, then it 
ontradi
ts themonotoni
ity of π (in variable vj), on the other hand, if vj ∈ t, then it 
ontradi
ts (b)of p-irredundan
y.Let us 
onsider now the 
ase when π has at least three terms. Sin
e t′j = ⊤, byproje
tivity T (vjt) ⊆ T (π), and thus by monotoni
ity T (t) ⊆ T (π). With Claim 7.6.this implies T (t) = T (π). But then for every other k ∈ J it holds that T (vkπ) =

T (vkt), meanwhile by proje
tivity T (vktt
′
k) = T (vkπ), so t′k = ⊤. Therefore

t ≡ π =
∨

i∈I

(vi · t) ∨
∨

j∈J

(vj · t) ≡

(

∨

i∈I

vi ∨
∨

j∈J

vj

)

t.This 
an only hold if some variable o

urs both in I and J , 
ontradi
ting 
ondition (
)of the de�nition of p-irredundan
y for π.This 
ompletes the proof of the 
laim. 2Now the lemma, as mentioned, follows from Claims 7.5, 7.7 and 7.8. 2The example of (6.3) (i.e., that (x · y) ∨ (z · y) ≡ (x · y) ∨ (x · yz)) shows thatthe representation as a p-irredundant 1-PDNF is not always unique. Also, it is aninteresting 
onsequen
e of the theorem that there are monotone 1-PDNF fun
tions,whi
h 
annot be written as a monotone 1-PDNF. Consider, for example, the 1-PDNF
(x · 1) ∨ (x · yz),representing the monotone fun
tion x ∨ yz. If there were an equivalent monotone1-PDNF, then it 
ould be transformed into a monotone p-irredundant 1-PDNF, whi
hmust look like the �rst 
ase in the theorem. But then the minimal elements of T (x∨yz)(where minimality is understood in the partial order de�ned by �≤�) must have Hammingdistan
e at most 2, whi
h is not the 
ase for this fun
tion:

distH((x 7→ 1, y 7→ 0, z 7→ 0), (x 7→ 0, y 7→ 1, z 7→ 1)) = 3 .Now we are ready to prove Theorem 7.3Proof (of Theorem 7.3)Again, one dire
tion of the theorem follows immediately from the de�nition of p-irredundan
y. For the other dire
tion, if there are two 
omplementary proje
tions in ϕ,then by 
ondition (
) of p-irredundan
y, ϕ must be of the form vt∨ vt′. Otherwise, letus assume that ϕ is of the form ϕ = ρ1t1 ∨ · · · ∨ ρℓtℓ. Consider any two terms ρiti and
ρjtj . If T (ρiti)∩ T (ρjtj) 6= ∅, then ρiti ∨ ρjtj is unate, and by Lemma 7.4 it must bethe 
ase that ti = tj . On the other hand, if T (ρiti)∩T (ρjtj) = ∅, then by proje
tivity,it holds that T (ρiρjtj) = ∅, thus ρi ∈ Lit(tj). Thus for every term ρiti, those terms
ρjtj for whi
h T (ρiti)∩T (ρjtj) 6= ∅ have the same 
onjun
tion part, and all the otherterms 
ontain ρi in their 
onjun
tion part. 2



74 1-PDNF Formulas7.3 Con
luding RemarksThe main result of this 
hapter is the 
hara
terization of the sub
lass of 1-PDNFfun
tions. It would be interesting to get a des
ription of k-PDNF fun
tions for larger
k. Finally note that the results presented in this 
hapter�unless noted otherwise�appeared in the paper [115℄, 
o-authored by the author of the present dissertation.



Chapter 8
k-term-DNF Formulas withLargest Number of PrimeImpli
ants
Prime impli
ants of a Boolean fun
tion (or, in other words, maximal sub
ubes of asubset of the n-dimensional hyper
ube 1) form a basi
 
on
ept for the theory of Booleanfun
tions and their appli
ations. Con
erning the maximal number of prime impli
ants,it is known that an n-variable Boolean fun
tion 
an have at most O ( 3n√

n

) primeimpli
ants, and there are n-variable Boolean fun
tions with Ω
(

3n

n

) prime impli
ants(see, e.g., [31℄).Another 
ase 
onsidered is the maximal number of prime impli
ants of Booleanfun
tions represented by disjun
tive normal forms (DNF) with a bounded number ofterms. The result that a k-term-DNF 
an have at most 2k − 1 prime impli
ants wasdis
overed independently by Chandra and Markowsky [31℄, Levin [90℄ and M
Mullenand Shearer [97℄. (For a re
ent appli
ation in 
omputational learning theory, see Heller-stein and Raghavan [68℄.) It was shown by Laborde [88℄, Levin [90℄ and M
Mullen andShearer [97℄ that the bound is sharp, i.e., there are k-term-DNFs with 2k − 1 primeimpli
ants (Chandra and Markowsky gave an example with more than 2k/2 prime im-pli
ants). In view of these results, we 
all a DNF maximal if it has k terms and 2k −1prime impli
ants for some k.In this 
hapter, on one hand, the above results of [31; 88; 90; 97℄ (about maximalDNFs) are presented, and on the other hand, these results get 
ompleted by determiningall the maximal disjun
tive normal forms.
1This and the following 
hapter heavily relies on the view dis
ussed in Subse
tion 2.3.1: to view

A(V ′) as the n-dimensional 
ube, and a term as a sub
ube of it, where V ′ is some �nite subset of V .75
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w2 u2u3

w3u1

v2 v3

v4
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Figure 8.1: A non-repeating, unate-leaf de
ision tree (NUD). The labels of the edges areomitted for simpli
ity.8.1 Nonrepeating De
ision Trees and the Chara
-terization of Maximal DNFsIn order to formulate the des
ription, let us introdu
e the notion of non-repeating,unate-leaf de
ision tree.For a given k ≥ 2 and r ≥ 0, let us 
onsider the pairwise distin
t variables
v1, . . . , vk−1, w1, . . . , wk and u1, . . . , ur. For ea
h of the w and u variables, pi
k anorientation, i.e., form the literals εi and δj , where εi is either wj or wj and δj is either
uj or uj, for i = 1, . . . , k and j = 1, . . . , r. A non-repeating unate-leaf de
isiontree (NUD) T over these variables and literals is 
onstru
ted by taking an LBT overvariables v1, . . . , vk−1 with k − 1 inner nodes su
h that ea
h inner node has di�erentlabel, also assign to ea
h leaf a distin
t w literal from those formed above, and, inaddition, assign to ea
h leaf an arbitrary subset of the u literals formed above. Theset of leaves of T is denoted by L. If we want to mention the number of v variablesand w literals used in the 
onstru
tion, then we refer to T as a k-NUD (the value ris irrelevant). Figure 8.1 gives an example of a 5-NUD (the labeling of the edges isomitted for simpli
ity).A k-NUD represents a k-term-DNF, determined as follows. For a leaf ℓ ∈ L, letthe term tℓ be the 
onjun
tion of

• the v literals along the path leading to ℓ, and of
• the w and u literals assigned to ℓ.The k-term-DNF represented by the k-NUD T is

ϕT =
∨

ℓ∈L

tℓ.For example, the 5-term-DNF represented by the 5-NUD of Figure 8.1 is
v1 v2 v4w1 u1 ∨ v1 v2 v4w2 u2 u3 ∨ v1 v2 w3 u1 ∨ v1 v3 w4 u1 u4 ∨ v1 v3w5 u2.The Boolean fun
tion represented by ϕT 
an also be thought of in the following way:given a truth assignment x to all the variables, use the values of the v variables todetermine a path from the root to a leaf. The fun
tion value is 1 if x makes all the



8.1 Nonrepeating De
ision Trees and the Chara
terization of MaximalDNFs 77
w and u literals assigned to this leaf true, and it is 0 otherwise. It is 
lear from thede�nition that the inputs a

epted at a leaf ℓ are pre
isely those assignment whi
hsatisfy the term tℓ. The fun
tion ϕT is a generalized addressing fun
tion or multiplexer[109; 132℄. If a DNF ϕ 
omes from a NUD T , then T 
an be re
onstru
ted from ϕ.The w and u literals are those whi
h are unate in ϕ, i.e., their negation does not o

urin ϕ, while the v variables are those whi
h o

ur both negated and unnegated. Amongthe v variables, the one labeling the root is the only one whi
h o

urs in every term(either unnegated or negated). The left 
hild is the only v variable whi
h o

urs in everyterm 
ontaining the negation of the root variable, et
. In view of this 
orresponden
e,with some abuse of terminology, we 
an talk about a DNF being a NUD, rather than
orresponding to a NUD. The maximal DNF of [88; 97℄ (resp., [90℄) 
orresponds to atree whi
h is a single path (resp., a 
omplete binary tree), without any u literals. ANUD generalizes these examples by allowing for an binary arbitrary tree and for theadditional u literals. Now we 
an formulate the des
ription of maximal DNF.Theorem 8.1 A DNF is maximal if and only if it 
orresponds to a NUD.A 
losely related 
lass of DNF tautologies is obtained if we 
onsider trees with thesame kind of inner nodes, but without any literals assigned to the leaves. In the 
aseof the example of Figure 8.1, the 
orresponding DNF tautology is

v1 v2 v4 ∨ v1 v2 v4 ∨ v1 v2 ∨ v1 v3 ∨ v1 v3 .Let us refer to this 
lass of tautologies as non-repeating de
ision tree tautologies,or ND's. The main step in the proof of Theorem 8.1, the ND Lemma (Lemma 8.11)is to show that for every DNF tautology the following two properties are equivalent:(a) any two of its terms have exa
tly one 
on�i
ting pair of literals (in other words,the terms are pairwise neighboring), (b) it is an ND. Lemma 8.11 was proven re
ently,independently from our work, by Kullmann [85; 86℄ 2. Also note that Theorem 9.1generalizes the result of the ND Lemma, thus the latter simple follows from the former;however the proof for the former 
ase is more simple, and it seems to worth dis
ussingit separately.We note that ND's 
ome up in other 
ontexts as well, e.g., in 
onne
tion with the
omplexity of analyti
 tableaux (Urquhart [125℄, referring to earlier unpublished workof Cook, and Arai et al. [15℄).The 
hara
terization of ND's as pairwise neighboring DNF tautologies is a dire
t
onsequen
e of the following Splitting Lemma (Lemma 8.10): if the n-dimensional2Kullmann's proof uses the 
on
ept of Hermitian defe
t and other 
on
epts from linear algebra.(The Hermitian rank of a symmetri
 matrix is the maximum of the number of positive and thenumber of negative eigenvalues of the matrix (Gregory, Watts and Shader [55℄), and the Hermitiandefe
t is the di�eren
e of the order of the matrix and its Hermitian rank [85; 86℄.) Kullmann alsouses the 
hara
terization of ND's as strongly minimal tautologies with the additional property thatthe number of terms is one more than the number of variables (Aharoni and Linial [1℄, Davydov etal. [33℄, Kullmann [84℄), proved using Hall's theorem or resolution te
hniques. (A tautology is stronglyminimal if deleting any term, or adding any literal to a term results in a non-tautology.) Our proof isan elementary 
ombinatorial argument.
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antshyper
ube is partitioned into sub
ubes of pairwise distan
e one, then there is a split ofthe whole 
ube into two half 
ubes su
h that every 
ube of the partition is 
ontainedin one of the two halves. Note that the result presented in the next 
hapter (Theorem9.1) generalizes this result; however the proof for is mu
h longer. For this, we presenta separate, simple proof for the Splitting lemma.Re
ent related work on the 
ombinatorial aspe
ts of the satis�ability problem (seeKullmann [86℄ for a re
ent survey) makes use of the 
onne
tion with partitioning 
om-plete graphs into 
omplete bipartite graphs (bi
liques). This 
onne
tion, and in parti
-ular, the Graham�Pollak theorem [54℄ is used by Laborde [88℄ to show that a maximal
k-term-DNF 
ontains at least 2k − 1 variables. (This result, in turn, follows immedi-ately from Theorem 8.1 above without using the Graham�Pollak theorem.) Se
tion 8.5
ontains an appli
ation of the Splitting Lemma (Lemma 8.10) showing that the familyof re
ursive partitions into 
omplete bipartite graphs has an extremal property amongall partitions into 
omplete bipartite graphs.
8.2 Further De�nitions and NotationsThe DNF ϕ is aminimal 
over of the term t, if ϕ is a 
over of t (i.e., t is an impli
antof ϕ), but every DNF obtained from ϕ by deleting a term is not a 
over of t.Let t be a term, and ϕ = t1∨· · ·∨ tk be a DNF. Every term ti of ϕ 
an be uniquelywritten in the form

ti = t′i ∧ t
′′
i , (8.1)where t′i 
ontains all the literals from ti whi
h also o

ur in t, and t′′i 
ontains theremaining literals of ti.Re
all that for a DNF ϕ, Var(ϕ) (resp., Lit(ϕ)) denotes the set of variables (resp.,literals) o

urring in any term of ϕ. Let

UnateLit(ϕ) = {u ∈ Lit(ϕ) : u 6∈ Lit(ϕ)} (8.2)be the set of unate literals in ϕ, i.e. the set of those literals o

urring in ϕ, for whi
htheir negation does not o

ur in ϕ.The graph of the n-dimensional 
ube has An as verti
es, and edges (x,y) forevery x,y ∈ An of Hamming distan
e 1. The distan
e of two sub
ubes Q1 and Q2is min{distH(x,y) : x ∈ Q1,y ∈ Q2}. Note that the distan
e of T (t1) and T (t2)is equal to the number of 
on�i
ts between the terms t1 and t2. A partition of the
ube into sub
ubes 
an also be viewed as a disjoint DNF tautology. A partition of a
ube into sub
ubes is pairwise neighboring, if any two sub
ubes in the partition havedistan
e 1. A set of terms forms a pairwise neighboring partition if the 
orrespondingset of 
ubes forms a pairwise neighboring partition.



8.3 Previous Results on k-term-DNFs and Prime Impli
ants 798.3 Previous Results on k-term-DNFs and PrimeImpli
antsIn this se
tion we des
ribe the results of [31; 88; 90; 97℄ on prime impli
ants of
k-term-DNF. We give a 
omplete, self-
ontained presentation in order to 
larify whatare the 
onsequen
es of the separate assumptions of being an impli
ant, a prime im-pli
ant, resp. a minimal 
over, and to give an expli
it formulation of results impli
it in[88℄. We use the notation introdu
ed above in (8.1) and (8.2).Proposition 8.2 A term t is an impli
ant of a DNF ϕ if and only if ∨k

i=1 t
′′
i = 1.ProofFor the �if� dire
tion, let x be a truth assignment su
h that t(x) = 1. Then t′i(x) = 1for every i and t′′i (x) = 1 for some i, so ti(x) = 1 for some i, and thus ϕ(x) = 1.For the �only if� dire
tion assume ∨k

i=1 t
′′
i 6≡ 1, i.e., (∨k

i=1 t
′′
i

)

(x) = 0 for some
x. The literals o

urring in ∨k

i=1 t
′′
i do not o

ur in t, but it may be the 
ase that thenegation of su
h a literal o

urs in t. Let y be the truth assignment obtained from x bysetting all the literals of t to 1. Then every literal in ∨k

i=1 t
′′
i is either un
hanged, or is
hanged to 0, thus (∨k

i=1 t
′′
i

)

(y) = 0, and so ϕ(y) = 0. But t(y) = 1, 
ontradi
tingthe fa
t that t is an impli
ant of ϕ. 2Proposition 8.3 If t is a prime impli
ant of ϕ then(a) t =
∧k

i=1 t
′
i,(b) every literal of t o

urs in ϕ.ProofFor (a), it follows from the de�nition that t ≤ ∧k

i=1 t
′
i. Assume that a variable v in tdoes not o

ur in any ti. Then v does not o

ur in ϕ at all, though v may o

ur insome t′′i . But then t is an impli
ant of the disjun
tion of those terms in ϕ whi
h do not
ontain v, and so by deleting v from t we still get an impli
ant of ϕ. Part (b) followstrivially from (a). 2Proposition 8.4 If ϕ is a minimal 
over of t then(a) Lit(t) ∩ Lit(ϕ) = UnateLit(ϕ),(b) ∨k

i=1 t
′′
i is a minimal 
over of 1.ProofTo see that Lit(t) ∩ Lit(ϕ) ⊆ UnateLit(ϕ) note that if t 
ontains a non-unate literal

ε of ϕ, then terms 
ontaining ε 
an be deleted from ϕ and we still get a 
over of t,
ontradi
ting the minimality of ϕ. For the other dire
tion of (a), assume that a unateliteral ε is not 
ontained in t. Then ε t is also an impli
ant of ϕ, whi
h is 
overedby the terms of ϕ not 
ontaining ε. As these terms do not 
ontain ε either, theirdisjun
tion 
overs t as well, again 
ontradi
ting the minimality of ϕ. Part (b) followsfrom Proposition 8.2. 2



80 k-term-DNF Formulas with Largest Number of Prime Impli
antsPutting together Propositions 8.2, 8.3 and 8.4, we get the following.Theorem 8.5 If t is a prime impli
ant of ϕ and ϕ is a minimal 
over of t, then(a) t is the 
onjun
tion of the literals in UnateLit(ϕ),(b) ∨k
i=1 t

′′
i is a minimal 
over of 1.Theorem 8.6 ([31; 90; 97℄) Every k-term-DNF has at most 2k−1 prime impli
ants.ProofLet ϕ be a k-term-DNF and t be a prime impli
ant of ϕ. Consider a minimal set ofterms of ϕ 
overing t. Then, by Theorem 8.5 (a), t is uniquely determined by thisnonempty set of terms. 2The next result gives important stru
tural information on maximal DNF's.Theorem 8.7 ([88℄) Let ϕ = t1 ∨ · · · ∨ tk be a k-term-DNF with 2k − 1 primeimpli
ants, and let t be the term formed by the literals in UnateLit(ϕ). Then(a) ∨k

i=1 t
′′
i is a minimal 
over of 1,(b) t′′i and t′′j 
on�i
t in exa
tly one variable, for every 1 ≤ i < j ≤ k.ProofBy Theorems 8.5 and 8.6, every nonempty subset of the terms of ϕ is a minimal 
overingof some prime impli
ant of ϕ. Part (a) follows by applying Theorem 8.5 (b) to all theterms.Let us 
onsider now ϕi,j = ti ∨ tj . Again, this is a minimal 
over of a primeimpli
ant of ϕ. If ti and tj do not 
on�i
t in any variable, then, by Theorem 8.5 (a),the 
orresponding prime impli
ant is the term formed by all the literals in ti and tj .But that term is not a prime impli
ant. Indeed, it must be the 
ase that ti 6= tj , andso ti ∧ tj < ti or ti ∧ tj < tj . If ti and tj 
on�i
t in more than one variable, then weget a 
ontradi
tion to Theorem 8.5 (b), as the disjun
tion of two terms with at leasttwo 
on�i
ts 
annot be 1. 28.4 Proof of Theorem 8.1In this se
tion we prove Theorem 8.1: A DNF is maximal if and only if it 
orrespondsto a NUD.First we 
onsider the �if� dire
tion.Lemma 8.8 Every NUD 
orresponds to a maximal DNF.



8.4 Proof of Theorem 8.1 81ProofLet T be a k-NUD, and let H be a nonempty subset of its leaves. De�ne the term
tH :=

∧

UnateLit({tℓ : ℓ ∈ H}).Let x be a truth assignment satisfying tH . It follows by indu
tion on the number ofinner nodes evaluated, that on input x we arrive at a leaf belonging to H , and it followsfrom the de�nition of tH that x satis�es every literal assigned to that leaf. Thus tH isan impli
ant of ϕT .Assume that we delete a v literal, say ε = vi from tH , to get the term t′. (The
ε = vi 
ase is symmetri
.) As ε ∈ UnateLit({tℓ : ℓ ∈ H}), there is a leaf ℓ1 belongingto H below the right 
hild of the inner node labelled vi, but no leaf below the left 
hildof the node is in H . Let x be the assignment satisfying all the literals in tℓ1 and tH ,with those w literals that don't o

ur in these terms set to 0. Let y = x[vi]. On theinput y we arrive at a leaf ℓ2 below the left 
hild of vi. But the w literal assigned to
ℓ2 is set to 0 in y, and hen
e ϕT (y) = 0. On the other hand, y still satis�es t′. Thus
t′ is not an impli
ant.Assume now that we delete a w literal, say ε = wj, from tH , to get the term t′.(The ε = wj 
ase is symmetri
.) Let ℓ be the leaf 
ontaining ε. It follows from thede�nition of tH that ℓ ∈ H . Let x be an assignment satisfying tℓ and tH , and let
y = x[wj ]. Then the input y leads to ℓ, but as the literal ε has value 0 for assignment
y, we get ϕT (y) = 0. On the other hand, y still satis�es t′. Thus t′ is not an impli
ant.The 
ase when we delete a u literal, say δ = uj or δ = uj, from tH is the same,ex
ept now there may be several leaves in H 
ontaining δ. We 
an 
hoose any su
hleaf, and repeat the previous argument. It again follows that the term obtained afterdeleting the literal is not an impli
ant.Thus the term tH is a prime impli
ant of ϕT . Terms 
orresponding to di�erentsubsets of L are di�erent, as ea
h leaf has its unique w literal. Hen
e ϕT has at least
2k − 1 prime impli
ants, and so it is maximal by Theorem 8.6. 2The rest of this se
tion 
ontains the proof of the �only if� dire
tion of Theorem 8.1.Lemma 8.9 Every maximal DNF 
orresponds to a NUD.ProofLet ϕ = t1 ∨ · · · ∨ tk be a k-term-DNF with 2k − 1 prime impli
ants. Considerthe term t = UnateLit(ϕ), and the de
omposition ti = t′i ∧ t′′i of the terms of ϕwith respe
t to t, as in (8.1). A

ording to Theorem 8.7, the terms t′′1, . . . , t′′k form apairwise neighboring partition over the non-unate variables o

urring in ϕ, i.e., over the
s-dimensional 
ube, As, where s = |Var(ϕ)| − |UnateLit(ϕ)|. The following lemmastates a basi
 
ombinatorial property of pairwise neighboring partitions.Lemma 8.10 (Splitting Lemma) If a set of k ≥ 2 terms forms a pairwise neigh-boring partition, then there is a variable that o

urs (unnegated or negated) in everyterm.



82 k-term-DNF Formulas with Largest Number of Prime Impli
antsProofWe pro
eed by indu
tion on the number of variables; the 
ase of one or two variablesis trivial. Let t̂1, . . . , t̂k be terms forming a pairwise neighboring partition of the s-dimensional 
ube As.Consider the ε half 
ube 
orresponding to an arbitrary literal ε. The restri
tion of
t̂1, . . . , t̂k to the ε half 
ube is formed by deleting terms whi
h 
ontain the literal ε.It follows dire
tly from the de�nitions that the restri
tion gives a pairwise neighboringpartition of the ε half 
ube. If the restri
tion 
onsists of a single 
ube then ε is a termof the original partition. In this 
ase every other term of the original partition must
ontain ε and we are done. Hen
e in what follows we may assume that the restri
tionsalways 
ontain at least two terms.Applying the indu
tion hypothesis to the pairwise neighboring partition of the s−1dimensional 
ube obtained by deleting the 
omponent 
orresponding to ε, and deletingthe literal ε from ea
h of the remaining terms, it follows that there is a variable Split(ε),di�erent from the variable of ε, 
ontained (negated or unnegated) in every term 
overinga point in the ε half 
ube. As there are 2s literals and s variables, there are literals ε1and ε2 su
h that Split(ε1) = Split(ε2) = u for some variable u.We 
laim that u o

urs (negated or unnegated) in every term of the partition
t̂1, . . . , t̂k. If ε1 is the negation of ε2, then u must o

ur in every term and we aredone; hen
eforth we 
an assume that ε1 and ε2 have di�erent variables. Assume nowfor 
ontradi
tion that u is not in every term of the partition. Let t̃ be a term of thepartition 
ontaining neither u nor u, and let x be a point in T

(

t̃
). Then x belongs toneither the ε1 sub
ube, nor the ε2 sub
ube.Consider the points x[ε1] and x[ε2], 
overed respe
tively by terms t̃ε1

and t̃ε2
of thepartition. Note that t̃ε1

and t̃ε2
are di�erent. Indeed, if t̃ε1

= t̃ε2
then, as x[ε1] and x[ε2]di�er in both their ε1 and ε2 
omponents, t̃ε1

(and thus t̃ε2
) 
ontains neither ε1 nor ε2,and hen
e it 
overs x as well. This 
ontradi
ts the de�nition of x.The points x[ε1] and x[ε2] di�er only in their ε1 and ε2 
omponents; hen
e the unique
on�i
t of the terms t̃ε1

and t̃ε2
is either ε1 or ε2. Assume without loss of generalitythat the 
on�i
t is ε1, and that t̃ε1

ontains ε1 and t̃ε2


ontains ε1. By de�nition, both
t̃ε1

and t̃ε2

ontain either u or u. As x[ε1] and x[ε2] do not 
on�i
t on u, both t̃ε1

and t̃ε2must 
ontain variable u with the same orientation; say u appears unnegated in both.Thus so far we have that ε1, u ∈ Lit
(

t̃ε1

) and that
ε, u ∈ Lit

(

t̃ε2

)

.Now 
onsider the point x[ε1,u] 
overed by the term t̃ε1,u of the partition. As x[ε1,u]is in the ε1 sub
ube, it 
ontains either u or u; but as x[ε1,u](u) = 0, it must be u. Whatis the unique 
on�i
t of t̃ (the term 
overing x) and t̃ε1,u? As x[ε1,u] and x 
on�i
tonly on their ε1 and u 
omponents, but t̃ 
ontains neither u nor u, thus it must be ε1.Then
ε1, u ∈ Lit

(

t̃ε1,u

)

,whi
h means that t̃ε2
and t̃ε1,u 
on�i
t in at least two 
omponents, a 
ontradi
tion. 2



8.5 A Graph Theoreti
 Appli
ation of the Splitting Lemma 83The Splitting Lemma is now used to prove the 
hara
terization of nonrepeatingde
ision tree tautologies mentioned in the introdu
tion.Lemma 8.11 (ND Lemma [85℄) A set of k ≥ 2 terms forms a pairwise neighboringpartition if and only if it is an ND.ProofApply Lemma 8.10 to the pairwise neighboring partition to get a variable v1 o

urringin every term. It must be the 
ase that v1 o

urs both unnegated and negated, asotherwise the 
ubes would not 
over the whole 
ube. If the T (v1) (resp. the T (v1))half 
ube 
ontains just one 
ube then we stop at that bran
h, otherwise we use thelemma again to get a variable whi
h o

urs in every sub
ube of the partition, belongingto the T (v1) (resp. T (v1)) half 
ube, et
. In this way we get a tree, where the innernodes are labeled with variables and there are k leaves ℓ1, . . . , ℓk 
orresponding to the
ubes in the partition. (The tree 
onstru
ted is (the dual of) a spe
ial sear
h treein the sense of [93℄ for the partition.) The labels of the inner nodes are di�erent, asthe same label appearing twi
e would mean that some pair of 
ubes have distan
e atleast 2. Indeed, if variable vi o

urs twi
e then let vj be the variable labeling the least
ommon an
estor of the two o

urren
es in the tree. By 
onstru
tion, there are terms
ontaining vi vj, resp. vi vj . Thus the partition is an ND. 2Now we 
an 
omplete the proof of Lemma 8.9. Lemma 8.11 gives a nonrepeatingde
ision tree for the pairwise neighboring terms t′′1, . . . , t′′k. We 
laim that by addingthe literals in t′i to the leaf ℓi, we get a k-NUD for ϕ. Consider any truth assignment
x to the variables in ϕ. Evaluating the tree on x, we arrive at a leaf 
orresponding toa term t′′i . As ϕ(x) = 1 i� t′i(x) = 1, the tree 
omputes ϕ 
orre
tly. By 
onstru
tion,all the literals in the leaves are unate. Thus, in order to verify the NUD-ity of thetree, it only remains to show that for every leaf there is a literal whi
h o

urs onlyin that leaf (that literal will be its w literal). Assume that this is not the 
ase, andevery (unate) literal assigned to leaf ℓi o

urs in some other leaf. Let ε be the lastliteral on the path leading to ℓi. Then ε ∈ UnateLit(ϕ \ {ti}). We 
laim that
UnateLit(ϕ \ {ti}) \ {ε} is an impli
ant of ϕ. Let x be a truth assignment satisfyingevery literal in UnateLit(ϕ \ {ti}) \ {ε}, and let us evaluate the tree on x. If we arriveat a leaf other than ℓi, then ϕ(x) = 1 by 
onstru
tion. But ϕ(x) = 1 if we arrive at ℓias well, as all unate literals in ℓi o

ur in other leaves, and thus they must be set to 1in x. Thus UnateLit(ϕ \ {ti}) is not a prime impli
ant of ϕ, 
ontradi
ting Theorems8.5 and 8.6. 28.5 A Graph Theoreti
 Appli
ation of the Split-ting LemmaGiven a set of pairwise disjoint 
ubes in the n-dimensional 
ube An, 
orresponding toterms t1, . . . , tk, one 
an 
onstru
t a 
overing

G = {G1, . . . , Gn}



84 k-term-DNF Formulas with Largest Number of Prime Impli
antsof the k-vertex 
omplete graph Kk by 
omplete bipartite graphs, where Gr has an edge
onne
ting verti
es xi and xj if terms ti and tj 
on�i
t in the variable vr. If the set of
ubes is pairwise neighboring, then this 
overing is a partition, as the 
omplete bipartitegraphs are edge disjoint.Conversely, given a 
overing G = {G1, . . . , Gn} of Kk by 
omplete bipartite graphs,we 
an 
onstru
t a set of pairwise disjoint 
ubes t1, . . . , tk in {0, 1}n. For every Gr �xarbitrarily one of the sides as the left side. The term ti 
ontains vr (resp. vr), if vertex
xi is 
ontained in the left (resp. right) side of Gr. If G is a partition, then it followsthat the ti's are pairwise neighboring. The 
ubes thus 
onstru
ted do not ne
essarilyform a partition of An (an example is given below).The Graham�Pollak theorem [54℄ states that every partition of Kk into 
ompletebipartite graphs 
onsists of at least k−1 graphs. A large 
lass of su
h partitions, whi
h
an be 
alled re
ursive partitions, is obtained as follows. Take a 
omplete bipartitegraph on the whole vertex set. This `takes 
are' of all edges 
onne
ting the two sides. Inorder to partition the remaining edges (those having both endpoints in the same side),repeat the same 
onstru
tion, i.e., re
ursively add similar partitions of the 
ompletegraphs formed by the two sides of this bipartite graph (see, e.g., [19℄).Consider a partition G = {G1, . . . , Gn} of Kk into 
omplete bipartite graphs. Letthe degree of a vertex x with respe
t to G, denoted by dG(x), be the number of Gi's
ontaining x, and let the volume Vol(G) of the partition be de�ned as

Vol(G) =
∑

x

2−dG(x).In view of the translation into a set of pairwise disjoint 
ubes in An des
ribed above,
Vol(G) ≤ 1 for every G, as dG(xi) = |ti| for every i = 1, . . . , k, and Vol(G) = 1 if andonly if the 
ubes form a partition of An. For example, the partition of K4 into the 3
omplete bipartite graphs ({1}, {3, 4}), ({2}, {1, 4}), and ({3}, {2, 4}) (mentioned in[88℄) has volume 7

8
. This partition of K4 is not re
ursive. (It was a
tually this examplewhi
h suggested Lemma 8.10.) As a 
orollary to the Splitting Lemma (Lemma 8.10)one gets the following 
hara
terization of re
ursive partitions. This 
hara
terization isalso a dire
t 
onsequen
e of Kullmann's [84�86℄ results.Corollary 8.12 A partition G is re
ursive if and only if Vol(G) = 1.ProofThe �only if� dire
tion follows dire
tly by indu
tion on the number of verti
es by 
on-sidering the bipartite graph from G whi
h 
ontains all the verti
es.For the �if� dire
tion, one only has to note that the set of terms t1, . . . , tk 
on-stru
ted above is pairwise neighboring, and by the volume 
ondition it is also a partitionof the whole 
ube.Applying Lemma 8.10 we get that there is a variable whi
h o

urs (unnegated ornegated) in every term. This means that the 
orresponding bipartite graph 
ontains allthe k verti
es. The remaining partitions of the two sides of this bipartite graph havetotal volume 2, and thus ea
h side must have volume 1. The statement then followsby indu
tion. 2



8.6 Con
luding Remarks 85The 
orollary shows that among partitions of Kk into 
omplete bipartite graphs,re
ursive ones have the largest possible volume. Among the partitions of Kk into k−1
omplete bipartite graphs, whi
h ones have minimal volume?8.6 Con
luding RemarksIn this 
hapter k-term-DNF with the largest number of prime impli
ants were dis
ussed.Similar results do not appear to be known for shortest prime impli
ants, i.e., primeimpli
ants 
ontaining the smallest possible number of literals. The k-term-DNF
v1v2 ∨ v2v3 ∨ · · · ∨ vk−1vk ∨ vkv1,whi
h is false for 0 and 1, and true everywhere else, has k(k − 1) prime impli
ants,namely vivj for every i 6= j. These prime impli
ants are all shortest prime impli
ants,as the DNF has no prime impli
ants 
onsisting of a single literal. How many shortestprime impli
ants 
an a k-term-DNF have in general?Another question 
on
erns the maximal number of prime impli
ants of a Booleanfun
tion whi
h is true at a given number of points. As noted by Levin [90℄, everyimpli
ant is determined by the top and bottom of the 
orresponding sub
ube, in the
omponentwise partial ordering of the hyper
ube (the top and bottom may also beidenti
al). Thus if a fun
tion is true at m points, then it has O(m2) prime impli
ants.It is also noted in [90℄ that the n-variable fun
tion whi
h is true for assignments ofweight between n

3
and 2n

3
, has mlog 3−o(1) prime impli
ants. (This is the fun
tion withthe largest known number of prime impli
ants among n-variable fun
tions.) Thus themaximal number of prime impli
ants is bounded by two polynomial fun
tions of m, andthe question is to get sharper bounds.Finally note that the results presented in this 
hapter�unless noted otherwise (likein the 
ase of the results di
ussed in Se
tion 8.3)�appeared in the paper [114℄, 
o-authored by the author of the present dissertation.





Chapter 9Disjoint DNF Tautologies withCon�i
t Bound TwoOne of the main ingredients in the proof of the 
hara
terization result in the previous
hapter was the ND Lemma (Lemma 8.11), whi
h 
an be formulated both using the
• synta
ti
 wiew: that the 
lass of DDNF tautologies with 
on�i
t bound one(i.e., DNFs with terms 
on�i
ting in one variable pairwise) are NDs (i.e., DNFsgenerated by labeled binary trees with ea
h inner node having a unique label),and using the
• semanti
 view: that in every pairwise neighbouring partition of the n-dimensional
ube there is a perfe
t split: a split of the 
ube in two 
omplementary half
ubes su
h that ea
h sub
ube of the partition is 
ontained in either one of thehalf 
ubes.These two views o�er two e�e
tively di�erent dire
tions for further investigations; thesedire
tions are dis
ussed in the next se
tion. However, somewhat surprisingly, for onemore step these dire
tions do not separate. More pre
isely, we shall see in this 
hapterthat the following strengthening of the ND Lemma holds: any DDNF tautology with
on�i
t bound two 
an also be generated by some labeled binary trees�or, equivalently,for any 
ube partition with pairwise distan
e bounded by two there is a perfe
t splitsimilar as above.Throughout the notations and terminology introdu
ed in the previous 
hapter areused.9.1 Chara
terization of DDNF tautologies withCon�i
t Bound TwoThis se
tion dis
usses both of the two di�erent dire
tions mentioned above. Morepre
isely: 87



88 Disjoint DNF Tautologies with Con�i
t Bound Two
• the dire
tion suggested by syntax, 
onsidering DDNF and LBT generated tau-tologies
• the dire
tion suggested by semanti
s, 
onsidering the general splitting problemfor 
ube partitions,�furthermore how the strengthening of the ND Lemma gets realized in these twosettings.9.1.1 Synta
ti
 View: DDNF tautologies and LBT generatedDNFsA de
ision tree (and, of 
ourse, also an LBT) naturally en
odes a DNF tautology
onsisting of the terms 
orresponding to the leaves of the tree, where the term 
orre-sponding to a leaf 
onsists of the literals labelling the edges on the path from the rootto the leaf. These DNF tautologies hold the following spe
ial properties:(a) the terms are pairwise 
on�i
ting, and(b) the terms possess a hierar
hi
al stru
ture: there is a variable v that appears inea
h of them; there is a variable w that appears in every term 
ontaining literal
v and there is a variable u that appears in every term 
ontaining literal v (w and
u may be identi
al); and so on.Su
h DNFs are 
alled binary tree generated DNFs, or BT-DNFs for short (fora formal de�nition see Se
tion 9.2); re
all on the other hand that DNFs possessingproperty (a) but not ne
essarily property (b) are 
alled disjoint DNFs, or DDNFs.The question thus naturally arises, how spe
ial do these properties make a de
isiontree, regarding 
omplexity. This question was investigated by Lovász et al. in [93℄.More pre
isely they were interested in the following problem: given a DNF tautology ϕ,the task is to 
onstru
t a de
ision tree su
h that for ea
h term of the DNF generatedby it there is a term of ϕ that is a subterm of it. They have shown that for some very�small� DNF tautologies this problem 
an be solved only with �extremely large� de
isiontrees 1.On the other hand, the ND Lemma (Lemma 8.11) states that, when restri
ting theDNFs to the sub
lass posessing property (a) (i.e., the 
lass of DDNFs), and furtherbounding the number of 
on�i
ts between the terms to one (i.e., for ea
h pair of termsthere is exa
tly one variable appearing negated in one of them and unnegated in theother), then the resulting 
lass 
onsists of DNFs that 
an all be generated by de
isiontrees.In this 
hapter we give a strengthening of the above result, showing that the 
on�i
tbound 
an be relaxed to two:1They measure the 
omplexity by the depth of the DNF (resp. de
ision tree), whi
h is the maximalnumber of literals appearing in a term of the given DNF (resp. of the BT-DNF generated by the tree).What they show is that for some 
onstant depth DNFs one needs de
ision trees of depth linear (thusmaximal) in the number of variables.



9.1 Chara
terization of DDNF tautologies with Con�i
t Bound Two 89Theorem 9.1 If ϕ is a DDNF tautology with terms 
on�i
ting in one or two variablespairwise, then ϕ is a BT-DNF.Example 9.1The DNF
ϕex9.1 =v2 v4 ∨ v2v3 v4 ∨ v2v3v4 ∨ v1v4 ∨ v1v2 v3v4 ∨ v1v2v3v4 ∨ v1v3v4is a DDNF with 
on�i
t bound two, and Figure 9.2 proves that it is also a BT-DNF�whi
h is also apparent writing ϕex9.1 in the form
ϕex9.1 = v4 v2 ∨ v4v2v3 ∨ v4v2v3 ∨ v4v1 ∨ v4v1v3 v2 ∨ v4v1v3v2 ∨ v4v1v3,or also from Figure 9.1, visualizing the relations of the truth sets of the various terms.Figure 9.1: The assignments to variables v1, v2, v3 and v4 represented as the verti
es of the4-dimensional hyper
ube and grouped a

ording to whi
h term of ϕex9.1 they satisfy.

T (v1v3v4)

T (v1v2 v3v4)

T (v1v4)T (v2v3v4)

T (v2 v4)

T (v2v3 v4)

T (v1v2v3v4)

v1

v3

v2 ve
tors with v4 ve
tors with v4set to 0 set to 1Note however that the result of Theorem 9.1 does not generalize to 
on�i
t boundthree, as the following example demonstrates.Example 9.2DDNF ϕex9.2 = v1v3 ∨ v1v2 ∨ v2 v3 ∨ v1 v2v3 ∨ v1v2v3 is a tautology and has terms
on�i
ting in at most three variables pairwise, but is not a BT-DNF. (Simply note thatthere is no variable that appears in every term.)Note also that heorem 9.1 implies the following 
hara
terization result.Corollary 9.2 ϕ is a DDNF tautology with 
on�i
t bound two if and only if ϕ is aBT-DNF with 
on�i
t bound two.Finally we mention that a related problem is the problem of representing a Booleanfun
tion f as a DNF or as a de
ision tree�that is, when one needs to 
onstru
t aDNF tautology (resp. de
ision tree) with ea
h term (resp. with ea
h term of the
orresponding BT-DNF) 
overing only assignments that satisfy f , or only assignmentsthat falsify f�, and one is interested in 
omparing the 
omplexity of the two 
lass inthis setting. See for example [73; 110; 121℄.
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t Bound Two9.1.2 Semanti
 View: The General Splitting Problem forCube PartitionsA

ording to the Splitting Lemma (Lemma 8.10), for every pairwise neighboring 
ubepartition, the whole 
ube 
an be split into two halves in su
h a way that every 
ubeof the partition is 
ontained in one of the halves. The following question thus risesnaturally: what 
an be said without the pairwise neighboring property? Given anarbitrary partition of the whole 
ube into sub
ubes and a split into two halves, let ussay that a 
ube in the partition is un
ut, if it is 
ontained in either one of the halves.We would like to �nd a split su
h that the un
ut 
ubes 
ontain many points.Thus we 
onsider the following quantities. Given a 
ube partition ϕ over the vari-ables v1, . . . , vn and a variable vj , let
νϕ,j =

∑

{

2−|t| : t ∈ ϕ, vj ∈ t or vj ∈ t
}be the fra
tion of the volume of un
ut 
ubes in ϕ with respe
t to the vj split of the
ube, and let

αn = min
ϕ

max
1≤j≤n

νϕ,j,where ϕ ranges over all 
ube partitions, or in other words, over all disjoint DNF tau-tologies. Note that as ϕ is a partition it holds that
∑

t∈ϕ

2−|t| = 1. (9.1)Theorem 9.3
logn− log logn

n
≤ αn ≤ O

(

n− 1

5

)

.ProofLet ϕ = t1 ∨ · · · ∨ tr be a disjoint DNF tautology over the variables v1, . . . , vn. If theterm ti 
ontains vj or vj , then ti 
ontributes 2−|ti| to νϕ,j . Thus
n
∑

j=1

νϕ,j =

r
∑

i=1

|ti| · 2
−|ti|,and there is a variable vj with

νϕ,j ≥
1

n

r
∑

i=1

|ti| · 2
−|ti|.Let s denote the size of the shortest term in ϕ. As every term has size at least s, it
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1

n

r
∑

i=1

|ti| · 2
−|ti| ≥

s

n

r
∑

i=1

2−|ti| =
s

n
.On the other hand, for every variable vj o

urring in a shortest term ti it holds that

νϕ,j ≥ 2−s. Thus
αn ≥ min

( s

n
, 2−s

)

. (9.2)The lower bound then follows by taking s = logn− log log n, for whi
h the two termsin (9.2) are 
lose to ea
h other.The upper bound follows from a 
onstru
tion of Savi
ký and Sgall [111℄, providingan upper bound on the number of variable o

urren
es in tautologi
al k-DNF formulas(a problem introdu
ed by Tovey [122℄ and Krato
hvíl, Savi
ký and Tuza [83℄). They
onstru
ted disjoint DNF tautologies over n = 4ℓ variables, having 23ℓ terms of size 3ℓ,su
h that every variable o

urs in at most a
(

3

4

)ℓfra
tion of the terms. The bound then follows by a dire
t 
al
ulation. 2We note that the upper bound of Savi
ký and Sgall [111℄ has re
ently been improvedalmost optimally by Hoory and Szeider [70℄. The improved 
onstru
tions do not appearto improve the bound above, sin
e the DNF 
onstru
ted are not disjoint.Already Theorems 8.1 and 9.3 suggest that it may be of interest to 
onsider thequantity αd
n, whi
h is de�ned as αn, ex
ept that ϕ is restri
ted to 
ube partitionswith pairwise distan
es bounded by d. (For example in the 
onstru
tion of [111℄ themaximal distan
e grows linearly with n.) The main result presented in this 
hapter isthat α2

n = 1 (for any positive integer n); but note also that this does not generalize to
d = 3: Example 9.2 proves that α3

3 < 1.9.2 Further De�nitions and NotationsIn an LBT a path from the root to a leaf naturally determines a term obtained by simply
onjun
ting the literals appearing in the labels of the edges along the path. Thus, givena de
ision tree, the terms 
orresponding to its leaves put up a DDNF tautology 2. Re
allthat su
h DDNF tautologies are 
alled binary tree generated DNFs, or BT-DNFsfor short. Alternatively, one 
an de�ne the 
lass of BT-DNFs as the smallest subsetdt-dnf of the set of DNFs satisfying:
• If x is a variable, then the DNF x ∨ x is an element of dt-dnf.2Note that in Chapter 8 non-repeating de
ision tree tautologies were 
onstru
ted in the similarfashion using non-repeating unate-leaf de
ision trees.
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t Bound Two
• If x is a variable and both T1∨· · ·∨Tk and T ′

1∨· · ·∨T ′
ℓ are elements of dt-dnf,then the DNF (x ∧ T1) ∨ · · · ∨ (x ∧ Tk) ∨ (x ∧ T ′

1) ∨ · · · ∨ (x ∧ T ′
ℓ) is also anelement of dt-dnf.Note that in 
ase ϕ is a DDNF tautology, then there is a unique term of ϕ satis�edby truth assignment x; denote it tx(ϕ). When it 
auses no ambiguity, ϕ is omitted andsimply tx is used instead.9.3 Proof of Theorem 9.1For simpli
ity assume that V ′ is the set of variables in fo
us.Theorem 9.1 is proved by indu
tion on the number of terms in ϕ. In 
ase ϕ
ontains one or two terms, the statement is obvious. Now we show that ϕ is a BT-DNF, assuming:Indu
tion hypothesis: DDNF ϕ with 
on�i
t bound two
ontains r ≥ 3 terms, and the statement holds for any DDNF (9.3)tautology with 
on�i
t bound two having less than r terms.Let t be an arbitrary term of ϕ. Assume without loss of generality that t = v1 · · · vk.Of 
ourse, if ϕ is a BT-DNF, then for some 1 ≤ i ≤ k ϕ has a subformula equiva-lent to v1 · · · vi−1vi+1 · · · vk: namely the one indu
ed by the parent node of the leaf
orresponding to t. (For example if ϕ = ϕex9.1 from Example 9.1 and t = v1v3v4,then i = 3, and the subformula v1v2 v3v4 ∨ v1v2v3v4 ∨ v1v3v4 of ϕ is equivalent to

t \ {vi} = v1v4.) The next 
laim 
onsiders the reverse of this impli
ation. (Also, foran example demonstrating the 
laim see Example 9.3.)Claim 9.4 Assume (9.3), and let t = v1 · · · vk be a term of ϕ. Suppose that for some
i ∈ {1, . . . , k} it holds that every term in ϕ that 
on�i
ts with t only in vi 
ontains
v1 · · · vi−1vi+1 · · · vk as a subterm. Then ϕ is a BT-DNF.ProofConsider the following sets

S1 ={x ∈ {0, 1}n : x[vi] ∈ T (t)},

S2 =T (v1 · · · vi−1vivi+1 · · · vk),

S3 = ∪t′∈ϕ:v1···vi−1vivi+1···vk is a subterm of t′ T (t′),

S4 = ∪t′∈ϕ:t⊗t′={vi} T (t′).Then S1 = S2 and S2 ⊇ S3 always hold, and S3 ⊇ S4 follows from the 
ondition ofthe Claim. However S1 ⊆ S4 is also true be
ause
• sin
e ϕ is a tautology, ea
h element x of S1 appears in some T (t′) for some
t′ ∈ ϕ�re
all that this t′ is the term we denote as tx(ϕ)�, and
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• sin
e ϕ is a DDNF, ea
h of these tx(ϕ) terms must 
on�i
t with t in somevariable. But this variable must be vi, and only vi, as the �rst k bit of ea
h

x ∈ S1 is 1, ex
ept for the i-th bit.Thus all of the above sets are identi
al. Then de�ning
ϕ1 := {t′ ∈ ϕ : v1 · · · vi−1vivi+1 · · · vk is a subterm of t′}and

ϕ2 :=(ϕ \ (ϕ1 ∪ {t})) ∪ {v1 · · · vi−1vi+1 · · · vk}it holds that both ϕ′
1 := {t′ \ {v1, · · · , vi−1, vi, vi+1, · · · , vk} : t′ ∈ ϕ1} and ϕ2 areDDNF tautologies. Furthermore both have less terms then ϕ, thus by the indu
tionhypothesis both are BT-DNFs. This immediately implies the Claim: pi
k an LBT τ1 for

ϕ′
1 and an LBT τ2 for ϕ2, expand τ1 to an LBT for vi∨{vi∧ t

′ : t′ ∈ ϕ′
1} in the naturalway, and paste it into τ2 in the pla
e of the leaf 
orresponding to v1 · · · vi−1vi+1 · · · vk.

2Example 9.3Demonstrating Claim 9.4, let ϕ = ϕex9.1 from Example 9.1 and let t = v1v3v4. Then
i = 3, ϕ1 = v1v2 v3v4 ∨ v1v2v3v4, ϕ′

1 = v2 ∨ v2 and ϕ2 = (v2 v4 ∨ v2v3 v4 ∨ v2v3v4 ∨

v1v4) ∨ v1v4. See also Figure 9.2 for the de
ision tree τ1 (resp. τ2) for ϕ′
1 (resp. ϕ2).Figure 9.2: Marking τ1 and τ2 on the de
ision tree generating ϕex9.1 from Example 9.1. Thelabels of the nodes are omitted for simpli
ity.

v2 v1

v3

τ1

v4v4

τ2

x3

v2

v3

v2 v1

v3

v2

De�ning the following dire
ted graph G(V,E) = Gϕ,t(Vϕ,t, Eϕ,t):
V ={t′ ∈ ϕ : |t⊗ t′| = 1 and Var(t′) 6⊇ Var(t)},

E ={(t′, t′′) ∈ V 2 : vi ∈ t′ and vi 6∈ Var(t′′) for some 1 ≤ i ≤ k}, (9.4)based on Claim 9.4 one 
an give the following su�
ient 
ondition for ϕ being a BT-DNF(whi
h, as one 
an easily show, is also a ne
essary 
ondition):Claim 9.5 Assume (9.3), let t = v1 · · · vk be a term of ϕ, and let G = GF,T be thegraph de�ned as in (9.4). If G 
ontains no 
y
le, then ϕ is a BT-DNF.
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t Bound TwoProofWe show that if ϕ is not a BT-DNF, then G 
ontains a 
y
le. Suppose thus that ϕ isnot a BT-DNF. By Claim 9.4 this 
an only be if for i = 1, . . . , k there is a term ti ∈ ϕ
ontaining vi, 
ontaining no other variable from t negated, and having at least one ofthe variables in t missing. Consequently t1, . . . , tk ∈ V , and in the subgraph indu
ed bythem, ea
h vertex has indegree at least one. The subgraph has thus no sink, implyingthat it 
ontains a 
y
le. (For example if ϕ = ϕex9.2 from Example 9.2 and t = v1v3,then V 
onsists of the terms t1 = v1v2 and t2 = v2 v3, and there is an edge in E bothfrom t1 to t2 and from t2 to t1�and thus G 
ontains a 
y
le 3: t1, t2, t1.) 2In the rest of the paper we show that G indeed 
ontains no 
y
le. Assume for the
ontradi
tion that this is not the 
ase, and let t1, . . . , tℓ, t1 be a 
y
le of minimal length(then of 
ourse ℓ ≤ k), and assume without loss of generality that vi ∈ ti, i = 1, . . . , ℓ.(Note that no other variable of t appears unnegated in ti, as ti ∈ V .) Then for anydistin
t indi
es i, j ∈ {1, . . . , ℓ},
• if tj follows ti in the 
y
le 4, then vi 6∈ tj (by the 
onstru
tion of E),
• if not, then vi ∈ tj , as otherwise (ti, tj) ∈ E, whi
h would short
ut the 
y
le,and 
ontradi
t that it is of minimal length.These observations are summarized in Figure 9.3.Figure 9.3: The 
y
le t1, . . . , tℓ, t1. In the row of a term: �+� means that the given variableappears unnegated in it, �−� means that it appears negated in it, and � · � means that it doesnot appear in it. Conse
utive elements of the 
y
le might 
on�i
t in other variables too, butnon-
onse
utive elements have no more 
on�i
t.

v1 v2 v3 v4 · · · vℓ−2 vℓ−1 vℓ

t + + + + · · · + + +

t1 − + + + · · · + + ·
t2 · − + + · · · + + +
t3 + · − + · · · + + +
t4 + + · − · · · + + +... . . .
tℓ + + + + · · · + · −Let us now investigate how these terms �behave� on the rest of the variables. Theabove observation obviously implies that if terms ti and tj are not 
onse
utive elementsof the 
y
le, then they do not 
on�i
t in variables vℓ+1, . . . , vn, as otherwise they would
on�i
t in at least three variables: vi, vj and vℓ′ for some ℓ ≤ ℓ′ ≤ n. The questionis, whether two 
onse
utive elements of the 
y
le 
an (or have to) have some further
on�i
ts. An equivalent (semanti
) formulation of this question is whether there existsa (partial) assignment to variables vℓ+1, . . . , vn 
onsistent with the two terms. (Again,for an example demonstrating the 
laim see Example 9.4.)3Whi
h is in a

ordan
e with the fa
t that ϕex9.2 is not a BT-DNF.4That is, j = i+ 1 if i < ℓ, and j = 1 if i = ℓ.



9.3 Proof of Theorem 9.1 95Lemma 9.6 Assume (9.3), let t = v1 · · · vk be a term of ϕ with k < n, let G = Gϕ,tde�ned as in (9.4), and let t1, . . . , tℓ be a 
y
le of minimal length in G as in Figure 9.3.Then there is no partial assignment for variables vℓ+1, . . . , vn that is 
onsistent with tand all of t1, . . . , tℓ.ProofSuppose that t is of length less then n and assume for the 
ontradi
tion that σ isa partial assignment for variables vℓ+1, . . . , vn 
onsistent with t, t1, t2, . . . , tℓ. Let ϕ′be the DDNF 
onsisting of the terms of ϕ that are 
onsistent with σ, (thus t and
t1, . . . , tℓ are in ϕ′), and let ϕ′′ be the DDNF tautology obtained from ϕ′ by removingall o

urran
es of variables vℓ+1, . . . , vn. By the indu
tion hypotheses ϕ′′ is a BT-DNF 5,
onsequently for some i ∈ {1, . . . , ℓ} variable vi o

urs (negated or unnegated) in everyterm of ϕ′′, and thus also in every term of ϕ′�in parti
ular in ea
h of t1, . . . , tℓ. But theterm following ti in the 
y
le 
ontains neither vi nor vi�a 
ontradi
tion. (The 
ondition
k < n is ne
essary sin
e the partial assignment with empty domain is 
onsistent withall terms.) 2Example 9.4Let ϕ = ϕex9.1 from Example 9.1, and let t = v1v3v4. Then V 
ontains terms t1 = v1v4and t2 = v2v3v4, and E 
ontains the edge (t1, t2). As ϕ is a BT-DNF, by Lemma 9.6(or, more pre
isely, by the proof of the lemma), some variable of t (i.e., one of v1, v3and v4) must o

ur in t1 and t2�and indeed: v4 o

urs unnegated in t1 and negatedin t2.The next lemma rules out another 
ase: when there is exa
tly one pair of 
onse
utiveelements of the 
y
le that 
on�i
t in two variables.Lemma 9.7 Assume (9.3), let t = v1 · · · vk be a term of ϕ with k < n, let G = Gϕ,tde�ned as in (9.4), and let ℓ be the length of the smallest 
y
le in G. Unless ℓ = 2,there is no 
y
le in G of length ℓ with the property that one pair of 
onse
utive elementsof the 
y
le 
on�i
t in two variables, and all other 
onse
utive pairs 
on�i
t in one.ProofAssume for the 
ontradi
tion that t1, . . . , tℓ, t1 is su
h a 
y
le in G with ℓ > 2 andsuppose that t1 and tℓ are the only 
onse
utive elements 
on�i
ting in two variables,namely in v1 and in some u ∈ {vℓ+1, . . . , vn}

6. Assume without loss of generality that
t1, . . . , tℓ behave as in Figure 9.3 and that u ∈ t1 and u ∈ tℓ. (Note that neither tnor t2, . . . , tℓ−1 
ontains u or u: if t 
ontained u (resp. u) it would 
on�i
t with tℓ(resp. t1) in two variables; if any of t2, . . . , tℓ−2 (resp. t3, . . . , tℓ−1) 
ontained u, itwould 
on�i
t with tℓ (resp. t1) in three variables; �nally if t2 (resp. tℓ−1) 
ontained
u (resp. u), then it would 
on�i
t with t1 (resp. tℓ) in two variables, 
ontradi
tingthe assumption of the lemma.) Then there is some partial assignment to the variables
{vℓ+1, . . . , vn} \ {u} 
onsistent with t1, . . . , tℓ and t. Denote one su
h by σ.5Here it is used that k < n and is assumed impli
itely that every variable o

urs in some of theterms of ϕ.6If ℓ = 2, then t1 and tℓ does not 
on�i
t in v1�whi
h is the reason for handling this 
aseseparately.
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t Bound TwoFigure 9.4: The 
y
le t1, . . . , tℓ, t1. In the row of a term: �+� means that the given variableappears unnegated in it, �−� means that it appears negated in it, and � · � means that itdoes not appear in it. In the row of an assignment: �+� means that it assigns 1 to the givenvariable, �−� means that it assigns 0. Terms t, t1, . . . , tℓ do not 
on�i
t in other variables.
v1 v2 v3 · · · vℓ−2 vℓ−1 vℓ u

t + + + · · · + + + ·
t1 − + + · · · + + · +
t2 · − + · · · + + + ·... . . .
tℓ + + + · · · + · − −

x − + + · · · + + + −
y + + + · · · + + − +Let x := σ(v2 7→1,··· ,vℓ 7→1;v1 7→0,u 7→0) (see Figure 9.4). Then one 
an make the followingobservations:

• v1 ∈ tx, sin
e x 6∈ T (t) and x[v1] ∈ T (t),
• u ∈ tx, sin
e x 6∈ T (t1) and x[u] ∈ T (t1)

• vℓ 6∈ tx, as otherwise�de�nining y := σ(v1 7→1,··· ,vℓ−1 7→1;u 7→1,vℓ 7→0)� tx and ty
on�i
ts in three variables, be
ause� vℓ ∈ ty, as y 6∈ T (t) and y[vℓ] ∈ T (t),� v1 ∈ ty, as y 6∈ T (t1) and y[v1] ∈ T (t1),� u ∈ ty, as y 6∈ T (tℓ) and y[u] ∈ T (tℓ).Consequently (as tx 
on�i
ts with t in exa
tly one variable and does not 
ontain
vℓ) tx ∈ V and (tℓ, tx), (tx, t2) ∈ E.

• vi ∈ tx for i = 2, . . . ℓ − 1, as otherwise (ti, tx) ∈ E, whi
h would mean that
t2, . . . , ti, tx, t2 is a 
y
le in G shorter then ℓ�a 
ontradi
tion.But then tx, t2, . . . , tℓ, tx is a 
y
le of length ℓ (thus also of minimal length) su
h thatall 
onse
utive elements 
on�i
t in exa
tly one variable, 
ontradi
ting Lemma 9.6. 2Based on the two previous Lemmas we 
an prove the following:Lemma 9.8 Assume (9.3), let t = v1 · · · vk be a term of ϕ with k < n, and let

G = Gϕ,t de�ned as in (9.4). Then the smallest 
y
le in G has length at most two.ProofAssume for the 
ontradi
tion that t1, . . . , tℓ, t1 is a 
y
le in G of minimal length with
ℓ > 2. Assume furthermore w.l.o.g. that t1, . . . , tℓ, t1 is as in Figure 9.3. Then by theabove lemmas there is some 1 ≤ i ≤ ℓ−1 su
h that ti and ti+1 
on�i
t in two variables:in vi+1 and in some u ∈ {vk+1, . . . , vn}. (t 
ontains neither u nor u as otherwise it would
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on�i
t with ti+1 or ti in two variables.) Suppose i is the smallest su
h index. Thenthere is some partial assignment of the variables {v1, . . . , vn} \ {vi, vi+1, u} 
onsistentwith t, ti and ti+1. Denote one su
h by σ, and assume without loss of generality that
ti 
ontains u, and ti+1 
ontains u. (See Figure 9.5.)Figure 9.5: Terms ti, ti+1, t and assignments x and y.

vi vi+1 u

t + + ·
ti − + +
ti+1 · − −

x − + −
y + − +Let x := σ(vi 7→0,u 7→0,vi+1 7→1) and y := σ(vi 7→1,u 7→1,vi+1 7→0). Then

• vi ∈ tx, sin
e x 6∈ T (t) but x[vi] ∈ T (t),
• vi+1 ∈ tx, sin
e x 6∈ T (ti+1) but x[vi+1] ∈ T (ti+1),
• u ∈ tx, sin
e x 6∈ T (ti) but x[u] ∈ T (ti),
• vi+1 ∈ ty, sin
e y 6∈ T (t) but y[vi+1] ∈ T (t), and
• u ∈ ty, sin
e y 6∈ T (ti+1) but y[u] ∈ T (ti+1).Thus ty does not 
ontain vi, as otherwise tx and ty would 
on�i
t in three variables.But then ty ∈ V , furthermore (ti, ty), (ty, ti+2) ∈ E, so t1, . . . , ti, ty, ti+2, . . . , tℓ, t1 isalso a 
y
le in G of minimal length, but with ti and ty 
on�i
ting only in one variable.That is, in this new 
y
le one gets further (starting from t1) than in the original 
y
lewithout using an edge that's two endpoints 
on�i
t in two variables.Iterating the above pro
ess if ne
essary, pro
eeding from the smaller indi
es to thelarger ones, one obtains a 
y
le t′1, . . . , t′ℓ, t′1 with 
onse
utive elements 
on�i
ting inonly one variable (apart maybe from tℓ and t1), 
ontradi
ting Lemma 9.7. 2Now all that is left to prove is that G 
ontains no 
y
le of length 2.Lemma 9.9 Assume (9.3), let t = v1 · · · vk be a term of ϕ with k < n, and let

G = Gϕ,t de�ned as in (9.4). Then G 
ontains no 
y
le.ProofBy Lemma 9.8, as noted, it su�
es to show that G 
ontains no 
y
le of length 2.Assume for the 
ontradi
tion that t1, t2, t1 is a 
y
le in G and assume furthermorewithout loss of generality that v1 ∈ t1, v2 6∈ t1, v1 6∈ t2 and v2 ∈ t2. There are two
ases: when t1 and t2 
on�i
t in only one variable and when they 
on�i
t in two.Let us 
onsider the �rst 
ase. Then t1 and t2 
on�i
t in some u ∈ {vk+1, . . . , vn}(just like before, t 
annot 
ontain variable u, as otherwise it would 
on�i
t with t1 or t2
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t Bound Twoin at least two variables), and let us assume without loss of generality that u ∈ t1 and
u ∈ t2. Then there is some partial assignment to variables {v3, . . . , vn}\{u} 
onsistentwith t1 and t2. Denote one su
h by σ. Let furthermore x := σ(v1 7→0,u 7→0,v2 7→1) and
y := σ(v1 7→1,u 7→1,v2 7→0) (see Figure 9.6(a)). Using a similar argument as before one 
ansee that v1, v2, u ∈ tx and v1, v2, u ∈ ty, thus the two terms 
on�i
t in three variables,
ontradi
tion. Figure 9.6: Terms ti, ti+1, t and assignments x and y.

v1 v2 u

t + + ·
t1 − · +
t2 · − −
x − + −
y + − +(a)

v1 v2 u v

t + + · ·
t1 − · + +
t2 · − − −
x − + − +
y + − + −(b)The se
ond 
ase is when t1 and t2 
on�i
t in some u, v ∈ {vk+1, . . . , vn} (as inthe previous 
ase t 
ontains neither u nor v). Let us assume without loss of generalitythat u, v ∈ t1 and u, v ∈ t2. Similarly as above, there is some partial assignment tovariables {v3, . . . , vn}\{u, v} 
onsistent with t1 and t2; denote one su
h by σ, and put

x := σ(v1 7→0,u 7→0,v 7→1,v2 7→1) and y := σ(v1 7→1,u 7→1,v 7→0,v2 7→0) (see Figure 9.6(b)). Again,one 
an show that u, v1 ∈ tx and u, v2 ∈ ty. Furthermore v2 ∈ tx (resp. v1 ∈ ty), asotherwise tx ∈ V (resp. ty ∈ V ), and with t2 (resp. with t1) they would form a 
y
leof length two 
on�i
ting with ea
h other in only one variable, whi
h was ruled out inthe previous 
ase. Consequently tx and ty 
on�i
ts in three variables, 
ontradi
tion. 2The proof of the Theorem now follows from Claim 9.5 and Lemma 9.9, noting thatif ϕ is a DDNF with 
on�i
t bound two that only has terms of length n, then n ≤ 2,in whi
h 
ase the statement obviously holds.9.4 Con
luding RemarksTheorem 9.1 
onsiders a very limited 
lass of DDNFs�for whi
h a somewhat surprisingproperty is proved. Nevertheless this does not bring us any 
loser to determining αd
nin the general 
ase, or to deriving a sharp bound for αn. Finding answers to theseproblems requires further investigations.Finally note that the results presented in this 
hapter�unless noted otherwise�appeared in the paper [119℄, authored by the author of the present dissertation.



Chapter 10De
omposable Horn FormulasHorn formulas (
onjun
tions of Horn 
lauses, i.e., 
lauses 
ontaining at most one un-negated literal�see Chapter 2) play a 
entral role in arti�
ial intelligen
e and in 
om-puter s
ien
e. This formula 
lass is attra
tive be
ause it is expressive, allows for poly-nomial time inferen
e, and indeed is generally 
omputationally tra
table. A

ordinglyit is one of the most studied Boolean formula 
lasses.In this 
hapter the following problem is 
onsidered:Problem 10.1 For Horn formulas ϕ and ψ, where ψ is a 
onsequen
e of ϕ, when doesthere exist a proper Horn 
onsequen
e χ of ϕ, su
h that ψ ∧ χ is equivalent to ϕ?Su
h a formula χ is 
alled a ϕ-
omplement of ψ.The motivation of this problem leads ba
k to the topi
 of the �rst part of thepresent dissertation: to revision�or more pre
isely to belief revision.Belief revision is interested in revising 1 a knowledge base in the presen
e of a new,potentially 
on�i
ting information, and usually approa
hes this problem by identifyingpostulates that should be satis�ed by a rational revision operator, su
h as the AGMpostulates [4℄, and 
hara
terizing operators that satisfy these postulates [45; 62℄. Inre
ent work, Flouris et al. [41℄ study belief revision in general logi
s, and formulatea property 
alled de
omposability of the logi
. They show that de
omposabilityis a ne
essary and su�
ient 
ondition for the existen
e of an AGM-
ompliant belief
ontra
tion operator. This framework is used in [42℄ to study de
omposition propertiesof des
ription logi
s, motivated by appli
ations to the Semanti
 Web.Problem 10.1 is, in fa
t, the reformulation of the above mentioned general de
om-posability problem for the 
lass of Horn fun
tions. Applying Horn fun
tions to beliefrevision in [89℄ was intended to serve as a �rst step towards Horn-to-Horn belief revi-sion: revision of Horn knowledge bases where the revised knowledge base is also requiredto be Horn. Horn-to-Horn belief revision is of interest for the e�
ient integration of1Although the terminology is the same, in belief revision the notion of �revision� refers to a di�erentkind of update method of the given system. However, as this serves only as a motivational ba
kgroundfor the topi
 of the present 
hapter, it doesn't seem to be misleading to refer to this notion also as�revision�. (On the other hand, when it is not 
lear from the 
ontext whi
h notion is referred to as�revision�, then it is made 
lear expli
itely). Note furthermore that the original motivation for thiswork was exa
tly to bring theory revision and belief revision together.99



100 De
omposable Horn Formulasvarious tasks fa
ing a 
ommonsense reasoning agent su
h as learning and revising itsbeliefs.At this point it should mentioned that the 
lass of Horn formulas has already been
onsidered in theory revision (see [50; 52℄)�and of 
ourse also in learning (see [8; 44℄)�but, as noted in [89℄, the problem of belief revision that maintains a Horn knowledgebase apparently has not been studied yet.The main result of the 
hapter (Theorem 10.10) gives a 
omplete answer to Prob-lem 10.1 by giving two 
hara
terizations of all those pairs ϕ and ψ for whi
h ψ hasa ϕ-
omplement. The 
hara
terizations give e�
iently de
idable 
riteria and lead toe�
ient algorithms to 
onstru
t a 
omplement, if it exists. The 
omplements 
on-stru
ted are only polynomially larger than the original knowledge base. As a 
orollary,one obtains a 
omplete des
ription of de
omposable Horn formulas as well, where aHorn formula is de
omposable if all its Horn 
onsequen
es have a 
omplement.Problem 10.1 also has an interesting 
onne
tion with another problem from a 
om-pletely di�erent �eld. Note that if ψ is a single Horn 
lause impli
ate C, then Problem10.1 
an be reformulated as follows: does ϕ have an irredundant 
onjun
tive normalform expression 
ontaining C? A

ording to Corollary 10.12 this problem is de
idablein polynomial time. The related problem, studied by Hammer and Kogan [60℄, is thatwhen C is a prime impli
ate and the irredundant 
onjun
tive normal form expressionis also assumed to 
onsist of prime impli
ates only. In [60℄ su
h a prime impli
ate is
alled non-redundant, and is shown that non-redundan
y is polynomially de
idablefor negative 
lauses, but is NP-
omplete for de�nite 
lauses.Finally let us mention a related problem. Eiter and Gottlob [38℄ have shown thatthe problem, �Given Horn formulas ϕ, ψ and χ, is it the 
ase that ϕ′ ∧ ψ ≤ χ forevery maximal subformula ϕ′ of ϕ 
onsistent with ψ?� is 
o-NP-
omplete. This is a
omplexity-theoreti
 negative result for the revision method proposed by [39; 46℄, asformulas χ with the above property form the knowledge base obtained by revising theknowledge base ϕ with ψ.10.1 Further De�nitions and NotationsIf a 
lause 
ontains exa
tly one unnegated literal, then it is 
alled de�nite, and if it
ontains none, it is 
alled negative. A Horn formula is de�nite Horn formula if it
onsists of de�nite Horn 
lauses. A Boolean fun
tion is a (de�nite) Horn fun
tionif it has a (de�nite) Horn formula. It follows dire
tly from the de�nitions that a Hornfun
tion f is de�nite if and only if f(1) = 1.For a Horn 
lause C, let its body, denoted Body(C), be the set of variables
orresponding to the negative literals in C, or their 
onjun
tion (whi
h will be 
learfrom 
ontext). Also, let its head, denoted Head(C) be the unnegated variable of Cif C is a de�nite 
lause, and 0 if C is a negative 
lause. The arrow symbol �→� isused to denote the Boolean impli
ation operator, so Horn 
lause C 
an be written as
Body(C) → Head(C). For example, if C is the Horn 
lause v∨w∨u, then Body(C) =
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{v, w}, Head(C) is u, and C 
an also be written as v, w → u or (v ∧w) → u. If C isthe Horn 
lause v ∨ w then it 
an also be written as v, w → 0 or simply v, w →.Every 
lause that is an impli
ate of a de�nite Horn fun
tion is de�nite. Impli
ationbetween Horn formulas 
an be de
ided in polynomial time (see, e.g., [79℄).A fun
tion f is anti-monotone if T (f) is downward 
losed, i.e., f(x) = 1 and
y ≤ x imply f(y) = 1. This is equivalent to having a 
onjun
tive normal formfor it whi
h 
onsists of negative 
lauses. Horn fun
tions have the following semanti

hara
terization.Theorem 10.2 ([71; 96℄) A Boolean fun
tion is Horn i� T (f) is 
losed under inter-se
tion.We will use a slight generalization of anti-monotone fun
tions.De�nition 10.3 (almost anti-monotone fun
tion) A fun
tion is almost anti-monotone if it is either anti-monotone, or there is an anti-monotone fun
tion g su
hthat T (f) = T (g) ∪ {1}.The following is a dire
t 
onsequen
e of Theorem 10.2.Proposition 10.4 Every almost anti-monotone fun
tion is Horn.Now we formulate the 
entral 
on
ept dis
ussed in this paper.De�nition 10.5 (f -
omplement) For Horn fun
tions f and g su
h that f ≤ g, aHorn fun
tion h is an f-
omplement of g i� f � h and f = (g ∧ h).Complements 
ould also be de�ned assuming f � g, but it is somewhat more
onvenient to formulate the de�nition as above. A

ording to the de�nition, no f -
omplements exist if f = 1 (re
all that 1 denotes the identi
ally 1 fun
tion). This 
aseis ex
luded from further 
onsideration and we will always assume f 6= 1. Also a

ordingto the de�nition, g = 1 
an never have a 
omplement, so this 
ase is also ex
ludedfrom 
onsideration in the following de�nition.De�nition 10.6 (de
omposable Horn fun
tion) A Horn fun
tion f is de
om-posable if every Horn 
onsequen
e g 6= 1 of f has an f -
omplement.One usually works with formulas as opposed to fun
tions, but as the notions of 
om-plement and de
omposability depend only on the fun
tion represented by the formula,the de�nitions are given in a syntax-independent way.10.2 Chara
terization of De
omposable Horn For-mulasThroughout the 
hapter let V ′ ⊆ V denote the set of variables in fo
us.



102 De
omposable Horn FormulasFor a fun
tion f and a set of variables V ⊆ V ′, we de�ne the f-
losure of V tobe the set of variables
Clf(V ) = {v ∈ V ′ : f ≤ (V → v)} .Let us note a dire
t 
onsequen
e of this de�nition.Proposition 10.7 If a negative 
lause C is an impli
ate of f , then Clf(Body(C)) =

V ′. In order to formulate our main result, we need two de�nitions. The formula ϕ̂ isobtained from ϕ by adding to the body of ea
h de�nite 
lause in ϕ a variable not
ontained in the 
losure of its body, in all possible ways. For a Horn 
lause C of theform Body(C) → Head(C), we write Body(C), v → Head(C) for the Horn 
lauseobtained from C by adding v to its body.De�nition 10.8 (body-building formula ϕ̂) For a Horn formula ϕ let ϕ̂ be theformula
∧

C∈ϕ de�nite ∧

v 6∈Clϕ(Body(C))

(Body(C), v → Head(C)).Proposition 10.7 shows that we 
ould have de�ned ϕ̂ as a 
onjun
tion over all
lauses of ϕ, as negative 
lauses make no 
ontribution. Every 
lause of ϕ̂ is de�nite.It may be the 
ase that ϕ̂ is the empty 
onjun
tion. This happens, for example, when
ϕ 
onsists of negative 
lauses only.Given a Horn formula ϕ and a Horn 
lause D, we partition the 
lauses of ϕ not
olliding with D into two 
lasses.De�nition 10.9 (formulas Aϕ(D) and Bϕ(D)) Given a Horn formula ϕ and aHorn 
lause D, let

Aϕ(D) = {C ∈ ϕ : C,D don't 
ollide, Body(D) ⊆ Clϕ(Body(C))} ,

Bϕ(D) = {C ∈ ϕ : C,D don't 
ollide, Body(D) 6⊆ Clϕ(Body(C))} .The existen
e of a 
omplement 
an now be 
hara
terized as follows.Theorem 10.10 Let ϕ 6≡ 1 be a Horn formula, and ψ be a Horn 
onsequen
e of ϕ.Then the following are equivalent:(a) ψ has a ϕ-
omplement,(b) ϕ̂ 6≤ ψ,(
) for some 
lause D of ψ it holds that Bϕ(D) 6≤ D.Although the de�nition of ϕ̂ is given in terms of a formula, it follows from this
hara
terization that it a
tually depends on the fun
tion only (see also Lemma 10.20below).
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omposable Horn Formulas 103Corollary 10.11 (syntax-independen
e of ϕ̂) If ϕ1 and ϕ2 are equivalent Hornformulas then ϕ̂1 ≡ ϕ̂2.Theorem 10.10 is proved in the next se
tion. Another proof of the �rst 
hara
-terization (i.e., the equivalen
e of (a) and (b) in Theorem 10.10) is given in Se
tion10.4. The following 
orollary gives the algorithmi
 aspe
ts of Theorem 10.10. It followsdire
tly from the statement, resp., the proof(s) of the 
hara
terizations.Corollary 10.12 There is a polynomial time algorithm whi
h, given a Horn formula ϕand a Horn 
onsequen
e ψ of ϕ, de
ides if ψ has a ϕ-
omplement, and if it does, then
onstru
ts su
h a ϕ-
omplement.The results are illustrated by the following simple example.Example 10.1Let V ′ = {v, w, u}, ϕ = C1 ∧ C2, where C1 = (v → w) and C2 = (w → u). Then
Clϕ(Body(C1)) = V ′ and Clϕ(Body(C2)) = {w, u}. So ϕ̂ = (v, w → u).The 
lause (v, w → u) is implied by ϕ̂, and so it has no ϕ-
omplement. This isalso shown by the fa
t that Bϕ(v, w → u) = {w → u}, whi
h implies (v, w → u).On the other hand, the 
lause (v → u) is not implied by ϕ̂, so it does have a ϕ-
omplement. This is also shown by the fa
t that Bϕ(v → u) = {w → u}, whi
h doesnot imply (v → u). Both 
onstru
tions des
ribed in the paper give the ϕ-
omplement
(v, u→ w) ∧ (w → u).De
omposable Horn fun
tions have the following 
hara
terization.Theorem 10.13 For every Boolean fun
tion f the following are equivalent:(a) f is a de
omposable Horn fun
tion,(b) there is a Horn representation ϕ of f su
h that ϕ̂ ≡ 1,(
) for every Horn representation ϕ of f it holds that ϕ̂ ≡ 1,(d) for every Horn impli
ate C of f it holds that Clf (Body(C)) = V ′,(e) f is almost anti-monotone.ProofThe equivalen
e of (a), (b) and (
) follows dire
tly from Theorem 10.10 and Corollary10.11. The equivalen
e of (
) and (e) follows dire
tly from the de�nitions.(d) implies (e):Assume that f is not almost anti-monotone, and let x,y be truth assignments su
hthat y � x � 1, f(y) = 0 and f(x) = 1. Then there is a Horn impli
ate C of
f su
h that C(y) = 0. As C(x) = 1, it must be the 
ase that C is a de�nite
lause, Body(C)(y) = Body(C)(x) = 1, Head(C)(y) = 0 and Head(C)(x) = 1. As
x � 1, there is a variable v su
h that x(v) = 0. But then it must be the 
ase that
v 6∈ Clf(Body(C)), a 
ontradi
tion.



104 De
omposable Horn Formulas(e) implies (d):Assume that C is a Horn impli
ate of f and v is a variable su
h that v 6∈ Clf (Body(C)).Then C is a de�nite 
lause by Proposition 10.7. Let x be a truth assignment su
h that
f(x) = 1, Body(C)(x) = 1 and x(v) = 0. As f(x) = 1 it must be the 
ase that
Head(C)(x) = 1. Consider the truth assignment y obtained from x by swit
hing thevariable Head(C) o�. Then f(y) = 0. As x(v) = 0, it holds that x � 1, so it followsthat f is not almost anti-monotone. 210.3 Proof of Theorem 10.10We take 
are of the 
ase where ϕ has negative impli
ates �rst.Lemma 10.14 Let ϕ, ψ 6≡ 1 be Horn formulas su
h that ϕ ≤ ψ, and ψ has a negativeimpli
ate D. Then

• ψ has a ϕ-
omplement,
• ϕ̂ 6≤ ψ,
• Bϕ(D) 6≤ D.ProofIt holds that D(1) = 0, as D is negative. So ϕ ≤ ψ ≤ D implies ϕ(1) = ψ(1) = 0.Let h be the Horn fun
tion that agrees with ϕ ex
ept that h(1) = 1. We 
laim that

h is a ϕ-
omplement of ψ. Clearly ϕ � h and so ϕ ≤ h ∧ ψ. Now if h(x) = 1, theneither ϕ(x) = 1 or x = 1. Sin
e ψ(1) = 0, it follows that h ∧ ψ ≤ ϕ, and hen
e
h ∧ ψ ≡ ϕ as desired.Also, ϕ̂(1) = 1, be
ause every 
lause of ϕ̂ is de�nite (this in
ludes the 
ase when
ϕ̂ is empty), and therefore ϕ̂ 6≤ ψ. Similarly, Proposition 10.7 implies that every 
lauseof Bϕ(D) is de�nite, so Bϕ(D)(1) = 1 and Bϕ(D) 6≤ D. 2We also need to 
onstru
t a ϕ-
omplement of ψ. This is a spe
ial 
ase of the
onstru
tion of Se
tion 10.4.For the rest of the proof we may assume that ψ is a de�nite Horn formula. In orderwe will show: (a) implies (b), (b) implies (
), and (
) implies (a).(a) implies (b):This part is 
ontained in Lemma 10.15, whi
h, in turn, is split up into three lemmas. Asthese three lemmas do not a
tually refer to ϕ̂, they are formulated in terms of fun
tionsrather then formulas.Lemma 10.15 Let ϕ, ψ 6≡ 1 be Horn formulas su
h that ψ is de�nite and ϕ̂ ≤ ψ.Then ψ does not have a ϕ-
omplement.ProofThe �rst of the three lemmas, Lemma 10.16, shows that 
lauses of ϕ̂ have no ϕ-
omplement, and the se
ond (resp., third) lemma extends this statement to ϕ̂ (resp.,
onsequen
es of ϕ̂).



10.3 Proof of Theorem 10.10 105Lemma 10.16 Let f be a Horn fun
tion and let D1 = (B → z) and D2 = (B → u)be de�nite Horn 
lauses with the same body B su
h that f ≤ D1 and f 6≤ D2. Then
D = (B, u→ z)has no f -
omplement.ProofAssume that h is an f -
omplement of D. Thus, f ≤ h, h 6≤ f and h∧D ≤ f . It thenfollows that
h 6≤ D1, (10.1)
h 6≤ D2. (10.2)Here (10.1) follows as otherwise h ≤ D1 ≤ D and so h ≤ h ∧ D ≤ f , and (10.2)follows as otherwise f ≤ h ≤ D2.Let x be the truth assignment whi
h assigns 1 to the variables in Clh(B), andassigns 0 to all the other variables. Then B(x) = 1 and we get from (10.1) and (10.2)that u, z 6∈ Clh(B), and so x(u) = x(z) = 0. Thus D1(x) = 0, implying f(x) = 0,and it also holds that D(x) = 1.It remains to be shown that h(x) = 1, as then (h ∧ D)(x) = 1 and f(x) = 0,
ontradi
ting the de�nition of the 
omplement. Assume h(x) = 0 and let D′ be animpli
ate of h falsi�ed by x.Case 1: D′ is negative and it is a sub
lause of B → 0. Then h ≤ D′ ≤ D2,
ontradi
ting (10.2).Case 2: D′ is negative and it is not a sub
lause of B → 0. Then it 
ontainsnegated variables vj , su
h that vj 6∈ B with x(vj) = 1 and hen
e vj ∈ Clh(B) by the
onstru
tion of x. These 
an be `resolved away' 2 using the impli
ates B → vj of h,and we again get h ≤ (B → 0) ≤ D2.Case 3: D′ is de�nite. Then x assigns 0 to its head v, and so v 6∈ Clh(B). Variables

w ∈ (Clh(B)\B) in the body of D′ 
an be `resolved away' using the impli
ates B → wof h. We then get h ≤ (B → v), 
ontradi
ting v 6∈ Clh(B). 2Lemma 10.17 If g1 and g2 have no f -
omplement then g1∧g2 has no f -
omplement.ProofAssume that h is an f -
omplement of g1∧g2, that is, f ≤ h, h 6≤ f and (h∧(g1∧g2)) ≤

f . If (h ∧ g1) ≤ f then h is an f -
omplement of g1, a 
ontradi
tion. Otherwise
(h ∧ g1) 6≤ f , and then h ∧ g1 is an f -
omplement of g2, again a 
ontradi
tion. 2Lemma 10.18 If g1 ≤ g2 and g1 has no f -
omplement, then g2 has no f -
omplement.ProofAssume that h is an f -
omplement of g2, that is, f ≤ h, h 6≤ f and h∧ g2 ≤ f . Then
h ∧ g1 ≤ h ∧ g2 ≤ f , and so h is also an f -
omplement of g1. 22In this 
ase and the next one it is 
onvenient to refer to resolution but one 
ould also arguedire
tly about truth assignments as in the rest of the proof.
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ompletes the proof of Lemma 10.15. 2(b) implies (
):For this part of the proof of Theorem 10.10 we show that if ϕ̂ 6≤ D then ∧C∈Bϕ(D)C 6≤

D. Let x be a truth assignment su
h that ϕ̂(x) = 1 and D(x) = 0. Then it also holdsthat Body(D)(x) = 1 and Head(D)(x) = 0. It is su�
ient to show that C(x) = 1for every C ∈ Bϕ(D). By de�nition, there is a variable v ∈ Body(D) \Clϕ(Body(C)).Thus Body(C), v → Head(C) is a 
lause of ϕ̂ and therefore it is satis�ed by x. But
Body(D)(x) = 1 implies x(v) = 1, and so indeed C(x) = 1.(
) implies (a):Let D be a 
lause in ψ su
h that ∧C∈Bϕ(D) C 6≤ D. We 
laim that Aϕ(D) 6= ∅.Consider an assignment x that satis�es ∧C∈Bϕ(D) C but has D(x) = 0. Now ϕ ≤ D,so ϕ(x) = 0. Thus there is some 
lause C of ϕ su
h that C(x) = 0. As D(x) = 0,the 
lauses C and D 
annot 
ollide; thus C ∈ Aϕ(D).Now we 
an de�ne a ϕ-
omplement of ψ. For ea
h 
lause C ∈ Aϕ(D) let

χ′
C =

∧

z∈Body(D)

(Body(C) → z),

χ′′
C = (Body(C),Head(D) → Head(C)),and �nally put

χ =





∧

C∈Aϕ(D)

χ′
C ∧ χ′′

C



 ∧





∧

C∈(ϕ\Aϕ(D))

C



 .Thus χ is formed from ϕ by repla
ing 
lauses C ∈ Aϕ(D) by χ′
C ∧ χ′′

C , and leavingthe rest of the formula un
hanged. Note that in the de�nition of χ′′
C , if C is a negative
lause then Head(C) = 0. We 
laim that χ is a ϕ-
omplement of ψ.

ϕ ≤ χ: We need to show that for every C ∈ Aϕ(D) it holds that ϕ ≤ χ′
C and

ϕ ≤ χ′′
C . The de�nition of Aϕ(D) implies Body(D) ⊆ Clϕ(Body(C)), thus for every

z ∈ Body(D) it holds that z ∈ Clϕ(Body(C)), and so every 
lause of χ′
C is animpli
ate of ϕ. It is obvious that ϕ ≤ χ′′

C as χ′′
C is obtained from an impli
ate of ϕ byadding a literal to its body.

χ 6≤ ϕ: It is su�
ient to show that χ(x) = 1 for the truth assignment x above.As D(x) = 0 and ea
h 
lause in χ′
C and χ′′

C 
ollides with D, x satis�es χ′
C and χ′′

C .The remaining 
lauses in χ 
ome from ϕ: they either belong to Bϕ(D) (in whi
h 
ase
x satis�es them by de�nition), or they 
ollide with D (and then x satis�es them as
D(x) = 0).

χ ∧ ψ ≤ ϕ: it is su�
ient to show that for every C ∈ Aϕ(D) it holds that
χ′

C ∧ χ′′
C ∧D ≤ C. Let y be any truth assignment satisfying χ′

C ∧ χ′′
C ∧D.Let us assume �rst that C is de�nite. We need to show that if Body(C)(y) = 1(whi
h in
ludes the 
ase when Body(C) is empty), then Head(C)(y) = 1. But

Body(C)(y) = 1 implies Body(D)(y) = 1 (whi
h in
ludes the 
ase when Body(D) is
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e Head(D)(y) = 1, and so (sin
e χ′′
C(y) = 1) it holds that Head(C)(y) =

1, as required. If C is negative then we need to show that Body(C)(y) = 0. Otherwise
Body(D)(y) = 1, and so Head(D)(y) = 1 and thus χ′′

C(y) = 0, a 
ontradi
tion.Example 10.2Consider ϕ = (v → w) ∧ u and ψ = u. Then both 
lauses of ϕ are in Aϕ(u), and sothe ϕ-
omplement of ψ provided by the 
onstru
tion (after deleting redundant 
lauses)is (v, w → u).10.4 Singleton Horn ExtensionsWe give a di�erent proof of the equivalen
e (a) and (b) in Theorem 10.10, whi
halso provides a semanti
 
hara
terization of the body building formula. The proof isdivided into two lemmas. Throughout the proof we use Theorem 10.2 without expli
itlyreferring to it.Lemma 10.19 Let f, g be Horn fun
tions su
h that f ≤ g. Then g has an f -
omplement if and only if there is an x ∈ F(f)∩F(g) su
h that T (f)∪{x} is a Hornfun
tion.ProofThe �if� dire
tion follows by noting that T (f)∪{x} is an f -
omplement of g. For the�only if� dire
tion assume that h is an f -
omplement of g. Let x be a minimal point(in the ordering de�ned by �≤�) in T (h) \ T (f). Then sin
e h ∧ g ≤ f it must bethe 
ase that g(x) = 0. To show that T (f) ∪ {x} is a Horn fun
tion, assume that
x ∧ y 6∈ T (f) ∪ {x} for some y ∈ T (f). Then x ∧ y � x and h(x ∧ y) = 1 would
ontradi
t the minimality of x. 2The next lemma gives the semanti
 
hara
terization of ϕ̂. It shows that T (ϕ̂) \

T (ϕ) 
onsists of pre
isely the singleton Horn extensions of ϕ, i.e., of those pointswhi
h 
an be added to the set T (ϕ) maintaining the Horn property. This is a naturalgeneralization of the minimal false points of an anti-monotone fun
tion.Lemma 10.20 Let ϕ be a Horn formula and x ∈ F(ϕ). Then T (ϕ) ∪ {x} is a Hornfun
tion if and only if ϕ̂(x) = 1.ProofFirst we prove the �only if� dire
tion. Assume for 
ontradi
tion that ϕ̂(x) = 0. Thenthere is a de�nite Horn impli
ate C of ϕ su
h that
(Body(C), v → Head(C))(x) = 0,where

ϕ 6≤ (Body(C) → v). (10.3)Thus
Body(C)(x) = 1, x(v) = 1 and Head(C)(x) = 0. (10.4)
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omposable Horn FormulasA

ording to (10.3), there is a truth assignment y ∈ T (ϕ) falsifying Body(C) → v.Hen
e, taking into a

ount that y must satisfy C, one has
Body(C)(y) = 1, y(v) = 0 and Head(C)(y) = 1. (10.5)Consider now the truth assignment z = x ∧ y. From (10.4) and (10.5) we get
Body(C)(z) = 1, z(v) = 0 and Head(C)(z) = 0.As z falsi�es C, it holds that z ∈ F(ϕ). Looking at the v-bits of z and x one gets

z � x, implying that T (ϕ) ∪ {x} is not 
losed under interse
tion, a 
ontradi
tion.Let us now prove the �if� dire
tion. Assume for 
ontradi
tion that T (ϕ) ∪ {x} isnot Horn. Then there is a point y ∈ T (ϕ) su
h that for z = x∧y it holds that z � xand ϕ(z) = 0. As z ≤ y and ϕ(z) 6= ϕ(y), it must also be the 
ase that z � y. Let
C be a 
lause of ϕ falsi�ed by z. Then C(y) = 1 and with z � y this implies that Cis de�nite. As z falsi�es C, it holds that

Body(C)(z) = 1 and Head(C)(z) = 0.Also, as z � y, and y satis�es C
Body(C)(y) = 1 and Head(C)(y) = 1.As z � x, and Head(C)(x) = 1 would imply Head(C)(z) = Head(C)(x ∧ y) = 1, itfollows that
Body(C)(x) = 1 and Head(C)(x) = 0.As x and y are in
omparable, there is a variable u su
h that x(u) = 1 and y(u) = 0.Hen
e Body(C) → u is falsi�ed by y, and so it is not an impli
ate of ϕ. Thus

Body(C), u→ Head(C) is a 
lause of ϕ̂ falsi�ed by x, a 
ontradi
tion. 2The �if� dire
tion of Lemma 10.20 
an also be proved by 
onstru
ting a Hornformula for T (ϕ)∪{x} for every truth assignment x ∈ T (ϕ̂) \T (ϕ). Let C be a Horn
lause falsi�ed by x and v 6= Head(C) be a variable. Then let
χv

C :=











Body(C), v → Head(C) if v 6∈ Clϕ(Body(C)),
Body(C) → v if v ∈ Clϕ(Body(C)), x(v) = 1,
Body(C), v → Head(C) if v ∈ Clϕ(Body(C)), x(v) = 0.Put
χx :=





∧

C(x)=0

∧

v 6=Head(C)

χv
C



 ∧





∧

C(x)=1

C



 .Thus χx is formed from ϕ by repla
ing 
lauses C falsi�ed by x with ∧v 6=Head(C) χ
v
C ,and leaving the rest of the formula un
hanged. We 
laim that χx is a Horn formula for
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T (ϕ) ∪ {x}. It is 
lear from the de�nitions that ϕ ≤ χx and χx(x) = 1.It remains to be shown that T (χx) \ T (ϕ) = {x}. If y is a truth assignment with
χx(y) = 1 and ϕ(y) = 0 then y must falsify a 
lause C of ϕ also falsi�ed by x.Thus Body(C)(x) = Body(C)(y) = 1 and Head(C)(x) = Head(C)(y) = 0. Now
χx(x) = χx(y) = 1 implies that x(v) = y(v) = 0 for every v 6∈ Clϕ(Body(C)), by
onsidering the �rst 
ase in the de�nition of χv

C . Similarly, x(v) = y(v) for variables
v ∈ Clϕ(Body(C)) \Head(C) follows by 
onsidering the se
ond and third 
ases in thede�nition of χv

C .Thus, given a 
onsequen
e ψ of ϕ su
h that ϕ̂ 6≤ ψ, a ϕ-
omplement χx of ψ
an be 
onstru
ted by �rst �nding a truth assignment x with ϕ̂(x) = 1, ϕ(x) = 0and ψ(x) = 0. Su
h a truth assignment 
an be found using a polynomial time Hornsatis�ability algorithm in the usual manner. The formula χx is then a ϕ-
omplementof ψ.Example 10.3Let ϕ = (v → w) ∧ u and ψ = u, as in Example 10.2. Then ϕ̂ = (v, u → w) ∧ (v →

u)∧ (w → u). So 0 is a truth assignment satisfying ϕ̂ and falsifying ϕ and ψ, and the
ϕ-
omplement of ψ provided by the 
onstru
tion (after deleting redundant 
lauses) is
(v → w) ∧ (w → u), whi
h di�ers from the ϕ-
omplement of Example 10.2.Both 
onstru
tions presented for the 
omplement may in
rease the size of theformula by a linear fa
tor, and it is not known whether this in
rease is ne
essary.(Similar questions for DNFs are studied in [101℄.)10.5 Con
luding RemarksRegarding the original motivation of the work presented in this 
hapter, the resultthat the only de
omposable Horn formulas are the almost antimonotone ones are lesssatisfa
tory. The paper [89℄ proposes some dire
tions to resolve this dilemma somehow.Related to the result of this 
hapter, the above paper also 
ontains some experimentalresults about what fra
tion of impli
ates of a random Horn formula have 
omplements.Finally note that the results presented in this 
hapter�unless noted otherwise�appeared in the paper [89℄, 
o-authored by the author of the present dissertation.





Appendix ASummaryTheory revision, as part of learning theory is interested in re
onstru
ting some unknownfun
tion a
quiring information about it via some proto
ol, spe
i�ed by the given learningmodel. However, as opposed to the general learning problem, it is assumed that thelearner is not new to the given task, but it initially has a hypotheses (in form of someformula) that is assumed to be some rough approximation of the unknown fun
tion.The e�
ien
y 
riteria is that the running time is polynomial in the size of the di�erentparameters, and that the amount of extra information, aquired via the proto
ol is alsopolynomial in the amount of information needed to represent the unknown fun
tiongiven the initial formula. In the �rst part of the dissertation theoreti
al results are
onsidered from the �eld of theory revision.In the se
ond part 
hara
terizational results are presented; all showing equivalen
ebetween some synta
ti
al and some semanti
al properties of some 
lasses of Booleanfun
tions.Chapters 1�3 are introdu
tory.In Chapter 4 read-on
e fun
tions are 
onsidered (a fun
tion is read-on
e fun
tionif it is representable with a formula in whi
h every variable o

urs at most on
e), dis-
ussing the 
orresponding results appeared in the paper [52℄. The importan
e of thisformula 
lass is rather theoreti
al, being a nontrivial sub
lass of Boolean formulas thatis tra
table from several di�erent aspe
ts, and has a ni
e semanti
 
hara
terization[58; 74; 102℄. This 
lass is shown to be e�
iently learnable in the query model us-ing membership and equivalen
e querie [13℄, whi
h motivated the resear
h aimed to
onstru
t an e�
ient algorithm for it. The main result of this 
hapter is a revisionalgorithm for this 
lass in the deletions-only 
ase (Algorithm ReviseReadOn
e), whi
his shown to be an e�
ient revision algorithm (Theorem 4.7). Additionaly it was shownthat the algorithm is optimal in the sense that both type of query used by AlgorithmReviseReadOn
e is ne
essary for the e�
ien
y (Theorem 4.13 and Theorem 4.14),and that the query 
omplexity of any revision algorithm for this 
lass is more or less ofthe same order of magnitude as that of Algorithm ReviseReadOn
e�or worse (The-orem 4.11).In Chapter 5 the revisability of Boolean threshold fun
tions are 
onsidered, dis-
ussing the results appeared in the paper [116℄. (A Boolean fun
tion is said to be a111



112 Summarythreshold fun
tion if it 
an be represented by a set of variables R and a threshold θ,su
h that it evalutes 1 on exa
tly those assignments whi
h assign 1 to at least θ of thevariables in R.) Threshold fun
tions (although in a more general form) are famous forbeing the basi
 ingredient of neural networks and support ve
tor ma
hines�and hasseveral other appli
ations as well. Boolean threshold fun
tions are also known to bee�
iently learnable in the query learning model [64℄ (however the learning algorithmpresented in [64℄ uses only membership fun
tions). The main result is again an algo-rithm (Algorithm ReviseThreshold) whi
h is an e�
ient revision algorithm for the
lass of Boolean threshold fun
tions in the query model (see Theorem 5.5). Again, it isalso examined whether the query 
omplexity of the algorithm is (more or less) as goodas the optimal, and the answer was found to be positive (Proposition 5.8). In viewof that the learning algorithm of Heged¶s for this 
lass uses only membership queries,the question whether both type of queries are ne
essary for the e�
ient revision seemseven more appropriate. However, as it is shown by Theorem 5.6 and Theorem 5.7, theanswer is again positive. Finally it is shown that the natural extension of AlgorithmWinnow [92℄ does not give an e�
ient revision algorithm for the 
lass of threshold for-mulas (Proposition 5.9). This is interesting in view of that this algorithm is famous forlearning some formula 
lasses highly e�
iently using some (general) threshold fun
tionrepresentation.As a 
losure of the �rst part dealing with theory revision, in Chapter 6 the revisabilityproje
tive DNFs is 
onsidered, dis
ussing the 
orresponding results appeared in [115℄.Proje
tive DNF formulas form a sub
lass of the disjun
tive normal form formulas,introdu
ed re
ently Valiant [128℄. (The motivation for 
onsidering sub
lasses of theDNFs has substantially grown after the re
ent result of Alekhnovi
h et al. proving that,unless RP = NP, the 
lass of DNFs is not e�
ient learnable [5℄.) This 
lass was foundby Valiant to be suitable for a spe
ial form of learning, 
alled proje
tive learning, thegeneral behind it being that learning, similarly to other biologi
al pro
esses, should be
arried out on multiple levels in a distributed manner. The main result of this 
hapteris that a natural extension (Algorithm RevWinn) of Valiant's algorithm is an e�
entrevision algorithm for the 
lass of k-proje
tive DNFs in the mistake bonded model(Theorem 6.3). The algorithm (just like the one used by Valiant [128℄) 
onsists oftwo levels. On the lower level simple learning algorithms are run, ea
h 
on
entratingon just a small part (or restri
tion) of the fun
tion to be learned. On the upper levelanother simple algorithm is run, whi
h, on one hand, learns how to (re)
ombine theoutput of the algorithms on the lower level, and, on the other hand, it �lters theinformation forwarded to these algorithms su
h that ea
h one re
eives only that partof the information whi
h is supposed to be relevant for it. In the se
ond part of theChapter a learnability related parameter, the so 
alled ex
lusion dimension of the 
lassis examined. This parameter is known to be related to the query 
omplexity of the bestlearning algorithms for a given 
lass (see [11; 67℄) whi
h, 
ombined with the result onthe ex
lusion dimension derived in the 
hapter implies the lower bound (⌊n/4⌋
k

)

− 1 forthe query 
omplexity of this 
lass (Proposition 6.9).In Chapter 7 a further, 
hara
terization result is presented for proje
tive DNF formu-



113las, dis
ussing the 
orresponding result appeared in [115℄. Proje
tive DNFs are de�nedin a rather semanti
 way (whi
h is more apparent from part (a) of Lemma 6.5 fromthe pre
eding 
hapter), however the main result of this 
hapter, Theorem 7.3 gives asimple synta
ti
 des
ription for a sub
lass of this 
lass, 
alled 1-proje
tive DNFs.In Chapter 8 the relation between the number of terms in a DNF and the number ofprime impli
ants of it is 
onsidered, dis
ussing the results appeared in [114℄. (A term tis an impli
ant of some Boolean fun
tion f , if any assignment saisfying t also satis�es
f , meanwhile t is said to be a prime impli
ant of f if, in addition, this does not holdfor any term obtained from t by removing some literals from it.) Se
tion 8.3 dis
ussesprevioulsy known results on the topi
: that if some DNF 
onsists of K terms, then ithas at most 2K − 1 prime impli
ants [31; 90; 97℄, and it is also mentioned that thisbound is known to be sharp [88; 90; 97℄. The results get 
ompleted in the subsequentse
tions by giving a 
hara
tarization DNFs that have as many prime impli
ants as thisbound allows (Theorem 8.1). This is shown by redu
ing the problem to the followingproblem: if in some DNF tautology ea
h pair of terms 
on�i
t in exa
tly one variable(i.e., ea
h pair is resolvable) then it posesses a tree-like stru
ture (i.e., there is somevariable v appearing in ea
h term; there is some variable w appearing in ea
h termthat 
ontains v negated, and there is some variable u in ea
h term that 
ontains vunnegated; and so on).Chapter 9 
onsiders a generalization of the intermediate result in the previous 
hap-ter (about that DNF tautologies with terms 
on�i
ting in exa
tly one variable pairwisepossess a tree-like stru
ture), dis
ussing the results appeared in [119℄. More pre
iselyin Theorem 9.1 it is shown that if in some DNF tautology ea
h pair of terms 
on�i
tin at least one but at most two variables, then it also posesses a tree-like stru
ture(also mentioning how it relates to various generalizations motivated by semanti
 resp.synta
ti
 
onsiderations). However, further relaxing the bound given for the 
on�i
t ofthe terms to three, the above mentioned tree-like stru
ture will not be automati
�as isdemonstrated by an example. This problem is also a spe
ial 
ase of a problem 
onsid-ered in [93℄, that, given a DNF tautology, the task is to 
onstru
t a de
ision tree su
hthat for ea
h term of the DNF generated by it there is a term of the tautology that isa subterm of it. They have shown that even for some very simple DNFs this problemrequires a de
ision tree with extremely big 
omplexity; however the result presented inthis 
hapter implies that for ea
h DNF in the above mentioned restri
ted 
lass thereexists always some simple de
ision tree 1.Finally, in Chapter 10 de
omposable Horn formulas are 
onsidered (
onjun
tivenormal form formulas in whi
h every 
lause 
ontains at most one unnegated variable),dis
ussing the results from [89℄. Horn formulas, being an expressive 
lass whi
h alsoallows for polynomial time inferen
e, and indeed is generally 
omputationally tra
table,play a 
entral role in arti�
ial intelligen
e and in 
omputer s
ien
e. The notion ofde
omposability 
omes from belief revision 2, a �eld interested in revising knowledge1A
tually the result states something stronger: for this restri
ted 
lass basi
ally the DNFs them-selves 
an be 
onsidered as de
ision trees in some sense.2Belief revision is related to theory revision (at least in it topi
);thus�as a 
losure�the two maintopi
s of the dissertation meet again.



114 Summarybase in su
h a manner that satis�es some �reasonability� properties, that are typi
allyformulated in the form of postulates. De
omposability was introdu
ed for generallogi
s in [41℄, where it was also shown to be equivalent to the existen
e of somerevision operator satisfying the AGM postulates [4℄�one of the most popular postulatesused in belief revision. The main result of the 
hapter is Theorem 10.10, showing
hara
terizations for the existen
e of a 
omplement of a Horn fun
tion 
onsequen
e ofanother Horn fun
tion, whi
h in turn provides a 
omplete des
ription of de
omposableHorn formulas. The 
hara
terizations lead to e�
ient algorithms for the 
onstru
tionof a 
omplement whenever it exists (whi
h is in 
ontrast with a related, but somewhatmore stringent 
omplement notion of [60℄, the existen
e of whi
h is o

asionally NP-
omplete to de
ide). The result, as is purely 
ombinatiorial, but was meant in [89℄as a �rst step towards what is referred to as �Horn-to-Horn belief revision�: revisionof Horn knowledge bases where the revised knowledge base is also required to beHorn; integrating hopefully e�
ient revision (the 
entral notion in theory revision) and
ommon sense reasoning (as a main goal in belief revision).



Appendix BÖsszefoglalásAz elméletrevízió � a tanuláselmélet részeként � azt vizsgálja, hogyan rekonstruálhatóhatékonyan valamely ismeretlen függvény különböz® (az adott tanulási modell általmeghatározott) protokollokon keresztül informá
iót szerezve a függvényr®l. A tanu-lás szokásos alapszintuá
iójától eltér®en azonban itt feltesszük, hogy a tanuló márrendelkezik valamilyen el®ismerettel err®l a függvényr®l, pontosabban, hogy van egykiinduló hipotézise (valamilyen formula képében), mely a tanulandó függvényt bizonyosértelemben jól közelíti. A futásid®re vonatkozó hatékonysági kritérium az, hogy legyenpolinomálisan korlátos a probléma különböz® paramétereinek méretében, az informá-
ióelméleti pedig az, hogy a protokollon keresztül szerzett informá
ió mennyisége legyenpolinomiálisan korlátos azon informá
ió mennyiségében, amennyivel az ismeretlen függ-vény leírható a kezdeti hipotézis ismeretében. A disszertá
ió els® felében elméleti ered-ményeket tárgyaltunk az elméletrevízió témaköréb®l.A disszertá
ió második felében karakterizá
iós eredményeket vizsgáltunk, melyekmind Boole-függvények valamely szemantikus illetve szintaktikus tulajdonságai közöttmutattak ekvivalen
iát.Az els® három fejezet bevezet® jelleg¶.A 4. fejezetben read-on
e függvényekkel foglalkoztunk (egy függvény read-on
e� azaz egyszer olvasó �, ha reprezentálható olyan formulával, melyben minden vál-tozó legfeljebb egyszer fordul el®); ezen vizsgálatok alapjául az [52℄ 
ikk idevágóeredményei szolgáltak. Ezen függvényosztály elméleti szempontból igen jelent®s, tek-intve, hogy Boole-függvényeknek egy olyan, nemtriviális részhalmaza, melynek elemei(sok tekintetben) algoritmikusan hatékonyan kezelhet®k, ráádasul egy kellemes szeman-tikus karakterizá
iója is ismert [58; 74; 102℄. A függvényosztályról az is ismert (lásd[13℄), hogy hatékonyan tanulható az úgynevezett query model (tanulás kérdések által)keretein belül, ha a tanuló használhat mind membership query-t (értékre kérdezés)mind equivalen
e query-t (ekvivalen
iára kérdezés). A fejezet f® eredménye, hogyaz ott ismertetett ReviseReadOn
e algoritmus a függvényosztály hatékony revíziójátvalósítja meg a 
sak-törléses esetben (lásd a 4.7. tételt). További eredményként is-mertetésre került, hogy az algoritmusban használatos két kérdéstípus bármelyikét mel-l®zve a függvényosztály revíziója nem valósítható meg hatékonyan (lásd a 4.13 és a4.14 tételeket), illetve hogy az algoritmus által használt kérdések mennyisége nagysá-115



116 Összefoglalásgrendileg lényegében szintén optimális (lásd a 4.11 tételt).Az 5. fejezetben küszöbfüggvényekkel foglalkoztunk; ezen vizsgálatok alapjáula [116℄ 
ikk idevágó eredményei szolgáltak. (Egy függvényt küszöbfüggvénynek te-kintünk, ha reprezentálható változók egy R halmazával és egy θ küszöb értékkel olyanmódon, hogy a függvény pontosan azon értékadások esetén ad 1-et, melyek az R-beli változók közül legalább θ-hoz 1-et rendelnek értékül.) A küszöbfüggvények je-lent®ségét jelzi, hogy (habár a fentinél általánosabb formában megadva) a mester-séges neuronhálók illetve SVM-ek (support ve
tor ma
hine-ek) egyik alap épít®kövekénthasználatosak. Küszöbfüggvényekr®l is ismert, hogy hatékonyan tanulhatók a querymodel keretein belül, ám ezen függvényosztály esetén ehhez elég 
sak a member-ship query-k használata (lásd a [64℄ 
ikkben ismertetett algoritmust). A fejezet f®eredménye, hogy az ott ismertetett ReviseThreshold algoritmus a függvényosztályhatékony revízióját valósítja meg az általános esetben (lásd az 5.5. tételt). Ezen felülmegint
sak bizonyításra került, hogy az algoritmus által használt kérdések mennyi-sége nagyságrendileg lényegében optimális (lásd az 5.8. állítást). Figyelembe véve,hogy � amint az fent említetésre került � a függvényosztály hatékonyan tanulható
sak membership query-k használatával is, ebben az esetben még aktuálisabb a kérdés,hogy vajon a hatékony revízióhoz szükség van-e mindkett®re. A válasz, mint azt az5.6. és 5.7. tételek mutatják, igenl®. Végezetül megmutattuk, hogy Littlestonehíres Winnow Algoritmusa (mely a [92℄ 
ikkben került ismertetésre), illetve annakegy megfelel®, természetes elméletrevíziós kiterjesztése nem hatékony revíziós algo-ritmus ezen függvényosztályra. Ez azért is meglep®, mert ezen algoritmus az által válthíressé, hogy bizonyos függvények tanulását kimagaslóan hatékonyan valósítja meg, ésráadásul (általánosabb értelemben vett) küszöbfüggvényként reprezentálja a mindenkorihipotézisét.A 6. fejezetben, az elméletrevízióval foglalkozó els® rész zárásaként projektív DNFformulákkal foglalkoztunk; ezen vizsgálatok alapjául a [115℄ 
ikk idevágó eredményeiszolgáltak. A diszjunktív normálformájú formulák részosztályát alkotó projektív DNFformulák Valiant [128℄ 
ikkében kerültek bevezetésre. (A DNF-ek különböz® rész-osztályainak vizsgálata azáltal kapott még nagyobb hangsúlyt, hogy Alekhnovi
h-ék [5℄
ikkükben megmutatták, hogy � ha
sak az NP és RP osztályok nem egyenl®ek � aDNF-ek osztálya nem tanulható hatékonyan.) A formulaosztály jelent®ségét az szol-gáltatta Valiant számára, hogy alkalmasnak bizonyultak az ún. projektív tanulásra,melynek lényege, hogy a tanulás, a biológiában meg�gyelhet® más folyamatokhoz ha-sonlóan, több szinten, osztott módon történik. A fejezet f® eredménye, hogy az ottismertetett RevWinn algoritmus, mely Valiant tanulóalgoritmusának egy természeteskiterjesztése, a projektív DNF formulák hatékony revízióját valósítja meg a mistakebounded model (hibakorlátozott modell) keretein belül (lásd a 6.3. tételt). Az al-goritmus, Valiant eredeti algoritmusához hasonlóan, két szintb®l tev®dik össze. Azalsó szinten egy egyszer¶ tanulóalgoritmus több példánya kerül futtatásra, melyek minda tanulandó függvény (pontosabban a függvény értelmezési tartományának) egy kisszeletére (avagy projek
iójára) �gyelnek 
sak. A fels® szinten megint
sak egy egyszer¶tanulóalgoritmus használatos (ezúttal viszont 
sak egy darab), egyrészt azzal a 
éllal,



117hogy megtanulja, hogyan kell az alsó szinten futtatott egyszer¶ tanulóalgoritmusok általreprezentált hipotéziseket összekap
solni, másrészt azzal, hogy � megsz¶rve az infor-má
iót � az alsó szinten lév® minden egyes algoritmusnak 
sak az ® számára relevánsinformá
iót továbbítsa. A fejezet második részében a formulaosztály egy, a tanulássalkap
solatos paraméterét, az ún. ex
lusion dimension (kizárási dimenzió) paraméterétvizsgáltuk (ezen paraméterr®l b®vebben lásd a [11; 67℄ 
ikkeket). Ezen eredményt,valamint az ex
lusion dimension és a query 
omplexity (kérdési bonyolultság) közöttfennálló, ismert összefüggéseket felhasználva megmutatjuk, hogy a formulaosztály nemtanulható kevesebb mint (⌊n/4⌋
k

)

−1 kérdést használva (a legrosszabb eset analízisben).A 7. fejezetben további, karakterizá
iós jelleg¶ kérdéseket vizsgáltunk a projektívDNF formulákkal kap
solatosan; ezen vizsgálatok alapjául a [115℄ 
ikk idevágó ered-ménye szolgált. A projektív DNF-ek szemantikus jelleg¶ módon lettek de�niálva (melyettalán a 6.5 Lemma (a) pontja hangsúlyoz ki a leglátványosabban), ezért is érdekes a7.3 tétel eredménye, mely ezen formulaosztály egy részosztályának, az 1-projektív DNF-eknek egy szemantikus leírását adja meg.A 8. fejezetben egy DNF termjeinek illetve prímimplikánsainak száma közti kap-
solatot vizsgáltuk; ezen vizsgálatok alapjául a [114℄ 
ikk eredményei szolgáltak. (Egy
t term implikánsa egy Boole függvénynek, a t-t kielégít® értékadások a függvényt ismind kielégítik, illetve prímimplikánsa, ha ez a tulajdonság már egy olyan termre semteljesül, melyet t-b®l literálok elhagyásával kaphatunk.) A 8.3. részben a témábanismert korábbi eredményeket ismertettük (a teljesség kedvéért bizonyítással együtt);többek közt azt, hogy egy K tagú DNF-nek legfeljebb 2K − 1 prímimplikánsa lehet[31; 90; 97℄, és hogy ez a korlát éles [88; 90; 97℄. A fejezet f® eredménye, hogyteljes karakterizá
ióját adja azon DNF-eknek, melyek prímimplikánsainak száma elériezt a fels® korlátot (lásd a 8.1. tételt). A bizonyítás során a problémát visszavezettükarra, hogy ha egy DNF tautológiában minden tag minden másik taggal pontosan egyváltozóban ütközik, akkor a DNF-nek egy spe
iális fa struktúrája van.A 9. fejezetben azon probléma került általánosításra, melyre az el®z® fejezet ere-deti problémája vissza lett vezetve; ezen vizsgálatok alapjául a [119℄ 
ikk eredményeiszolgáltak. Pontosabban azt mutattuk meg (lásd a 9.1. tételt), hogy ha egy DNF-benminden tag minden másik taggal legalább egy, de legfeljebb két változóban ütközik,akkor szintén rendelkezik a fent említett fa jelleg¶ struktúrával, de ha a megengedettütközések számát már háromra növeljük, akkor ez a struktúra már nem jelenik megminden esetben. Kifejtére került továbba az is, hogy ez az eredmény hogyan vis-zonyul különböz® további, szemantikus illetve szintaktikus megfontolások által vezéreltáltalánosításokhoz. Megemlítettük azt is, hogy ez a probléma egy spe
iális esete a [93℄
ikkben tárgyalt problémának, mely azzal foglalkozik, hogy egy adott DNF tautológiaesetén mekkora a legkisebb olyan döntési fa, amely olyan DNF tautológiát generál,aminek minden tagja az adott DNF valamely termjének kib®vítése plusz literálokkal.Végezetül, a 10. fejezetben ún. felbontható Horn fromulákat vizsgáltunk (Hornformula egy olyan CNF, amelyben minden klóz legfeljebb egy negálatlan változót tartal-maz); ezen vizsgálatok alapjául a [89℄ 
ikk eredményei szolgáltak. A Horn formulák igenfontos szerepet játszanak a mesterséges intelligen
iában, illetve általában a számítás-



118 Összefoglalástudományban, melynek alapja, hogy a formulaosztály kifejez®képessége relatíve igenjó, és emellett algoritmikusan hatékonyan kezelhet®. A felbonthatóság fogalma a be-lief revision témaköréb®l származik 1, mely témakör f®ként tudásbázisok (hétköznapiértelemben vett) ra
ionalitási tulajdonságokat teljesít® revíziójával foglalkozik, melyekettipikusan posztulátumok formájában fogalmaznak meg. A felbonthatóság fogalmát ál-talános logikákra fogalmazták meg a [41℄ 
ikkben, ahol megmutatták, hogy az AGMposztulátumok [4℄ (a legismertebb posztulátumok egyike a témakörben) teljesülésénekszükséges és elégséges feltétele, hogy az adott logikában létezzen felbontható revíz-iós operátor. A fejezet f® eredményeként a 10.10. tételben karakterizáltuk, hogymilyen esetkben van egy Horn formulának egy másik (®t implikáló) Horn formuláranézve komplemense. Ezt felhasználva végül megadtuk a felbontható Horn formulákegy jellemzését. Mint megmutattuk, ha létezik, a komplemens hatékony konstruálható,szemben az irodalolmban egy korábban vizsgált, valamelyest szigorúbb komplemens fo-galommal, melynek meglétének eldöntése bizonyos esetekben NP-nehéz. Az eredménya közölt formában pusztán kombinatorikai jelleg¶, ám mindez egy Horn formula alapúmódszer els® lépéseként került vizsgálatra a a [89℄ 
ikkben, melynek jöv®beni 
élja ahatékony revízió ötvözése a belief revison által vizsgált ra
ionalitási tulajdonságokkal.

1Ezen témakör rokon az elméletrevízióval, így a disszertá
ió végén egy fejezet erejéig bizonyosértelemben újra találkozik a disszertá
ió két f® témája.
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