
Learnability and CharaterizationResultsfor Classes of Boolean Funtions
Balázs SzörényiResearh Group on Arti�ial Intelligene
Advisor: György TuránNovember 2007

A dissertation submitted for the degree of dotor of philosophyof the University of Szeged
University of SzegedDotoral Shool in Mathematis and Computer SienePh.D. Program in Informatis

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SZTE Doktori Értekezések Repozitórium (SZTE Repository of Dissertations)

https://core.ac.uk/display/11979785?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

PrefaeRevision an be thought of as the update of some existing (but somewhat erroneus)rule system, like some expert system provided by an expert. This problem arises whenthe rule system used to be orret, but the irumstanes have hanged, or when therule system was erroneus initially. The present dissertation disusses this topi fromthe theoretial point of view, examining the possibility of e�ient revision of some rulesystems based on Boolean formulas, suh as read-one formulas, projetive DNF andthreshold funtions.Additionally, haraterization results are provided for some Boolean funtions. Mo-tivated by one of the revision algorithms, a strutural desription of a lass of projetiveDNF is given. We also onsider k-term DNF, and give a omplete desription of thoseformulas whih have the largest number of prime impliants. This ompletes a seriesof well-known results on this lass. A related haraterization result is given for a lassof DNF tautologies with a distane ondition. Finally, motivated by a problem in beliefrevision (an area related to, but distint from, theory revision), a riterion is given forthe existene of a omplement of a Horn formula.
AknowledgementFirst of all I would like to thank my advisor György Turán for helping and supportingme and onduting my researh; I feel espeially fortunate for having him as an advisor.I would also like to thank Robert H. Sloan, with whom the work was most inspiring,and who helped me a lot during the ommon work and my travels to Chiago.I am most thankful to János Csirik for letting me work at the Researh Group onArti�ial Intelligene, making it possible for me to onentrate on my sienti� researh.I am also grateful to Boglárka Tóth, Zsolt Gazdag and Tamás Vinkó, with whom Ishared the same o�e during the Ph.D. years; their friendship is invaluable.Finally, my deepest thank goes to my whole family for their unonditional love, onstantsupport and in�nite belief in me.

iii

iv

Contents
1 Introdution 11.1 Learning and Theory Revision . 21.2 Charaterization Results for Boolean Funtions 41.3 Results and the Struture of the Dissertation 52 General De�nitions and Notations 92.1 Syntax . 92.1.1 Terms, Clauses, Speial Formula Classes 102.2 Semantis . 112.3 Conneting Syntax and Semantis . 122.3.1 Vetors, Cubes and Sububes 13I Theory Revision Results 153 Models and the Vapnik-Chervonenkis Dimension 173.1 Models for Learning . 173.1.1 Probably Approximately Corret Learning (PAC) 183.1.2 Query Learning . 183.1.3 Mistake Bounded Learning . 193.2 Models for Theory Revision . 193.3 Vapnik-Chervonenkis Dimension . 224 Read-one Formulas 234.1 Further De�nitions and Notations . 234.1.1 Revision . 244.1.2 Sensitization . 244.2 Revision Algorithm for Read-one Formulas 274.2.1 Algorithm GrowFormula . 304.2.2 Algorithm FindFormula . 314.3 Example Run of ReviseReadOne 324.4 Lower Bounds on Revising Read-one Formulas 344.5 Conluding Remarks . 38v

vi Contents5 Threshold Formulas 395.1 Further De�nitions and Notations . 395.1.1 Revision . 405.2 Revision Algorithm for Threshold Funtions 405.3 Example Run of ReviseThreshold 465.3.1 Adding the Previously Unknown Relevant Variables 465.3.2 Deleting the Irrelevant Variables 475.4 Lower Bounds on Revising Threshold Formulas 485.5 Conluding Remarks . 506 Projetive DNF Formulas 516.1 Further De�nitions and Notations . 526.1.1 Revision . 536.2 Revision Algorithm for Disjuntions and for k-PDNF Formulas 546.2.1 Revising Disjuntions . 546.2.2 Revising k-PDNF Fromulas 586.3 Exlusion Dimension . 606.4 Conluding Remarks . 65II Charaterization Results 677 1-PDNF Formulas 697.1 p-irredundany and a Charaterization of 1-PDNF Formulas 697.2 Proof of Theorem 7.3 . 707.3 Conluding Remarks . 748 k-term-DNF Formulas with Largest Number of Prime Impliants 758.1 Nonrepeating Deision Trees and the Charaterization of Maximal DNFs 768.2 Further De�nitions and Notations . 788.3 Previous Results on k-term-DNFs and Prime Impliants 798.4 Proof of Theorem 8.1 . 808.5 A Graph Theoreti Appliation of the Splitting Lemma 838.6 Conluding Remarks . 859 Disjoint DNF Tautologies with Con�it Bound Two 879.1 Charaterization of DDNF tautologies with Con�it Bound Two 879.1.1 Syntati View: DDNF tautologies and LBT generated DNFs . 889.1.2 Semanti View: The General Splitting Problem for Cube Partitions 909.2 Further De�nitions and Notations . 919.3 Proof of Theorem 9.1 . 929.4 Conluding Remarks . 98

Contents vii10 Deomposable Horn Formulas 9910.1 Further De�nitions and Notations . 10010.2 Charaterization of Deomposable Horn Formulas 10110.3 Proof of Theorem 10.10 . 10410.4 Singleton Horn Extensions . 10710.5 Conluding Remarks . 109Appendies 111Appendix A Summary 111Appendix B Összefoglalás 115Bibliography 119

Chapter 1
Introdution
The present dissertation, in its �rst part, onsiders theoretial results from the �eld oftheory revision. Theory revision, as part of learning theory, is interested in reonstrut-ing some unknown funtion aquiring information about it via some protool, spei�edby the given learning model. However, as opposed to the general learning problem, itis assumed that the learner is not new to the given task, but it initially has a hypothe-ses that is assumed to be some rough approximation of the unknown funtion. As ananalogous real-world example, one an onsider an initial version of an expert systemprovided by an expert, whih needs to be re�ned using further examples or other in-formation available. Having some initial hypotheses available should make the learningproblem easier to solve�making the relevane of the model apparent, and motivatingits analysis from the theoretial point of view.The theory revision results in the present dissertation all onsider some Booleanformula lass; read-one, threshold and projetive DNF formulas 1 are analyzed fromthe point of view of e�ient revisability.In the seond part haraterizational results are presented; all showing equivalenebetween some syntatial and some semantial properties of some lasses of Booleanfuntions. The syntati properties involve Boolean formula lasses, like DNFs satisfyingsome syntati irredundany notion, Horn formulas (one of the most studied formulalass in arti�ial intelligene), disjoint DNFs (DNFs with pairwise on�iting terms)and deision trees (another very important objet in omputer siene�whih an alsobe thought of as a sublass of DNFs). The semanti properties inlude restritionsgiven for partitioning the n-dimensional ube with sububes, speial loal restritionsgiven for a Boolean funtion on its domain, extensions of the truth set of some funtionful�lling some speial riteria, and �nally some extremal properties.

1The lass of projetive DNF formulas form a new sublass of DNF formulas introdued reentlyby Valiant [128℄. 1

2 Introdution1.1 Learning and Theory RevisionTheory revision, or more generally, the whole area of learning theory aims to apturereal life learning: to build models for some phenomena by olleting data about itand trying to generalize from this data by realizing regularities and extrating ertainrules. An obvious and noble motivation for this is to make omputers able to learn:to adapt to new situations in a hanging environment. This as is one of the mostfundamental original objetives of arti�ial intelligene. However, a big majority ofreal-world appliations nowadays onsist of problems that seem a bit di�erent at �rstglane: to put up rules for, and to model systems that are way too omplex for humansto do it by hand. Typial examples from everyday life are speeh reognition, faereognition; or appliations from bioinformatis like protein lassi�ation�and so on.Many of these tasks an be onsidered as the problem of �nding a lassi�ation ruleon a given domain that �ts the data (i.e., labeling bitmaps either �woman� or �man�,or mapping segments of speeh to words, et).Various de�nitions and approahes were born to formulate this problem more pre-isely, but without a real onsensus. However let us quote one (from Mithell [99℄):�A omputer program is said to learn from experiene E with respet to somelass of tasks T and performane measure P , if its performane at tasks in T ,as measured by P , improves with experiene E.�Although it gives some intuition about the nature of learning as a mathematial problem,apparently it is too general to be appliable for spei� problems or situations; so moreformal de�nitions are needed.Computational learning theory and its entral notion, PAC learnability (establishedby the seminal paper [127℄ of Valiant), approahes learning from omplexity theoretipoint of view and is interested in the omputational and information theoreti aspetsof learning: what an be learned e�iently, and how muh information does the learnerneed for this in di�erent settings. (In this ase the lassi�ation rules are often Booleanformulas from some prede�ned lass.) Computational learning theory is de�ned in somesense as the inverse of ryptography�and indeed, subsequently Kearns and Valiant hasshown that an e�ient PAC learning algorithm for general Boolean formulas ould beused for example to break RSA [77℄.To mention some other �elds also devoted to learning: in the framework of �learningin the limit� (established by Gold [47℄) the learner meets in the ourse of an in�niteproess all the words (or expressions) of some language 2, and is required to set up ahypotheses: some representation of the language. On the other hand, pattern reogni-tion, for example (highly in�uened by works like that of Vapnik and Chervonenkis [131℄and Stone [120℄), is interested in lassi�ers that (onstruting their hypotheses usingrandomly generated examples often in a kind of on-line manner) are asymptotially asgood as the best possible (alled Bayes lassi�er).2And, depending on the spei� model, the learner might additionally meet some or all of the�negative� examples: words or expressions not in the given language.

1.1 Learning and Theory Revision 3The researh aimed to analyze di�erent aspets of PAC learnability gave birth toseveral other related learning models. On the whole�fousing on the Boolean ase�all of them are interested in �nding some representation for an unknown funtion ftrg,alled target onept�representable by some formula from a �xed, prede�ned formulalassR�, aquiring information about it via some protool, de�ned by the given model.In the present dissertation two of these models are applied.One suh model is query learning (introdued by Angluin [10℄), in whih anorale is assumed to answer (in onstant time) questions of the learner via some queryprotool. These questions are typially of the form of a membership query, queryingthe value of the target onept on some assignment, or an equivalene query, askingwhether some formula, onstruted by the learner is equivalent to the target onept.The query omplexity of the lass R is the (maximum of the) number of queriesneeded to ask by the learner depending on the size of ftrg (i.e., the length of theshortest formula in R for ftrg). A learning algorithm in this model is onsidered to bee�ient, if both the quey omplexity and the running time is polynomial (in the sumof the number of variables and the size of ftrg).Another suh model is themistake bounded model (see e.g. [92℄) whih is de�nedin an on-line setting. In this model the learning proeeds in a sequene of rounds. Ineah round the learner reeives �rst an instane of the domain (i.e., on whih ftrgis de�ned) then produes a predition of its lassi�ation, and �nally reeives a label(whih, in a noise-free model is the orret lassi�ation�i.e., what ftrg evaluates onit). If the predited lassi�ation and the reeived label disagree then the learner madea mistake. The mistake bound of the learning algorithm is the maximal number ofmistakes, taken over all possible runs, (that is, sequenes of instanes), depending onthe size of ftrg. A learning algorithm in this model is onsidered to be e�ient, ifboth the quey omplexity and the running time (in eah round) is polynomial (in thesum of the number of variables and the size of ftrg).Theory revision, as a speial learning problem, assumes that the learner is notompletely new to the given learning problem, hereby it has some initial hypothesesin the form of some formula that, albeit not equivalent to ftrg, but is thought tobe a �good approximation� of it. A typial example is an initial version of an expertsystem provided by an expert, whih needs to be re�ned using further examples orother information available. It is argued that this is a realisti requirement, as manyomplex onepts an only be hoped to be learned e�iently if a reasonably goodinitial approximation is available. Desriptions of theory revision systems are given, forexample, in [82; 103; 107; 134; 135℄. One of the �rst papers studying revision from atheoretial aspet is due to Mooney [100℄. He assumed that the target an be obtainedfrom the initial hypotheses by using revision operators, whih are simple, prede�nedsyntati modi�ations, suh as the deletion or the addition of a literal, and gavebounds for the the number of random examples needed in the PAC model for revisionin terms of the number of these modi�ations neessary. Greiner [57℄ onsidered theomputational omplexity of hypothesis �nding in a related framework.The models for theory revision used in the present dissertation are extensions of

4 IntrodutionMooney's approah to the query and the mistake bounded model. Atually, the modelsfor theory revision di�er from the orresponding learning models only in the e�ienyriteria as follows: denoting the size of ftrg by s, and the minimal number of revisionoperators needed to apply on the initial hypotheses to obtain some representation for
ftrg by ê, the number of queries asked (resp. the number of mistakes made) must bepolynomial in ê and in logm for an e�ient revision algorithm 3. (Note howeverthat requirements set for the running time remains unhanged.)For additional results on theory revision (not disussed in the present dissertation)the papers [50; 52; 53℄.1.2 Charaterization Results for Boolean Fun-tionsCharaterization results appear (and are applied) in several forms in mathematis andin omputer siene; like giving a semanti desription for some objet de�ned in asyntati way (e.g. that a number, written in deimal form, is divisable by 5 if and onlyif its last digit is either 0 or 5), or to give an alternative syntati desription for someobjet de�ned in a syntati way, and so on. Atually, it is one of the fundamentaltools in the analysis of some mathematial objet (like, say, a funtion, set, formulalass, et) to give an alternative desription or representation for it, and work withthat. It an, on one hand serve with more insight on the given objet�whih, inturn, an help solving the given problem�and, on the other hand (as is usual), itan provide more intriguing questions. A prominent examples for this is the Fouriertransform of funtions�i.e., to give an alternative representation for funtions as alinear ombination of some orthonormal system�, whih is of invaluable importane,both in ase of the real world appliations and also on the theoretial level.Charaterization results are highly important for Boolean funtions as well. A lassi-al suh result (see [71; 96℄) is a semanti haraterization of Horn funtions (Booleanfuntions representable with Horn formulas�i.e., onjuntive normal form formulasin whih every lause ontains at most one unnegated variable). This result states thata funtion f is Horn if and only if for any pair of assignments on whih f evaluates 1it holds that f evaluates 1 also on their meet (i.e., omponentwise ∧). (This result isformulated in this dissertation as Theorem 10.2.) This, in turn, is used in the presentdissertation to derive another haraterization result involving Horn formulas.Another lassial haraterization result (disovered independently several times�see [58; 74; 102℄) onsiders read-one funtions (Boolean funtions representablewith read-one formulas�i.e., formulas in whih every variable ours at most one).This result uses the notion of maxterms an minterms, whih�fousing for simpliityonly on monotone funtions 4� an be de�ned as follows: a minimal set of variables
S is a minterm (resp. maxterm) of a monotone funtion f , if �xing the variables in3An explanation for this hoie of the e�ieny riteria is given in Chapter 3.4A Boolean funtion is said to be monotone if it is monotonially inreasing in the usual sense.

1.3 Results and the Struture of the Dissertation 5
S to 1 (resp. the variables in T to 0) fores f to take the value 1 (resp. 0). Thenthe haraterization result states that a monotone Boolean funtion is representableby a read-one formula if and only if for arbitrary minterm S and maxterm T of it
|T ∩S| = 1. A nie appliation of this result in learning theory is the learning algorithmonstruted for read-one formulas in [13℄, whih (although not applied, but still) is ofspeial interest for us, as various learnability related properties of this lass are analyzedin the present dissertation.Finally note how entral is the role of haraterizing the extreme values and asesfor some problems is in some �elds. For instane extemal ombinatoris (see e.g. [72℄)is typially interested in questions of this sort; like that of determining the maximalnumber of prime impliants of Boolean funtions. (A term t is an impliant of someBoolean funtion f , if any assignment saisfying t also satis�es f , meanwhile t is saidto be a prime impliant of f if, in addition, this does not hold for any term obtainedfrom t by removing some literals from it.) Considering this problem, it is known thata Boolean funtion on n variables an have at most O (3n√

n

) prime impliants, andthat there are funtions with Ω
(

3n

n

) prime impliants (see, e.g., [31℄), but the exatvalue for the maximal number of prime impliants is not known for general n. In thepresent dissertation a related problem is analyzed, whih also takes into onsiderationthe (minimal) number of terms in a DNF for a given funtion.1.3 Results and the Struture of the DissertationThe �rst part of the dissertation onsists of results from theory revision, dealing withthe revisability of some important formula lass in various learning models. The seondpart onsists of haraterization results, some of whih are related to some revisionproblem, meanwhile the rest is just interesting per se.The �rst topi on theory revision in the dissertation is the revision of read-onefuntions (funtions representable with formulas in whih every variable ours at mostone) in the query model, disussed in Chapter 4. The importane of this formula lassis rather theoretial, being a nontrivial sublass of Boolean formulas that is tratablefrom several di�erent aspets, and has a nie semanti haraterization [58; 74; 102℄.As it has been shown by Angluin et al., this lass is also e�iently learnable withmembership and equivalene queries [13℄ 5, it is thus natural to ask whether also ane�ient revision algorithm exists for this lass. This question is answered positively,but only for a restrited model whih assumes that the funtion to be learned an berepresented by a formula obtained from the initial one by deleting some parts of it.After that, the optimality of the algorithm is analyzed: a lower bound is shown for thequery omplexity of this lass, that is of the same order of magnitude as the queryomplexity of the algorithm. Finally it is analyzed whether both types of the queries,5What's more, read-twie funtions are also e�iently learnable [104℄�but read-thrie funtionsare not [2℄. Here, read-twie (resp. read-thrie) funtions (in aordane with the de�nition of read-one funtions) are de�ned as funtions that are representable with formulas in whih every variableours at most twie (resp. three times).

6 Introdutionused in the algorithm, are neessary, and it is shown that indeed, e�ient revision isnot possible using only one of the two types of queries.As the next topi in theory revision, Chapter 5 onsiders Boolean threshold fun-tions (i.e., funtions representable by a set of variables R and a threshold θ, evalutingto 1 on exatly those assignments whih assign 1 to at least θ of the variables in R).Threshold funtions (although in a more general form) are famous for being the basiingredient of neural networks and support vetor mahines�and has several other ap-pliations as well. For this lass similar questions are asked as above. Again, a revisionalgorithm is presented in the query model, whih, as shown, is an e�ient algorithmfor revising the lass of threshold funtions (in this ase, however, no restrition is seton the model�i.e., both deletions and additions are allowed), having query omplex-ity essentially optimal up to order of magnitude. Again it is shown that no e�ientrevision is possible for this lass if one type of the queries gets banned. Finally itis shown that, somewhat surprisingly, Winnow 6�a kind of multipliative version ofPereptron being famous for learning some formula lasses highly e�iently 7 usingthreshold representation�would not be a good hoie for this task, as it would notwork e�iently.As a losure of the theory revision part, a sublass of the disjuntive normal formformulas, alled projetive DNFs, is onsidered in the mistake bounded model. Forlong it was one of the main open problems in omputational learning theory, whetherthe lass of DNFs is e�iently learnable. However reently it was proved that, unlessRP = NP, the answer is no [5℄. This motivates the searh for sublasses of the DNFswhih are e�iently learnable. The lass of projetive DNFs was introdued by Valiant[128℄ as a lass suitable for projetive learning�a notion motivated by ertain biologi-al onsiderations�; the general idea being that learning, similarly to other biologialproesses, should be arried out on multiple levels in a distributed manner. His on-strution onsists of two levels. On the lower level simple learning algorithms are run,eah onentrating on just a small part (or restrition) of the funtion to be learned.On the upper level another simple algorithm is run, whih, on one hand, learns how to(re)ombine the output of the algorithms on the lower level, and, on the other hand, it�lters the information forwarded to these algorithms suh that eah one reeives onlythat part of the information whih is supposed to be relevant for it. Given this e�ientalgorithm for this lass, it is an interesting question whether a natural extension itwould behave as an e�ient revision algorithm. After showing that the answer to thisquestion is positive, some further, learning related features of the lass are analyzed.Being an appearently new lass, projetive DNFs provide several questions to beanswered. One suh that arose during examining this lass was that a speial sublassof it, alled 1-projetive DNFs (or 1-PDNFs for short) have shown some regularities intheir syntax. (A DNF formula ϕ is 1-PDNF if every term t of it ontains some literal εsuh that εϕ and t represent the same funtion.) Chapter 7 disusses this, and presentsa haraterization of this sublass that aptures this regularity.6More preisely a natural extension of it.7More preisely in a so alled attribute e�ient manner.

1.3 Results and the Struture of the Dissertation 7Continuing the disussion of haraterization results, the relation between the num-ber of terms in a DNF, and the number of prime impliants of it is onsidered. Earlierresults in omputer siene imply that if some DNF onsists of K terms, then it has atmost 2K − 1 prime impliants [31; 90; 97℄, and it has also been known previously, thatthis bound is sharp [88; 90; 97℄. These results get ompleted in Chapter 8 in whih aharatarization is given for DNFs that have as many prime impliants as this boundallows. This is shown by reduing the problem to the following problem: if in someDNF tautology eah pair of terms on�it in exatly one variable (i.e., eah pair isresolvable) then it posesses a tree-like struture (i.e., there is some variable v appearingin eah term; there is some variable w appearing in eah term that ontains v negated,and there is some variable u in eah term that ontains v unnegated; and so on)�forwhih a new proof is presented.The next haraterization result onsidered is a generalization of the result, theprevious problem (regarding the number of prime impliants of a DNF) is reduedto. More preisely it is shown in Chapter 9 that if in some DNF tautology eah pairof terms on�it in at least one but at most two variables, then it also posesses atree-like struture. However, further relaxing the bound given for the on�it of theterms to three, the above mentioned tree-like struture will not be automati�as isdemonstrated by an example. This problem is also a speial ase of a problem onsideredin [93℄, that, given a DNF tautology, the task is to onstrut a deision tree suh thatfor eah term of the DNF generated by it there is a term of the tautology that is asubterm of it. They have shown that even for some very simple DNFs this problemrequires a deision tree with extremely big omplexity; however the result presented inthis hapter implies that for eah DNF in the above mentioned restrited lass thereexists always some simple deision tree 8.Finally, deomposable Horn formulas are disussed. Horn formulas, being an ex-pressive lass whih also allows for polynomial time inferene, and indeed is generallyomputationally tratable, play a entral role in arti�ial intelligene and in omputersiene. The notion of deomposability omes from belief revision 9, a �eld interested inrevising knowledge base in suh a manner that satis�es some �reasonability� properties,that are typially formulated in the form of postulates. Deomposability was introduedfor general logis in [41℄, where it was also shown to be equivalent to the existeneof some revision operator satisfying the AGM postulates [4℄�one of the most popularpostulates used in belief revision. In Chapter 10 haraterizations are given for the exis-tene of a omplement of a Horn funtion onsequene of another Horn funtion, whihin turn provides a omplete desription of deomposable Horn formulas. The hara-terizations lead to e�ient algorithms for the onstrution of a omplement wheneverit exists (whih is in ontrast with a related, but somewhat more stringent omplementnotion of [60℄, the existene of whih is oasionally NP-omplete to deide). Theresult, as is purely ombinatiorial, but was meant in [89℄ as a �rst step towards what is8Atually the result states something stronger: for this restrited lass basially the DNFs them-selves an be onsidered as deision trees in some sense.9Belief revision is related to theory revision (at least in it topi);thus�as a losure�the two maintopis of the dissertation meet again.

8 Introdutionreferred to as �Horn-to-Horn belief revision�: revision of Horn knowledge bases wherethe revised knowledge base is also required to be Horn; integrating hopefully e�ientrevision (the entral notion in theory revision) and ommon sense reasoning (as a maingoal in belief revision).

Chapter 2General De�nitions and NotationsWhen analyzing di�erent representational lasses it is often onvenient (and sometimesmaybe even unavoidable) to view formulas as funtions and vie versa: to analyze afuntion by examining a formula representing it. Aordingly we frequently and freelyswith between the semantial and the syntatial view. However, trying to keep thepiture lear, we �rst disuss the two separately, and then disuss some onnetions ofthe two used heavily later on.2.1 Syntax
V = {v1, v2, v3, . . . } is the set of propositional variables in our universe, and for anyinteger n let Vn = {v1, v2, v3, . . . , vn}. The negation of a variable v ∈ V is denoted v.A literal is an unnegated or negated variable; unnegated variables are alled positiveliterals; negated variables negative literals. The negation of the negative literal
ε = v, denoted ε, is again the positive literal v.A Boolean formula over variables V ′ ⊆ V an be de�ned as the smallest subsetof strings formulas over 1, 0, �∨�, �∧�, �)�, �(�, � ¯ � and V ′ satisfying:

• 0, 1 ∈ formulas 1.
• Literals v and v are in formulas for any v ∈ V ′.
• If ϕ ∈ formulas, then ϕ ∈ formulas.
• If ϕ1, . . . , ϕk ∈ formulas and k ≥ 2, then ◦(ϕ1, . . . , ϕk) ∈ formulas, where
◦ is either ∨ or ∧.(In notation, for formulas greek lower ase letters are used, usually ϕ and ψ, or some-times χ.) Let Var(ϕ) (resp. Lit(ϕ)) denote the set of variables (resp. set of lit-erals) ouring in formula ϕ. For example if ϕ = (v ∨ w) ∧ (w ∨ (u ∨ z)), then

Lit(ϕ) = {v, w, w, u, z}, meanwhile Var(ϕ) = {v, w, u, z}, where v, w, u, z ∈ V.1For tehnial reasons, we extend the standard notion, whih does not allow for onstants in theleaves. 9

10 General De�nitions and NotationsBesides Boolean formulas we also onsider threshold formulas. A threshold for-mula is simply a pair (U, t), also denoted Tht
U , where U ⊆ V and t is some non-negativeinteger.Both Boolean and threshold formulas are often referred to simply as formulas.2.1.1 Terms, Clauses, Speial Formula ClassesA term (or onjuntion) is a formula ∧(ε1, . . . , εk)�often written in the form ε1 ∧

· · · ∧ εk�, where ε1, . . . , εk are arbitrary literals. A k-term (or k-onjuntion) is aonjuntion of k literals. A lause (or disjuntion) is the dual notion, where in theplae of eah ∧ there is a ∨. Denote the empty onjuntion (resp. empty disjuntion)by ⊤ (resp. ⊥). It is assumed that terms (resp. lauses) do not ontain both a variableand its negation.It is often onvenient to treat lauses and terms as a set of literals; for exampleif c = v1 ∨ v3 ∨ v4, then v1 ∈ c denotes that literal v1 appears in lause c, and if
t1 = v1 ∧ v4 and t2 = v1 ∧ v2 ∧ v4 ∧ v5, then t1 = t2 \ {v2, v2, v5} denotes that term
t1 an be obtained from t2 by removing literal v5 and removing variable v2 with anyorientation. (As it will always be lear from the text, wether the given formula is alause or a term, this does not ause ambiguity.) Aordingly, the size of a term t,denoted by |t|, is the number of its literals, and some term t′ is a subterm of t if t′ ⊆ t(whih is obviously equivalent to Lit(t′) ⊆ Lit(t)).Terms t and t′ on�it in variable v if v appears unnegated in one of them, andnegated in the other. (In this ase t and t′ are also said to ollide.) t⊗ t′ denotes theset of variables t and t′ on�it in; thus |t⊗ t′| is the number of on�its between thetwo terms.A disjuntive normal form formula (or DNF for short) is a disjuntion ofterms. A k-DNF is a DNF suh that eah of its terms ontains at most k literals. A
k-term-DNF is a DNF with at most k terms. Let k-DNFn (resp. k-term-DNFn)denote the lass of n-variable Boolean funtions expressible as a k-DNF (resp. as a
k-term-DNF). A DDNF or disjoint DNF is a DNF with pairwise on�iting terms.A DDNF formula has on�it bound d, if any two terms in it on�its in at most twovariables.A Horn lause is a lause ontaining at most one positive literal. A Horn formulais a disjuntion of Horn-lauses.A read-one formula is a formula in whih every variable ours at most onne.As in the ase of terms and lauses, sometimes DNFs are also treated as sets�inpartiular as a set of terms. Aordingly t ∈ ϕ is used to denote that t is a term of theDNF ϕ.A Labeled Binary Tree (or LBT) over variables in V ′ ⊆ V is a rooted binary treesuh that for eah inner node the node itself and the edge leading to its right hildare labelled by some v ∈ V ′, and the edge leading to its left hild is labelled by v. ADeision Tree (or DT) is an LBT that's leaves are labelled by 0 or 1.

2.2 Semantis 112.2 SemantisAn assignment is a funtion x : V → {0, 1}, a partial assignment is partial funtion
σ : V →֒ {0, 1}. In the latter ase σ an also be onsidered as a funtion σ : Dom(σ) →

{0, 1} where Dom(σ) := σ−1({0, 1}) = {v ∈ V : v is assigned to some variable by σ}is the domain of σ. When σ(v) appears in the text for some v ∈ V, then it isimpliitely understood that Dom(σ) ontains v. The partial assignment with emptydomain is denoted ().When one fouses on a subset V ′′ of the universe in sope (this often ours whenworking with some (sub)formula ϕ, in whih ase V ′′ is Var(ϕ)), a partial assignment
σ : V ′ → {0, 1} with V ′ ⊇ V ′′ an also be onsidered as an assignment. This isstressed in notation using bold fae lower ase Roman alphabet letters (usually x,y, z,or sometimes w or u) for these partial assignments, and to use lower ase Greek letters(usually σ, or sometimes α) for those that leave some variables in V ′′ unassigned. When
V ′ is �nite, say V ′ = Vn, σ an be written in the form (v1 7→ σ(v1), . . . , vn 7→ σ(vn)).For example if V ′ = V3, and σ(v1) = 1, σ(v2) = 0 and σ(v3) = 1, then σ = (v1 7→

1, v2 7→ 0, v3 7→ 1). Also, for some V ′′′ ⊆ V, let σ|V ′′′ denote the partial assignmentthat agrees with σ on V ′′′ ∩ V ′, and leaves the rest of the variables unassigned.
0 (resp. 1) denotes the assignment that assigns 0 (resp. 1) to eah variable insope, V ′′, and for some V ⊆ V ′′ let 1V denote the assignment assigning 1 to thevariables in V and 0 to the variables in V ′′ \ V .Given two assignments x,y : V ′ → {0, 1}, their intersetion (or meet) is theassignment x ∧ y : V ′ → {0, 1} assigning x(v) · y(v) (i.e., the minimum of x(v) and

y(v)) to eah variable v ∈ V ′. Also, the relation x ≤ y holds, if x = x∧y, and x � yholds, if x ≤ y but x 6= y. Similarly to the meet, let the join of assignments x and ybe the assignment x ∨ y : V ′ → {0, 1} assigning x(v) + y(v)− (x ∧ y)(v) to variable
v ∈ V ′ (i.e., assigning to eah variable the maximum assigned to it by x and y), and,�nally, let x ⊗ y : V ′ → {0, 1} assign (x ∨ y)(v) − (x ∧ y)(v) to variable v ∈ V ′.Given some partial assignment σ and a variable v ∈ Dom(σ), the omponent of
σ orresponding to v (or the v-omponent of σ, for short) is the partial assignment
σ|{v}. The v-omponent is said to be on (resp. o�) in σ, if σ(v) = 1 (resp. σ(v) = 0).Let futhermore σ[v] = σ[v] be the partial assignment obtained from σ by �ipping its
v-omponent. For example (v1 7→ 1, v2 7→ 0, v3 7→ 1, v4 7→ 0)[v2] = (v1 7→ 1, v2 7→

1, v3 7→ 1, v4 7→ 0) and also (v1 7→ 1, v2 7→ 0, v3 7→ 1, v4 7→ 0)[v2] = (v1 7→ 1, v2 7→

1, v3 7→ 1, v4 7→ 0).The Hamming distane distH(x,y) of assignments x and y is the number ofvariables on whih x and y disagree. The weight of an assignment x, denoted as |x|,is the number of variables it assigns 1 to.Given a set of variables V ′ ⊆ V, let A(V ′) denote the set of assignments withdomain V ′. Let furthermore An := A(Vn). A Boolean funtion f over variables
V ′ is a zero-one valued funtion de�ned over the assignments with domain V ′�that is
f : A(V ′) → {0, 1}. An n-variable Boolean funtion is a Boolean funtion over
An. Boolean funtions will often be referred to simply as funtions. In notation, plainlower ase Roman alphabet letters (usually f, g or h) are used for Boolean funtion.

12 General De�nitions and NotationsAn assignment x ∈ A(V ′) is said satisy (resp. falsify) funtion f if f(x) = 1 (resp.
f(x) = 0). The truth set of a funtion f is the set T (f) := {x ∈ A(V ′) : f(x) = 1},and let F(f) := {x ∈ A(V ′) : f(x) = 0}. The funtion with truth set A(V ′) (resp.
∅)�that is, whih evaluates to 1 (resp. to 0) on eah assignment�is denoted 1 (resp.
0). Finally note that a Boolean funtion over variables V ′ ⊆ V an also be onsideredas a Boolean funtion over V ′′ for any V ′ ⊆ V ′′ ⊆ V.For Boolean funtions f and g write g ≤ f if every truth assignment satisfying
g also satis�es f (i.e., if T (g) ⊆ T (f)). When this holds, g is said to imply f , oralso that f is a onsequene of g. If, in addition, there is a truth assignment x with
g(x) = 0 and f(x) = 1, then g is said to properly imply f , or that f is a properonsequene of g, and denote it by g � f .A Boolean funtion f over variables V ′ is monotone if x ≤ y implies f(x) ≤ f(y)for all x,y ∈ A(V ′), it is a-unate for some a ∈ A(V ′), if g(x) = f(x⊗a) is monotone,and it is unate if it is a-unate for some a ∈ {0, 1}n.Given (partial) assignments σ1 : V ′ → {0, 1} and σ2 : V ′′ → {0, 1} with V ′,V ′′ ⊆ V,let σσ2

1 be the (partial) assignment that agrees with σ2 on V ′′, with σ1 on V ′ \ V ′′, andleaves the rest of the variables unassigned. When V ′ and V ′′ are disjoint, then σσ2

1is sometimes written as (σ1, σ2). When this is the ase, and σσ2

1 is an input of somefuntion f , or protoolMQ 2, then sometimes, instead of f((σ1, σ2)) orMQ((σ1, σ2)),with a slight abuse of notation, simply f(σ1, σ2), ϕ(σ1, σ2) or MQ(σ1, σ2) is used.2.3 Conneting Syntax and SemantisGiven a partial assignment σ : V ′ → {0, 1} and a Boolean formula ϕ over V, let ϕσ bethe formula obtained from ϕ by replaing eah variable v ∈ Var(ϕ)∩V ′ with the value σassignes to it. On the other hand, ϕ(σ) is the formula obtained by iterating the follow-ing: if the urrent formula ontains some subformula ◦(ϕ1, . . . , ϕi−1, b, ϕi−1, . . . , ϕℓ)for some b ∈ {0, 1}, ◦ ∈ {∧,∨,¯}, then replae it with
• 1, if ◦ is ∨ and b = 1, or if ◦ is � ¯ � and b = 0,
• 0, if ◦ is ∧ and b = 0, or if ◦ is � ¯ � and b = 1,
• ∨(ϕ1, . . . , ϕi−1, ϕi−1, . . . , ϕℓ), if ◦ is ∨ and b = 0,
• ∧(ϕ1, . . . , ϕi−1, ϕi−1, . . . , ϕℓ), if ◦ is ∧ and b = 1,as long as at least one of the above ases apply. Note that if σ is an assignment,then the resulting formula is either the 0 or the 1. Aordingly, for any formula ϕthere is a naturally assoiated funtion over variables Var(ϕ), mapping an assignment

x ∈ A(Var(ϕ)) to the appropriate onstant ϕ(x). Conversely, given some formula ϕwith an assoiated funtion f , we also say that ϕ represents f . Finally, de�ne theempty onjuntion, ⊤ (resp. the empty disjuntion, ⊥), to be always true (resp. false).2See Chapter 3.

2.3 Conneting Syntax and Semantis 13Given some threshold formula Tht
U , and some (partial) assignment x with domain

Dom(x) ⊇ U , let Tht
U(x) = 1 if x assigns 1 to at least t of the variables in U , andlet Tht

U(x) = 0 otherwise. Aordingly, for any threshold formula there is a naturallyassoiated funtion over variables U .Two formulas ϕ and ψ are equivalent, denoted ϕ ≡ ψ, if they represent the sameBoolean funtion. If we use some formula ϕ in a plae where a funtion is expeted,then ϕ will stand for the funtion represented by ϕ; aordingly the relations ≤ and
� (i.e., the notions �implies� and �properly implies�, resp. �onsequene� and �properonsequene�) an also be naturally extended for formulas. Now then, if a term t impliessome funtion f than t is said to be an impliant of f . If, furthermore it also holdsthat deleting any literal from t results in a term that is not an impliant of f , then t isa prime impliant of f . On the other hand, if some lause c is a onsequene of theBoolean funtion f , then c is alled an impliate of f .A term is monotone if it onsists of unnegated variables. Given a ∈ {0, 1}n, aterm is a-unate if the sign of every literal in it agrees with a�that is, a literal is positiveif and only if the orresponding omponent of a is 0. (Note that the above de�nitionsoinide with the orresponding de�nitions for the assoiated funtions.) For example,if n = 3 and a = 101 then v1 v2 is a-unate.2.3.1 Vetors, Cubes and SububesLet V ′ ⊆ V be �nite; for simpliity assume V ′ = Vn for some n.Note that (using the natural ordering of the variables in V, where vi is the i-th itemin the order) assignments an be thought of as Boolean (or 0-1) vetors; aordingly
A(V ′) an be identi�ed with the n-dimensional ube, {0, 1}n. Then, for example,the assignment σ = (v1 7→ 1, v2 7→ 1, v3 7→ 1, v4 7→ 0, v5 7→ 1) an be writtenas (1, 1, 1, 0, 1) or sometimes even as 11101. (Or maybe even using the exponentialnotation as σ = 1301.)A subube (or simply ube) is any set of vetors that is of the form T (t) for someonjuntion (i.e., term) t. For terms t1, t2, where t1 6≡ 0, the following relations areequivalent:

• t1 ≤ t2,
• T (t1) ⊆ T (t2), and
• Lit(t1) ⊇ Lit(t2), or in words: t1 is subsumed by t2.For a literal ε, the ε half ube of A(V ′) is the (n−1)-dimensional subube formed bythe vetors for whih ε is true. If a term t is an impliant of a DNF ϕ = t1 ∨ · · · ∨ tk,then we also say that ϕ is a over of t, as the union of the ubes T (ti) overs theube T (t).Proposition 2.1 A set A ⊆ A(V ′) is a ube if and only if for every x,y ∈ A andevery z ∈ {0, 1}n suh that x ∧ y ≤ z ≤ x ∨ y, it also holds that z ∈ A.

14 General De�nitions and NotationsProofThe �only if� diretion is easy to see.The �if� diretion follows by noting that the ondition implies that the ∧ and the
∨ of all the vetors in A is in A, and every vetor between these two vetors is also in
A. The onjuntion of those literals to whih value 1 is assigned by both of the abovevetors is a term that is satis�ed by exatly the vetors in A. 2It follows, in partiular, that if a ube ontains two vetors with weights w1 < w2,then it also ontains vetors of weight w for every w1 < w < w2.Given x,y ∈ A(V ′), the term orresponding to the smallest subube ontainingboth x and y is obtained by inluding every literal orresponding to omponents where
x and y agree. For example, the smallest subube in A4 ontaining both 1010 and
1100 is v1v4.

Part ITheory Revision Results

15

Chapter 3Models and theVapnik-Chervonenkis DimensionIn this hapter �rst a short desription is given of the models used in the presentdissertation. Although all the algorithms disussed in the later hapters are revisionalgorithms, the models used are variants of the appropriate models de�ned for learning.For this reason �rst the original variants are disussed shortly (in Setion 3.1), andthen the orresponding revision versions are de�ned (in Setion 3.2). Note that, as thedissertation onsiders only Boolean funtions and formulas, for simpliity the notionsused are de�ned only for this ase. (For a more general setting see e.g. [78℄.)Finally, the Vapnik-Chervonenkis dimension is introdued [131℄; a ommon tool usedfor proving lower bounds on the amount of information the learner needs to aquireabout the target onept during the learning proess.3.1 Models for LearningThe �rst model disussed is PAC learning. Although it is not applied diretly in thepresent dissertation, but this model (being the original model in omputational learningtheory [127℄) gives the learest (and at the same time: the rawest) piture of thegeneral goals and nature of omputational learning theory. For more on the relation ofthe models onsidered in this hapter and others see [63℄. But let us �rst invoke fromChapter 1 the de�nition of learning given by Mithell [99℄:�A omputer program is said to learn from experiene E with respet to somelass of tasks T and performane measure P , if its performane at tasks in T ,as measured by P , improves with experiene E.�As mentioned, it is too general to be appliable for spei� problems, but it sums upniely what one has to speify, when formalizing a learning framework:(a) the objet for learning (i.e., what one wishes to learn),(b) the method of aquiring information about it,17

18 Models and the Vapnik-Chervonenkis Dimension() some riteria for suess, and(d) (oasionally) some e�ieny riteria.A ommon feature of the models disussed below is that there assumed to be some�xed, prede�ned lass of formulas R (e.g. the lass of DNFs, or Horn formulas, or read-one formulas, et) and some ftrg : A(V ′) → {0, 1} representable by some formula in
R; the latter, whih is referred to as the target onept 1, is unknown to the learner.The general task (thereby speifying (a)) is to �nd some representation for ftrg or forsome approximation of it. Models requiring the former (i.e., to represent ftrg perfetly)are alled exat learning models.Another ommon feature is that the e�ieny riteria builds on the size of ftrg,de�ned as the legth of the shortest formula in R representing ftrg.3.1.1 Probably Approximately Corret Learning (PAC)Reall that for the PAC model only a rough desription is given, laking the meretehnialities required by the exat de�nition, but su�ient to reveal the the generalidea behind it.Fix some distribution D over A(V ′); this distribution, just like ftrg, is also unknownto the learner. Then, having aess to randomly generated examples in the form
(Xi, ftrg(Xi)), i = 1, 2, . . ., where X1,X2, . . . are independent and have distribution
D, the learner is required to, �with high probability� output some formula that �isa good approximation� of ftrg

2 �and, of ourse, to do all this e�iently in theomplexity theoreti sense. It is easy to reognize the four items from the beginning ofthe hapter: (a) is ftrg , (b) is random data, () is that the probabilisti requirementsare ful�lled and (d) is that the running time is polynomial in the size of the di�erentparameters 3 (inluding the size of ftrg, de�ned as the length of the shortest formula in
R representing it). Note that this bound for the running time also sets an informationtheoreti bound: it bounds the number of examples used.3.1.2 Query LearningIn query learning (introdued by Angluin [10℄) the learner ollets information aboutthe target onept through a query protool (whih thus speieis (b)), assuming theexistene of an orale that answers (in onstant time) di�erent type of questions of thelearner. These questions are typially of the form of

• membership query, querying the value of ftrg on some assignment x�askingfor this information is usually denoted MQ(x)�, or1Note that a Boolean funtion (interpreting it as a membership funtion) an be thought of as asubset of the domain�or in other words as a onept.2The onditions �with high probability� and �is a good approximation� are formulated in terms ofthe distribution D.3Basially, the size an be thought of as the number of bits needed to enode the di�erent param-eters, also inluding the size of a random example.

3.2 Models for Theory Revision 19
• equivalene query, querying for some ounterexample: some assignment

x on whih ftrg and some formula ϕ, onstruted by the learner, disagrees.(Counterexample x is alled positive, if ftrg(x) = 1, or negative, if ftrg(x) =

0.) Asking for this information is usually denoted EQ(ϕ). Note that if suhassignment does not exist (signaled by the orale by returning (), the partialassignment with empty domain), then the learning proess has ome to an end:
ϕ omputes ftrg. The equivalene query EQ(ϕ) is proper if ϕ ∈ R, otherwiseit is improper.Query learning is an exat learning model, thereby requiring that the learner learns

ftrg exatly (again, this spei�es ()). Regarding (d), the e�ieny riteria in thismodel, in aordane with the philosophy of the PAC model, is that the time requiredby the learner is bounded by a polynomial of the size of the parameters: the numberof variables in fous and the length of the smallest formula in R for ftrg. Again, thisbound for the running time also sets an information theoreti bound: it bounds thenumber of queries used.3.1.3 Mistake Bounded LearningIn the mistake bounded model (see [92℄) the learning proeeds in a sequene of rounds.In round r the learner reeives an instane xr, and produes a predition ŷr of its lassi-�ation. Then the learner reeives a label yr. (This atually ompletes the desriptionof (b); in a noise-free model yr is the orret lassi�ation of xr, that is, yr = ftrg(xr).)If ŷr 6= yr then the learner made a mistake. The mistake bound of the learningalgorithm is the maximal number of mistakes, taken over all possible runs�that is,sequenes of instanes. Regarding (d), the e�ieny riteria is that both the numberof mistakes and the time required by the learner in a round (but independently of thegiven round) an be bounded by a polynomial of the paremeters: the number of vari-ables in fous and the length of the smallest formula in R for ftrg. (Here, the boundfor the running time does not automatially set an information theoreti bound�i.e.,for the number of mistakes ommitted�, this is why it had to be set diretly.) As themodel is thought of as an in�nite proess, it might not be that obvious, but this modelis e�etively an exat learning model, aordingly the suess riteria () is that ftrg islearned exatly.A mistake-bounded learning algorithm an be thought of as an equivalene querylearning algorithm, where the equivalene queries orrespond to the preditions at eahstage of the algorithm. These queries are usually improper. Thus, proper equivaleneand membership query algorithms and mistake-bounded algorithms are inomparablein general.3.2 Models for Theory RevisionIn theory revision the general task is the same as in learning: to onstrut some rep-resentation for the unknown target onept ftrg (in the dissertation only exat models

20 Models and the Vapnik-Chervonenkis Dimensionare used for revision) aquiring information about it in the form spei�ed by the givenmodel. However it is also assumed that the learning does not start from srath, andaordingly that the learner has some initial formula ϕ at hand. The general idea be-hind this (following the idea of Mooney [100℄) is that applying some simple, prede�nedsyntati modi�ations (referred to as revision oprations) on ϕ one obtains a repre-sentation for ftrg. Thus, using ϕ, the learning requires less additional information aboutthe target onept. On the other hand it is also apparent how strongly the learningtask depends on the given initial hypotheses.The revision operations an, in general, be either deletion or addition type. Thede�nition of these operators may depend on the target lass, but, in general, a deletionoperator removes some literal ourene or some subformula from the given formulait is applied on, meanwhile an addition operator extends the formula with a literalourene 4. (Preise de�nitions for these operators for the di�erent formula lassesare given in the subsequent hapters.) The revision distane between the initialhypotheses ϕ and the target onept ftrg, denoted dist(ϕ, ftrg), is the minimal numberof revision operations needed to transform ϕ to some formula representing ftrg. Notethat the revision distane depends on the revision operators (di�ering in the di�erentmodels!) and that it is not symmetri. Finally it should be mentioned that in some asesonly one type of revision is onsidered. Aordingly one an di�erentiate between threeases: deletions-only (when only deletion operators are onsidered) 5, additions-only (when only addition operators are onsidered), and general (when both type ofoperators are onsidered).To gain some intuition why approahing theory revision via the idea of revisionoperators is so appealing, note the following. Tehnially, the task of theory revisionis to learn (i.e., onstrut some representation for) the �di�erene� of the initial hy-potheses ϕ and the target onept ftrg�that is, to learn the set {x : ftrg(x) 6= ϕ(x)}.To adopt the philosphy behind PAC learnability for this task, one has to assume thensome representation lass for the above set. However, there doesn't seem to be anynatural, generally appliable method for this representation task that also �ts the phi-losophy, other than to simply list the operators needed to apply on ϕ to obtain somerepresentation ψ for ftrg.The number of funtions representable by some formula in R of size at most mis 2Θ(m) (unless using some wasteful representation, whih we do not onsider), thus,in general, to identify some formula of size m, one needs Θ(m) bits of information.This is re�eted in/is in aordane with that in eah learning model the information4Basially, the addition operator is the inverse of the deletion operator whih removes a singleliteral ourrene.5As a tehnial detail, in this ase it an happen that no representation of ftrg an be obtainedfrom ϕ; in this ase dist(ϕ, ftrg) an be de�ned to be in�nite. However in the deletions-only ase itis is always impliitely assumed that this is not the ase. It should also be mentioned that there is along history of studying this speial ase, presumably beause of its greater tratability, in, and evenbefore, the AI literature. Atually �deletions-only� orresponds to the �stuk-at� faults usually studiedin diagnosing faulty iruits in the 1960s and 1970s (e.g., [81℄) and, for instane, to the ase whereKoppel et al.proved the onvergene of their empirial system for theory revision in the 1990s [82℄.

3.2 Models for Theory Revision 21theoreti bound is at least linear (but maybe of some higher order polynomial) in thelength of the smallest formula for ftrg
6.In ase of revision, the bound for the running time in the e�ieny riteria stillneeds to be polynomial in the size of ftrg (and of ourse of ϕ as well), but the amountof information the learner needs depends on a ompletely di�erent parameter: theamount of bits needed to enode ftrg, given ϕ. To enode the appliation of somerevision operator one simply needs to enode where in the formula the revision operatoris applied (and oasionally�in ase of addition operators�also to enode some literal);thus, given ϕ, ftrg an be enoded using O(ê(logm+logn)) bits of information, where

ê denotes the revision distane between ϕ and ftrg, n the number of variables in use,and m the length of ϕ. Aordingly, in general, the infomation theoreti bound inthe e�ieny riteria for an e�ient theory revision algorithm is typially polynomial in
ê(logm+ logn).De�nition 3.1 (Theory revision in the query learning model) Given some for-mula lass R, an algorithm is a revision algorithm for R with query omplexity p,if, given any onept ftrg�alled target onept�representable by some formula in
R, on input ϕ ∈ R�alled initial formula�the algorithm outputs some representa-tion for ftrg using at most p(ê, logn) queries about ftrg, where ê = dist(ϕ, ftrg). Thealgorithm is said to be an e�ient revision algorithm for R, if p is a polynomial andthe running time an also be bounded by a polynomial of the size of ϕ, the number ofvariables and ê. It is said that the query omplexity of R is at least q, if any revisionalgorithm for R is of query omplexity Ω(q).In theory revision equivalene queries are usually used to �detet� some �aw in theinitial formula (i.e., to obtain some assignment on whih the learner urrent hypothesesand the target onept disagrees), meanwhile membership queries (often applied insome kind of binary searh) are usually used to �loate� the deteted �aws (i.e., someposition of the formula where some revision operator should be applied). It is often alsointeresting wether both types of queries are neessary for e�ient revision of a givenformula lass. The thesis onsiders this problem for both formula lasses for whihe�ient revision is provided in the query learning model.De�nition 3.2 (Theory revision in the mistake bounded model) Given someformula lassR, an algorithm is a revision algorithm forR withmistake bound p, if,given any onept ftrg�alled target onept�representable by some formula in R,on input ϕ ∈ R�alled initial formula�the algorithm outputs some representationfor ftrg making at most p(ê, log n) mistakes on instanes lassi�ed by ftrg, where ê =

dist(ϕ, ftrg). The algorithm is said to be an e�ient revision algorithm forR, if p isa polynomial and the running time in eah round an also be bounded by a polynomialof the size of ϕ, the number of variables and ê.6Reall that both in query learning and in mistake bounded learning the information theoretibound was allowed to depend also on n. However, results in attribute e�ient learning (see e.g.[23; 27; 92℄) suggest that this an often be omitted, and that the polynomial bound on the number ofqueries should allowed to depend only on the size of the targer onept; aordingly the dependeneon n is not polynomial, only polylogarithmi (i.e., polynomial in logn).

22 Models and the Vapnik-Chervonenkis DimensionFinally it should be disussed how�or whether�theory revision results and learn-ability results imply eah other. Obviously theory revision implies learnability (but onlyin the general ase, allowing both addition and deletion opretors), but so far there areno satisfatorily general equivalene results for the other diretion. And, in fat, it isnot really expeted to have one�as some results suggest:
• Read-one formulas (reall their deinition from Chapter 2) an be learned e�-ifently [13℄, and an also be revised e�iently in the deletions-only model (seeChapter 3), but onsidering the addition, it is not even lear what the right modelshould be.
• Horn-formulas (resp. monotone DNF formulas) an be learned e�iently [10; 12℄,but the revision problem of �nding one deletion in an n-lause (resp. n-term)formula has query omplexity Ω(n) [52; 53℄.
• Threshold funtions an be learned using membership queries only, but in aseof theory revision both query types are needed for the e�ient revision (seeChapter 5).This provides further motivation for researhing the revisability of various importantformula lasses.3.3 Vapnik-Chervonenkis DimensionA ommon lower bound tehnique for the query omplexity is to use the Vapnik-Chervonenkis dimension [131℄, whih an be de�ned as follows.Let R be a set of Boolean formulas over variables V ′. Some Y ⊆ A(V ′) is said tobe shattered by R if for any Z ⊆ Y there is a ϕZ ∈ C suh that

ϕZ(x) =

{

1 if x ∈ Z,

0 if x ∈ Y \ Z.Then VC-dim(R) := max{|Y | : Y ⊆ A(V ′) and Y is shattered by R} is the Vapnik-Chervonenkis dimension of R 7.Assume that the target onept is an arbitrary funtion that an be represented bysome formula in R. It is well known that in this setting any learning algorithm thatuses only equivalene queries will ask at least VC-dim(R) queries in the worst ase.Furthermore (as is shown in [17℄ and in [94℄), there is some universal onstant α > 0suh that even if the algorithm is allowed to ask both kind of queries (and even if theequivalene queries are improper), in the worst ase it will ask at least α ·VC-dim(R)queries.7Note that the Vapnik-Chervonenkis dimension is usually de�ned for some set of funtions, andnot formulas, however this approah seems to �t the presentation of the dissertation better.

Chapter 4Read-one FormulasReall that a Boolean formula ϕ is a read-one formula (sometimes also alled a
µ-formula or a Boolean tree), if every variable has at most one ourrene in ϕ. Suh aformula an be represented as a binary tree where the internal nodes are labeled with ∧,
∨, and the negation and the leaves are labeled with distint variables or the onstants0 or 1. (That is, for tehnial reasons�ontrary to the general de�nition�we requirethat in read-one formulas all the ∨ and ∧ operations are of arity two. Note, howeverthat this does not mean the loss of generality; for example the formula v ∨ w ∨ u anbe represented as ∨(v,∨(w, u)).) The internal nodes orrespond to the subformulas.Read-one formulas form a nontrivial lass that is tratable from several di�erentaspets, but slight extensions are already intratable. Boolean funtions representedby read-one formulas have a ombinatorial haraterization [58; 74; 102℄, and er-tain read restritions make CNF satis�ability easily deidable in polynomial time (see,e.g., [79℄). It is interesting that the tratable ases for fault testing [81℄ and Horntheory revision [40; 82℄ are also related to read-one formulas.Read-one formulas are e�iently learnable using equivalene and membershipqueries [13℄. While read-twie DNF formulas are still e�iently learnable [104℄, forread-thrie DNF formulas there are negative results [2℄.The main result in this hapter is the e�ient revision algorithm for read-oneformulas in the query model for the deletions-only ase. Also lower bounds are providedshowing that the algorithm is lose to optimal.4.1 Further De�nitions and NotationsWe all a subformula of ϕ onstant subformula (more spei�ally; onstant 0, resp.onstant 1 subformula) if it omputes a onstant (onstant 0, resp. onstant 1) fun-tion. A onstant subformula is maximal onstant subformula if it is not the sub-formula of any onstant subformula.For tehnial reasons it is not the variables of some read-one formula ϕ that is ofinterest for us, rather the variables of ϕ that are not in some onstant subformula of it.We all these variables the relevant variables of ϕ, and denote their set as VarR(ϕ).23

24 Read-one FormulasNote that VarR(ϕ) an be determined in polynomial time for any read-one formula.By the de Morgan rules, we may assume that negations are applied only to variables.As we onsider read-one formulas only in the deletions-only model, and thus know thesign of eah variable�we an replae the negated variables with new variables (keepingin mind that every truth assignment should be handled aordingly). Thus without lossof generality we an assume that eah variable is unnegated (i.e., we use only ∧ and
∨ in our read-one formulas). A Boolean funtion is a read-one funtion if it hasan equivalent read-one formula.4.1.1 RevisionFor read-one formulas we only onsider the deletions-only ase (for the general ase itis not even lear what the right model should be�reall Chapter 3). Note that for anyformula obtained from some read-one formula ϕ by deleting some subformulas thereis some equivalent formula obtained from ϕ by �xing some variables to 1, and someothers to 0. Aordingly, the revision operators are the �xing of some variable to 0or 1. Then the target onept is the assoiated funtion of ψ = ϕσ̂ for some partialassignment σ̂, where the initial hypotheses is ϕ, and the the revision distane of ϕand ψ is dist(ϕ, ψ) := min{|Dom(σ)| : σ ∈ A(V ′) suh that ψ ≡ ϕσ}, where V ′ isthe universe in sope.Note that this is in aordane with the general approah desribed in Chapter 3.4.1.2 SensitizationOur revision algorithm uses the tehnique of path sensitization from fault analysis inswithing theory (see, e.g., Kohavi [81℄). Let the initial formula be the monotoneread-one formula

ϕ = (ϕ1 ∨ ϕ2) ∧ ϕ3 ,and let the target formula be
ψ = (ψ1 ∨ ψ2) ∧ ψ3 ,where ψ is obtained from ϕ by replaing ertain variables by onstants. Consider thepartial truth assignment α that �xes all the variables in ϕ2 to 0, and all the variablesin ϕ3 to 1. This �xing of the variables is alled sensitizing ϕ1 , and α is alled thesensitizing partial truth assignment for ϕ1. Put x0 := 0α and x1 := 1α.Asking the membership queries MQ(x0) and MQ(x1), there are three possibilities.1. IfMQ(x1) = 0, then it must be the ase that either ψ1(1) = 0, in whih ase ψ1is identially 0, or ψ3(1) = 0, in whih ase the whole target formula is identially0.2. If MQ(x0) = 1, then it must be the ase that either ψ1(0) = 1, in whih ase

ψ1 is identially 1, or ψ2(0) = 1, in whih ase ψ2 is identially 1.

4.1 Further De�nitions and Notations 253. For the revision algorithm it is important to notie that we an also gain infor-mation in the third ase, when MQ(x0) = 0 and MQ(x1) = 1. In this ase wedo not observe any �abnormality,� but we an onlude that for every truth as-signment y : VarR(ψ1) → {0, 1} it holds that ψ1(y) = MQ(y, α). Thus we ansimulate membership queries to the subformula ψ1 by membership queries to thetarget onept, and this enables the revision algorithm to proeed by reursion.Also note that in this ase it is still possible that ψ2(1) = 0 and/or ψ3(0) = 1.Now we give the general de�nition of a sensitizing partial truth assignment. Let ϕ′be a subformula of ϕ that is not part of some onstant subformula of it. Consider thebinary tree representing ϕ, and let P be the path leading from the root of ϕ to theroot of ϕ′. Then ϕ an be written as
ϕ = (· · · (ϕ′ ◦r ϕr) ◦r−1 · · · ◦3 ϕ3) ◦2 ϕ2) ◦1 ϕ1, (4.1)where ϕ1, . . . , ϕr are the subformulas orresponding to the siblings of the nodes of P ,and ◦1, . . . , ◦r are either ∧ or ∨. In this representation we used the ommutativity of

∧ and ∨; in general ϕ′ need not be a leftmost subformula of ϕ. Let ψ be obtainedfrom ϕ by replaing ertain variables by onstants�that is, ψ = ϕσ̂ for some partialassignment σ̂. Then, as in (4.1), we an write ψ as
ψ = (· · · (ψ′ ◦r ψr) ◦r−1 · · · ◦3 ψ3) ◦2 ψ2) ◦1 ψ1. (4.2)where ψi = ϕσ̂

i for i = 1, . . . , r. Subformula ψ′ is alled the subformula orrespond-ing to ϕ′.De�nition 4.1 Let ϕ be a read-one formula with subformula ϕ′, and write ϕ as inEquation 4.1. Sine ϕ is read-one, VarR(ϕ′) and VarR(ϕi), i = 1, . . . , r form apartition of VarR(ϕ). Now let α be the partial truth assignment that assigns 1 (resp.,0) to every variable in VarR(ϕi) if ◦i is ∧ (resp., ∨), for every i = 1, . . . , r. Then α isalled the partial truth assignment sensitizing ϕ′.Generalizing the remarks above, let α be the partial truth assignment sensitizing
ϕ′. Form the truth assignments x0 = 0α (resp. x1 = 1α) that extend α by assigning 0(resp. 1) to the variables ourring in ϕ′. Now, if MQ(x1) = 0, then it follows by themonotoniity of ψ that either ψ′ or a subformula ψi suh that ◦i = ∧ is onstant 0. Inthis ase, the whole subformula orresponding to (· · · (ψ′ ◦r ψr) ◦r−1 · · · ◦i−1 ψi−1) ◦i ψiin the target must be onstant 0; thus this whole subformula an be deleted andreplaed by 0. The ase is similar when MQ(x0) = 1. On the other hand, whenMQ(x1) = 1 and MQ(x0) = 0, we an be sure that for any partial truth assignment
y of the variables in ψ′, we have ψ′(y) = MQ(y, α). This means that ψ′ is not partof a onstant subformula of ψ. These remarks are summarized in the following lemma,whih is used several times later on, sometimes without mentioning it expliitly.Lemma 4.2 (a) Let ϕ be the initial formula, ϕ′ be a subformula of ϕ, let ψ, ψ′ bethe target formula, resp., its subformula orresponding to ϕ′, and let α be the partial

26 Read-one Formulastruth assignment sensitizing ϕ′. Then ψ′ is part of a onstant subformula of ψ if andonly if MQ(0α) = 1 or MQ(1α) = 0. Otherwise ψ′(y) = MQ(y, α) for every truthassignment y : VarR(ϕ′) → {0, 1}.(b) If ψ′ is a maximal onstant subformula and ◦i is ∧ (resp. ∨), then ϕi(1) = 1(resp. ϕi(0) = 0) for every i = 1, . . . , r.In the rest of this setion we formulate some useful properties of subformulas.Two subformulas are siblings if the orresponding nodes in the tree representation aresiblings. The next lemma follows diretly from the de�nitions.Lemma 4.3 Two maximal onstant subformulas annot be siblings.The revision algorithm proeeds by �nding maximal onstant subformulas, thus itis important to know that identifying these is su�ient for learning. That is, thatthe revised initial hypotheses, ϕ is equivalent to the target, ψ = ϕσ̂, if the maximalonstant subformulas of them are idential: orrespond to the same inner nodes, andompute the same onstant. For this, let us introdue the following notion. Partialassignments σ1 and σ2 are equivalent (with respet to some formula ϕ) if ϕσ1 ≡ ϕσ2�or, equivalently, if ϕ(σ1) ≡ ϕ(σ2).Lemma 4.4 (Partial) assignments σ1 and σ2 are equivalent for formula ϕ if and onlyif the maximal onstant subformulas of ϕσ1 and ϕσ2 are idential.ProofIf the maximal onstant subformulas are idential, then after replaing them with theorresponding onstants, one obtains the same formula. Thus the �if� diretion of thelemma holds. For the �only if� diretion, assume that σ1 and σ2 are equivalent for ϕ,but the maximal onstant subformulas are not idential. There are two ases. The�rst ase is when there is a subformula ϕ0 of ϕ that turns into a maximal onstantsubformula in both ϕσ1 and ϕσ2 , but ϕσ1

0 ≡ 0 and ϕσ2

0 ≡ 1. Let α be the partial truthassignment sensitizing ϕ0. Then (ϕσ1)(1α) = 0, while (ϕσ2)(1α) = 1, ontraditing theassumption that σ1 and σ2 are equivalent. In the seond ase there is a subformula whihis maximal onstant in one of ϕσ1 and ϕσ2 , but not for the other. Let ϕ0 be a largestsuh subformula. We may assume w.l.o.g. that ϕσ1

0 is a maximal onstant subformula,whih omputes the onstant 0, and ϕσ2

0 is not part of a onstant subformula. Then
ϕσ1(1α) = 0 and ϕσ2(1α) = 1, again ontraditing the assumption that σ1 and σ2 areequivalent. 2Corollary 4.5 By �nding a revision of the formula ϕ that has maximal onstant sub-formulas idential to those of the target formula, we get a formula equivalent to thetarget formula.The following lemma an be proved by a simple algorithm that uses reursion onthe struture of the formula ϕ.

4.2 Revision Algorithm for Read-one Formulas 27Lemma 4.6 Given a non-onstant read-one formula ϕ and a onstant c, one an�nd in polynomial time a partial assignment σ suh that ϕσ ≡ c and the number ofvariables in the domain of σ is minimal.Let ϕ be a read-one formula with subformula ϕ′. We say that ϕ′ is an ap-proximately half-size subformula of ϕ if (1/3) · |VarR(ϕ)| ≤ |VarR(ϕ′)| ≤ (2/3) ·

|VarR(ϕ)|. It is a standard fat that suh a subformula exists (see, e.g., Wegener [132℄).For example, any minimal subformula that ontains at least one-third of the relevantvariables has this property.4.2 Revision Algorithm for Read-one FormulasThe main result of this setion is for Algorithm ReviseReadOne (Algorithm 1), whihrevises read-one formulas in the deletions-only model of revisions.Algorithm ReviseReadOne onsists of a loop that heks whether the target hasbeen found, and if not, alls FindConstant. (Reall that () denotes the partial assign-ment with empty domain, and that reeiving it for an equivalene query means that thequeried formula is equivalent to the target formula.) In eah all of FindConstant byReviseReadOne, a maximal onstant subformula of the target formula ψ is identi�edalong with a partial assignment that �xes this subformula to the appropriate onstantvalue. The maximal onstant subformula is then eliminated, thus the updated formulaontains fewer variables. As the membership queries always refer to truth assignmentsto the original set of variables, the new membership queries have to assign some valuesto the eliminated variables as well. The onstrution implies that these variables areirrelevant, therefore their values an be arbitrary. In view of this, these variables willoften be left out of onsideration in the later steps.Algorithm 1 Algorithm ReviseReadOne(ϕ)1: while (x := EQ(ϕ)) 6= () do2: σ := FindConstant(ϕ,x)3: ϕ := ϕσ4: end whileFindConstant, displayed as Algorithm 2, is a reursive proedure, whih takes aformula ϕ and a ounterexample x, and returns a partial assignment σ, whih �xesa subformula to a onstant c. It always holds that the subformula is a maximal on-stant subformula omputing the onstant c in any representation of the target on-ept 1. FindConstant works reursively, always fousing on a faulty subformula (i.e.,a subformula whih ontains some variable(s) replaed by a onstant) of the previouslevel's formula. This subformula may never be a proper subformula of a onstant1In several plaes in the proof we will say that a property holds for any representation of thetarget onept. Notie that this must be true, as all the information used by the algorithm omesfrom membership and equivalene queries about the target, and the responses to suh queries areindependent of the partiular representation.

28 Read-one Formulassubformula�that is, it is part of a onstant subformula if and only if it itself is a max-imal onstant subformula. We assume this property holds at the beginning of everyreursion level, and we maintain it as we go deeper in the reursion. This guaran-tees that we eventually �nd a maximal onstant subformula. One suh a subformulais found, we use Lemma 4.6 to return an appropriate partial assignment �xing thissubformula to onstant c.Algorithm 2 The proedure FindConstant(ϕ,x).1: if MQ(0) == 1 or MQ(1) == 0 then2: return σ that �xes ϕ to the appropriate onstant3: end if4: Let ϕ′ be an approximately half-size subformula of ϕ5: Let α be the partial truth assignment sensitizing ϕ′6: if (c := MQ(0α) == MQ(1α)) then7: return GrowFormula(ϕ, ϕ′, c)8: else9: Put x1 := x|VarR(ϕ′) and x2,i := x|VarR(ϕi) for i = 1, . . . , r10: if MQ(x1, α) 6= ϕ′(x1) then11: return FindConstant(ϕ′,x1) // look in ϕ′12: else13: i := FindFormula(ϕ, ϕ′,x)14: return FindConstant(ϕi,x2,i)15: end if16: end ifAs we go deeper in the reursion, we will need the ability to ask membership queriesonerning only a subformula of the target. Therefore, when we go to a lower reursionlevel with a subformula χ of ϕ, we determine β, the partial truth assignment sensitizing
χ. This way, whenever a need for a membership query arises on the lower level for a truthassignment y : VarR(χ) → {0, 1}, we need only askMQ(y, β). Reursion only ourswhen MQ(0β) = 0 and MQ(1β) = 1, thus we an be sure that MQ(y, β) is equalto the value of χ(y), where χ is the subformula of the target formula orrespondingto χ (Lemma 4.2). From now on, when talking about membership queries, we alwaysassume that this tehnique is used, even when, for simpliity, MQ(y) is written insteadof MQ(y, β).Theorem 4.7 Let ϕ be a read-one formula over Vn, and the target formula be ψ = ϕσ̂for some partial assignment σ̂. Then ReviseReadOne(ϕ), using at most O(ê log n)queries, outputs some partial assignment σ′ suh that ψ ≡ ϕσ′ , where ê = dist(ϕ, ψ) =

min{|Dom(σ)| : σ ∈ An suh that ψ ≡ ϕσ}.The theorem is an easy onsequene of the following lemma. (Reall also Lemma4.4.)Lemma 4.8 If ϕ(x) 6= ψ(x), then, using p(ϕ,x) = O(log |VarR(ϕ)|) queries, algo-rithm FindConstant(ϕ,x) returns a partial assignment σ : V ′ → {0, 1} suh that for

4.2 Revision Algorithm for Read-one Formulas 29some subformula ϕ̃ of ϕ with VarR(ϕ̃) ⊇ V ′ it holds that the orresponding subfor-mula ψ̂ is a maximal onstant subformula in ψ, and that (ϕ̃)σ ≡ ψ̂. Furthermore, theardinality of Dom(σ) is as small as possible.ProofThe proof of orretness uses an indution argument (based on the ardinality of
VarR(ϕ)), re�eting the reursive nature of the algorithm. The ase when ϕ hasat most one relevant variable, say v, is trivial: in this ase ψ must be onstant, whihwill be deteeted (using at most p(ϕ,x) = 2 queries) in Line 3, and the algorithmsimply returns some σ = (v 7→ c) for the appropriate c ∈ {0, 1}.For the rest of the proof assume that |VarR(ϕ)| > 1 and that the statement ofthe lemma holds for any formula having at most (2/3)|VarR(ϕ)| relevant variables.Let furthermore ϕ′ be an approximately half-size subformula of ϕ. We also use thenotations introdued in Equations (4.1) and (4.2), and De�nition 4.1. Note furthermorethat |VarR(ϕi)| ≤ (2/3)|VarR(ϕ)| for i = 1, . . . , r.If ψ is onstant zero, or, equivalently, if MQ(0) = 1 or MQ(1) = 0 (see Lemma4.2), then an appropriate output an be onstruted as noted in Lemma 4.6. Again,
p(ϕ,x) = 2.If ψ′ is part of a onstant subformula�that is, if MQ(0α) = MQ(1α) (seeLemma 4.2)�, then (Lines 6�7) one only needs to �nd the maximal onstant subfor-mula it is in�or, in other words, to �nd the root of this maximal onstant subformulaon the path from the root of ψ to the root of ψ′. This an be arried out by proe-dure GrowFormula using O(log |VarR(ϕ)|) queries (see Lemma 4.9 and the preedingdesription of the algorithm). It is thus also lear that p(ϕ,x) = O(log |VarR(ϕ)|).For the subsequent arguments de�ne x1 := x|VarR(ϕ′) and x2,i := x|VarR(ϕi) for
i = 1, . . . , r.If ψ′ is not part of a onstant subformula and MQ(x1, α) 6= ϕ(x1, α), then, byLemma 4.2, ϕ′(x1) 6= ψ′(x1), and thus ψ′ ontains a maximal onstant subformula.By the indution hypthesis the all FindConstant(ϕ′,x1) (Line 11) will determineone suh onstant subformula ψ̂, and return some partial assignment σ ful�lling therequirements of the lemma. Furthermore this all uses p(ϕ′,x1) queries, thus p(ϕ,x) =

p(ϕ′,x1) + 5.On the other hand, if ψ′ is not part of a onstant subformula, but MQ(x1, α) =

ϕ(x1, α), then�as MQ(x) 6= ϕ(x)�it must hold that ϕi(x2,i) 6= ψi(x2,i) for some
1 ≤ i ≤ r. Note that if some ψi is ontained in some onstant subformula, thenthis ψi itself must be a maximal onstant subformula, as all other subformulas of ψontaining ψi also ontain ψ′, whih is assumed not to be in a onstant subformula.Thus if this i is known, a maximal onstant subformula an be loated by the reur-sive all FindConstant(ϕi,x2,i), using p(ϕi,x2,i) queries. Furthermore, FindFormulaan be used to �nd suh an index i using log

(

|VarR(ϕ)|/|VarR(ϕi)|
)

+ 2 queries(see Lemma 4.10 and the preeding desription of the algorithm). Thus in this ase
p(ϕ,x) = p(ϕi,x2,i) + log

(

|VarR(ϕ)|/|VarR(ϕi)|
)

+ 7.This ompletes the analysis onsidering the orretness of the algorithm. In the restof the proof we upper bound the number of queries made by FindConstant.

30 Read-one FormulasDenote by q the number of reursive alls, by mi the number of relevant variables ofthe subformula in fous on the i-th level of reursion (thus m0 = log |VarR(ϕ)|), andby pi the number of queries made in the last q − 1 level of reursion (i = 0, 1, . . . , q).First note that mi ≤ 2mi−1/3 for i = 1, . . . , q, thus q = O(log |VarR(ϕ)|). Also notethat pi ≤ pi−1 + 7 + log(mi/mi+1) for i = 0, 1, . . . , q − 1 (i.e., on levels where somefurther reursive all was needed), meanwhile pq = O(logmq). Then
p(ϕ,x) ≤

(

7 + log
m0

m1

)

+ · · ·+

(

7 + log
mq−1

mq

)

+ pq

=O(logm0) + log
m0m1 · · ·mq−1

m1m2 · · ·mq

+O(logmq)

=O(logm0)

=O(log |VarR(ϕ)|). 2Remark 4.1Basially what happens in Lines 1�3 an be onsidered as part of the test in Line 6and the binary searh arried out by GrowFormula in Line7, but tehnially it seemsto be easier to handle these ases separately. The same holds for Lines 10�11 andFindFormula in Line 13 too.Remark 4.2The analysis gets signi�antly more simple if, instead of the weighted binary searhin FindFormula, one uses a simple binary searh. However for that version of thealgorithm only the query bound O(ê log2 n) is proved (see [118℄).4.2.1 Algorithm GrowFormulaNow we give a desription and analysis of algorithm GrowFormula. Throughout weuse the notations of Equations (4.1) and (4.2), and De�nition 4.1.GrowFormula gets as input a monotone read-one formula ϕ, a subformula of it
ϕ′, and a onstant c, suh that MQ(0α) = MQ(1α) = c (and thus MQ(y, α) =

c for any partial truth assignment y : VarR(ϕ′) → {0, 1}), where α is the partialtruth assignment sensitizing ϕ′. It is also required that ψ is non-onstant. Using
O(log |VarR(ϕ)|) membership queries it determines a subformula ϕ̃ ontaining ϕ′ 2,suh that the orresponding subformula in ψ is a maximal onstant subformula (andis idential to the onstant c). Finally GrowFormula outputs an appropriate partialassignment σ : VarR(ϕ̃) →֒ {0, 1} suh that (ϕ̃)σ ≡ c. In what follows we show howGrowFormula works.Assume for simpliity that c = 1; the ase c = 0 is dual. Let αi for i = 0, . . . , rbe the partial truth assignment that is idential to α for variables in VarR(ϕ1) ∪ · · · ∪

VarR(ϕi), leaves the variables in VarR(ϕ′) unassigned, and assigns 0 to all the variables2Equivalently, as noted earlier, it determines the root of ϕ̃ on the path from the root of ψ to theroot of ψ′.

4.2 Revision Algorithm for Read-one Formulas 31in VarR(ϕi+1) ∪ · · · ∪ VarR(ϕr). Then 0 = 0α0 ≤ 0α1 ≤ 0α2 ≤ · · · ≤ 0αr = 0α, andit holds that MQ(0α0) = 0 and MQ(0αr) = 1.Asking membership queries MQ(0αj), one an use binary searh to �nd an i (1 ≤

i ≤ r) suh that MQ(0αi−1) = 0 and MQ(0αi) = 1. The only di�erene between thetruth assignments 0αi−1 and 0αi is that the variables in VarR(ϕi) are o� in 0αi−1 andthey may be on in 0αi . In fat, they must be on, as otherwise 0αi−1 = 0αi, ontraditingMQ(0αi−1) 6= MQ(0αi). But (realling the de�nition of the sensitizing partial truthassignment) 0αi−1 6= 0αi also implies that ◦i is ∧. Thus, on one hand, it must be thease that ψi(0) = 0 and ψi(1) = 1 in any representation of the target onept. On theother hand, it must be the ase that the input to ◦i from its hild on the path is equalto 1 in both ases. As the variables in this subformula are all set to 0, this subformulamust ompute the onstant 1 funtion. The inputs 0αi−1 and 0αi demonstrate that nolarger subformula omputes a onstant funtion. Thus the subformula rooted at ◦i−1is a maximal onstant subformula. One a maximal onstant subformula is found, onean simply apply Lemma 4.6 to onstrut an appropriate σ.We have thus proved the following lemma.Lemma 4.9 If ψ is non-onstant and c = MQ(0α) = MQ(1α), then it holds thatGrowFormula(ϕ, ϕ′, c) returns a partial assignment σ satisfying the requirements ofLemma 4.8, using O(log |VarR(ϕ)|) queries.4.2.2 Algorithm FindFormulaNow we give a desription and analysis of algorithm FindFormula. Throughout weuse the notations of Equations (4.1) and (4.2), and De�nition 4.1.Assuming that ψ′ is not part of some onstant subformula of ψ, for 1 ≤ i ≤

r it holds that (as noted in the proof of Lemma 4.8) ψi is part of some onstantsubformula of ψ only if ψi itself is a maximal onstant subformula of ψ. On the otherhand, further assuming that ψ(x) 6= ϕ(x) but ψ′(x1) = ϕ′(x1), it must thus holdthat ψ has some maximal onstant subformula in one of ψ1, . . . ψr. Given this, using
log
(

|VarR(ϕ)|/|VarR(ϕi)|
)

+2 queries FindFormula(ϕ, ϕ′,x) outputs one suh index
i. In what follows we show how FindFormula works.Put yr+1 := zr+1 := ϕ′(x1) and for i = 1, . . . , r de�ne yi (resp. zi) as

yi = yi+1 ◦i ϕi(x2,i), and zi = zi+1 ◦i ψi(x2,i),where x1 := x|VarR(ϕ′) and x2,i := x|VarR(ϕi) for i = 1, . . . , r. Then yi (resp. zi) is thevalue omputed at ◦i in ϕ (resp. ψ) on the input vetor x, for i = 1, . . . , r. Sine (bythe initial assumptions) yr+1 = zr+1 and y1 6= z1, there must be an i (1 ≤ i ≤ r) forwhih yi+1 = zi+1 but yi 6= zi. The searh for suh an index i is done using a weightedbinary searh as follows. The yi values an be omputed using ϕ without any queries.For the omputation of the zi, put βr+1 := x1 and βj := (βj+1)
x2,j for j = 1, . . . , r.Then (realling that ψi is either a maximal onstant subformula of ψ or is not part ofa onstant subformula of ψ) zi = MQ(αβi).

32 Read-one FormulasDe�ne for j = 2, . . . , r the weight of ϕj to be wj = |VarR(ϕj)| + |VarR(ϕj−1)|.In the binary searh we use an interval I = {a, a+ 1, . . . , b}. Initially a = 2 and b = r,as we already know y1, z1, yr+1 and zr+1. For a given I let s =
∑

j∈I wj. In eah stepwe determine the index ℓ for whih∑ℓ−1
j=awj < s/2 ≤

∑ℓ
j=awj (for this we don't needto ask any queries). We determine yℓ and zℓ (this an be done using one query). If

yℓ 6= zℓ, then let I = {ℓ + 1, ℓ + 2, . . . , b}, otherwise let I = {a, a + 1, . . . , ℓ− 1}. If
I is nonempty, we ompute s again, and ontinue the searh. Otherwise the searh isover, and if yℓ 6= zℓ, then ℓ is the i index we were looking for, otherwise it is ℓ− 1.To see that the above searh uses the laimed number of queries, simply note that

• initially s =
∑

j∈I wj ≤ (4/3)|VarR(ϕ)|, as the variables in ϕ′ are not ounted,whereas |VarR(ϕ′)| ≥ |VarR(ϕ)|/3

• in eah step the value of the sum redues to less than its half, and
• throughout the searh s ≥ |VarR(ϕi)|, as even in the last step at least one of iand i+ 1 is in I,so if t queries were made throughout the searh, it holds that |VarR(ϕi)| ≤ |VarR(ϕ)| ·

(4/3) · (1/2t−1), implying
t ≤ log

|VarR(ϕ)|

|VarR(ϕi)|
+ 3 − log 3 < log

|VarR(ϕ)|

|VarR(ϕi)|
+ 2.We have thus proved the following lemma.Lemma 4.10 If ψ′ is not part of some onstant subformula of ψ, and also ψ′(x1) =

ϕ′(x1), but ψ(x) 6= ϕ(x), then ϕi(x2,i) 6= ψi(x2,i) for some 1 ≤ i ≤ r. FurthermoreFindFormula(ϕ, ϕ′,x), using at most log
(

|VarR(ϕ)|/|VarR(ϕi)|
)

+2 queries, returnsone suh index i.4.3 Example Run of ReviseReadOneHere is a detailed example showing how the read-one revision algorithm works. Let
V9 be the set of variables in fous, let the initial formula be

ϕ = ((v1 ∧ v2) ∨ (v3 ∧ v4)) ∧ ((((v5 ∧ v6) ∨ v7) ∧ v8) ∨ v9)and let the target formula be ψ := ϕσ, where
σ = (v3 7→ 1, v5 7→ 0, v6 7→ 0, v8 7→ 0). (4.3)Thus the target onept is represented by the formula

ψ = ((v1 ∧ v2) ∨ (1 ∧ v4)) ∧ ((((0 ∧ 0) ∨ v7) ∧ 0) ∨ v9).

4.3 Example Run of ReviseReadOne 33We start by asking the equivalene query EQ(ϕ). Let us assume that we reeive thenegative ounterexample x = 110011110. In Proedure FindConstant, the member-ship queries MQ(0) = 0 and MQ(1) = 1 bring us to Line 7. At this point we �nd anapproximately half-size subformula , for example
ϕ′ = (v1 ∧ v2) ∨ (v3 ∧ v4).The orresponding subformula of the target is ψ′ = (v1 ∧ v2) ∨ (1 ∧ v4).Now we form the sensitizing truth assignment α for ϕ′, whih in this ase simplysets all variables not in ϕ′ to 1, and we ask membership queries for (0, α) and for (1, α).The answer is MQ(0, α) = 0 and MQ(1, α) = 1, and thus we ontinue on Line 12.We have x1 = 1100 and x2 = 11110. By asking the membership query MQ(x1, α) we�nd that ψ′(x1) = 1. Knowing ϕ, we an determine without asking any queries that

ϕ′(x1) = 1. As ψ′(x1) = ϕ′(x1), it follows that the x2 part of the ounterexample isresponsible for the disagreement between ϕ(x) and ψ(x). In this partiular ase, thevariables in x2 happen to indue a subformula of ϕ, and so FindFormula does not needto do anything. We substitute 1 for ϕ′. Then x2 = 11110 is a negative ounterexamplefor the new target, whih is the subformula ψ′′ of the target orresponding to
ϕ′′ = ((((v5 ∧ v6) ∨ v7) ∧ v8) ∨ v9).It is important to note that as ψ′′(y) = ψ(x1,y), we an simulate membership queriesto the new target by membership queries to the original target; thus we an ontinuethe same proedure reursively.As the subsequent iterations illustrate additional ases, we give further steps of thealgorithm on the example. In the next all, whih is FindConstant(ϕ′′,x2), we againget to Line 7. The next half size subformula an be v5 ∧ v6. The sensitizing truthassignment for this subformula is 010. Now, the membership queries to (00, 010) and

(11, 010) both return 0, indiating that either v5 ∧ v6 or some subformula ontainingit is turned into the onstant 0. Thus we all GrowFormula, whih asks the additionalmembership queries MQ(11, 110) = 0 and MQ(11, 111) = 1. This shows that
(((v5 ∧ v6) ∨ v7) ∧ v8)is a maximal onstant 0 subformula in ϕ′′. No further reursive alls are needed, weonly need to ompute the minimal number of variables that, when turned to 0, makethe subformula identially 0. This an be ahieved by �xing the value of one singlevariable, that is, using the partial assignment (v8 7→ 0). Now we have ompleted oneall of the proedure FindConstant by the main program.The next all of FindConstant start with an equivalene query for the formulaobtained above, that is,

ϕ′′′ = ((v1 ∧ v2) ∨ (v3 ∧ v4)) ∧ v9.

34 Read-one FormulasLet us assume that we reeive the positive ounterexample 000111111, whih, restritedto the �ve variables in ϕ′′′, is 00011. We ontinue with the half size subformula v1∧v2,whih divides the ounterexample into 00 and 011. The sensitizing partial truth assign-ment to the �rst half is 001. We �nd that MQ(00, 001) = 0 and MQ(11, 001) = 1,thus v1∧v2 is not turned into a onstant subformula. (Notie that our only membershiporale needs inputs from {0, 1}9; fortunately, we may give any values to the �missing�variables.) The membership query MQ(00, 001) = 0 tells us that the �rst half of theounterexample gives the same output in v1∧v2 and in the orresponding subformula ofthe target. To reurse, we must �nd a subformula of ϕ′′′ that ontains some onstantsubformula, but the three variables v3, v4, and v9 do not indue a subformula of ϕ′′′.This is ahieved by the proedure FindFormula.In this ase we need onsider only the two subformulas v3∧v4 and v9, though in gen-eral there ould be Ω(n) suh subformulas, neessitating the binary searh performed byFindFormula. By de�nition, ϕ′′′ disagrees with the target on the ounterexample, andwe have just onluded that v1 ∧ v2 agrees with the ounterexample. So, if subformula
(v1 ∧ v2) ∨ (v3 ∧ v4) of ϕ′′′ disagrees with the orresponding subformula of the target,then the subformula ontaining a onstant subformula must be v3 ∧ v4. Otherwise it is
v9. To test whether the subformula (v1 ∧ v2) ∨ (v3 ∧ v4) agrees with the target on theounterexample, we ask a membership query on an instane formed by setting v1, v2,
v3, and v4 to the values they have in the ounterexample, and setting the remainingvariable (v9) to the value it had in the sensitizing assignment for v1 ∧ v2. That, is wemake the query MQ(00011) = 1. Sine ϕ′′′(00011) = 0, whih disagrees with thetarget, there must be a onstant subformula in v3 ∧ v4, whih is the input subformulafor the next all to FindConstant.That all will return the partial assignment (v3 7→ 1), and the next equivalenequery to the formula

((v1 ∧ v2) ∨ v4) ∧ v9will �nally identify the target onept. Notie that we have atually revised fewervariables than given in Equation 4.3. The number of variables revised is as small aspossible for obtaining the target onept.4.4 Lower Bounds on Revising Read-one Formu-lasWe prove a lower bound to the query omplexity of revising read-one formulas by givingan example of an n-variable read-one formula, for whih Ω(ê log(n/ê)) equivaleneand membership queries are required to �nd a distane ê revision. If ê = O(n1−ε)for some �xed ε > 0, then this lower bound is of the same order of magnitude, asthe upper bound provided by ReviseReadOne. It is also shown that both types ofqueries are needed for e�ient revision. There are n-variable read-one formulas forwhih at least n/2 equivalene queries are required in order to �nd a single revision. Formembership queries we present an even stronger lower bound, whih shows that at least

4.4 Lower Bounds on Revising Read-one Formulas 35
n− ê membership queries may be neessary, if (instead of not using equivalene queriesat all) one is allowed to use fewer than ê equivalene queries. As ReviseReadOneuses exatly ê equivalene queries to �nd a distane ê revision, this means that justby allowing one fewer equivalene query, the number of membership queries requiredbeomes linear. Bshouty and Cleve and Bshouty et al. [28; 29℄ give somewhat relatedonstrutions and tradeo� results for di�erent query types.Our �rst two lower bounds are based on read-one formulas of the form ∨(ui∧wi),using a Vapnik-Chervonenkis dimension, resp. an adversary argument, and the thirdlower bound uses an adversary argument for the n-variable disjuntion.Theorem 4.11 The query omplexity of revising read-one formulas in the deletions-only model is Ω(ê log(n/ê)), where n is the number of variables in the initial formulaand ê is the revision distane between the initial formula and the target formula.ProofLet us assume that

n = 2m ê, where m = 2t.We use variables ui,j and wi,j, where 1 ≤ i ≤ ê and 0 ≤ j ≤ m−1. The initial formulais
ϕn =

ê
∨

i=1

m−1
∨

j=0

(ui,j ∧ wi,j).Assume the u and w variables be arranged in respetive ê×m matries alled U and
W , respetively. We look at the lass of revisions of ϕn where in eah row of the matrix
U exatly one variable is �xed to 1. Let Rn denote the set of formulas that an beobtained this way.Lemma 4.12 VC-dim(Rn) ≥ ê · t.ProofFor 1 ≤ k ≤ ê and 1 ≤ ℓ ≤ t let

(xk,ℓ,yk,ℓ)be a truth assignment (to the variable pairs in U ×W) that onsists of all 0's, with theexeption of some positions in the k'th row of the W matrix: namely, those positions
(k, j), where the ℓ'th bit of the binary representation of j is 1. Let the set of theseassignments be S. We laim that S is shattered by Rn.Consider a subset A ⊆ S. For every k (1 ≤ k ≤ ê) let ak be the t-bit numberdesribing whih truth assignments (xk,ℓ,yk,ℓ) belong to A. (That is, the ℓ'th bit of akis 1 i� (xk,ℓ,yk,ℓ) ∈ A.) We look at the revision ϕA for whih it is the ak'th variablewhih is �xed to 1 in row k of the matrix U .It remains to show that this revision lassi�es S in the required manner. If (xk,ℓ,yk,ℓ) ∈

A, then bit ℓ of ak is 1. By de�nition, yk,ℓ has a 1 at position (k, ak). In ϕA, thevariable uk,ak
is �xed to 1. These observations imply that

ϕA(xk,ℓ,yk,ℓ) = 1.

36 Read-one FormulasOn the other hand, if (xk,ℓ,yk,ℓ) 6∈ A, then bit ℓ of ak is 0. The only 1 omponentsof (xk,ℓ,yk,ℓ) are in row k of the W matrix: these are those positions (k, j), where the
ℓ'th bit of the binary representation of j is 1. Position (k, ak) is not one of those. Thusthe orresponding u-variables are not �xed to 1 in ϕA, and as their value is 0, we get

ϕA(xk,ℓ,yk,ℓ) = 0.

2By introduing dummy variables if n is not of the right form, we get
VC-dim(Rn) ≥ ê

⌊

log
n

2ê

⌋

.The theorem now follows using the relation between the Vapnik-Chervonenkis dimensionof a formula lass and its query omplexity (see Setion 3.3). 2The number of formulas within revision distane ê of a given read-one formulais at most 2ê ·
(

n
ê

). Thus if we allow equivalene queries whih are not neessarilyproper, then by using the standard halving algorithm [92℄ one an learn a revision using
log
(

2ê ·
(

n
ê

))

= O(ê log n) many equivalene queries. We now show that suh a resultis not possible if the queries are required to be proper.Theorem 4.13 The query omplexity of revising read-one formulas in the deletions-only model with proper equivalene queries alone is at least ⌊n/2⌋ − 1 (where n is thenumber of relevant variables in the initial formula), even when the revision distane isonly one.ProofFix n, let s = ⌊n/2⌋, and let the initial formula be
ϕ =

s
∨

i=1

(ui ∧ wi).Let furthermore ψi = ϕ(ui 7→1) for i = 1, . . . , s, and set Ψ = {ψi : i = 1, . . . , s}. (Notethat every element of Ψ is a potential target formula.)Consider the following senario. When the learner asks an equivalene query EQ(ϕσ)for some partial assignment σ, then the assignment returned is x, where
• if ϕσ ≡ ϕ, then x is the positive ounterexample 1{w1,...,ws}. In this ase Ψremains unhanged.
• otherwise, if σ(ui) = 0 or σ(wi) = 0 for some 1 ≤ i ≤ s, then x is the positiveounterexample 0(ui 7→1,wi 7→1) Again, Ψ remains unhanged.
• otherwise, if σ(wi) = 1 for some 1 ≤ i ≤ s, then x is the negative ounterexample

0(ui 7→1). Again, Ψ remains unhanged.

4.4 Lower Bounds on Revising Read-one Formulas 37
• otherwise, if for some 1 ≤ i ≤ s it holds that σ(ui) = 1 but ϕi 6∈ Ψ, then x isthe negative ounterexample 0(wi 7→1). Again, Ψ remains unhanged.
• otherwise, if |Ψ| > 1, then x is the negative ounterexample 0(wi 7→1) for some

1 ≤ i ≤ s suh that σ(ui) = 1. Also, remove ψi from Ψ.
• otherwise, that is, if σ = (vi 7→ 1) for some 1 ≤ i ≤ s and Ψ = {ψi}, then

x = ().Note that during the whole proess eah element of the atual Ψ is onsistent with allthe previous informations, and that after eah query |Ψ| dereases by at most one. But,as the learning proess annot end as long as there are more than one non-equivalenthypotheses onsistent with the previous informations, it follows that the learner mustask at least ⌊n/2⌋ − 1 queries. 2Now we present a lower bound for the ase when only membership queries areallowed. Atually, we onsider a more general senario, where the learner is allowed toask a limited number of equivalene queries. In partiular, we assume that the learneris told in advane that the target is at revision distane ê from the initial theory, andthe number of equivalene queries allowed is at most ê− 1.Theorem 4.14 Denote the revision distane between the initial formula and the targetformula by ê, and assume that the learner is allowed to ask arbitrarily many membershipqueries, but only at most ê − 1 equivalene queries. Under this restrition the queryomplexity of revising read-one formulas in the deletions-only model is at least n− ê,where n is the number of relevant variables in the initial formula.ProofLet the initial formula be ϕ =
∨

v∈Vn
v, and set initially D = R = ∅ and U = Vn. (Dstands for deleted, R stands for relevant and U stands for unertain.)Consider the following senario. When the learner asks an equivalene query EQ(ϕσ)for some partial assignment σ, then the assignment returned is x, where

• if it holds that U = ∅ and ϕσ ≡
∨

v∈R v, then x = ().
• otherwise, if ϕσ is identially 1 (resp., 0), then x is the negative (resp., positive)ounterexample 0 (resp., 1). In this ase the sets are not hanged.
• otherwise, if U \Dom(σ) 6= ∅, then x is the negative ounterexample 0(v 7→1) forsome v ∈ U \ Dom(σ). In this ase move v from U to D.
• otherwise x is the positive ounterexample 1U . Again, the sets are not hanged.When the learner asks a membership query MQ(x) for some assignment x, then theanswer is
• �1� if x(v) = 1 for some v ∈ R. In this ase the sets are not hanged.

38 Read-one Formulas
• �1� otherwise, if x(v) = 1 for some v ∈ U . In this ase one suh v is moved from
U to R. Furthermore, if now |U ∪ D| = ê, then move the rest of the variablesof U to D.

• �0� otherwise, and the sets are not hanged.Note that D an only inrease after an equivalene query, and even then only by one.Thus, aording to the assumptions of the theorem, the ardinality of D will always beless then ê. It also holds that |U ∪D| does not hange after an equivalene query, anddereases by at most one after a membership query, as long as |D ∪ U | > ê. Finallynote that during the whole proess for eah V ⊆ U ∪ R of ardinality ê it holds that
∨

v∈Vn\V v is onsistent with all the previous informations. But, as the learning proessannot end as long as there are more than one non-equivalent hypotheses onsistentwith the previous informations, it follows that the learner must ask at least n − êmembership queries. 24.5 Conluding RemarksAll the results presented in this hapter�unless noted otherwise�appeared in thepaper [52℄, o-authored by the author of the present dissertation.

Chapter 5Threshold FormulasReall that on assignment x threshold formula Tht
U evaluates 1 if x assigns 1 to atleast t variables in U , otherwise it evaluates to 0. A threshold funtion is a Booleanfuntion that an be represented with some threshold formula. Funtions of this typeare also alled Boolean threshold funtions and zero-one threshold funtions, in orderto distinguish them from the more general kind of threshold funtions, where insteadof simply ounting the number of variables in U assigned to 1, one assoiates weightsto variables, and sums the weights of the omponents that are on. (For example suh athreshold funtion is applied in Algorithm RevWinn in Setion 6.2.) However, as in thishapter only the former lass is onsidered, throughout this restrited lass is referredto as threshold funtions.Threshold funtions (espeially in the wider, non-Boolean sense) form a muh stud-ied onept lass in omputational learning theory. They are also applied in manylearning related results (see e.g. [92; 126; 129℄). Heged¶s [64℄ gave Θ(n) upper andlower bounds (assuming that Vn is the set of variables in fous) for the number ofqueries needed to learn threshold funtions in the query model; the algorithm uses onlymembership queries.In this hapter an e�ient revision algorithm is presented for the lass of thresholdfuntion in the query model for the general ase (also allowing the modi�ation of thethreshold). Additionally, some negative results are presented showing, for instane, thatthreshold funtions annot be revised e�iently from either type of query alone.5.1 Further De�nitions and NotationsFor simpliity assume throughout the hapter that Vn is the set of variables in fous.For some threshold funtion Tht

U the variables in U (resp., in Vn \U) are the rele-vant (resp., irrelevant) variables of Tht
U . Note that for every non-onstant thresholdfuntion its set of relevant variables and its threshold are well de�ned, thus every non-onstant threshold funtion has a unique representation. We say that a set S ⊆ Vn isa positive (resp., negative) set for Tht
U if it evaluates to 1 (resp. to 0) on 1S.A set S ⊆ Vn is maximal negative (or ritial) for threshold funtion Tht

U if39

40 Threshold Formulas
|S ∩ U | = t− 1; and minimal positive for Tht

U if |S ∩ U | = t.Given the above, we an state the following proposition whih we use impliitlythroughout:Proposition 5.1 If S is maximal negative for ψ = Tht
U , then for every Z ⊆ Vn \ Sit holds that Z ontains at least one variable in U (i.e., relevant variable of ψ) if andonly if MQ(1S∪Z) = 1.5.1.1 RevisionIn the ase of threshold funtions the general model is used, where a deletion operatoris the deletion of a relevant variable and an addition operator is the addition of a newrelevant variable, and, additionally, it is also allowed the modify the threshold. Morepreisely, the modi�ation of the threshold by any amount is onsidered to be a singleoperation (as opposed to hanging it by one); as for the algorithm upper bounds areproved, this only makes the results stronger. Thus the revision distane is de�ned as

dist
(

Tht
U ,Thθ

R

)

=

{

|U \R| + |R \ U | + 1, if t = θ,

|U \R| + |R \ U |, otherwise.Thus, for example, dist
(

Th1
{v1,v2,v4},Th3

{v1,v2,v3,v5}
)

= 4.Note that this is in aordane with the general approah desribed in Chapter 3.5.2 Revision Algorithm for Threshold FuntionsWe present a threshold revision algorithm ReviseThreshold. The overall revisionalgorithm is given as Algorithm 3, using the proedures desribed in Algorithms 5 and 6.Throughout this setion, let the initial funtion be ϕ = Tht
U and the target funtionbe ψ = Thθ

R. Algorithm ReviseThreshold has three main stages. First it identi�esall the variables that are irrelevant in ϕ but relevant in ψ (Algorithm FindAdditions).Then it identi�es all the variables that are relevant in ϕ but irrelevant in ψ (AlgorithmFindDeletions). Finally, it determines the target threshold. (In the pseudoode thisthird step is built into Algorithm FindDeletions as the last iteration, after the set ofrelevant variables of the target funtion is identi�ed.)A sample run of the algorithm is given in Setion 5.3.Algorithm 3 The proedure ReviseThreshold(ϕ), where ϕ = Tht
U .1: Use 2 MQ's to determine if ψ ≡ c for some c ∈ {0, 1}; if so return 2: V := FindAdditions(U)3: ψ := FindDeletions(U ∪ V)4: return ψBefore getting into further details, we need to point out an additional subroutine.Our revision algorithm frequently uses a kind of binary searh, presented as Algorithm 4.

5.2 Revision Algorithm for Threshold Funtions 41The starting points of the binary searh are two sets, a negative one, N and a positiveone, P suh that N ⊆ P . The algorithm returns two items: the �rst is a set ofvariables that, when added to N , make a positive set; the seond is a variable that,when removed from this positive set, turns it into a negative one.Algorithm 4 BinarySearh(N,P).Require: MQ(1N) = 0 and MQ(1P) = 1 and N ⊆ P1: N0 := N2: while |P \N | > 1 do3: Partition P \N into approximately equal-size sets D1 and D2.4: Put M := N ∪D15: if MQ(1M) == 0 then6: N := M7: else8: P := M9: end if10: end while11: Let v be the one variable in P \N12: return (P \N0, v)First we analyze algorithm FindAdditions (Algorithm 5), whih is responsible for�nding all missing relevant variables.Lemma 5.2 Let R be the relevant variables of the nononstant target funtion. IfAlgorithm FindAdditions is alled with input U ⊆ Vn, then it returns R \ U , using
O(|R \ U | logn) queries.ProofThe algorithm stores the unertain but potentially relevant variables in the set Potentials(thus Potentials is initially set to Vn \ U). The proedure �rst determines a setBase ⊆ U suh that Base is negative, and Base ∪ Potentials is positive (unlessPotentials ontains no relevant variables�in whih ase there are no new relevantvariables used by ψ, so we quit in Line 8).Then the searh for new relevant variables starts. BinarySearh(Base,Base ∪Potentials) is used repeatedly to �nd one relevant variable, and then remove thisvariable from Potentials. After removing a ertain number of relevant variables fromPotentials, the instane Base∪Potentialsmust beome minimal positive. Afterreahing this point, we do not only remove any newly found relevant variables fromPotentials, but we also add them to the set Base. From this point on, it holds that
|(Base∪Potentials)∩R| = θ. Thus the indiator that the last relevant variable hasbeen removed from Potentials is that Base beomes positive (MQ(1Base) = 1).As BinarySearh always uses at most ⌈log2 n⌉ membership queries per all, andone addition requires one all to BinarySearh and at most two other membershipqueries are made initially, the stated query omplexity follows. 2Now we turn to the disussion of proedure FindDeletions (Algorithm 6), whih�nds all the irrelevant variables that appear in the initial hypotheses. The proedure

42 Threshold FormulasAlgorithm 5 The proedure FindAdditions(U)Require: the target funtion is not onstant1: Potentials := Vn \ U2: if MQ(1U) == 0 then3: Base := U4: else5: (Base, v) := BinarySearh(∅, U)6: Base := Base \ {v}7: if MQ(1Base∪Potentials) == 0 then8: return ∅9: end if10: end if11: NewRelevants := ∅12: repeat13: (V, v) := BinarySearh(Base,Base ∪ Potentials)14: NewRelevants := NewRelevants ∪ {v}15: Potentials := Potentials \ {v}16: if MQ(1Base∪Potentials) == 0 then17: Base := Base ∪ {v}18: end if19: until MQ(1Base) == 120: return NewRelevantsuses a funtion alled MakeEven, presented as Algorithm 7. MakeEven makes at mosttwo queries; its main task is to move variables around to ensure needed onditions,mostly parity, on ertain sets. A more detailed prose desription of its behavior is givenin the proof of Lemma 5.3.Lemma 5.3 If the target funtion ψ = Thθ
R is not onstant and if R ⊆ H ⊆ Vn, thenif Algorithm FindDeletions is alled with inputH , it returns ψ, using O(|H\R| logn)queries.ProofFirst onsider the ase where no variables need to be deleted from H . If the threshold iseither 1 or |H|, this will be found by one of the two initial equivalene queries to thosetwo threshold funtions. (Reall that () denotes the partial assignment with emptydomain, and that reeiving it for an equivalene query means that the queried formulais equivalent to the target formula.) If the threshold is some value in between, thenit will be found by a binary searh over threshold values arried out by the �rst whileloop. Then the orret threshold funtion is returned (at Line 12).Otherwise, there are some variables that need to be deleted. In this ase, ourshort-term goal is to �nd two sets of variables N and P suh that

|N | ≥ |P |, and N is negative and P is positive for Thθ
R . (5.1)The two initial equivalene queries must have assigned P to be a positive oun-terexample to Th1

H and N to be a negative ounterexample to Th
|H|
H . In the binary

5.2 Revision Algorithm for Threshold Funtions 43
Algorithm 6 The proedure FindDeletions(H)Require: R ⊆ H (R = relevant variables in target)1: if (xP := EQ(Th

|H|
H

))

== () then2: return Th
|H|
H3: end if4: if (xN := EQ (Th1

H

))

== () then5: return Th1
H6: end if7: P := {v ∈ H : xP (v) = 1}, N := {v ∈ H : xN (v) = 1},8: ℓ := 1; u := |H|9: while u > ℓ + 1 do10: m := ⌈(u+ ℓ)/2⌉11: if (x := EQ (Thm

H)) == () then12: return Thm
H13: end if14: {Variables not in H are irrelevant}15: if x is a positive ounterexample then16: u := m and P := {v ∈ H : x(v) = 1}17: else18: ℓ := m and N := {v ∈ H : x(v) = 1},19: end if20: end while21: (P, v̂) := BinarySearh(∅, P)22: Base := P ∩N , N ′ := N \Base, P ′ := P \Base23: while |P ′| > 1 do24: changedH := MakeEven(Base, N ′, P ′, v̂, H) {Uses at most 1 MQ}25: if changedH then26: goto Line 127: end if28: Let N0, N1 (resp. P0, P1) be an equal-sized partition of N ′ (resp. P ′)29: Ask MQ (1Base∪Nj∪Pk

) for j, k = 0, 130: Let j and k be indies s.t. MQ (1Base∪Nj∪Pk

)

= 0 {suh j and k exist}31: Base := Base ∪ Pk, P ′ := P1−k, N ′ := Nj32: end while33: H := H \N ′34: goto Line 6

44 Threshold FormulasAlgorithm 7 Funtion MakeEven(Base, N ′, P ′, v̂, H)1: Test := (Base ∪ P ′) \ {v̂}{For any v ∈ N ′, MQ (1Test∪{v}) = 1 i� v is relevant}2: if |P ′| is odd then3: Choose vP ∈ P ′ arbitrarily and move vP from P ′ to Base4: Choose vN ∈ N ′ arbitrarily and remove vN from N ′5: if MQ (1Test∪{vN}
)

6= 1 then {vN irrelevant}6: H := H \ {vN}7: return true {H was modi�ed}8: end if9: end if10: if |N ′| is odd then11: Choose v′N ∈ N ′ arbitrarily and remove v′N from N ′12: end if13: return false {H was not modi�ed.}searh over threshold values in the �rst while loop (Lines 9�20), N is always assignednegative ounterexamples from equivalene queries and P is always assigned positiveounterexamples from equivalene queries.Now we need to argue that at the end of that binary searh (i.e., after Line 20)
|N | ≥ |P | will hold. Consider the last time that N is updated. (This ould be eitherwhen ℓ = 1 before the while loop or inside the while loop.) After that update, Nwill onsist of the variables from the negative ounterexample that are not known tobe irrelevant. That is, N is set to be {v ∈ H : xN(v) = 1}, where xN was theounterexample from the equivalene query to Thm

H (or to Th1
H if this was before thewhile loop). Sine xN was a negative ounterexample it must be that Thm

H(1N) = 1.Thus it must be that |N | ≥ m. In the ontrol of the binary searh over thresholdvalues, the lower bound ℓ now beomes m, and ℓ is not updated again. Thus this valueof ℓ is the value of ℓ after the loop has ended, and |N | ≥ ℓ from now on.Similar onditions hold for P and u, the upper bound in the ontrol of the binarysearh. After the last update to P , it must be that |P | < m (sine P is a positiveounterexample), u is updated to be this m, and u is not updated again. Thus |P | < u.When the while loop terminates, u ≤ ℓ + 1. Sine |P | < u ≤ ℓ+ 1, it holds that
|P | ≤ ℓ. Sine |N | ≥ ℓ , we now have Equation (5.1).Now we want to use N and P to onstrut three sets with what we all the �keyproperty:�Key property: A triple of sets of variables (Base, N ′, P ′) satis�es the key propertyfor (target) threshold funtion ThR

θ if the sets are pairwise disjoint, and it holds that
• Base ∪N ′ is negative,
• |(Base ∪ P ′) ∩ R| = θ (i.e., Base ∪ P ′) is a minimal positive set), and
• |N ′| ≥ |P ′|.

5.2 Revision Algorithm for Threshold Funtions 45Given N and P satisfying Equation (5.1), in Line 21 P is set to be the set returnedby BinarySearh(∅, P), whih makes P a minimal positive set. We then set Base =

N ∩P , and P ′ = P \Base and N ′ = N \Base. The key property must hold for thistriple: N = Base ∪ N ′ is negative; P ′ = Base′ ∪ P is a minimal positive set, and itmust be that |N ′| ≥ |P ′|.The following laim gives two important features of the key property.Claim 5.4 (a) If (Base, N ′, P ′) satis�es the key property, then N ′ ontains an irrel-evant variable and P ′ ontains a relevant variable.(b) If (Base, N ′, P ′) satis�es the key property and |P ′| = 1, then every element of N ′is irrelevant.The overall goal now is to �nd at least one of the irrelevant variables in N ′ anddelete it. From now on the key property is maintained among the three sets, but in suha way that in eah iteration the size of N ′ and P ′ gets halved. For this the algorithmsplits up N ′ (respetively P ′) into two equal-sized disjoint subsets N1 and N1 (resp. P0and P1). When both |N ′| and |P ′| are even then we an do this without any problem;otherwise we have to make some adjustments to N ′ and/or to P ′, that will be takenare of by proedure MakeEven, whih we will desribe presently.Assume for now that both |N ′| and |P ′| are even. Let θ′ = θ − |R ∩ Base|. Itholds that |R∩ (N0 ∪N1)| < θ′ and |R∩ (P0 ∪P1)| = θ′. Thus for some j, k ∈ {0, 1}we have |R∩ (Nj ∪Pk)| < θ′ (equivalentlyMQ(1Base∪Nj∪Pk
) = 0). Note that the setsBase := Base ∪ Pk, N ′ := Nj and P ′ := P1−k still have the key property, but thesize of N ′ and P ′ is redued by half. Thus after at most log n steps P ′ is redued toa set onsisting of a single (relevant) variable. Thus N ′ is a nonempty set of irrelevantvariables (part (b) of Claim 5.4) that an be removed from H (Line 33).Finally, the funtion MakeEven(Base, N ′, P ′, v̂, H) works as follows. Its job is tomove variables among sets so as to preserve the key property for Base, N ′, and P ′,while making both N ′ and P ′ have even size. Sometimes instead, however, it willremove an irrelevant variable from H�in this ase it returns true and its aller restartswith the smaller H .First MakeEven heks whether |P ′| is odd, and if so, it moves an arbitrary element

vP of P ′ to Base. Note that if vP was relevant, this ation might turn Base ∪ N ′into a positive set; thus the key property might be violated; so an arbitrary element vNwill also be removed from N ′. If vN is irrelevant (whih an be tested using set Testde�ned at Line 1), MakeEven removes it from H and immediately returns true, so theoverall searh an be restarted.Otherwise (i.e, if vN is relevant, or if MakeEven was alled with P ′ of even ardi-nality) the key property holds for the new triple (Base, N ′, P ′), and |P ′| is even. ThenMakeEven heks if |N ′| is odd, and if so, an arbitrary v′N gets removed from N ′.If MakeEven returns false (no irrelevant variable was removed from H), then theresulting triple will also have the key property.Now we give the omplexity analysis.

46 Threshold FormulasFor eah deletion found, at most 2 + ⌈log2 n⌉ equivalene queries are used to getthe sets N and P , and then one all to BinarySearh to make P a minimal positiveset. Next the algorithm iterates, shrinking both |P ′| and |N ′| by half in eah iteration,at most ⌈log2 n⌉ times. Eah suh iteration requires at most 5 membership queries.Thus (as BinarySearh always uses at most ⌈log2 n⌉ membership queries per all)the deletions require at most O(|H \R| logn) queries. 2Now we an state the main result of the setion.Theorem 5.5 Let the ϕ be the initial and ψ the target formula, where both are
n-variable threshold funtions. Then ReviseThreshold(ϕ), using O(ê log n) queries,outputs ψ, where ê = dist(ϕ, ψ).ProofFirst, two membership queries are used to determine if the target is either of thetwo onstant Boolean funtions. For nononstant funtions, the omplexity and theorretness follow from Lemmas 5.2 and 5.3. 25.3 Example Run of ReviseThresholdTo demonstrate the algorithm, we provide an example run.Let V8 be the set of variables in fous, furthermore let the initial funtion ϕ andthe unknown target funtion ψ be

ϕ = Th1
{v1,v2,v4}

ψ = Th4
{v1,v2,v3,v5,v6} .First, in subsetion 5.3.1 we determine all the relevant variables that were left out from

{v1, v2, v4}, then in subsetion 5.3.2 we further revise our hypotheses from subsetion5.3.1 by removing those irrelevant variables that appeared in {v1, v2, v4}.5.3.1 Adding the Previously Unknown Relevant VariablesTwo MQ's to 00000000 and 11111111 determine that the target funtion is nonon-stant.We next determine the neessary additions, that is, the relevant variables from
{v3, v5, v6, v7, v8}, using Proedure FindAdditions. Sine assignment 1{v1,v2,v4} isnegative, Potentials = {v3, v5, v6, v7, v8} must ontain some unknown relevantvariables.In Lines 12�19 of Proedure FindAdditions, we repeatedly use BinarySearhfrom Base = {v1, v2, v4} to Base∪Potentials to �nd one. Inside BinarySearhask MQ(11111100), the answer is 1. Ask MQ(11111000), the answer is 1. AskMQ(11110000), the answer is 0. The last negative and positive examples di�er by

5.3 Example Run of ReviseThreshold 47the single variable v5�thus v5 is relevant, and is returned to FindAdditions, andFindAdditions adds v5 to NewRelevants.Now exlude the newly found relevant variable v5 from onsideration. As
1Base∪{v3,v6,v7,v8} is still positive, we make another similar all to BinarySearh.Ask MQ(11110100), the answer is 1. Ask MQ(11110000), the answer is 0. Thelast positive and negative vetors di�er only on v6 �thus v6 is relevant, and isadded to NewRelevants. Exluding v6 from onsideration too, we �nd that
1Base∪{v3,v7,v8} is negative. This means that the number of relevant variables in
{v1, v2, v4} ∪ {v3, v6, v7, v8} is the same as the unknown threshold. So, we up-date Base from {v1, v2, v4} to {v1, v2, v4, v6}, and do BinarySearh from Baseto Base ∪ {v3, v7, v8}. Ask MQ(11110110), the answer is 1. Ask MQ(11110100),the answer 1. Ask MQ(11010100), the answer is 0�thus v3 is relevant. Testing
1{v1,v2,v3,v4,v6}, we �nd that it is positive; thus sine the number of relevant variables in
{v1, v2, v3, v4, v6, v7, v8} is the same as the threshold, we know that {v7, v8} ontainsno relevant variables.5.3.2 Deleting the Irrelevant VariablesNow we know that H = {v1, v2, v3, v4, v5, v6} ontains all the relevant variables; allthat left is to get rid of the irrelevant ones (and determine the threshold).This is done in FindDeletions. Proedure FindDeletions �rst determines a�big� positive and a �small� negative set. Suppose that we ask equivalene queries for
Thθ

H , for θ = 1, . . . , |H|. Sine ψ is not onstant, we must �nd two θ-values ℓ and
u, and orresponding ounterexamples 1P and 1N , suh that u = ℓ+ 1, P is positive,and N is negative. Then it must also hold that |P | ≤ u− 1 = ℓ ≤ |N |; thus N mustontain an irrelevant element. In fat, we determine the above ℓ, u, P and N usingbinary searh on the threshold value θ.First, in Lines 1�6 we ask the two extreme ases EQ (Th

|H|
H

) and EQ (Th1
H

),getting ounterexamples, say, 111110 and 000111 1. The remainder of this binary searhover threshold values is arried out in Lines 9�20. Ask EQ (Th4
H

), and suppose wereeive the negative ounterexample 001111. Ask EQ (Th5
U

), and suppose we reeivethe positive ounterexample 111010. Now we have u = 5, ℓ = 4, P = {v1, v2, v3, v5}and N = {v3, v4, v5, v6}. Beause P is already a minimal positive set, it does nothange in the all to BinarySearh at Line 21.Now, with the help of P , we determine an irrelevant variable of N as follows. Weset their ommon part to be Base = {v3, v5}. The remaining parts of P and N ,whih are P ′ = {v1, v2} and N ′ = {v4, v6} are both even, so the all to MakeEvenmakes no hanges (and returns false). We ut this remaining part of P ′ (resp. N ′)in two equal parts: P1 = {v1} and P2 = {v2} (resp. N1 = {v4} and N2 = {v6}).Asking membership queries for all ombinations Base ∪ Pi ∪ Nj, i, j = 1, 2, we �ndthat Base ∪ P1 ∪ N1 is negative, meanwhile Base ∪ P1 ∪ P2 is positive. As P2 has1As v7 and v8 are known to be irrelevant, from here on we shall omit the orresponding bits in theexamples.

48 Threshold Formulasardinality 1, this means that v4 is irrelevant; remove it from H .Now we restart, and ondut a binary searh on the threshold value again, with thedi�erene, that now H = {v1, v2, v3, v5, v6}. Ask EQ (Th3
H

), and suppose we reeivethe negative ounterexample 111000. Then asking EQ (Th4
H

) we reeive (), meaningthat the learning proess has ome to a suessful end.5.4 Lower Bounds on Revising Threshold Formu-lasIn this setion, we show that both types of queries are needed for the e�ient revisionof threshold funtions, and that the query omplexity of our algorithm is essentiallyoptimal up to order of magnitude. The �rst result shows that e�ient revision is notpossible with membership queries alone, even if we allow a restrited type of equivalenequeries as well, and the seond result shows that e�ient revision is not possible withequivalene queries alone.Theorem 5.6 Assume that both the initial formula and the target formula have thresh-old value t, and that the learner is allowed to ask equivalene queries only for thresholdfuntions also having threshold value t. (On the other hand, no restritions are seton the membership queries.) Under this restrition, the query omplexity of revisingthreshold formulas is at least n− 1 (where n is the number of variables in the universein sope), even when the revision distane is only one.ProofLet the initial funtion be Thn−1
Vn

, let ψi := Thn−1
Vn\{vi} for 1 ≤ i ≤ n, and set Ψ :=

{ψi : 1 ≤ i ≤ n}.Consider the following senario. When the learner asks a membership queryMQ(1V)for some V ⊆ Vn , then the answer is
• 0, if |V | < n− 1. In this ase Ψ remains unhanged.
• 1, if |V | = n or if Ψ = {Thn−1

V }. Again, Ψ remains unhanged.
• 1, if V = Vn \ {vi} and Ψ = {ψi}.
• 0 otherwise. Also, remove ψi from Ψ for i with {vi} = Vn \ V .When the learner asks an equivalene query EQ(Thn−1

U) for some U ⊆ Vn , then theassignment returned is x, where
• if |U | < n − 1 (i.e., the hypothesis is onstant 0), then x is the positive oun-terexample 1. In this ase Ψ remains unhanged.
• if |U | = n then x is the negative ounterexample 1(vi 7→0) for some i satisfying
|Ψ \ {ψi}| ≥ 1. Also, remove ψi from Ψ.

• if Ψ = {Thn−1
U }, then x = ().

5.4 Lower Bounds on Revising Threshold Formulas 49
• otherwise x is the negative ounterexample 1U . Also, remove ψi from Ψ for iwith {vi} = Vn \ V .Note that during the whole proess eah element of the atual Ψ is onsistent with allthe previous informations, and that after eah query |Ψ| dereases by at most one. But,as the learning proess annot end as long as there are more than one non-equivalenthypotheses onsistent with the previous informations, it follows that the learner mustask at least n− 1 queries. 2Theorem 5.7 The query omplexity of revising threshold formulas with equivalenequeries alone is at least n − 1 (where n is the number of variables in the universe insope), even when the revision distane is only one.ProofSet n = 2k, and let the initial funtion Thk

Vn
. Also, for k + 1 ≤ i ≤ n, let ψi :=

Thk
Vn\{vi}, and set Ψ := {ψi : k + 1 ≤ i ≤ n}Consider the following senario. When the learner asks an equivalene query EQ (Thℓ

U

)for some U ⊆ Vn , then the assignment returned is x, where
• if ℓ < k and� |U | ≥ ℓ, then x is the negative ounterexample 1U ′, where U ′ is an arbitrarysubset of U with ardinality ℓ. In this ase Ψ remains unhanged.� otherwise (i.e., if Thℓ

U is onstant 0), then x is the positive ounterexample
0(v1 7→1,...,vk 7→1). Again, Ψ remains unhanged.

• if ℓ > k, then x is the positive ounterexample 0(v1 7→1,...,vk 7→1). Again, Ψ remainsunhanged.
• if ℓ = k and� if U ⊇ {vk+1, . . . , vn}, then x is the negative ounterexample 1(v1 7→0,...,vk 7→0).Again, Ψ remains unhanged.� otherwise, if {v1, . . . , vk} 6⊆ U , then x is the positive ounterexample

0(v1 7→1,...,vk 7→1). Again, Ψ remains unhanged.� if Ψ =
{

Thℓ
U

}, then x = ().� otherwise x is the positive ounterexample 1{2,...,k}∪{i} for some i with vi ∈

{vk+1, . . . , vn} \ U (note that it must be the ase that U ontains all of
v1, . . . , vk, and is missing at least one of vk+1, . . . , vn). Also, remove ψifrom Ψ.Note that during the whole proess eah element of the atual Ψ is onsistent with allthe previous informations, and that after eah query |Ψ| dereases by at most one. But,as the learning proess annot end as long as there are more than one non-equivalenthypotheses onsistent with the previous informations, it follows that the learner mustask at least n− 1 queries. 2

50 Threshold FormulasNow we show that the query bound of algorithm ReviseThreshold annot beimproved for small values of ê (i.e., onstant ê), and annot be muh improved ingeneral. We gave a revision algorithm with query omplexity O(ê log n); we give herethe lose lower bound of Ω(ê log(n/ê)). (We think that the �rst one is loser to thereal answer)Proposition 5.8 The query omplexity of revising threshold formulas with member-ship and equivalene queries is Ω(ê log(n/ê)), where n is the number of variables inthe universe in sope and ê is the revision distane between the initial formula and thetarget formula.ProofPut ϕ = Th1
∅, and let R =

{

Thê
R : R ⊆ Vn, |R| ≤ ê

}. Now eah element of R isequivalent to some lause of size at most ê over Vn. As the lass of these lauses hasVapnik-Chervonenkis dimension Ω(ê log(n/ê)) [92℄, the laimed bound for the queryomplexity follows (see Setion 3.3).
2The following result answers the question that arises naturally whenever one islearning threshold funtions: why not use Winnow 2? After all it is one of the mostsuessful tools for learning threshold funtions. Furthermore, it an be suessfullyused for revision in some ases (see, e.g. Chapter 6). The answer is simple and somewhatsurprising: under our settings, using Winnow as de�ned in [92℄ would result in anine�ient revision algorithm.Proposition 5.9 Winnow is not an e�ient revision algorithm for threshold fun-tions. More preisely, for any weight vetor representing the initial threshold funtion

Th1
v1,...,vn

, Winnow an make n mistakes when the target funtion is Th2
v1,...,vn

.ProofThe statement follows easily, noting that the weight of eah relevant variable is at leastas big as the threshold used by Winnow, thus giving Winnow the negative examples
1{v1}, . . . , 1{vn} one after another, it will evaluate to 1 for eah of them. 25.5 Conluding RemarksIt would be interesting to onsider disjuntions of a bounded number of thresholdfuntions in the revision model. This lass is a generalization of monotone DNF witha bounded number of terms, whih an be revised e�iently [53℄. It is also related tothe robust logi framework of Valiant [128℄ mentioned in the introdution.Finally note that the results presented in this hapter�unless noted otherwise�appeared in the paper [116℄, o-authored by the author of the present dissertation.2See Chapter 6 for more on Winnow.

Chapter 6Projetive DNF FormulasThe notion of projetion learning was introdued by Valiant [128℄, motivated by on-straints imposed on learnability by biology. Projetion learning aims to learn a targetonept over some large domain (in our ase An), by learning some of its projetions�or rather: restritions�to a lass of smaller domains, and ombining these projetions.Valiant proved a general mistake bound for the resulting algorithm under ertain on-ditions. The basi assumption underlying projetion learning is that there is a family ofsimple projetions that over all positive instanes of the target, where simple meansbelonging to some e�iently learnable lass. The projetions desribing the target inthis way an also be thought of as a set of experts, eah speialized to lassify a subsetof the instanes, suh that whenever two experts overlap they always agree in theirlassi�ation.Perhaps the most natural speial ase of this framework, also disussed by Valiant,is when the projetion domains are sububes of a �xed dimension, and the restritionsof the target to these domains are onjuntions. In this ase, the algorithm learnsa lass of disjuntive normal forms (DNF) alled projetive DNF (preise de�nitionswill be given later). The lass of projetive DNF expressions does not appear to havebeen studied at all before Valiant's work. As the learnability of DNF is shown to be ahard problem in omputational learning theory 1, it is of interest to those who studyomputational learning theory to identify new learnable sublasses and to understandtheir sope.In this hapter an e�ient revision algorithm is presented for the lass of projetiveDNFs in the mistake bounded model for the general ase. Additionally some (learnabil-ity related) ombinatorial properties of this lass is annalyzed. More preisely lower andupper bounds for the exlusion dimension of projetive DNF. The exlusion dimension,or erti�ate size [11; 65; 67℄, of a formula lass is losely related to its learning om-plexity in the model of proper learning with equivalene and membership queries. Thisway bounds are obtained for the omplexity of learning projetive DNF in this modelas well.Finally, note that this hapter does not ontain an example run�ontrary to the1Alekhnovih et al. showed that DNF is not properly PAC learnable in polynomial time unless NP= RP [5℄, providing further motivation to �nd positive learnability results.51

52 Projetive DNF Formulastwo previous ones dealing also with results on revision. The main reason for this is thatthe algorithm itself is muh more simple than the ones presented in the two previoushapters (however this does not seem to hold for the analysis of the algorithm), andthus an example run would not provide further insights about the algorithm.6.1 Further De�nitions and NotationsFirst we introdue projetive disjuntive normal forms and we brie�y disuss some oftheir properties.De�nition 6.1 A DNF formula ϕ is a k-projetive DNF, or k-PDNF if it is of theform
ϕ = ρ1t1 ∨ · · · ∨ ρℓtℓ, (6.1)where, for i = 1, . . . , ℓ, ρi is a k-onjuntion (alled the ρ-part of the term ρiti), ti isa onjuntion (alled the t-part of the term ρiti) and it holds that

ρiϕ ≡ ρiti. (6.2)A Boolean funtion f : {0, 1}n → {0, 1} is k-projetive if it an be written as a
k-PDNF formula. The lass of n-variable k-projetive funtions is denoted by k-PDNFn.The k-onjuntions ρi are also alled k-projetions, or, when k is lear fromontext, simply projetions. Conditions (6.1) and (6.2) mean that when restritedto the subube T (ρi), the formula ϕ is equivalent to the onjuntion ti, and everytrue point of ϕ arises this way for some restrition. This orresponds to the intuition,desribed earlier, that the restritions to a prespei�ed set of simple domains are simple,and the whole funtion an be pathed together from these restritions.Note that in order to speify a k-PDNF, it is not su�ient to speify its terms, butfor eah term one has to speify its ρ-part and its t-part; that is, the projetion andthe orresponding onjuntion have to be distinguished. If neessary, we indiate thisdistintion by plaing a dot between the two parts. For example,

(x · y) ∨ (z · y) and (x · y) ∨ (x · yz) (6.3)are two di�erent 1-PDNF for the same funtion. The dots are omitted whenever thisdoes not lead to onfusion. The onjuntions ρi and ti may have ommon literals. Therequirement (6.2) is equivalent to requiring that
ρjρiti ≡ ρiρjtj (6.4)for every i and j. This makes it easy to verify that a given expression, suh as those in(6.3), is indeed a k-PDNF. It also shows that the disjuntion of any set of terms of a

k-PDNF is again a k-PDNF.

6.1 Further De�nitions and Notations 53If a funtion is k-projetive, then it is k′-projetive for every k′ with k ≤ k′ ≤ n.Note that the omplete DNF (onsisting of n-onjuntions orresponding to the truepoints of f) shows that every n-variable funtion is n-projetive.For more on projetive DNFs and their relations with some other basi formulalasses (like k-DNFs, k-term-DNFs and deision lists) see [115℄.6.1.1 RevisionIn addition to the standard mistake-bounded model, as a tehnial tool for the learningresult, we also onsider a model of learning in the presene of noise. In the model oflearning monotone disjuntions with attribute errors (Auer and Warmuth [18℄, alsoused by Valiant [128℄ with a di�erent name) it may happen that y is not the orretlassi�ation of x, that is, ftrg(x) 6= y. It is assumed that the error omes from someomponents (or attributes) of x being inorret, and the number of attribute errorsommitted in a round is the minimal number of omponents that need to be hangedin order to get the orret lassi�ation. More preisely, if in round r the lassi�ation
yr is not the orret lassi�ation of xr, then, if yr = 1 then AttrErr(r) = 1(as it is enough to swith one bit on to satisfy a disjuntion), and if yr = 0 thenAttrErr(r) is the number of variables that are inluded in the target disjuntion andwhih are set to 1 in xr. The total number of attribute errors for a given run, denoted#AttributeErrors, is the sum of the attribute errors of the rounds. This notionis used only for tehnial purposes: it plays an important role inside some proof, butdoes not appear in any results.The revision operations are the deletion of a literal or a term, the addition of anew empty term of the form ρ · ⊤, and the addition of a literal.The revision distane of two terms t and t∗ is the number of literals ourring inexatly one of the two terms, denoted |t△t∗|. Similarly, the distane between two dis-juntions is also the number of literals ourring in exatly one of the two disjuntions.The revision distane between an initial k-PDNF formula ϕ and a target k-PDNFformula ψ of the form

ϕ = ρ1t1 ∨ · · · ∨ ρℓtℓ ∨ ρℓ+1tℓ+1 ∨ · · · ∨ ρℓ+stℓ+s,

ψ = ρ1t
∗
1 ∨ · · · ∨ ρℓt

∗
ℓ ∨ ρ

′
1t

′
1 ∨ · · · ∨ ρ′at

′
ais

dist(ϕ, ψ) = s+

ℓ
∑

i=1

|ti△t
∗
i | +

a
∑

i=1

(|t′i| + 1),where {ρℓ+1, . . . , ρℓ+s} ∩ {ρ′1, . . . , ρ
′
a} = ∅. For example, the s term in the de�nitionof dist(ϕ, ψ) orresponds to the deletion of the s terms ρℓ+1tℓ+1, · · · , ρℓ+stℓ+s.Given an initial formula ϕ and a target formula ψ, we want our mistake bound to bepolynomial in the revision distane ê = dist(ϕ, ψ), and logarithmi (or polylogarithmi)in all other parameters. In this ase, that means logarithmi in n and, for k-PDNF, inthe total number of projetions of size k, whih is 2k

(

n
k

).

54 Projetive DNF FormulasNote that this is in aordane with the general approah desribed in Chapter 3.
6.2 Revision Algorithm for Disjuntions and for

k-PDNF FormulasThe main tool in Valiant's learning algorithm for projetive DNFs [128℄ is Littlestone'sWinnow algorithm [92℄, whih is a kind of multipliative version of the well-knownPereptron algorithm. We begin by demonstrating that the original Winnow withappropriately modi�ed initial weights is an e�ient revision algorithm in the mistakebounded model for disjuntions, even in the presene of attribute errors�if we arewilling to tolerate a number of mistakes polynomial in the number of attribute errors aswell as the usual parameters. We will use this result to show how to use an algorithmsimilar to Valiant's PDNF learning algorithm to revise PDNF. The overall algorithmhas a two-level struture, with many instanes of a revision version of Winnow on thelower level feeding their outputs to one instane of a revision version of Winnow onthe top level. Note that, even with noise-free data, mistakes made by the lower-levelWinnows will represent attribute errors in the input to the top-level Winnow.6.2.1 Revising DisjuntionsAlgorithm RevWinn (pseudoode displayed as Algorithm 8) revises a monotone disjun-tion. It an be applied to revise an arbitrary disjuntion by introduing extra variablesfor the negated literals, and this in turn an be used to revise arbitrary onjuntionsby applying the De Morgan rules. We now present RevWinn; we will later assumewithout further disussion that we have versions available for arbitrary disjuntions andfor onjuntionsLet the set of variables in fous be some �nite V ⊆ V. Algorithm RevWinn revisesan initial disjuntion ϕ over V . It maintains a weight vetor w of length |V |, whihdetermines the urrent hypothesis, and is updated eah time a mistake is made. Weuse wr to denote its value after round r. Aordingly w0 denotes the initial weightvetor 2.The algorithm onsists of three main parts: initialization of the weight vetor w(whih initializes the hypothesis), predition (the hypothesis part), and the update part.Formally, we break out eah as a subroutine to make later disussion easier.Let us now desribe these three parts of RevWinn. The initialization part is doneby using funtion Init, whih, on input V and ϕ outputs a vetor w of length V (and2Atually, this is Littlestone's Winnow2 [92℄ using di�erent initial weights�with his parameters setto α = 2, and θ = |V |/2�, exept that the weights are all devided by |V |, beause this seems tomake the analysis a little easier to follow.

6.2 Revision Algorithm for Disjuntions and for k-PDNF Formulas 55Algorithm 8 Algorithm RevWinn(V, ϕ)1: w := Init(V, ϕ) {initialize the weight vetor}2: for round r = 1, 2, . . . do3: {The input in round r is the instane xr with domain V }4: Output predition ŷr := h(xr,w)5: if reeiving label yr for xr it holds that ŷr 6= yr then6: {the algorithm made a mistake, so update the weights}7: w := Update(yr,xr,w)8: end if9: end forindexed by the variables in V), with
w(v) =

{

1 if variable v appears in ϕ,1/|V| otherwise,for v ∈ V .Given weight vetor is w, the hypothesis funtion evaluatesh(x,w) =

{

0 if 〈w,x〉 is less than 1/2,

1 otherwiseon input instane x (with domain V), where
〈w,x〉 =

∑

v∈V

w(v) · x(v)is the dot produt of w and x. The hypothesis is used to make preditions; in round
r the algorithm predits that the label of xr is ŷr = h(xr,wr−1).Finally the funtion Update(y,x,w), returns a vetor w′, a modi�ation of theweight vetor w:

w′(v) = w(v) · 2(y−ŷ)·x(v) =

2 · w(v) if y > ŷ and x(v) = 1,

(1/2) · w(v) if y < ŷ and x(v) = 1,

w(v) otherwise,for v ∈ V , where ŷ is the output of the hypothesis funtion on x (i.e., ŷ = h(x,w)).This funtion does nothing and need not even be alled if there is no mistake; that is,if ŷ = y.Note that throughout, all of the weights are always in the interval (0, 1]. This anbe seen using an indution argument as follows. Initially the statement is true. Nowassume that the weights after round r − 1 are all between 0 and 1. If yr = ŷr, thenthe weights are not hanged. If yr = 0 and ŷr = 1, then some weights are halved, andsome unhanged�thus the statement will be true after round r. If yr = 1 and ŷr = 0,

56 Projetive DNF Formulasthen 〈wr−1,xr〉 is less then 1/2, so the sum of the weights of omponents having 1in assignment xr is less then 1/2. As RevWinn doubles the weights of exatly theseomponents, the statement will remain true after round r.Theorem 6.2 The number of mistakes made by Algorithm RevWinn with initial (mono-tone) disjuntion ϕ and target (monotone) disjuntion ψ is
O(#AttributeErrors+ ê log n),where ê = dist(ϕ, ψ), n = |V | and V is the set of variables in fous.ProofConsider any run of the algorithm of length R. Let I be the set of variables v ∈ Vthat appear in both the initial and target disjuntions, suh that for at least one round

r variable xr(v) = 1 but yr = 0. Let J ⊆ V be the set of variables that appear in thetarget disjuntion but not in the initial disjuntion. Let us also introdue the notation
I ∪ J = V \ (I ∪ J).We will use later the fat that any variable in both ϕ and ψ that is not in I neverhas its weight hanged from 1.For the proof we use a potential funtion Φ(w) that is somewhat di�erent fromthose used in some other ases for analyzing Winnow (e.g., in [18; 80℄). Put Φ(w) =
∑n

v∈V Φv(w), where
Φv(w) =

{

w(v) − 1 + ln(1/w(v)) if v ∈ I ∪ J,

w(v) otherwise.It an be veri�ed that Φi(w) ≥ 0 for any w ∈ (0, 1]n.Let ∆r = Φ(wr−1) − Φ(wr) denote the hange of the potential funtion duringround r. We will derive both upper and lower bounds on∑R
r=1 ∆r that will allow us torelate the number of mistakes made by RevWinn to ê, n, and #AttributeErrors.First we derive an upper bound:

R
∑

r=1

∆r = Φ(w0) − Φ(wR)

≤ Φ(w0) −
∑

v∈I∪J

wR(v)

=
∑

i∈I

Φi(w0) +
∑

j∈J

Φj(w0) +
∑

v∈I∪J

(w0(v) − wR(v)). (6.5)For v ∈ I we initialized w0(v) = 1 so Φv(w0) = 0. Also, |J | ≤ ê, and Φv(w0) =

ln(2n)− (2n− 1)/2n < ln(2n) for v ∈ J , so the sum of the �rst two terms is at most
ê ln(2n). Now we need to bound the third term. The variables that appear neither in
ψ nor in ϕ have initial weights 1/(2n), and so altogether an ontribute at most 1/2to the sum. There are at most ê variables in ϕ that are not present in ψ, so those

6.2 Revision Algorithm for Disjuntions and for k-PDNF Formulas 57variables an ontribute at most ê to the sum. Finally, as noted earlier, the weightsnever hange for those variables in both ϕ and ψ but not in I. Thus we get
R
∑

r=1

∆r ≤ ê ln 2n+ ê+ 1/2. (6.6)To get a lower bound on the sum, we begin by deriving a lower bound on the hangein potential in one round. Now
∆r =

∑

v∈I∪J

(

wr−1(v) −wr(v) + ln
wr(v)

wr−1(v)

)

+
∑

v∈I∪J

(wr−1(v) − wr(v))

=
∑

v∈V

(wr−1(v) − wr(v)) +
∑

v∈I∪J

ln
wr(v)

wr−1(v)
. (6.7)Examining the RevWinn ode, one an see that there are three ases for updatingweights at the end of a round r: no hange in any weights, some or all weights aredereased�alled a demotion round�, and some or all weights are inreased�alleda promotion round. Obviously, when no update is done in round r (i.e., ŷr = yr),then ∆r = 0.In a demotion round, ŷr = 1 and yr = 0. By the de�nition of I and J , in this aseAttrErr(r) = |(I ∪ J) ∩ {v : xr(v) = 1}|. Also, the total weight of omponentsbeing on in xr is at least 1/2 (reall how ŷr is evaluated), and the weight of eah ofthose omponents is halved. So, using (6.7),

∆r ≥
1

4
+ |(I ∪ J) ∩ {v : xr(v) = 1}| ln

1

2
=

1

4
− (ln 2)AttrErr(r) . (6.8)In a promotion round, ŷr = 0 and yr = 1. We know that the omponents of xrthat are on have total weight less than 1/2 (again, by the evaluation rule of ŷr), andthat eah of these omponents is multiplied by 2. So the �rst term in (6.7) is at least

−1/2. Thus ∆r ≥ −1/2 + |(I ∪ J) ∩ {v : xr(v) = 1}| · ln 2. Now if yr = ψ(xr),then |(I ∪ J) ∩ {v : xr(v) = 1}| ≥ 1, beause we know that ŷr = 0 and we know thatall the weights of variables in both ϕ and ψ but not in I are 1. If yr 6= ψ(xr), thenAttrErr(r) = 1. Thus, in a promotion round, it always holds that
∆r ≥ −1/2 + (ln 2)(1 −AttrErr(r)). (6.9)Finally, let M− denote the total number of demotions and M+ the total numberof promotions. Then (6.8) and (6.9) give us

R
∑

r=1

∆r ≥
∑

{r:ŷr=1,yr=0}

(

1

4
− (ln 2)AttrErr(r)

)

+
∑

{r:ŷr=0,yr=1}

(

ln 2 −
1

2
− (ln 2)AttrErr(r)

)

58 Projetive DNF Formulas
=

M−

4
+

(

ln 2 −
1

2

)

M+ − (ln 2)#AttributeErrors.Combining this with (6.6) gives the desired mistake bound. 2Notie that, unlike other uses of potential funtions in mistake-bound proofs, wedo not make any laims about the relation between the value of the potential funtionused here and the distane between the atual weight vetor wr and a weight vetorfor the target. Indeed, we do not see any obvious relation between the value of thispotential funtion and any measure of distane between wr and a weight vetor for thetarget.6.2.2 Revising k-PDNF FromulasIn this hapter we disuss Algorithm Rev-k-PDNF (see Figure 9), the revision algorithmfor k-PDNFs. It has the same two-level struture that was also used by Valiant forlearning PDNFs [128℄, but it uses di�erent initial weights in the individual opies ofWinnow (as it was disussed in the previous subsetion). It also requires some variant ofRevWinn appliable for onjuntions (whih an be obtained by an easy transformationfrom RevWinn as explained at the beginning of the previous subsetion, retaining themistake bound desribed in Theorem 6.2); denote it RevWinnC and denote by InitC,hC, and UpdateC its main funtions.To �ll up the details: Rev-k-PDNF onsists of a top-level RevWinn algorithm thathandles the seletion of the appropriate projetions. On the lower level, instanesof RevWinnC are run, one for eah of the 2k
(

n
k

) projetions, to �nd the appropriateterm for that partiular projetion. We all this the ρ instane of RevWinnC, anddenote its weight vetor by wρ. The input resp. the label for eah of these RevWinnCinstanes are xr and yr. An update is applied to the ρ instane of RevWinnC only when
ρ(xr) = 1 (and additionally the top-level algorithm's predition of the label was wrongand agreed with the predition of the ρ-instane of RevWinnC), beause in this ase, byEquation (6.2) if ρ appears in the target formula with t-part t, then the output of thetarget formula agrees with t�and this is the key to the whole algorithm. Intuitively,we hope that for eah term of the form (ρ · t) in the target formula, where ρ is a
k-projetion, the hypothesis of the ρ instane of RevWinnC will onverge to t. Thepredition of the ρ instane of RevWinnC is denoted ŷρ and ŷρ

r = hC(xr,w
ρ
r−1).For the top level, introdue a new Boolean variable vρ for eah k-projetion, andonsider an instane of RevWinn run over these variables. In the rest of this setion,

w is used to denote the weight vetor of this top level RevWinn instane (and, if wewant to emphasize the round, wr denotes its value after round r). The input for thetop level is denoted u; its value in round r, denoted ur, is de�ned by
ur(vρ) = ρ(xr) ∧ hC(xr,w

ρ
r−1).

6.2 Revision Algorithm for Disjuntions and for k-PDNF Formulas 59The output of the top level in round r is
ŷr = h(ur,wr−1).The top-level RevWinn algorithm learns a disjuntion over variables newvarρ, whihwould ideally onsist of exatly those variables that are indexed by projetions appearingin the target formula.Algorithm 9 The proedure Rev-k-PDNF(ϕ, V).1: {ϕ = ρ1t1 ∨ · · · ∨ ρℓtℓ is the k-PDNF to be revised.}2: w := Init ({vρ : ρ is a k-projetion over V}, vρ1

∨ · · · ∨ vρℓ
)3: for eah k-projetion ρ over V do4: if ρ = ρi for some i ∈ {1, . . . , s} then5: wρ := InitC(V, ti)6: else7: wρ := InitC(V,⊤)8: end if9: end for10: for round r = 0, 1, 2, . . . with input xr do11: Let u(vρ) := ρ(xr) ∧ hC(xr,w

ρ) for eah k-projetion ρ12: Output predition ŷr := h(u,w)13: if reeiving label yr for xr it holds that ŷr 6= yr then14: {The top level algorithm made a mistake}15: w := Update(yr,u,w)16: for eah k-projetion ρ with ρ(xr) == 1 and ur(vρ) 6= yr do17: wρ := UpdateC(yr,xr,w
ρ)18: end for19: end if20: end forTheorem 6.3 Suppose that the initial and target formulas are, respetively, the k-PDNFnformulas

ϕ = ρ1t1 ∨ · · · ∨ ρℓtℓ ∨ ρℓ+1tℓ+1 ∨ · · · ∨ ρℓ+stℓ+s,

ψ = ρ1t
∗
1 ∨ · · · ∨ ρℓt

∗
ℓ ∨ ρ

′
1t

′
1 ∨ · · · ∨ ρ′at

′
a,and ê = dist(ϕ, ψ). Then algorithm Rev-k-PDNF makes O(êk log n) mistakes.ProofThe top-level RevWinn revises a disjuntion over the vρ's. There will be two souresof mistakes. First, the initial disjuntion is not orret; it needs revising. Seond, thevalues assigned to the vρ variables will sometimes be erroneous, beause the low-levelRevWinnC's are imperfet�that is, ur(vρ) 6= ρ(xr)∧ t(xr) might our in some round

r for some term (ρ · t) of ψ. (The atual input xr and lassi�ation yr are assumed tobe noiseless�that is, yr = ψ(xr) is assumed.)

60 Projetive DNF FormulasTheorem 6.2 tells us how to alulate the overall number of mistakes of the top-level RevWinn as a funtion of three quantities: the revision distane, whih is s + a,the total number of variables, both relevant and irrelevant for the disjuntion, whih is
2k
(

n
k

), and the total number of attribute errors, whih we will now alulate.In fat, we will not ount all the attribute errors. We will ount (atually providean upper bound on) only those attribute errors that our when RevWinn is hargedwith a mistake.For i = 1, . . . , ℓ, the RevWinnC instane orresponding to projetion ρi predits
ŷρi

r = hC(xr,w
ρi

r−1) in round r. That RevWinnC instane updates for a mistake onlywhen the overall algorithm makes a mistake (i.e., ŷr 6= yr), its predition was di�erentfrom yr (i.e., ŷr 6= ŷρi
r), and ρi(xr) = 1. Now yr = ψ(xr) = t∗i (xr) (the last equationholds beause of projetivity and beause ρi(xr) = 1). This means that the mistakebound for this RevWinnC tells us how many times this RevWinnC an make errorson rounds when the overall algorithm makes an error; after that number of mistakes,this RevWinnC will then always predit orretly. Aording to the disussion at thebeginning of this subsetion the mistake bound on this RevWinnC is O(|ti△t

∗
i | lnn).For j = 1, . . . , a a similar argument shows that there are at most O(|t′j| lnn) rounds

r where ur(vρ′j
) 6= ρ′j(xr) ∧ t′j(xr) and the top-level RevWinn makes a mistake. Put

F (ϕ, ψ) =
(

∑ℓ
i=1 |ti△t

∗
i | +

∑a
j=1 |t

′
j|
)

lnn.How many times an Rev-k-PDNF err when prediting? We just argued thatthe total number of attribute errors that our when the top-level RevWinn makesa mistake is O(F (ϕ, ψ)). The total number of variables that the top-level RevWinnis working with is 2k
(

n
k

). Thus, the overall mistake bound is, by Theorem 6.2,
O
(

F (ϕ, ψ) + (s+ a) log
(

2k
(

n
k

)))

= O(êk log n), sine F = O(ê log n).Remark 6.1For learning from srath a k-PDNFn onsisting of m terms, that is, for revising theempty k-PDNFn to a target k-PDNFn, this algorithm has the same asymptoti mistakebound as Valiant's learning algorithm [128℄: O(kms logn), where s is the maximumnumber of variables in any term in the target.6.3 Exlusion DimensionThe ombinatorial parameter, exlusion dimension of formula lasses (for the de�nitionsee below) is in lose onnetion with the query omplexity of the given formula lass(see, e.g. [11℄). As the revision algorithm for projetive DNFs works in the mistakebounded model, it seems interesting to disuss this parameter for this lass. In thissetion we follow the terminology of Angluin [11℄. (With minor variations, exlusiondimension is alled unique spei�ation dimension by Heged¶s [65℄ and erti�ate sizeby Hellerstein et al. [67℄.)Let f be an n-variable Boolean funtion. A set A ⊆ {0, 1}n is a speifying setof f with respet to a lass C of Boolean funtions if there is at most one funtion

6.3 Exlusion Dimension 61in C that agrees with f on A. (So learly {0, 1}n is always a speifying set.) Thespeifying set size of f with respet to C is
specC(f) = min{|A| : A is a speifying set for f with respet to C},and the exlusion dimension of the lass C is

XD(C) = max{specC(f) : f 6∈ C}.A speifying set A for f 6∈ C suh that no funtion in C agrees with f on A is alsoalled a erti�ate of exlusion (or simply erti�ate) for f with respet to C. Inour onstrutions below, we will usually give erti�ates of exlusion, whih learly giveupper bound for the speifying set size.For the rest of this hapter speifying sets are always with respet to k-PDNF, sowe write spec(f), omitting the subsript C.A funtion f is minimally non-k-projetive if it is not k-projetive, but any f ′with T (f ′) ⊂ T (f) is k-projetive.Proposition 6.4 If f is minimally non-k-projetive, then spec(f) ≥ |T (f)| − 1.ProofSuppose |A| ≤ |T (f)| − 2 for some A ⊆ {0, 1}n. Let x,y ∈ T (f) \ A be twodi�erent assignments. As f is minimally non-k-projetive, there is gx ∈ k-PDNFn (resp.
gy ∈ k-PDNFn) suh that T (gx) = (A∩T (f))∪{x} (resp. T (gy) = (A∩T (f))∪{y}).Now gx and gy are di�erent elements of k-PDNFn that agree with f on A, thus A isnot a speifying set for f . 2We now present a lower and an upper bound for the exlusion dimension of k-PDNFn,whih show that for �xed k the exlusion dimension is Θ(nk). We begin with a lemmathat haraterizes k-PDNF, give some examples, and then ontinue to the main theoremof this setion that gives the bound.Lemma 6.5 (a) A funtion f is k-projetive if and only if for every x ∈ T (f) thereis a k-onjuntion ρ suh that x ∈ T (ρ) and T (f) ∩ T (ρ) is a ube.(b) If for every x ∈ T (f) there is a k-onjuntion ρ suh that T (f) ∩ T (ρ) = {x},then f is k-projetive.ProofWe show only (a), as (b) follows diretly from (a). If f is k-projetive then it an bewritten as ϕ = ρ1t1 ∨ · · · ∨ ρℓtℓ. Consider an x ∈ T (f). Then ρiti(x) = 1 for some i,thus x ∈ T (ρi). The de�nition of PDNF implies that T (f) ∩ T (ρi) = T (ρiti), whihis a ube.For the other diretion, let us assume that for every x ∈ T (f) there is a k-projetion
ρx suh that x ∈ T (ρx) and T (f) ∩ T (ρx) = Qx is a ube. Then Qx an be writtenas T (ρxtx) for some onjuntion tx, and f an be written as the k-PDNF expression
∨

x∈T (f) ρxtx. 2

62 Projetive DNF FormulasWe illustrate Lemma 6.5 with the following example. We laim that the funtion
f(v1, v2, v3, v4) = v1v2 ∨ v3v4 is not 1-projetive. Call an assignment that violatesondition (a) in the lemma k-deviant, or simply deviant. It su�es to show that 1is deviant. For symmetry reasons, we only need to show that T (f) ∩ T (v1) is not aube. Indeed, it ontains x1 = (v1 7→ 1, v2 7→ 1, v3 7→ 0, v4 7→ 1) and x2 = (v1 7→

1, v2 7→ 0, v3 7→ 1, v4 7→ 1), but it does not ontain their meet, x1 ∧ x2 = (v1 7→

1, v2 7→ 0, v3 7→ 0, v4 7→ 1).Proposition 6.6 For every k and n ≥ k + 2 there is a non-k-projetive funtion with
|T (f)| = k + 3.ProofLet T (f) = {1{i} : 1 ≤ i ≤ k+ 2}∪ {0}. Then 0 is k-deviant, as every k-onjuntion
ρ satis�ed by 0 ontains at least two 1{i}'s, but T (f)∩T (ρ) does not ontain the joinof these two assignments, and thus it annot be a ube aording to Proposition 2.1.

2The proposition gives a (k + 3)-term-DNF funtion whih is not k-projetive.Theorem 6.7 1. For all n and k,
XD(k-PDNFn) ≤ 3

(

n

k

)

+ 1,and2. if n ≥ 4k(k + 1), then
XD(k-PDNFn) ≥

(

⌊n/4⌋

k

)

− 1.ProofFor the upper bound, we will alulate an upper bound on the size of a erti�ate ofexlusion for any f 6∈ k-PDNFn with respet to k-PDNFn.To show that a a funtion f is not k-projetive, it su�es to present a deviantassignment x (i.e., x violates Condition (a) of Lemma 6.5) together with a erti�ateof x's deviane. For the erti�ate of x's deviane it su�es to speify, aording toProposition 2.1, for every k-onjuntion ρ with ρ(x) = 1, three assignments x1,x2,x3suh that ρ(x1) = ρ(x2) = ρ(x3) = 1, x1∧x2 ≤ x3 ≤ x1∨x2 and f(x1) = f(x2) = 1,
f(x3) = 0. The number of k-onjuntions with ρ(x) = 1 is (n

k

). Thus the upper boundfollows: 1 for x itself, and then 3 assignments eah for at worst all of the k-onjuntions.For the lower bound, in view of Proposition 6.4, it is su�ient to onstrut aminimally non-k-projetive n-variable funtion fn,k that takes the value 1 at manypoints. First we desribe the onstrution in the ase when n is even and k = 1. Let
n = 2s, let â = 1(v1 7→0,...,vs 7→0) for i = 1, . . . , s, and de�ne fn,k by T (fn,k) = {ai :=

â(vi 7→1,vs+i 7→0) : i = 1, . . . , s} ∪ {0}. We laim that fn,k is minimally non-1-projetive.

6.3 Exlusion Dimension 63The non-1-projetivity of fn,k follows from the fat that 0 is deviant: any 1-projetion
ρ ontaining 0 must be a negative literal, and thus it ontains some assignment(s) ai,but it does not ontain any assignment of positive weight less than s. Thus, by theremark following Proposition 2.1, T (fn,k) ∩ T (ρ) is not a ube. On the other hand,the ai's are not deviant for fn,k. This holds as they satisfy the ondition of part (b)of Lemma 6.5: the 1-onjuntion vs+i ontains only ai from T (fn,k). Now we showthat every f ′ with T (f ′) ⊂ T (fn,k) is 1-projetive. Indeed, if f ′(0) = 0 then thisfollows from part (b) of Lemma 6.5 diretly. Otherwise the only thing to note is thatif f ′(ai) = 0, then the 1-onjuntion vi ontains only 0 from T (f ′).For the onstrution in the general ase we use the following lemma. In the lemmawe onsider {0, 1}p to be the p-dimensional vetor spae over GF (2) and I to be the
p× p identity matrix.Lemma 6.8 Let A be a p×p 0�1 matrix suh that both A and A⊗I are nonsingular.Assume that k(k + 1) < 2p and de�ne the mapping

h({b1, . . . ,bk}) = {b1 ⊗ Ab, . . . ,bk ⊗Ab},where b1, . . . ,bk are di�erent elements of {0, 1}p, and b = b1 ⊗ · · · ⊗ bk. Then itholds that(a) h is a bijetion, and(b) for every b1, . . . ,bk−1 and d1, . . . ,dk there is a bk di�erent from b1, . . . ,bk−1,suh that the elements of h({b1, . . . ,bk}) are all di�erent from the di's.ProofIf h({b1, . . . ,bk}) = {d1, . . . ,dk}, then d1 ⊗ · · · ⊗ dk = b⊗ (k mod 2)Ab, whih isequal to b (resp., (A ⊗ I)b), if k is even (resp., odd). Thus, knowing d1, . . . ,dk wean �rst determine b, and then we an determine every bi by bi = di ⊗Ab. Hene his injetive, and thus it is also bijetive.For (b), note that a value for bk an fail to satisfy the requirement only if it iseither equal to one of the bi's, or if bi ⊗Ab = dj for some 1 ≤ i, j ≤ k. In eah asewe an solve for bk, thus there are altogether at most k + k2 bad hoies. Choosingany of the other 2p − (k + k2) vetors meets our requirements for bk. 2Now we ontinue the proof of Theorem 6.7 with the general ase k > 1. First,we need a matrix that ful�lls the onditions of Lemma 6.8. It is easily veri�ed that,for example, the matrix A with all 0's exept a1,1 = ap,1 = ai,i+1 = 1 (where i =

1, . . . , p− 1) is suh a matrix. It is lear from the de�nition of h that if the bi's are alldi�erent, then h({b1, . . . ,bs}) also onsists of s di�erent elements.Now let p =
⌊

log n
2

⌋, and put s = 2p. If I is a k-element subset of {1, 2, . . . , s},put â := 0(vs+1 7→1,...,v2s 7→1), de�ne αI := 0{vi:i∈I} and βI := 1{vs+i:i∈I} 3, and put
aI = â(αI ,βI) and de�ne fn,k by T (fn,k) = {aI : I ⊆ {1, 2, . . . , s}, |I| = k} ∪ {0}.3With a slight abuse of notation the bi vetors are used both to denote elements of {1, 2, . . . , s}and their binary representations.

64 Projetive DNF FormulasWe laim that fn,k is minimally non-k-projetive. The argument for this is verysimilar to the argument in the speial ase above. The projetion ρI =
∧

i∈h(I) vs+iontains only aI from T (fn,k) by part (a) of Lemma 6.8, and if aI is not ontained in
T (f ′) for some f ′ with T (f ′) ⊆ T (fn,k), then the projetion ρ0 =

∧

i∈I vi ontainsonly 0 from T (f ′). It only needs to be shown that 0 is deviant for fn,k. Let ρ beany k-onjuntion ontaining 0. We an assume that every literal vi in ρ has i ≤ 2s,as the other literals do not exlude any aI . We show that besides 0 there is an aI in
T (ρ), whih implies the laim by the remark following Proposition 2.1. If all the literalsome from the �rst s variables then aI orresponding to these literals learly satis�esthe requirements. Otherwise, let us assume that the literals in ρ are of the form vi, for
i ∈ I1 ∪ I2, I1 ⊆ {1, 2, . . . , s}, I2 ⊆ {s+1, s+2, . . . , 2s}, |I2| > 0 and |I1|+ |I2| = k.By part (b) of Lemma 6.8 there is an I ⊆ {1, 2, . . . , s}, |I| = k, I1 ⊂ I suh that
h(I) ∩ I2 = ∅, and by de�nition, aI ∈ T (ρ). 2Using the results on the relation between the exlusion dimension and the omplexityof learning with membership and proper equivalene queries [11; 65; 67℄ we get thefollowing.Proposition 6.9 The lass k-PDNFn an be learned with O (n 2k

(

n
k

)2
) membershipand proper equivalene queries. On the other hand the query omplexity of this lassis at least (⌊n/4⌋

k

)

− 1.ProofThe query omplexity of a formula lass R is at most XD(R) · log |R| and at least
XD(R) (see, e.g., [11℄). We are interested in the ase when R is the set of k-PDNFs.Sine the number of k-onjuntions over n variables is (n

k

)

2k (hoose k variable fromthe n and then hoose an orientation for eah), a k-PDNF onsists of at most 2k
(

n
k

)terms. Noting that the number of K-term-DNFs is at most (3n)K , one derives theupper bound 3n2k(n
k) for the number of k-PDNFs whih, ombined with Theorem 6.7,ompletes the proof. 2The number of queries used by the learning algorithm that the above propositionreferres to, is polynomial in n for every �xed k. On the other hand, the running timeis not neessarily polynomial.Blum [22℄, using ideas from Littlestone and Helmbold et al. [69; 91℄, shows thata simple sublass of deision lists (alled 1-deision lists) is e�iently learnable in themistake-bounded model. It follows from a straightforward generalization of this resultand Proposition 4 in [115℄ (disussing the relation of projetive DNFs and deision lists)that for every �xed k, the lass k-PDNF is learnable with polynomially many improperequivalene queries and with polynomial running time. (Yet another proof for this isTheorem 6.2: evidently, e�ient learnability follows from e�ient revision.)Thus the question wether the lass an be learned with proper equivalene queriesin polynomial running time is still open.

6.4 Conluding Remarks 656.4 Conluding RemarksAs mentioned, an interesting diretion would be to study the omputational omplexityof algorithmi questions related to PDNF. Reall that the disussed results leave openthe question whether there is a omputationally e�ient equivalene and membershipquery learning algorithm for k-PDNF.Another diretion ould be to onsider noisy model, that is, when in some round rthe label yr is not the orret lassi�ation of instane xr, that is, yr 6= ftrg(xr) (asin [113℄). A speial motivation for this is that, for tehnial reasons, we had alreadyonsidered noise in the intermediate steps in the analysis of algorithm Rev-k-PDNF.However this model does not seem to be too interesting. Assume that some algorithmAlgo is an e�ient learning algorithm for some formula (or onept) lass with mistakebound mb when noise is not allowed. Then this algorithm an be used to learn the samelass in noisy environment making at most mb · fl mistakes, where fl denotes thenumber of false labels (i.e., the number of rounds when yr 6= ftrg(xr)) in a given run,iterating the following: initialize algorithm Algo, run it as long as its mistake bound isbelow mb, then reset. (Note also that if fl and/or mb is not known in advane, onean use the usual doubling tehnique�but this adds an extra logarithmi fator.) Formore on this issue and some other related topis see for example [20; 21℄.Finally note that the results presented in this hapter�unless noted otherwise�appeared in the paper [115℄, o-authored by the author of the present dissertation.

Part IICharaterization Results

67

Chapter 71-PDNF FormulasChapter 6 disussed the revision of the k-PDNF formulas, the lass introdued byValiant [128℄ motivated by ertain biologial onsiderations. During the researh aimedto analyze this apparently new lass, a speial sublass, the 1-PDNF formulas haveshown some interesting regularities in their form. Further examination of this phe-nomenon has on�rmed that this was not just a mere oinidene, and indeed there issome nie haraterization for the lass of 1-PDNFs. In this hapter this result is pre-sented. Throughout the hapter the notations and terminology introdued in Chapter 6are used.7.1 p-irredundany and a Charaterization of 1-PDNF FormulasFirst let us note that if ϕ is a 1-PDNF that inludes two omplementary projetions,that is, it is of the form ϕ = vt1 ∨ vt2 ∨ · · · for some variable v, then by deletingeverything else besides these two terms, we get an equivalent formula. Indeed, byEquation (6.2) vt1 ∨ vt2 ≡ vϕ ∨ vϕ, whih is obviously equivalent to ϕ.We formulate a notion of irredundany for 1-PDNF, whih we all p-irredundanyto distinguish it from the usual notion of irredundany for DNF. Unlike the standardnotion, p-irredundany of a 1-PDNF is easy to deide.De�nition 7.1 A 1-PDNF formula ϕ = ρ1t1 ∨ · · · ∨ ρℓtℓ is p-irredundant if thefollowing onditions all hold:(a) Lit(ρiti) 6⊆ Lit(ρjtj) for eah distint i, j ∈ {1, . . . , ℓ},(b) ρi, ρi 6∈ Var(ti) for every 1 ≤ i ≤ ℓ,() if ℓ ≥ 3 then ρi 6= ρj for eah distint i, j ∈ {1, . . . , ℓ}.Otherwise, ϕ is alled p-redundant.The �rst ondition says that no term implies another, the seond that in eah termthe projetion and onjuntion parts are disjoint (a formula violating any of these two69

70 1-PDNF Formulasonditions has a trivial simpli�ation), and the third that if there are at least threeterms, then no two projetions are omplementary (reall the argument above).Given a 1-PDNF expression, one an easily transform it into a p-irredundant formas follows. First delete any term that has the negation of its ρ-part ontained in its
t-part (violating (b)). Next hek if there are two omplementary projetions, and ifthere are, then delete all the other terms, thereby guaranteeing () (again, reall theargument from the beginning of the setion). Otherwise, delete every term subsumedby another term, ensuring (a). Finally, if in a remaining term the t-part ontains theprojetion literal, then delete the projetion literal from that term. The �nal expressionis a p-irredundant 1-PDNF, whih is equivalent to the original one.The above algorithm runs in polynomial time, thus we have:Proposition 7.2 There is a polynomial algorithm whih, given a 1-PDNF expression,transforms it into an equivalent p-irredundant 1-PDNF expression.In view of this it thus su�es to onsider only 1-PDNF expressions in p-irredundantform for the haraterization of 1-PDNF formulas:Theorem 7.3 A formula ϕ is a p-irredundant 1-PDNF formula if and only if it is eitherof the form

ϕ =

s
∨

i=1

(ρi,1ti ∨ · · · ∨ ρi,ℓi
ti),where ρi,r 6∈ Var(ti) and ρi,r ∈ Lit(tj) for every distint i, j ∈ {1, . . . , s} and 1 ≤ r ≤

ℓi, and furthermore the projetions are all based on di�erent variables, or it is of theform
ϕ = vt ∨ vt′ ,where v 6∈ Var(t) and v 6∈ Var(t′).Informally, the �rst ase of the theorem says the following. Let us onsider a termin a p-irredundant 1-PDNF to onsist of a �stem� t and a �petal� ρ. Then the petalof eah term is not inluded in its stem (that muh is lear from the de�nition ofp-irredundany) and if two terms have di�erent stems then eah stem ontains thenegation of the other one's petal. In other words, eah stem onsists of the negationsof all the petals orresponding to terms with di�erent stems, plus, possibly, some otherliterals.7.2 Proof of Theorem 7.3First we give a desription of those p-irredundant 1-projetive DNF that representeither a monotone or an a-unate funtion, and then we give the general desription.We assume w.l.o.g. throughout this setion that eah 1-PDNF in question determinesa non-onstant funtion and has terms that do not ontain any omplementary literals.Throughout the proof we also frequently use the fat that for arbitrary terms t and t′it holds that T (t) ⊆ T (t′) if and only if Lit(t′) ⊆ Lit(t) (see Setion 2.3).

7.2 Proof of Theorem 7.3 71Lemma 7.4 A formula ϕ is a p-irredundant 1-PDNF formula representing a monotone(resp. a-unate) funtion if and only if it is either of the form
ϕ = ρ1t ∨ · · · ∨ ρℓt, (7.1)where ρ1, . . . , ρℓ are di�erent unnegated variables (resp. literals whose signs agree with

a) not ontained in Var(t), and t is a monotone (resp. a-unate) term, or it is of theform
ϕ = ρt ∨ ρtt′, (7.2)where ρ is an unnegated variable (resp. its sign agrees with a) and t, t′ are monotone(resp. a-unate) terms not ontaining ρ or ρ.ProofWe prove only the monotone ase, as the a-unate ase follows by onsidering themonotone funtion obtained by replaing assignment x with x ⊗ a. (Note that afuntion f is k-PDNF if and only if fa is, where fa(x) = f(x⊗ a).) It follows diretlyfrom the de�nitions that every expression of the form of Equation (7.1) or (7.2) isindeed a p-irredundant 1-PDNF expression.Let ϕ be an arbitrary monotone p-irredundant 1-PDNF formula. Separating thenegated and unnegated projetions, w.l.o.g. let us write ϕ as

ϕ =
∨

i∈I

(vi · ti) ∨
∨

j∈J

(vj · tj). (7.3)(This representation of ϕ is onvenient for the following series of laims.)Claim 7.5 For any monotone formula ϕ of the form as in Equation (7.3) it holds thatthe index set I is nonempty, and that tr is monotone for all r ∈ I ∪ J .ProofThe �rst part of the Claim holds beause ϕ determines a non-onstant monotonefuntion, thus ϕ(1) = 1.To prove monotoniity for ti, i ∈ I, note that 1 satis�es every monotone projetion,thus by projetivity (vi · ti)(1) = ϕ(1), whih equals 1 (as argued above), thus ti mustbe monotone.Finally, let us onsider a term vjtj with j ∈ J . Asssume for the ontradition thatterm tj ontains negative literal vr. Let x be any assignment satisfying the term vj · tjand thus ϕ. By monotoniity x(vr 7→1) must satisfy ϕ. However, then, by projetivityand beause r 6= j (by (b) of p-irredundany), x(vr 7→1) must satisfy tj , a ontradition.
2Claim 7.6 For any monotone formula ϕ of the form as in Equation (7.3) it holds that

T (ϕ) ⊆ T (ti) for all i ∈ I.

72 1-PDNF FormulasProofPik an arbitrary i ∈ I. Let x ∈ T (ϕ), so ϕ(x) = 1. By monotoniity ϕ (x(vi 7→1)
)

= 1,by projetivity ti (x(vi 7→1)
)

= 1, and by (b) of p-irredundany ti(x) = 1, whih provesthe laim. 2Claim 7.6 an be used to show that the t-parts of the terms with positive ρ-partsare all the same�that is, ti = t for i ∈ I for some term t:Claim 7.7 For any monotone formula ϕ of the form as in Equation (7.3) it holds thatthere must be a single term t suh that
ϕ =

∨

i∈I

(vi · t) ∨
∨

j∈J

(vj · tj).ProofConsider any two distint i, j ∈ I. From projetivity and from Claim 7.6 it follows that
T (viti) ⊆ T (ϕ) ⊆ T (tj) and, likewise, that T (vjtj) ⊆ T (ϕ) ⊆ T (ti). Thus

Lit(tj) ⊆ Lit(viti) and Lit(ti) ⊆ Lit(vjtj). (7.4)From this and from (a) of p-irredundany it follows that vj 6∈ Lit(viti) and vi 6∈

Lit(vjtj). But then Lit(tj) = Lit(ti). 2Putting together Claims 7.5 and 7.7, it follows that we are done if J = ∅. Theremaining ase (i.e., when J 6= ∅) is handled by the following Claim.Claim 7.8 Let π be a monotone p-irredundant 1-PDNF formula of the form
π =

∨

i∈I

(vi · t) ∨
∨

j∈J

(vj · tj),where I and J are nonempty sets, furthermore tj , for j ∈ J , and t are monotone terms.Then π = vit ∨ vitt
′ for some variable vi and some monotone term t′.ProofIt follows from projetivity and from Claim 7.6 that T (vjtj) ⊆ T (π) ⊆ T (t), thus

Lit(t) ⊆ Lit(vjtj), and so (as t is monotone) Lit(t) ⊆ Lit(tj). Thus π an be writtenas
π =

∨

i∈I

(vi · t) ∨
∨

j∈J

(vj · tt
′
j),where now I, J 6= ∅ and t, t′j are monotone terms. If I = J = {i} for some i, then weare done. For the rest of the proof we assume that this is not the ase, and show thatthis leads to ontradition.Now it must be the ase, that there are terms (vi · t) and (vj · tt

′
j) in π suh that

i 6= j. Thus T (vivjtt
′
j) 6= ∅ (by (a) of p-irredundany), and it also holds (by Equation(6.4)) that T (vjvit) = T (vivjtt

′
j). Then either t′j = vi or t′j = ⊤. But t′j = vi wouldviolate (a) of p-irredundany, thus it must be that t′j = ⊤.

7.2 Proof of Theorem 7.3 73Let us onsider �rst the ase when π ontains only two terms. Then it must be ofthe form π = (vi · t) ∨ (vj · t). Then, on one hand, if vj 6∈ t, then it ontradits themonotoniity of π (in variable vj), on the other hand, if vj ∈ t, then it ontradits (b)of p-irredundany.Let us onsider now the ase when π has at least three terms. Sine t′j = ⊤, byprojetivity T (vjt) ⊆ T (π), and thus by monotoniity T (t) ⊆ T (π). With Claim 7.6.this implies T (t) = T (π). But then for every other k ∈ J it holds that T (vkπ) =

T (vkt), meanwhile by projetivity T (vktt
′
k) = T (vkπ), so t′k = ⊤. Therefore

t ≡ π =
∨

i∈I

(vi · t) ∨
∨

j∈J

(vj · t) ≡

(

∨

i∈I

vi ∨
∨

j∈J

vj

)

t.This an only hold if some variable ours both in I and J , ontraditing ondition ()of the de�nition of p-irredundany for π.This ompletes the proof of the laim. 2Now the lemma, as mentioned, follows from Claims 7.5, 7.7 and 7.8. 2The example of (6.3) (i.e., that (x · y) ∨ (z · y) ≡ (x · y) ∨ (x · yz)) shows thatthe representation as a p-irredundant 1-PDNF is not always unique. Also, it is aninteresting onsequene of the theorem that there are monotone 1-PDNF funtions,whih annot be written as a monotone 1-PDNF. Consider, for example, the 1-PDNF
(x · 1) ∨ (x · yz),representing the monotone funtion x ∨ yz. If there were an equivalent monotone1-PDNF, then it ould be transformed into a monotone p-irredundant 1-PDNF, whihmust look like the �rst ase in the theorem. But then the minimal elements of T (x∨yz)(where minimality is understood in the partial order de�ned by �≤�) must have Hammingdistane at most 2, whih is not the ase for this funtion:

distH((x 7→ 1, y 7→ 0, z 7→ 0), (x 7→ 0, y 7→ 1, z 7→ 1)) = 3 .Now we are ready to prove Theorem 7.3Proof (of Theorem 7.3)Again, one diretion of the theorem follows immediately from the de�nition of p-irredundany. For the other diretion, if there are two omplementary projetions in ϕ,then by ondition () of p-irredundany, ϕ must be of the form vt∨ vt′. Otherwise, letus assume that ϕ is of the form ϕ = ρ1t1 ∨ · · · ∨ ρℓtℓ. Consider any two terms ρiti and
ρjtj . If T (ρiti)∩ T (ρjtj) 6= ∅, then ρiti ∨ ρjtj is unate, and by Lemma 7.4 it must bethe ase that ti = tj . On the other hand, if T (ρiti)∩T (ρjtj) = ∅, then by projetivity,it holds that T (ρiρjtj) = ∅, thus ρi ∈ Lit(tj). Thus for every term ρiti, those terms
ρjtj for whih T (ρiti)∩T (ρjtj) 6= ∅ have the same onjuntion part, and all the otherterms ontain ρi in their onjuntion part. 2

74 1-PDNF Formulas7.3 Conluding RemarksThe main result of this hapter is the haraterization of the sublass of 1-PDNFfuntions. It would be interesting to get a desription of k-PDNF funtions for larger
k. Finally note that the results presented in this hapter�unless noted otherwise�appeared in the paper [115℄, o-authored by the author of the present dissertation.

Chapter 8
k-term-DNF Formulas withLargest Number of PrimeImpliants
Prime impliants of a Boolean funtion (or, in other words, maximal sububes of asubset of the n-dimensional hyperube 1) form a basi onept for the theory of Booleanfuntions and their appliations. Conerning the maximal number of prime impliants,it is known that an n-variable Boolean funtion an have at most O (3n√

n

) primeimpliants, and there are n-variable Boolean funtions with Ω
(

3n

n

) prime impliants(see, e.g., [31℄).Another ase onsidered is the maximal number of prime impliants of Booleanfuntions represented by disjuntive normal forms (DNF) with a bounded number ofterms. The result that a k-term-DNF an have at most 2k − 1 prime impliants wasdisovered independently by Chandra and Markowsky [31℄, Levin [90℄ and MMullenand Shearer [97℄. (For a reent appliation in omputational learning theory, see Heller-stein and Raghavan [68℄.) It was shown by Laborde [88℄, Levin [90℄ and MMullen andShearer [97℄ that the bound is sharp, i.e., there are k-term-DNFs with 2k − 1 primeimpliants (Chandra and Markowsky gave an example with more than 2k/2 prime im-pliants). In view of these results, we all a DNF maximal if it has k terms and 2k −1prime impliants for some k.In this hapter, on one hand, the above results of [31; 88; 90; 97℄ (about maximalDNFs) are presented, and on the other hand, these results get ompleted by determiningall the maximal disjuntive normal forms.
1This and the following hapter heavily relies on the view disussed in Subsetion 2.3.1: to view

A(V ′) as the n-dimensional ube, and a term as a subube of it, where V ′ is some �nite subset of V .75

76 k-term-DNF Formulas with Largest Number of Prime Impliants
w5u2

w2 u2u3

w3u1

v2 v3

v4

w1u1

w4u1u4

v1

Figure 8.1: A non-repeating, unate-leaf deision tree (NUD). The labels of the edges areomitted for simpliity.8.1 Nonrepeating Deision Trees and the Chara-terization of Maximal DNFsIn order to formulate the desription, let us introdue the notion of non-repeating,unate-leaf deision tree.For a given k ≥ 2 and r ≥ 0, let us onsider the pairwise distint variables
v1, . . . , vk−1, w1, . . . , wk and u1, . . . , ur. For eah of the w and u variables, pik anorientation, i.e., form the literals εi and δj , where εi is either wj or wj and δj is either
uj or uj, for i = 1, . . . , k and j = 1, . . . , r. A non-repeating unate-leaf deisiontree (NUD) T over these variables and literals is onstruted by taking an LBT overvariables v1, . . . , vk−1 with k − 1 inner nodes suh that eah inner node has di�erentlabel, also assign to eah leaf a distint w literal from those formed above, and, inaddition, assign to eah leaf an arbitrary subset of the u literals formed above. Theset of leaves of T is denoted by L. If we want to mention the number of v variablesand w literals used in the onstrution, then we refer to T as a k-NUD (the value ris irrelevant). Figure 8.1 gives an example of a 5-NUD (the labeling of the edges isomitted for simpliity).A k-NUD represents a k-term-DNF, determined as follows. For a leaf ℓ ∈ L, letthe term tℓ be the onjuntion of

• the v literals along the path leading to ℓ, and of
• the w and u literals assigned to ℓ.The k-term-DNF represented by the k-NUD T is

ϕT =
∨

ℓ∈L

tℓ.For example, the 5-term-DNF represented by the 5-NUD of Figure 8.1 is
v1 v2 v4w1 u1 ∨ v1 v2 v4w2 u2 u3 ∨ v1 v2 w3 u1 ∨ v1 v3 w4 u1 u4 ∨ v1 v3w5 u2.The Boolean funtion represented by ϕT an also be thought of in the following way:given a truth assignment x to all the variables, use the values of the v variables todetermine a path from the root to a leaf. The funtion value is 1 if x makes all the

8.1 Nonrepeating Deision Trees and the Charaterization of MaximalDNFs 77
w and u literals assigned to this leaf true, and it is 0 otherwise. It is lear from thede�nition that the inputs aepted at a leaf ℓ are preisely those assignment whihsatisfy the term tℓ. The funtion ϕT is a generalized addressing funtion or multiplexer[109; 132℄. If a DNF ϕ omes from a NUD T , then T an be reonstruted from ϕ.The w and u literals are those whih are unate in ϕ, i.e., their negation does not ourin ϕ, while the v variables are those whih our both negated and unnegated. Amongthe v variables, the one labeling the root is the only one whih ours in every term(either unnegated or negated). The left hild is the only v variable whih ours in everyterm ontaining the negation of the root variable, et. In view of this orrespondene,with some abuse of terminology, we an talk about a DNF being a NUD, rather thanorresponding to a NUD. The maximal DNF of [88; 97℄ (resp., [90℄) orresponds to atree whih is a single path (resp., a omplete binary tree), without any u literals. ANUD generalizes these examples by allowing for an binary arbitrary tree and for theadditional u literals. Now we an formulate the desription of maximal DNF.Theorem 8.1 A DNF is maximal if and only if it orresponds to a NUD.A losely related lass of DNF tautologies is obtained if we onsider trees with thesame kind of inner nodes, but without any literals assigned to the leaves. In the aseof the example of Figure 8.1, the orresponding DNF tautology is

v1 v2 v4 ∨ v1 v2 v4 ∨ v1 v2 ∨ v1 v3 ∨ v1 v3 .Let us refer to this lass of tautologies as non-repeating deision tree tautologies,or ND's. The main step in the proof of Theorem 8.1, the ND Lemma (Lemma 8.11)is to show that for every DNF tautology the following two properties are equivalent:(a) any two of its terms have exatly one on�iting pair of literals (in other words,the terms are pairwise neighboring), (b) it is an ND. Lemma 8.11 was proven reently,independently from our work, by Kullmann [85; 86℄ 2. Also note that Theorem 9.1generalizes the result of the ND Lemma, thus the latter simple follows from the former;however the proof for the former ase is more simple, and it seems to worth disussingit separately.We note that ND's ome up in other ontexts as well, e.g., in onnetion with theomplexity of analyti tableaux (Urquhart [125℄, referring to earlier unpublished workof Cook, and Arai et al. [15℄).The haraterization of ND's as pairwise neighboring DNF tautologies is a diretonsequene of the following Splitting Lemma (Lemma 8.10): if the n-dimensional2Kullmann's proof uses the onept of Hermitian defet and other onepts from linear algebra.(The Hermitian rank of a symmetri matrix is the maximum of the number of positive and thenumber of negative eigenvalues of the matrix (Gregory, Watts and Shader [55℄), and the Hermitiandefet is the di�erene of the order of the matrix and its Hermitian rank [85; 86℄.) Kullmann alsouses the haraterization of ND's as strongly minimal tautologies with the additional property thatthe number of terms is one more than the number of variables (Aharoni and Linial [1℄, Davydov etal. [33℄, Kullmann [84℄), proved using Hall's theorem or resolution tehniques. (A tautology is stronglyminimal if deleting any term, or adding any literal to a term results in a non-tautology.) Our proof isan elementary ombinatorial argument.

78 k-term-DNF Formulas with Largest Number of Prime Impliantshyperube is partitioned into sububes of pairwise distane one, then there is a split ofthe whole ube into two half ubes suh that every ube of the partition is ontainedin one of the two halves. Note that the result presented in the next hapter (Theorem9.1) generalizes this result; however the proof for is muh longer. For this, we presenta separate, simple proof for the Splitting lemma.Reent related work on the ombinatorial aspets of the satis�ability problem (seeKullmann [86℄ for a reent survey) makes use of the onnetion with partitioning om-plete graphs into omplete bipartite graphs (biliques). This onnetion, and in parti-ular, the Graham�Pollak theorem [54℄ is used by Laborde [88℄ to show that a maximal
k-term-DNF ontains at least 2k − 1 variables. (This result, in turn, follows immedi-ately from Theorem 8.1 above without using the Graham�Pollak theorem.) Setion 8.5ontains an appliation of the Splitting Lemma (Lemma 8.10) showing that the familyof reursive partitions into omplete bipartite graphs has an extremal property amongall partitions into omplete bipartite graphs.
8.2 Further De�nitions and NotationsThe DNF ϕ is aminimal over of the term t, if ϕ is a over of t (i.e., t is an impliantof ϕ), but every DNF obtained from ϕ by deleting a term is not a over of t.Let t be a term, and ϕ = t1∨· · ·∨ tk be a DNF. Every term ti of ϕ an be uniquelywritten in the form

ti = t′i ∧ t
′′
i , (8.1)where t′i ontains all the literals from ti whih also our in t, and t′′i ontains theremaining literals of ti.Reall that for a DNF ϕ, Var(ϕ) (resp., Lit(ϕ)) denotes the set of variables (resp.,literals) ourring in any term of ϕ. Let

UnateLit(ϕ) = {u ∈ Lit(ϕ) : u 6∈ Lit(ϕ)} (8.2)be the set of unate literals in ϕ, i.e. the set of those literals ourring in ϕ, for whihtheir negation does not our in ϕ.The graph of the n-dimensional ube has An as verties, and edges (x,y) forevery x,y ∈ An of Hamming distane 1. The distane of two sububes Q1 and Q2is min{distH(x,y) : x ∈ Q1,y ∈ Q2}. Note that the distane of T (t1) and T (t2)is equal to the number of on�its between the terms t1 and t2. A partition of theube into sububes an also be viewed as a disjoint DNF tautology. A partition of aube into sububes is pairwise neighboring, if any two sububes in the partition havedistane 1. A set of terms forms a pairwise neighboring partition if the orrespondingset of ubes forms a pairwise neighboring partition.

8.3 Previous Results on k-term-DNFs and Prime Impliants 798.3 Previous Results on k-term-DNFs and PrimeImpliantsIn this setion we desribe the results of [31; 88; 90; 97℄ on prime impliants of
k-term-DNF. We give a omplete, self-ontained presentation in order to larify whatare the onsequenes of the separate assumptions of being an impliant, a prime im-pliant, resp. a minimal over, and to give an expliit formulation of results impliit in[88℄. We use the notation introdued above in (8.1) and (8.2).Proposition 8.2 A term t is an impliant of a DNF ϕ if and only if ∨k

i=1 t
′′
i = 1.ProofFor the �if� diretion, let x be a truth assignment suh that t(x) = 1. Then t′i(x) = 1for every i and t′′i (x) = 1 for some i, so ti(x) = 1 for some i, and thus ϕ(x) = 1.For the �only if� diretion assume ∨k

i=1 t
′′
i 6≡ 1, i.e., (∨k

i=1 t
′′
i

)

(x) = 0 for some
x. The literals ourring in ∨k

i=1 t
′′
i do not our in t, but it may be the ase that thenegation of suh a literal ours in t. Let y be the truth assignment obtained from x bysetting all the literals of t to 1. Then every literal in ∨k

i=1 t
′′
i is either unhanged, or ishanged to 0, thus (∨k

i=1 t
′′
i

)

(y) = 0, and so ϕ(y) = 0. But t(y) = 1, ontraditingthe fat that t is an impliant of ϕ. 2Proposition 8.3 If t is a prime impliant of ϕ then(a) t =
∧k

i=1 t
′
i,(b) every literal of t ours in ϕ.ProofFor (a), it follows from the de�nition that t ≤ ∧k

i=1 t
′
i. Assume that a variable v in tdoes not our in any ti. Then v does not our in ϕ at all, though v may our insome t′′i . But then t is an impliant of the disjuntion of those terms in ϕ whih do notontain v, and so by deleting v from t we still get an impliant of ϕ. Part (b) followstrivially from (a). 2Proposition 8.4 If ϕ is a minimal over of t then(a) Lit(t) ∩ Lit(ϕ) = UnateLit(ϕ),(b) ∨k

i=1 t
′′
i is a minimal over of 1.ProofTo see that Lit(t) ∩ Lit(ϕ) ⊆ UnateLit(ϕ) note that if t ontains a non-unate literal

ε of ϕ, then terms ontaining ε an be deleted from ϕ and we still get a over of t,ontraditing the minimality of ϕ. For the other diretion of (a), assume that a unateliteral ε is not ontained in t. Then ε t is also an impliant of ϕ, whih is overedby the terms of ϕ not ontaining ε. As these terms do not ontain ε either, theirdisjuntion overs t as well, again ontraditing the minimality of ϕ. Part (b) followsfrom Proposition 8.2. 2

80 k-term-DNF Formulas with Largest Number of Prime ImpliantsPutting together Propositions 8.2, 8.3 and 8.4, we get the following.Theorem 8.5 If t is a prime impliant of ϕ and ϕ is a minimal over of t, then(a) t is the onjuntion of the literals in UnateLit(ϕ),(b) ∨k
i=1 t

′′
i is a minimal over of 1.Theorem 8.6 ([31; 90; 97℄) Every k-term-DNF has at most 2k−1 prime impliants.ProofLet ϕ be a k-term-DNF and t be a prime impliant of ϕ. Consider a minimal set ofterms of ϕ overing t. Then, by Theorem 8.5 (a), t is uniquely determined by thisnonempty set of terms. 2The next result gives important strutural information on maximal DNF's.Theorem 8.7 ([88℄) Let ϕ = t1 ∨ · · · ∨ tk be a k-term-DNF with 2k − 1 primeimpliants, and let t be the term formed by the literals in UnateLit(ϕ). Then(a) ∨k

i=1 t
′′
i is a minimal over of 1,(b) t′′i and t′′j on�it in exatly one variable, for every 1 ≤ i < j ≤ k.ProofBy Theorems 8.5 and 8.6, every nonempty subset of the terms of ϕ is a minimal overingof some prime impliant of ϕ. Part (a) follows by applying Theorem 8.5 (b) to all theterms.Let us onsider now ϕi,j = ti ∨ tj . Again, this is a minimal over of a primeimpliant of ϕ. If ti and tj do not on�it in any variable, then, by Theorem 8.5 (a),the orresponding prime impliant is the term formed by all the literals in ti and tj .But that term is not a prime impliant. Indeed, it must be the ase that ti 6= tj , andso ti ∧ tj < ti or ti ∧ tj < tj . If ti and tj on�it in more than one variable, then weget a ontradition to Theorem 8.5 (b), as the disjuntion of two terms with at leasttwo on�its annot be 1. 28.4 Proof of Theorem 8.1In this setion we prove Theorem 8.1: A DNF is maximal if and only if it orrespondsto a NUD.First we onsider the �if� diretion.Lemma 8.8 Every NUD orresponds to a maximal DNF.

8.4 Proof of Theorem 8.1 81ProofLet T be a k-NUD, and let H be a nonempty subset of its leaves. De�ne the term
tH :=

∧

UnateLit({tℓ : ℓ ∈ H}).Let x be a truth assignment satisfying tH . It follows by indution on the number ofinner nodes evaluated, that on input x we arrive at a leaf belonging to H , and it followsfrom the de�nition of tH that x satis�es every literal assigned to that leaf. Thus tH isan impliant of ϕT .Assume that we delete a v literal, say ε = vi from tH , to get the term t′. (The
ε = vi ase is symmetri.) As ε ∈ UnateLit({tℓ : ℓ ∈ H}), there is a leaf ℓ1 belongingto H below the right hild of the inner node labelled vi, but no leaf below the left hildof the node is in H . Let x be the assignment satisfying all the literals in tℓ1 and tH ,with those w literals that don't our in these terms set to 0. Let y = x[vi]. On theinput y we arrive at a leaf ℓ2 below the left hild of vi. But the w literal assigned to
ℓ2 is set to 0 in y, and hene ϕT (y) = 0. On the other hand, y still satis�es t′. Thus
t′ is not an impliant.Assume now that we delete a w literal, say ε = wj, from tH , to get the term t′.(The ε = wj ase is symmetri.) Let ℓ be the leaf ontaining ε. It follows from thede�nition of tH that ℓ ∈ H . Let x be an assignment satisfying tℓ and tH , and let
y = x[wj]. Then the input y leads to ℓ, but as the literal ε has value 0 for assignment
y, we get ϕT (y) = 0. On the other hand, y still satis�es t′. Thus t′ is not an impliant.The ase when we delete a u literal, say δ = uj or δ = uj, from tH is the same,exept now there may be several leaves in H ontaining δ. We an hoose any suhleaf, and repeat the previous argument. It again follows that the term obtained afterdeleting the literal is not an impliant.Thus the term tH is a prime impliant of ϕT . Terms orresponding to di�erentsubsets of L are di�erent, as eah leaf has its unique w literal. Hene ϕT has at least
2k − 1 prime impliants, and so it is maximal by Theorem 8.6. 2The rest of this setion ontains the proof of the �only if� diretion of Theorem 8.1.Lemma 8.9 Every maximal DNF orresponds to a NUD.ProofLet ϕ = t1 ∨ · · · ∨ tk be a k-term-DNF with 2k − 1 prime impliants. Considerthe term t = UnateLit(ϕ), and the deomposition ti = t′i ∧ t′′i of the terms of ϕwith respet to t, as in (8.1). Aording to Theorem 8.7, the terms t′′1, . . . , t′′k form apairwise neighboring partition over the non-unate variables ourring in ϕ, i.e., over the
s-dimensional ube, As, where s = |Var(ϕ)| − |UnateLit(ϕ)|. The following lemmastates a basi ombinatorial property of pairwise neighboring partitions.Lemma 8.10 (Splitting Lemma) If a set of k ≥ 2 terms forms a pairwise neigh-boring partition, then there is a variable that ours (unnegated or negated) in everyterm.

82 k-term-DNF Formulas with Largest Number of Prime ImpliantsProofWe proeed by indution on the number of variables; the ase of one or two variablesis trivial. Let t̂1, . . . , t̂k be terms forming a pairwise neighboring partition of the s-dimensional ube As.Consider the ε half ube orresponding to an arbitrary literal ε. The restrition of
t̂1, . . . , t̂k to the ε half ube is formed by deleting terms whih ontain the literal ε.It follows diretly from the de�nitions that the restrition gives a pairwise neighboringpartition of the ε half ube. If the restrition onsists of a single ube then ε is a termof the original partition. In this ase every other term of the original partition mustontain ε and we are done. Hene in what follows we may assume that the restritionsalways ontain at least two terms.Applying the indution hypothesis to the pairwise neighboring partition of the s−1dimensional ube obtained by deleting the omponent orresponding to ε, and deletingthe literal ε from eah of the remaining terms, it follows that there is a variable Split(ε),di�erent from the variable of ε, ontained (negated or unnegated) in every term overinga point in the ε half ube. As there are 2s literals and s variables, there are literals ε1and ε2 suh that Split(ε1) = Split(ε2) = u for some variable u.We laim that u ours (negated or unnegated) in every term of the partition
t̂1, . . . , t̂k. If ε1 is the negation of ε2, then u must our in every term and we aredone; heneforth we an assume that ε1 and ε2 have di�erent variables. Assume nowfor ontradition that u is not in every term of the partition. Let t̃ be a term of thepartition ontaining neither u nor u, and let x be a point in T

(

t̃
). Then x belongs toneither the ε1 subube, nor the ε2 subube.Consider the points x[ε1] and x[ε2], overed respetively by terms t̃ε1

and t̃ε2
of thepartition. Note that t̃ε1

and t̃ε2
are di�erent. Indeed, if t̃ε1

= t̃ε2
then, as x[ε1] and x[ε2]di�er in both their ε1 and ε2 omponents, t̃ε1

(and thus t̃ε2
) ontains neither ε1 nor ε2,and hene it overs x as well. This ontradits the de�nition of x.The points x[ε1] and x[ε2] di�er only in their ε1 and ε2 omponents; hene the uniqueon�it of the terms t̃ε1

and t̃ε2
is either ε1 or ε2. Assume without loss of generalitythat the on�it is ε1, and that t̃ε1
ontains ε1 and t̃ε2

ontains ε1. By de�nition, both
t̃ε1

and t̃ε2
ontain either u or u. As x[ε1] and x[ε2] do not on�it on u, both t̃ε1

and t̃ε2must ontain variable u with the same orientation; say u appears unnegated in both.Thus so far we have that ε1, u ∈ Lit
(

t̃ε1

) and that
ε, u ∈ Lit

(

t̃ε2

)

.Now onsider the point x[ε1,u] overed by the term t̃ε1,u of the partition. As x[ε1,u]is in the ε1 subube, it ontains either u or u; but as x[ε1,u](u) = 0, it must be u. Whatis the unique on�it of t̃ (the term overing x) and t̃ε1,u? As x[ε1,u] and x on�itonly on their ε1 and u omponents, but t̃ ontains neither u nor u, thus it must be ε1.Then
ε1, u ∈ Lit

(

t̃ε1,u

)

,whih means that t̃ε2
and t̃ε1,u on�it in at least two omponents, a ontradition. 2

8.5 A Graph Theoreti Appliation of the Splitting Lemma 83The Splitting Lemma is now used to prove the haraterization of nonrepeatingdeision tree tautologies mentioned in the introdution.Lemma 8.11 (ND Lemma [85℄) A set of k ≥ 2 terms forms a pairwise neighboringpartition if and only if it is an ND.ProofApply Lemma 8.10 to the pairwise neighboring partition to get a variable v1 ourringin every term. It must be the ase that v1 ours both unnegated and negated, asotherwise the ubes would not over the whole ube. If the T (v1) (resp. the T (v1))half ube ontains just one ube then we stop at that branh, otherwise we use thelemma again to get a variable whih ours in every subube of the partition, belongingto the T (v1) (resp. T (v1)) half ube, et. In this way we get a tree, where the innernodes are labeled with variables and there are k leaves ℓ1, . . . , ℓk orresponding to theubes in the partition. (The tree onstruted is (the dual of) a speial searh treein the sense of [93℄ for the partition.) The labels of the inner nodes are di�erent, asthe same label appearing twie would mean that some pair of ubes have distane atleast 2. Indeed, if variable vi ours twie then let vj be the variable labeling the leastommon anestor of the two ourrenes in the tree. By onstrution, there are termsontaining vi vj, resp. vi vj . Thus the partition is an ND. 2Now we an omplete the proof of Lemma 8.9. Lemma 8.11 gives a nonrepeatingdeision tree for the pairwise neighboring terms t′′1, . . . , t′′k. We laim that by addingthe literals in t′i to the leaf ℓi, we get a k-NUD for ϕ. Consider any truth assignment
x to the variables in ϕ. Evaluating the tree on x, we arrive at a leaf orresponding toa term t′′i . As ϕ(x) = 1 i� t′i(x) = 1, the tree omputes ϕ orretly. By onstrution,all the literals in the leaves are unate. Thus, in order to verify the NUD-ity of thetree, it only remains to show that for every leaf there is a literal whih ours onlyin that leaf (that literal will be its w literal). Assume that this is not the ase, andevery (unate) literal assigned to leaf ℓi ours in some other leaf. Let ε be the lastliteral on the path leading to ℓi. Then ε ∈ UnateLit(ϕ \ {ti}). We laim that
UnateLit(ϕ \ {ti}) \ {ε} is an impliant of ϕ. Let x be a truth assignment satisfyingevery literal in UnateLit(ϕ \ {ti}) \ {ε}, and let us evaluate the tree on x. If we arriveat a leaf other than ℓi, then ϕ(x) = 1 by onstrution. But ϕ(x) = 1 if we arrive at ℓias well, as all unate literals in ℓi our in other leaves, and thus they must be set to 1in x. Thus UnateLit(ϕ \ {ti}) is not a prime impliant of ϕ, ontraditing Theorems8.5 and 8.6. 28.5 A Graph Theoreti Appliation of the Split-ting LemmaGiven a set of pairwise disjoint ubes in the n-dimensional ube An, orresponding toterms t1, . . . , tk, one an onstrut a overing

G = {G1, . . . , Gn}

84 k-term-DNF Formulas with Largest Number of Prime Impliantsof the k-vertex omplete graph Kk by omplete bipartite graphs, where Gr has an edgeonneting verties xi and xj if terms ti and tj on�it in the variable vr. If the set ofubes is pairwise neighboring, then this overing is a partition, as the omplete bipartitegraphs are edge disjoint.Conversely, given a overing G = {G1, . . . , Gn} of Kk by omplete bipartite graphs,we an onstrut a set of pairwise disjoint ubes t1, . . . , tk in {0, 1}n. For every Gr �xarbitrarily one of the sides as the left side. The term ti ontains vr (resp. vr), if vertex
xi is ontained in the left (resp. right) side of Gr. If G is a partition, then it followsthat the ti's are pairwise neighboring. The ubes thus onstruted do not neessarilyform a partition of An (an example is given below).The Graham�Pollak theorem [54℄ states that every partition of Kk into ompletebipartite graphs onsists of at least k−1 graphs. A large lass of suh partitions, whihan be alled reursive partitions, is obtained as follows. Take a omplete bipartitegraph on the whole vertex set. This `takes are' of all edges onneting the two sides. Inorder to partition the remaining edges (those having both endpoints in the same side),repeat the same onstrution, i.e., reursively add similar partitions of the ompletegraphs formed by the two sides of this bipartite graph (see, e.g., [19℄).Consider a partition G = {G1, . . . , Gn} of Kk into omplete bipartite graphs. Letthe degree of a vertex x with respet to G, denoted by dG(x), be the number of Gi'sontaining x, and let the volume Vol(G) of the partition be de�ned as

Vol(G) =
∑

x

2−dG(x).In view of the translation into a set of pairwise disjoint ubes in An desribed above,
Vol(G) ≤ 1 for every G, as dG(xi) = |ti| for every i = 1, . . . , k, and Vol(G) = 1 if andonly if the ubes form a partition of An. For example, the partition of K4 into the 3omplete bipartite graphs ({1}, {3, 4}), ({2}, {1, 4}), and ({3}, {2, 4}) (mentioned in[88℄) has volume 7

8
. This partition of K4 is not reursive. (It was atually this examplewhih suggested Lemma 8.10.) As a orollary to the Splitting Lemma (Lemma 8.10)one gets the following haraterization of reursive partitions. This haraterization isalso a diret onsequene of Kullmann's [84�86℄ results.Corollary 8.12 A partition G is reursive if and only if Vol(G) = 1.ProofThe �only if� diretion follows diretly by indution on the number of verties by on-sidering the bipartite graph from G whih ontains all the verties.For the �if� diretion, one only has to note that the set of terms t1, . . . , tk on-struted above is pairwise neighboring, and by the volume ondition it is also a partitionof the whole ube.Applying Lemma 8.10 we get that there is a variable whih ours (unnegated ornegated) in every term. This means that the orresponding bipartite graph ontains allthe k verties. The remaining partitions of the two sides of this bipartite graph havetotal volume 2, and thus eah side must have volume 1. The statement then followsby indution. 2

8.6 Conluding Remarks 85The orollary shows that among partitions of Kk into omplete bipartite graphs,reursive ones have the largest possible volume. Among the partitions of Kk into k−1omplete bipartite graphs, whih ones have minimal volume?8.6 Conluding RemarksIn this hapter k-term-DNF with the largest number of prime impliants were disussed.Similar results do not appear to be known for shortest prime impliants, i.e., primeimpliants ontaining the smallest possible number of literals. The k-term-DNF
v1v2 ∨ v2v3 ∨ · · · ∨ vk−1vk ∨ vkv1,whih is false for 0 and 1, and true everywhere else, has k(k − 1) prime impliants,namely vivj for every i 6= j. These prime impliants are all shortest prime impliants,as the DNF has no prime impliants onsisting of a single literal. How many shortestprime impliants an a k-term-DNF have in general?Another question onerns the maximal number of prime impliants of a Booleanfuntion whih is true at a given number of points. As noted by Levin [90℄, everyimpliant is determined by the top and bottom of the orresponding subube, in theomponentwise partial ordering of the hyperube (the top and bottom may also beidential). Thus if a funtion is true at m points, then it has O(m2) prime impliants.It is also noted in [90℄ that the n-variable funtion whih is true for assignments ofweight between n

3
and 2n

3
, has mlog 3−o(1) prime impliants. (This is the funtion withthe largest known number of prime impliants among n-variable funtions.) Thus themaximal number of prime impliants is bounded by two polynomial funtions of m, andthe question is to get sharper bounds.Finally note that the results presented in this hapter�unless noted otherwise (likein the ase of the results diussed in Setion 8.3)�appeared in the paper [114℄, o-authored by the author of the present dissertation.

Chapter 9Disjoint DNF Tautologies withCon�it Bound TwoOne of the main ingredients in the proof of the haraterization result in the previoushapter was the ND Lemma (Lemma 8.11), whih an be formulated both using the
• syntati wiew: that the lass of DDNF tautologies with on�it bound one(i.e., DNFs with terms on�iting in one variable pairwise) are NDs (i.e., DNFsgenerated by labeled binary trees with eah inner node having a unique label),and using the
• semanti view: that in every pairwise neighbouring partition of the n-dimensionalube there is a perfet split: a split of the ube in two omplementary halfubes suh that eah subube of the partition is ontained in either one of thehalf ubes.These two views o�er two e�etively di�erent diretions for further investigations; thesediretions are disussed in the next setion. However, somewhat surprisingly, for onemore step these diretions do not separate. More preisely, we shall see in this hapterthat the following strengthening of the ND Lemma holds: any DDNF tautology withon�it bound two an also be generated by some labeled binary trees�or, equivalently,for any ube partition with pairwise distane bounded by two there is a perfet splitsimilar as above.Throughout the notations and terminology introdued in the previous hapter areused.9.1 Charaterization of DDNF tautologies withCon�it Bound TwoThis setion disusses both of the two di�erent diretions mentioned above. Morepreisely: 87

88 Disjoint DNF Tautologies with Con�it Bound Two
• the diretion suggested by syntax, onsidering DDNF and LBT generated tau-tologies
• the diretion suggested by semantis, onsidering the general splitting problemfor ube partitions,�furthermore how the strengthening of the ND Lemma gets realized in these twosettings.9.1.1 Syntati View: DDNF tautologies and LBT generatedDNFsA deision tree (and, of ourse, also an LBT) naturally enodes a DNF tautologyonsisting of the terms orresponding to the leaves of the tree, where the term orre-sponding to a leaf onsists of the literals labelling the edges on the path from the rootto the leaf. These DNF tautologies hold the following speial properties:(a) the terms are pairwise on�iting, and(b) the terms possess a hierarhial struture: there is a variable v that appears ineah of them; there is a variable w that appears in every term ontaining literal
v and there is a variable u that appears in every term ontaining literal v (w and
u may be idential); and so on.Suh DNFs are alled binary tree generated DNFs, or BT-DNFs for short (fora formal de�nition see Setion 9.2); reall on the other hand that DNFs possessingproperty (a) but not neessarily property (b) are alled disjoint DNFs, or DDNFs.The question thus naturally arises, how speial do these properties make a deisiontree, regarding omplexity. This question was investigated by Lovász et al. in [93℄.More preisely they were interested in the following problem: given a DNF tautology ϕ,the task is to onstrut a deision tree suh that for eah term of the DNF generatedby it there is a term of ϕ that is a subterm of it. They have shown that for some very�small� DNF tautologies this problem an be solved only with �extremely large� deisiontrees 1.On the other hand, the ND Lemma (Lemma 8.11) states that, when restriting theDNFs to the sublass posessing property (a) (i.e., the lass of DDNFs), and furtherbounding the number of on�its between the terms to one (i.e., for eah pair of termsthere is exatly one variable appearing negated in one of them and unnegated in theother), then the resulting lass onsists of DNFs that an all be generated by deisiontrees.In this hapter we give a strengthening of the above result, showing that the on�itbound an be relaxed to two:1They measure the omplexity by the depth of the DNF (resp. deision tree), whih is the maximalnumber of literals appearing in a term of the given DNF (resp. of the BT-DNF generated by the tree).What they show is that for some onstant depth DNFs one needs deision trees of depth linear (thusmaximal) in the number of variables.

9.1 Charaterization of DDNF tautologies with Con�it Bound Two 89Theorem 9.1 If ϕ is a DDNF tautology with terms on�iting in one or two variablespairwise, then ϕ is a BT-DNF.Example 9.1The DNF
ϕex9.1 =v2 v4 ∨ v2v3 v4 ∨ v2v3v4 ∨ v1v4 ∨ v1v2 v3v4 ∨ v1v2v3v4 ∨ v1v3v4is a DDNF with on�it bound two, and Figure 9.2 proves that it is also a BT-DNF�whih is also apparent writing ϕex9.1 in the form
ϕex9.1 = v4 v2 ∨ v4v2v3 ∨ v4v2v3 ∨ v4v1 ∨ v4v1v3 v2 ∨ v4v1v3v2 ∨ v4v1v3,or also from Figure 9.1, visualizing the relations of the truth sets of the various terms.Figure 9.1: The assignments to variables v1, v2, v3 and v4 represented as the verties of the4-dimensional hyperube and grouped aording to whih term of ϕex9.1 they satisfy.

T (v1v3v4)

T (v1v2 v3v4)

T (v1v4)T (v2v3v4)

T (v2 v4)

T (v2v3 v4)

T (v1v2v3v4)

v1

v3

v2 vetors with v4 vetors with v4set to 0 set to 1Note however that the result of Theorem 9.1 does not generalize to on�it boundthree, as the following example demonstrates.Example 9.2DDNF ϕex9.2 = v1v3 ∨ v1v2 ∨ v2 v3 ∨ v1 v2v3 ∨ v1v2v3 is a tautology and has termson�iting in at most three variables pairwise, but is not a BT-DNF. (Simply note thatthere is no variable that appears in every term.)Note also that heorem 9.1 implies the following haraterization result.Corollary 9.2 ϕ is a DDNF tautology with on�it bound two if and only if ϕ is aBT-DNF with on�it bound two.Finally we mention that a related problem is the problem of representing a Booleanfuntion f as a DNF or as a deision tree�that is, when one needs to onstrut aDNF tautology (resp. deision tree) with eah term (resp. with eah term of theorresponding BT-DNF) overing only assignments that satisfy f , or only assignmentsthat falsify f�, and one is interested in omparing the omplexity of the two lass inthis setting. See for example [73; 110; 121℄.

90 Disjoint DNF Tautologies with Con�it Bound Two9.1.2 Semanti View: The General Splitting Problem forCube PartitionsAording to the Splitting Lemma (Lemma 8.10), for every pairwise neighboring ubepartition, the whole ube an be split into two halves in suh a way that every ubeof the partition is ontained in one of the halves. The following question thus risesnaturally: what an be said without the pairwise neighboring property? Given anarbitrary partition of the whole ube into sububes and a split into two halves, let ussay that a ube in the partition is unut, if it is ontained in either one of the halves.We would like to �nd a split suh that the unut ubes ontain many points.Thus we onsider the following quantities. Given a ube partition ϕ over the vari-ables v1, . . . , vn and a variable vj , let
νϕ,j =

∑

{

2−|t| : t ∈ ϕ, vj ∈ t or vj ∈ t
}be the fration of the volume of unut ubes in ϕ with respet to the vj split of theube, and let

αn = min
ϕ

max
1≤j≤n

νϕ,j,where ϕ ranges over all ube partitions, or in other words, over all disjoint DNF tau-tologies. Note that as ϕ is a partition it holds that
∑

t∈ϕ

2−|t| = 1. (9.1)Theorem 9.3
logn− log logn

n
≤ αn ≤ O

(

n− 1

5

)

.ProofLet ϕ = t1 ∨ · · · ∨ tr be a disjoint DNF tautology over the variables v1, . . . , vn. If theterm ti ontains vj or vj , then ti ontributes 2−|ti| to νϕ,j . Thus
n
∑

j=1

νϕ,j =

r
∑

i=1

|ti| · 2
−|ti|,and there is a variable vj with

νϕ,j ≥
1

n

r
∑

i=1

|ti| · 2
−|ti|.Let s denote the size of the shortest term in ϕ. As every term has size at least s, it

9.2 Further De�nitions and Notations 91follows from (9.1) that
1

n

r
∑

i=1

|ti| · 2
−|ti| ≥

s

n

r
∑

i=1

2−|ti| =
s

n
.On the other hand, for every variable vj ourring in a shortest term ti it holds that

νϕ,j ≥ 2−s. Thus
αn ≥ min

(s

n
, 2−s

)

. (9.2)The lower bound then follows by taking s = logn− log log n, for whih the two termsin (9.2) are lose to eah other.The upper bound follows from a onstrution of Saviký and Sgall [111℄, providingan upper bound on the number of variable ourrenes in tautologial k-DNF formulas(a problem introdued by Tovey [122℄ and Kratohvíl, Saviký and Tuza [83℄). Theyonstruted disjoint DNF tautologies over n = 4ℓ variables, having 23ℓ terms of size 3ℓ,suh that every variable ours in at most a
(

3

4

)ℓfration of the terms. The bound then follows by a diret alulation. 2We note that the upper bound of Saviký and Sgall [111℄ has reently been improvedalmost optimally by Hoory and Szeider [70℄. The improved onstrutions do not appearto improve the bound above, sine the DNF onstruted are not disjoint.Already Theorems 8.1 and 9.3 suggest that it may be of interest to onsider thequantity αd
n, whih is de�ned as αn, exept that ϕ is restrited to ube partitionswith pairwise distanes bounded by d. (For example in the onstrution of [111℄ themaximal distane grows linearly with n.) The main result presented in this hapter isthat α2

n = 1 (for any positive integer n); but note also that this does not generalize to
d = 3: Example 9.2 proves that α3

3 < 1.9.2 Further De�nitions and NotationsIn an LBT a path from the root to a leaf naturally determines a term obtained by simplyonjunting the literals appearing in the labels of the edges along the path. Thus, givena deision tree, the terms orresponding to its leaves put up a DDNF tautology 2. Reallthat suh DDNF tautologies are alled binary tree generated DNFs, or BT-DNFsfor short. Alternatively, one an de�ne the lass of BT-DNFs as the smallest subsetdt-dnf of the set of DNFs satisfying:
• If x is a variable, then the DNF x ∨ x is an element of dt-dnf.2Note that in Chapter 8 non-repeating deision tree tautologies were onstruted in the similarfashion using non-repeating unate-leaf deision trees.

92 Disjoint DNF Tautologies with Con�it Bound Two
• If x is a variable and both T1∨· · ·∨Tk and T ′

1∨· · ·∨T ′
ℓ are elements of dt-dnf,then the DNF (x ∧ T1) ∨ · · · ∨ (x ∧ Tk) ∨ (x ∧ T ′

1) ∨ · · · ∨ (x ∧ T ′
ℓ) is also anelement of dt-dnf.Note that in ase ϕ is a DDNF tautology, then there is a unique term of ϕ satis�edby truth assignment x; denote it tx(ϕ). When it auses no ambiguity, ϕ is omitted andsimply tx is used instead.9.3 Proof of Theorem 9.1For simpliity assume that V ′ is the set of variables in fous.Theorem 9.1 is proved by indution on the number of terms in ϕ. In ase ϕontains one or two terms, the statement is obvious. Now we show that ϕ is a BT-DNF, assuming:Indution hypothesis: DDNF ϕ with on�it bound twoontains r ≥ 3 terms, and the statement holds for any DDNF (9.3)tautology with on�it bound two having less than r terms.Let t be an arbitrary term of ϕ. Assume without loss of generality that t = v1 · · · vk.Of ourse, if ϕ is a BT-DNF, then for some 1 ≤ i ≤ k ϕ has a subformula equiva-lent to v1 · · · vi−1vi+1 · · · vk: namely the one indued by the parent node of the leaforresponding to t. (For example if ϕ = ϕex9.1 from Example 9.1 and t = v1v3v4,then i = 3, and the subformula v1v2 v3v4 ∨ v1v2v3v4 ∨ v1v3v4 of ϕ is equivalent to

t \ {vi} = v1v4.) The next laim onsiders the reverse of this impliation. (Also, foran example demonstrating the laim see Example 9.3.)Claim 9.4 Assume (9.3), and let t = v1 · · · vk be a term of ϕ. Suppose that for some
i ∈ {1, . . . , k} it holds that every term in ϕ that on�its with t only in vi ontains
v1 · · · vi−1vi+1 · · · vk as a subterm. Then ϕ is a BT-DNF.ProofConsider the following sets

S1 ={x ∈ {0, 1}n : x[vi] ∈ T (t)},

S2 =T (v1 · · · vi−1vivi+1 · · · vk),

S3 = ∪t′∈ϕ:v1···vi−1vivi+1···vk is a subterm of t′ T (t′),

S4 = ∪t′∈ϕ:t⊗t′={vi} T (t′).Then S1 = S2 and S2 ⊇ S3 always hold, and S3 ⊇ S4 follows from the ondition ofthe Claim. However S1 ⊆ S4 is also true beause
• sine ϕ is a tautology, eah element x of S1 appears in some T (t′) for some
t′ ∈ ϕ�reall that this t′ is the term we denote as tx(ϕ)�, and

9.3 Proof of Theorem 9.1 93
• sine ϕ is a DDNF, eah of these tx(ϕ) terms must on�it with t in somevariable. But this variable must be vi, and only vi, as the �rst k bit of eah

x ∈ S1 is 1, exept for the i-th bit.Thus all of the above sets are idential. Then de�ning
ϕ1 := {t′ ∈ ϕ : v1 · · · vi−1vivi+1 · · · vk is a subterm of t′}and

ϕ2 :=(ϕ \ (ϕ1 ∪ {t})) ∪ {v1 · · · vi−1vi+1 · · · vk}it holds that both ϕ′
1 := {t′ \ {v1, · · · , vi−1, vi, vi+1, · · · , vk} : t′ ∈ ϕ1} and ϕ2 areDDNF tautologies. Furthermore both have less terms then ϕ, thus by the indutionhypothesis both are BT-DNFs. This immediately implies the Claim: pik an LBT τ1 for

ϕ′
1 and an LBT τ2 for ϕ2, expand τ1 to an LBT for vi∨{vi∧ t

′ : t′ ∈ ϕ′
1} in the naturalway, and paste it into τ2 in the plae of the leaf orresponding to v1 · · · vi−1vi+1 · · · vk.

2Example 9.3Demonstrating Claim 9.4, let ϕ = ϕex9.1 from Example 9.1 and let t = v1v3v4. Then
i = 3, ϕ1 = v1v2 v3v4 ∨ v1v2v3v4, ϕ′

1 = v2 ∨ v2 and ϕ2 = (v2 v4 ∨ v2v3 v4 ∨ v2v3v4 ∨

v1v4) ∨ v1v4. See also Figure 9.2 for the deision tree τ1 (resp. τ2) for ϕ′
1 (resp. ϕ2).Figure 9.2: Marking τ1 and τ2 on the deision tree generating ϕex9.1 from Example 9.1. Thelabels of the nodes are omitted for simpliity.

v2 v1

v3

τ1

v4v4

τ2

x3

v2

v3

v2 v1

v3

v2

De�ning the following direted graph G(V,E) = Gϕ,t(Vϕ,t, Eϕ,t):
V ={t′ ∈ ϕ : |t⊗ t′| = 1 and Var(t′) 6⊇ Var(t)},

E ={(t′, t′′) ∈ V 2 : vi ∈ t′ and vi 6∈ Var(t′′) for some 1 ≤ i ≤ k}, (9.4)based on Claim 9.4 one an give the following su�ient ondition for ϕ being a BT-DNF(whih, as one an easily show, is also a neessary ondition):Claim 9.5 Assume (9.3), let t = v1 · · · vk be a term of ϕ, and let G = GF,T be thegraph de�ned as in (9.4). If G ontains no yle, then ϕ is a BT-DNF.

94 Disjoint DNF Tautologies with Con�it Bound TwoProofWe show that if ϕ is not a BT-DNF, then G ontains a yle. Suppose thus that ϕ isnot a BT-DNF. By Claim 9.4 this an only be if for i = 1, . . . , k there is a term ti ∈ ϕontaining vi, ontaining no other variable from t negated, and having at least one ofthe variables in t missing. Consequently t1, . . . , tk ∈ V , and in the subgraph indued bythem, eah vertex has indegree at least one. The subgraph has thus no sink, implyingthat it ontains a yle. (For example if ϕ = ϕex9.2 from Example 9.2 and t = v1v3,then V onsists of the terms t1 = v1v2 and t2 = v2 v3, and there is an edge in E bothfrom t1 to t2 and from t2 to t1�and thus G ontains a yle 3: t1, t2, t1.) 2In the rest of the paper we show that G indeed ontains no yle. Assume for theontradition that this is not the ase, and let t1, . . . , tℓ, t1 be a yle of minimal length(then of ourse ℓ ≤ k), and assume without loss of generality that vi ∈ ti, i = 1, . . . , ℓ.(Note that no other variable of t appears unnegated in ti, as ti ∈ V .) Then for anydistint indies i, j ∈ {1, . . . , ℓ},
• if tj follows ti in the yle 4, then vi 6∈ tj (by the onstrution of E),
• if not, then vi ∈ tj , as otherwise (ti, tj) ∈ E, whih would shortut the yle,and ontradit that it is of minimal length.These observations are summarized in Figure 9.3.Figure 9.3: The yle t1, . . . , tℓ, t1. In the row of a term: �+� means that the given variableappears unnegated in it, �−� means that it appears negated in it, and � · � means that it doesnot appear in it. Conseutive elements of the yle might on�it in other variables too, butnon-onseutive elements have no more on�it.

v1 v2 v3 v4 · · · vℓ−2 vℓ−1 vℓ

t + + + + · · · + + +

t1 − + + + · · · + + ·
t2 · − + + · · · + + +
t3 + · − + · · · + + +
t4 + + · − · · · + + +... . . .
tℓ + + + + · · · + · −Let us now investigate how these terms �behave� on the rest of the variables. Theabove observation obviously implies that if terms ti and tj are not onseutive elementsof the yle, then they do not on�it in variables vℓ+1, . . . , vn, as otherwise they wouldon�it in at least three variables: vi, vj and vℓ′ for some ℓ ≤ ℓ′ ≤ n. The questionis, whether two onseutive elements of the yle an (or have to) have some furtheron�its. An equivalent (semanti) formulation of this question is whether there existsa (partial) assignment to variables vℓ+1, . . . , vn onsistent with the two terms. (Again,for an example demonstrating the laim see Example 9.4.)3Whih is in aordane with the fat that ϕex9.2 is not a BT-DNF.4That is, j = i+ 1 if i < ℓ, and j = 1 if i = ℓ.

9.3 Proof of Theorem 9.1 95Lemma 9.6 Assume (9.3), let t = v1 · · · vk be a term of ϕ with k < n, let G = Gϕ,tde�ned as in (9.4), and let t1, . . . , tℓ be a yle of minimal length in G as in Figure 9.3.Then there is no partial assignment for variables vℓ+1, . . . , vn that is onsistent with tand all of t1, . . . , tℓ.ProofSuppose that t is of length less then n and assume for the ontradition that σ isa partial assignment for variables vℓ+1, . . . , vn onsistent with t, t1, t2, . . . , tℓ. Let ϕ′be the DDNF onsisting of the terms of ϕ that are onsistent with σ, (thus t and
t1, . . . , tℓ are in ϕ′), and let ϕ′′ be the DDNF tautology obtained from ϕ′ by removingall ourranes of variables vℓ+1, . . . , vn. By the indution hypotheses ϕ′′ is a BT-DNF 5,onsequently for some i ∈ {1, . . . , ℓ} variable vi ours (negated or unnegated) in everyterm of ϕ′′, and thus also in every term of ϕ′�in partiular in eah of t1, . . . , tℓ. But theterm following ti in the yle ontains neither vi nor vi�a ontradition. (The ondition
k < n is neessary sine the partial assignment with empty domain is onsistent withall terms.) 2Example 9.4Let ϕ = ϕex9.1 from Example 9.1, and let t = v1v3v4. Then V ontains terms t1 = v1v4and t2 = v2v3v4, and E ontains the edge (t1, t2). As ϕ is a BT-DNF, by Lemma 9.6(or, more preisely, by the proof of the lemma), some variable of t (i.e., one of v1, v3and v4) must our in t1 and t2�and indeed: v4 ours unnegated in t1 and negatedin t2.The next lemma rules out another ase: when there is exatly one pair of onseutiveelements of the yle that on�it in two variables.Lemma 9.7 Assume (9.3), let t = v1 · · · vk be a term of ϕ with k < n, let G = Gϕ,tde�ned as in (9.4), and let ℓ be the length of the smallest yle in G. Unless ℓ = 2,there is no yle in G of length ℓ with the property that one pair of onseutive elementsof the yle on�it in two variables, and all other onseutive pairs on�it in one.ProofAssume for the ontradition that t1, . . . , tℓ, t1 is suh a yle in G with ℓ > 2 andsuppose that t1 and tℓ are the only onseutive elements on�iting in two variables,namely in v1 and in some u ∈ {vℓ+1, . . . , vn}

6. Assume without loss of generality that
t1, . . . , tℓ behave as in Figure 9.3 and that u ∈ t1 and u ∈ tℓ. (Note that neither tnor t2, . . . , tℓ−1 ontains u or u: if t ontained u (resp. u) it would on�it with tℓ(resp. t1) in two variables; if any of t2, . . . , tℓ−2 (resp. t3, . . . , tℓ−1) ontained u, itwould on�it with tℓ (resp. t1) in three variables; �nally if t2 (resp. tℓ−1) ontained
u (resp. u), then it would on�it with t1 (resp. tℓ) in two variables, ontraditingthe assumption of the lemma.) Then there is some partial assignment to the variables
{vℓ+1, . . . , vn} \ {u} onsistent with t1, . . . , tℓ and t. Denote one suh by σ.5Here it is used that k < n and is assumed impliitely that every variable ours in some of theterms of ϕ.6If ℓ = 2, then t1 and tℓ does not on�it in v1�whih is the reason for handling this aseseparately.

96 Disjoint DNF Tautologies with Con�it Bound TwoFigure 9.4: The yle t1, . . . , tℓ, t1. In the row of a term: �+� means that the given variableappears unnegated in it, �−� means that it appears negated in it, and � · � means that itdoes not appear in it. In the row of an assignment: �+� means that it assigns 1 to the givenvariable, �−� means that it assigns 0. Terms t, t1, . . . , tℓ do not on�it in other variables.
v1 v2 v3 · · · vℓ−2 vℓ−1 vℓ u

t + + + · · · + + + ·
t1 − + + · · · + + · +
t2 · − + · · · + + + ·... . . .
tℓ + + + · · · + · − −

x − + + · · · + + + −
y + + + · · · + + − +Let x := σ(v2 7→1,··· ,vℓ 7→1;v1 7→0,u 7→0) (see Figure 9.4). Then one an make the followingobservations:

• v1 ∈ tx, sine x 6∈ T (t) and x[v1] ∈ T (t),
• u ∈ tx, sine x 6∈ T (t1) and x[u] ∈ T (t1)

• vℓ 6∈ tx, as otherwise�de�nining y := σ(v1 7→1,··· ,vℓ−1 7→1;u 7→1,vℓ 7→0)� tx and tyon�its in three variables, beause� vℓ ∈ ty, as y 6∈ T (t) and y[vℓ] ∈ T (t),� v1 ∈ ty, as y 6∈ T (t1) and y[v1] ∈ T (t1),� u ∈ ty, as y 6∈ T (tℓ) and y[u] ∈ T (tℓ).Consequently (as tx on�its with t in exatly one variable and does not ontain
vℓ) tx ∈ V and (tℓ, tx), (tx, t2) ∈ E.

• vi ∈ tx for i = 2, . . . ℓ − 1, as otherwise (ti, tx) ∈ E, whih would mean that
t2, . . . , ti, tx, t2 is a yle in G shorter then ℓ�a ontradition.But then tx, t2, . . . , tℓ, tx is a yle of length ℓ (thus also of minimal length) suh thatall onseutive elements on�it in exatly one variable, ontraditing Lemma 9.6. 2Based on the two previous Lemmas we an prove the following:Lemma 9.8 Assume (9.3), let t = v1 · · · vk be a term of ϕ with k < n, and let

G = Gϕ,t de�ned as in (9.4). Then the smallest yle in G has length at most two.ProofAssume for the ontradition that t1, . . . , tℓ, t1 is a yle in G of minimal length with
ℓ > 2. Assume furthermore w.l.o.g. that t1, . . . , tℓ, t1 is as in Figure 9.3. Then by theabove lemmas there is some 1 ≤ i ≤ ℓ−1 suh that ti and ti+1 on�it in two variables:in vi+1 and in some u ∈ {vk+1, . . . , vn}. (t ontains neither u nor u as otherwise it would

9.3 Proof of Theorem 9.1 97on�it with ti+1 or ti in two variables.) Suppose i is the smallest suh index. Thenthere is some partial assignment of the variables {v1, . . . , vn} \ {vi, vi+1, u} onsistentwith t, ti and ti+1. Denote one suh by σ, and assume without loss of generality that
ti ontains u, and ti+1 ontains u. (See Figure 9.5.)Figure 9.5: Terms ti, ti+1, t and assignments x and y.

vi vi+1 u

t + + ·
ti − + +
ti+1 · − −

x − + −
y + − +Let x := σ(vi 7→0,u 7→0,vi+1 7→1) and y := σ(vi 7→1,u 7→1,vi+1 7→0). Then

• vi ∈ tx, sine x 6∈ T (t) but x[vi] ∈ T (t),
• vi+1 ∈ tx, sine x 6∈ T (ti+1) but x[vi+1] ∈ T (ti+1),
• u ∈ tx, sine x 6∈ T (ti) but x[u] ∈ T (ti),
• vi+1 ∈ ty, sine y 6∈ T (t) but y[vi+1] ∈ T (t), and
• u ∈ ty, sine y 6∈ T (ti+1) but y[u] ∈ T (ti+1).Thus ty does not ontain vi, as otherwise tx and ty would on�it in three variables.But then ty ∈ V , furthermore (ti, ty), (ty, ti+2) ∈ E, so t1, . . . , ti, ty, ti+2, . . . , tℓ, t1 isalso a yle in G of minimal length, but with ti and ty on�iting only in one variable.That is, in this new yle one gets further (starting from t1) than in the original ylewithout using an edge that's two endpoints on�it in two variables.Iterating the above proess if neessary, proeeding from the smaller indies to thelarger ones, one obtains a yle t′1, . . . , t′ℓ, t′1 with onseutive elements on�iting inonly one variable (apart maybe from tℓ and t1), ontraditing Lemma 9.7. 2Now all that is left to prove is that G ontains no yle of length 2.Lemma 9.9 Assume (9.3), let t = v1 · · · vk be a term of ϕ with k < n, and let

G = Gϕ,t de�ned as in (9.4). Then G ontains no yle.ProofBy Lemma 9.8, as noted, it su�es to show that G ontains no yle of length 2.Assume for the ontradition that t1, t2, t1 is a yle in G and assume furthermorewithout loss of generality that v1 ∈ t1, v2 6∈ t1, v1 6∈ t2 and v2 ∈ t2. There are twoases: when t1 and t2 on�it in only one variable and when they on�it in two.Let us onsider the �rst ase. Then t1 and t2 on�it in some u ∈ {vk+1, . . . , vn}(just like before, t annot ontain variable u, as otherwise it would on�it with t1 or t2

98 Disjoint DNF Tautologies with Con�it Bound Twoin at least two variables), and let us assume without loss of generality that u ∈ t1 and
u ∈ t2. Then there is some partial assignment to variables {v3, . . . , vn}\{u} onsistentwith t1 and t2. Denote one suh by σ. Let furthermore x := σ(v1 7→0,u 7→0,v2 7→1) and
y := σ(v1 7→1,u 7→1,v2 7→0) (see Figure 9.6(a)). Using a similar argument as before one ansee that v1, v2, u ∈ tx and v1, v2, u ∈ ty, thus the two terms on�it in three variables,ontradition. Figure 9.6: Terms ti, ti+1, t and assignments x and y.

v1 v2 u

t + + ·
t1 − · +
t2 · − −
x − + −
y + − +(a)

v1 v2 u v

t + + · ·
t1 − · + +
t2 · − − −
x − + − +
y + − + −(b)The seond ase is when t1 and t2 on�it in some u, v ∈ {vk+1, . . . , vn} (as inthe previous ase t ontains neither u nor v). Let us assume without loss of generalitythat u, v ∈ t1 and u, v ∈ t2. Similarly as above, there is some partial assignment tovariables {v3, . . . , vn}\{u, v} onsistent with t1 and t2; denote one suh by σ, and put

x := σ(v1 7→0,u 7→0,v 7→1,v2 7→1) and y := σ(v1 7→1,u 7→1,v 7→0,v2 7→0) (see Figure 9.6(b)). Again,one an show that u, v1 ∈ tx and u, v2 ∈ ty. Furthermore v2 ∈ tx (resp. v1 ∈ ty), asotherwise tx ∈ V (resp. ty ∈ V), and with t2 (resp. with t1) they would form a yleof length two on�iting with eah other in only one variable, whih was ruled out inthe previous ase. Consequently tx and ty on�its in three variables, ontradition. 2The proof of the Theorem now follows from Claim 9.5 and Lemma 9.9, noting thatif ϕ is a DDNF with on�it bound two that only has terms of length n, then n ≤ 2,in whih ase the statement obviously holds.9.4 Conluding RemarksTheorem 9.1 onsiders a very limited lass of DDNFs�for whih a somewhat surprisingproperty is proved. Nevertheless this does not bring us any loser to determining αd
nin the general ase, or to deriving a sharp bound for αn. Finding answers to theseproblems requires further investigations.Finally note that the results presented in this hapter�unless noted otherwise�appeared in the paper [119℄, authored by the author of the present dissertation.

Chapter 10Deomposable Horn FormulasHorn formulas (onjuntions of Horn lauses, i.e., lauses ontaining at most one un-negated literal�see Chapter 2) play a entral role in arti�ial intelligene and in om-puter siene. This formula lass is attrative beause it is expressive, allows for poly-nomial time inferene, and indeed is generally omputationally tratable. Aordinglyit is one of the most studied Boolean formula lasses.In this hapter the following problem is onsidered:Problem 10.1 For Horn formulas ϕ and ψ, where ψ is a onsequene of ϕ, when doesthere exist a proper Horn onsequene χ of ϕ, suh that ψ ∧ χ is equivalent to ϕ?Suh a formula χ is alled a ϕ-omplement of ψ.The motivation of this problem leads bak to the topi of the �rst part of thepresent dissertation: to revision�or more preisely to belief revision.Belief revision is interested in revising 1 a knowledge base in the presene of a new,potentially on�iting information, and usually approahes this problem by identifyingpostulates that should be satis�ed by a rational revision operator, suh as the AGMpostulates [4℄, and haraterizing operators that satisfy these postulates [45; 62℄. Inreent work, Flouris et al. [41℄ study belief revision in general logis, and formulatea property alled deomposability of the logi. They show that deomposabilityis a neessary and su�ient ondition for the existene of an AGM-ompliant beliefontration operator. This framework is used in [42℄ to study deomposition propertiesof desription logis, motivated by appliations to the Semanti Web.Problem 10.1 is, in fat, the reformulation of the above mentioned general deom-posability problem for the lass of Horn funtions. Applying Horn funtions to beliefrevision in [89℄ was intended to serve as a �rst step towards Horn-to-Horn belief revi-sion: revision of Horn knowledge bases where the revised knowledge base is also requiredto be Horn. Horn-to-Horn belief revision is of interest for the e�ient integration of1Although the terminology is the same, in belief revision the notion of �revision� refers to a di�erentkind of update method of the given system. However, as this serves only as a motivational bakgroundfor the topi of the present hapter, it doesn't seem to be misleading to refer to this notion also as�revision�. (On the other hand, when it is not lear from the ontext whih notion is referred to as�revision�, then it is made lear expliitely). Note furthermore that the original motivation for thiswork was exatly to bring theory revision and belief revision together.99

100 Deomposable Horn Formulasvarious tasks faing a ommonsense reasoning agent suh as learning and revising itsbeliefs.At this point it should mentioned that the lass of Horn formulas has already beenonsidered in theory revision (see [50; 52℄)�and of ourse also in learning (see [8; 44℄)�but, as noted in [89℄, the problem of belief revision that maintains a Horn knowledgebase apparently has not been studied yet.The main result of the hapter (Theorem 10.10) gives a omplete answer to Prob-lem 10.1 by giving two haraterizations of all those pairs ϕ and ψ for whih ψ hasa ϕ-omplement. The haraterizations give e�iently deidable riteria and lead toe�ient algorithms to onstrut a omplement, if it exists. The omplements on-struted are only polynomially larger than the original knowledge base. As a orollary,one obtains a omplete desription of deomposable Horn formulas as well, where aHorn formula is deomposable if all its Horn onsequenes have a omplement.Problem 10.1 also has an interesting onnetion with another problem from a om-pletely di�erent �eld. Note that if ψ is a single Horn lause impliate C, then Problem10.1 an be reformulated as follows: does ϕ have an irredundant onjuntive normalform expression ontaining C? Aording to Corollary 10.12 this problem is deidablein polynomial time. The related problem, studied by Hammer and Kogan [60℄, is thatwhen C is a prime impliate and the irredundant onjuntive normal form expressionis also assumed to onsist of prime impliates only. In [60℄ suh a prime impliate isalled non-redundant, and is shown that non-redundany is polynomially deidablefor negative lauses, but is NP-omplete for de�nite lauses.Finally let us mention a related problem. Eiter and Gottlob [38℄ have shown thatthe problem, �Given Horn formulas ϕ, ψ and χ, is it the ase that ϕ′ ∧ ψ ≤ χ forevery maximal subformula ϕ′ of ϕ onsistent with ψ?� is o-NP-omplete. This is aomplexity-theoreti negative result for the revision method proposed by [39; 46℄, asformulas χ with the above property form the knowledge base obtained by revising theknowledge base ϕ with ψ.10.1 Further De�nitions and NotationsIf a lause ontains exatly one unnegated literal, then it is alled de�nite, and if itontains none, it is alled negative. A Horn formula is de�nite Horn formula if itonsists of de�nite Horn lauses. A Boolean funtion is a (de�nite) Horn funtionif it has a (de�nite) Horn formula. It follows diretly from the de�nitions that a Hornfuntion f is de�nite if and only if f(1) = 1.For a Horn lause C, let its body, denoted Body(C), be the set of variablesorresponding to the negative literals in C, or their onjuntion (whih will be learfrom ontext). Also, let its head, denoted Head(C) be the unnegated variable of Cif C is a de�nite lause, and 0 if C is a negative lause. The arrow symbol �→� isused to denote the Boolean impliation operator, so Horn lause C an be written as
Body(C) → Head(C). For example, if C is the Horn lause v∨w∨u, then Body(C) =

10.2 Charaterization of Deomposable Horn Formulas 101
{v, w}, Head(C) is u, and C an also be written as v, w → u or (v ∧w) → u. If C isthe Horn lause v ∨ w then it an also be written as v, w → 0 or simply v, w →.Every lause that is an impliate of a de�nite Horn funtion is de�nite. Impliationbetween Horn formulas an be deided in polynomial time (see, e.g., [79℄).A funtion f is anti-monotone if T (f) is downward losed, i.e., f(x) = 1 and
y ≤ x imply f(y) = 1. This is equivalent to having a onjuntive normal formfor it whih onsists of negative lauses. Horn funtions have the following semantiharaterization.Theorem 10.2 ([71; 96℄) A Boolean funtion is Horn i� T (f) is losed under inter-setion.We will use a slight generalization of anti-monotone funtions.De�nition 10.3 (almost anti-monotone funtion) A funtion is almost anti-monotone if it is either anti-monotone, or there is an anti-monotone funtion g suhthat T (f) = T (g) ∪ {1}.The following is a diret onsequene of Theorem 10.2.Proposition 10.4 Every almost anti-monotone funtion is Horn.Now we formulate the entral onept disussed in this paper.De�nition 10.5 (f -omplement) For Horn funtions f and g suh that f ≤ g, aHorn funtion h is an f-omplement of g i� f � h and f = (g ∧ h).Complements ould also be de�ned assuming f � g, but it is somewhat moreonvenient to formulate the de�nition as above. Aording to the de�nition, no f -omplements exist if f = 1 (reall that 1 denotes the identially 1 funtion). This aseis exluded from further onsideration and we will always assume f 6= 1. Also aordingto the de�nition, g = 1 an never have a omplement, so this ase is also exludedfrom onsideration in the following de�nition.De�nition 10.6 (deomposable Horn funtion) A Horn funtion f is deom-posable if every Horn onsequene g 6= 1 of f has an f -omplement.One usually works with formulas as opposed to funtions, but as the notions of om-plement and deomposability depend only on the funtion represented by the formula,the de�nitions are given in a syntax-independent way.10.2 Charaterization of Deomposable Horn For-mulasThroughout the hapter let V ′ ⊆ V denote the set of variables in fous.

102 Deomposable Horn FormulasFor a funtion f and a set of variables V ⊆ V ′, we de�ne the f-losure of V tobe the set of variables
Clf(V) = {v ∈ V ′ : f ≤ (V → v)} .Let us note a diret onsequene of this de�nition.Proposition 10.7 If a negative lause C is an impliate of f , then Clf(Body(C)) =

V ′. In order to formulate our main result, we need two de�nitions. The formula ϕ̂ isobtained from ϕ by adding to the body of eah de�nite lause in ϕ a variable notontained in the losure of its body, in all possible ways. For a Horn lause C of theform Body(C) → Head(C), we write Body(C), v → Head(C) for the Horn lauseobtained from C by adding v to its body.De�nition 10.8 (body-building formula ϕ̂) For a Horn formula ϕ let ϕ̂ be theformula
∧

C∈ϕ de�nite ∧

v 6∈Clϕ(Body(C))

(Body(C), v → Head(C)).Proposition 10.7 shows that we ould have de�ned ϕ̂ as a onjuntion over alllauses of ϕ, as negative lauses make no ontribution. Every lause of ϕ̂ is de�nite.It may be the ase that ϕ̂ is the empty onjuntion. This happens, for example, when
ϕ onsists of negative lauses only.Given a Horn formula ϕ and a Horn lause D, we partition the lauses of ϕ notolliding with D into two lasses.De�nition 10.9 (formulas Aϕ(D) and Bϕ(D)) Given a Horn formula ϕ and aHorn lause D, let

Aϕ(D) = {C ∈ ϕ : C,D don't ollide, Body(D) ⊆ Clϕ(Body(C))} ,

Bϕ(D) = {C ∈ ϕ : C,D don't ollide, Body(D) 6⊆ Clϕ(Body(C))} .The existene of a omplement an now be haraterized as follows.Theorem 10.10 Let ϕ 6≡ 1 be a Horn formula, and ψ be a Horn onsequene of ϕ.Then the following are equivalent:(a) ψ has a ϕ-omplement,(b) ϕ̂ 6≤ ψ,() for some lause D of ψ it holds that Bϕ(D) 6≤ D.Although the de�nition of ϕ̂ is given in terms of a formula, it follows from thisharaterization that it atually depends on the funtion only (see also Lemma 10.20below).

10.2 Charaterization of Deomposable Horn Formulas 103Corollary 10.11 (syntax-independene of ϕ̂) If ϕ1 and ϕ2 are equivalent Hornformulas then ϕ̂1 ≡ ϕ̂2.Theorem 10.10 is proved in the next setion. Another proof of the �rst hara-terization (i.e., the equivalene of (a) and (b) in Theorem 10.10) is given in Setion10.4. The following orollary gives the algorithmi aspets of Theorem 10.10. It followsdiretly from the statement, resp., the proof(s) of the haraterizations.Corollary 10.12 There is a polynomial time algorithm whih, given a Horn formula ϕand a Horn onsequene ψ of ϕ, deides if ψ has a ϕ-omplement, and if it does, thenonstruts suh a ϕ-omplement.The results are illustrated by the following simple example.Example 10.1Let V ′ = {v, w, u}, ϕ = C1 ∧ C2, where C1 = (v → w) and C2 = (w → u). Then
Clϕ(Body(C1)) = V ′ and Clϕ(Body(C2)) = {w, u}. So ϕ̂ = (v, w → u).The lause (v, w → u) is implied by ϕ̂, and so it has no ϕ-omplement. This isalso shown by the fat that Bϕ(v, w → u) = {w → u}, whih implies (v, w → u).On the other hand, the lause (v → u) is not implied by ϕ̂, so it does have a ϕ-omplement. This is also shown by the fat that Bϕ(v → u) = {w → u}, whih doesnot imply (v → u). Both onstrutions desribed in the paper give the ϕ-omplement
(v, u→ w) ∧ (w → u).Deomposable Horn funtions have the following haraterization.Theorem 10.13 For every Boolean funtion f the following are equivalent:(a) f is a deomposable Horn funtion,(b) there is a Horn representation ϕ of f suh that ϕ̂ ≡ 1,() for every Horn representation ϕ of f it holds that ϕ̂ ≡ 1,(d) for every Horn impliate C of f it holds that Clf (Body(C)) = V ′,(e) f is almost anti-monotone.ProofThe equivalene of (a), (b) and () follows diretly from Theorem 10.10 and Corollary10.11. The equivalene of () and (e) follows diretly from the de�nitions.(d) implies (e):Assume that f is not almost anti-monotone, and let x,y be truth assignments suhthat y � x � 1, f(y) = 0 and f(x) = 1. Then there is a Horn impliate C of
f suh that C(y) = 0. As C(x) = 1, it must be the ase that C is a de�nitelause, Body(C)(y) = Body(C)(x) = 1, Head(C)(y) = 0 and Head(C)(x) = 1. As
x � 1, there is a variable v suh that x(v) = 0. But then it must be the ase that
v 6∈ Clf(Body(C)), a ontradition.

104 Deomposable Horn Formulas(e) implies (d):Assume that C is a Horn impliate of f and v is a variable suh that v 6∈ Clf (Body(C)).Then C is a de�nite lause by Proposition 10.7. Let x be a truth assignment suh that
f(x) = 1, Body(C)(x) = 1 and x(v) = 0. As f(x) = 1 it must be the ase that
Head(C)(x) = 1. Consider the truth assignment y obtained from x by swithing thevariable Head(C) o�. Then f(y) = 0. As x(v) = 0, it holds that x � 1, so it followsthat f is not almost anti-monotone. 210.3 Proof of Theorem 10.10We take are of the ase where ϕ has negative impliates �rst.Lemma 10.14 Let ϕ, ψ 6≡ 1 be Horn formulas suh that ϕ ≤ ψ, and ψ has a negativeimpliate D. Then

• ψ has a ϕ-omplement,
• ϕ̂ 6≤ ψ,
• Bϕ(D) 6≤ D.ProofIt holds that D(1) = 0, as D is negative. So ϕ ≤ ψ ≤ D implies ϕ(1) = ψ(1) = 0.Let h be the Horn funtion that agrees with ϕ exept that h(1) = 1. We laim that

h is a ϕ-omplement of ψ. Clearly ϕ � h and so ϕ ≤ h ∧ ψ. Now if h(x) = 1, theneither ϕ(x) = 1 or x = 1. Sine ψ(1) = 0, it follows that h ∧ ψ ≤ ϕ, and hene
h ∧ ψ ≡ ϕ as desired.Also, ϕ̂(1) = 1, beause every lause of ϕ̂ is de�nite (this inludes the ase when
ϕ̂ is empty), and therefore ϕ̂ 6≤ ψ. Similarly, Proposition 10.7 implies that every lauseof Bϕ(D) is de�nite, so Bϕ(D)(1) = 1 and Bϕ(D) 6≤ D. 2We also need to onstrut a ϕ-omplement of ψ. This is a speial ase of theonstrution of Setion 10.4.For the rest of the proof we may assume that ψ is a de�nite Horn formula. In orderwe will show: (a) implies (b), (b) implies (), and () implies (a).(a) implies (b):This part is ontained in Lemma 10.15, whih, in turn, is split up into three lemmas. Asthese three lemmas do not atually refer to ϕ̂, they are formulated in terms of funtionsrather then formulas.Lemma 10.15 Let ϕ, ψ 6≡ 1 be Horn formulas suh that ψ is de�nite and ϕ̂ ≤ ψ.Then ψ does not have a ϕ-omplement.ProofThe �rst of the three lemmas, Lemma 10.16, shows that lauses of ϕ̂ have no ϕ-omplement, and the seond (resp., third) lemma extends this statement to ϕ̂ (resp.,onsequenes of ϕ̂).

10.3 Proof of Theorem 10.10 105Lemma 10.16 Let f be a Horn funtion and let D1 = (B → z) and D2 = (B → u)be de�nite Horn lauses with the same body B suh that f ≤ D1 and f 6≤ D2. Then
D = (B, u→ z)has no f -omplement.ProofAssume that h is an f -omplement of D. Thus, f ≤ h, h 6≤ f and h∧D ≤ f . It thenfollows that
h 6≤ D1, (10.1)
h 6≤ D2. (10.2)Here (10.1) follows as otherwise h ≤ D1 ≤ D and so h ≤ h ∧ D ≤ f , and (10.2)follows as otherwise f ≤ h ≤ D2.Let x be the truth assignment whih assigns 1 to the variables in Clh(B), andassigns 0 to all the other variables. Then B(x) = 1 and we get from (10.1) and (10.2)that u, z 6∈ Clh(B), and so x(u) = x(z) = 0. Thus D1(x) = 0, implying f(x) = 0,and it also holds that D(x) = 1.It remains to be shown that h(x) = 1, as then (h ∧ D)(x) = 1 and f(x) = 0,ontraditing the de�nition of the omplement. Assume h(x) = 0 and let D′ be animpliate of h falsi�ed by x.Case 1: D′ is negative and it is a sublause of B → 0. Then h ≤ D′ ≤ D2,ontraditing (10.2).Case 2: D′ is negative and it is not a sublause of B → 0. Then it ontainsnegated variables vj , suh that vj 6∈ B with x(vj) = 1 and hene vj ∈ Clh(B) by theonstrution of x. These an be `resolved away' 2 using the impliates B → vj of h,and we again get h ≤ (B → 0) ≤ D2.Case 3: D′ is de�nite. Then x assigns 0 to its head v, and so v 6∈ Clh(B). Variables

w ∈ (Clh(B)\B) in the body of D′ an be `resolved away' using the impliates B → wof h. We then get h ≤ (B → v), ontraditing v 6∈ Clh(B). 2Lemma 10.17 If g1 and g2 have no f -omplement then g1∧g2 has no f -omplement.ProofAssume that h is an f -omplement of g1∧g2, that is, f ≤ h, h 6≤ f and (h∧(g1∧g2)) ≤

f . If (h ∧ g1) ≤ f then h is an f -omplement of g1, a ontradition. Otherwise
(h ∧ g1) 6≤ f , and then h ∧ g1 is an f -omplement of g2, again a ontradition. 2Lemma 10.18 If g1 ≤ g2 and g1 has no f -omplement, then g2 has no f -omplement.ProofAssume that h is an f -omplement of g2, that is, f ≤ h, h 6≤ f and h∧ g2 ≤ f . Then
h ∧ g1 ≤ h ∧ g2 ≤ f , and so h is also an f -omplement of g1. 22In this ase and the next one it is onvenient to refer to resolution but one ould also arguediretly about truth assignments as in the rest of the proof.

106 Deomposable Horn FormulasThis ompletes the proof of Lemma 10.15. 2(b) implies ():For this part of the proof of Theorem 10.10 we show that if ϕ̂ 6≤ D then ∧C∈Bϕ(D)C 6≤

D. Let x be a truth assignment suh that ϕ̂(x) = 1 and D(x) = 0. Then it also holdsthat Body(D)(x) = 1 and Head(D)(x) = 0. It is su�ient to show that C(x) = 1for every C ∈ Bϕ(D). By de�nition, there is a variable v ∈ Body(D) \Clϕ(Body(C)).Thus Body(C), v → Head(C) is a lause of ϕ̂ and therefore it is satis�ed by x. But
Body(D)(x) = 1 implies x(v) = 1, and so indeed C(x) = 1.() implies (a):Let D be a lause in ψ suh that ∧C∈Bϕ(D) C 6≤ D. We laim that Aϕ(D) 6= ∅.Consider an assignment x that satis�es ∧C∈Bϕ(D) C but has D(x) = 0. Now ϕ ≤ D,so ϕ(x) = 0. Thus there is some lause C of ϕ suh that C(x) = 0. As D(x) = 0,the lauses C and D annot ollide; thus C ∈ Aϕ(D).Now we an de�ne a ϕ-omplement of ψ. For eah lause C ∈ Aϕ(D) let

χ′
C =

∧

z∈Body(D)

(Body(C) → z),

χ′′
C = (Body(C),Head(D) → Head(C)),and �nally put

χ =

∧

C∈Aϕ(D)

χ′
C ∧ χ′′

C

 ∧

∧

C∈(ϕ\Aϕ(D))

C

 .Thus χ is formed from ϕ by replaing lauses C ∈ Aϕ(D) by χ′
C ∧ χ′′

C , and leavingthe rest of the formula unhanged. Note that in the de�nition of χ′′
C , if C is a negativelause then Head(C) = 0. We laim that χ is a ϕ-omplement of ψ.

ϕ ≤ χ: We need to show that for every C ∈ Aϕ(D) it holds that ϕ ≤ χ′
C and

ϕ ≤ χ′′
C . The de�nition of Aϕ(D) implies Body(D) ⊆ Clϕ(Body(C)), thus for every

z ∈ Body(D) it holds that z ∈ Clϕ(Body(C)), and so every lause of χ′
C is animpliate of ϕ. It is obvious that ϕ ≤ χ′′

C as χ′′
C is obtained from an impliate of ϕ byadding a literal to its body.

χ 6≤ ϕ: It is su�ient to show that χ(x) = 1 for the truth assignment x above.As D(x) = 0 and eah lause in χ′
C and χ′′

C ollides with D, x satis�es χ′
C and χ′′

C .The remaining lauses in χ ome from ϕ: they either belong to Bϕ(D) (in whih ase
x satis�es them by de�nition), or they ollide with D (and then x satis�es them as
D(x) = 0).

χ ∧ ψ ≤ ϕ: it is su�ient to show that for every C ∈ Aϕ(D) it holds that
χ′

C ∧ χ′′
C ∧D ≤ C. Let y be any truth assignment satisfying χ′

C ∧ χ′′
C ∧D.Let us assume �rst that C is de�nite. We need to show that if Body(C)(y) = 1(whih inludes the ase when Body(C) is empty), then Head(C)(y) = 1. But

Body(C)(y) = 1 implies Body(D)(y) = 1 (whih inludes the ase when Body(D) is

10.4 Singleton Horn Extensions 107empty). Hene Head(D)(y) = 1, and so (sine χ′′
C(y) = 1) it holds that Head(C)(y) =

1, as required. If C is negative then we need to show that Body(C)(y) = 0. Otherwise
Body(D)(y) = 1, and so Head(D)(y) = 1 and thus χ′′

C(y) = 0, a ontradition.Example 10.2Consider ϕ = (v → w) ∧ u and ψ = u. Then both lauses of ϕ are in Aϕ(u), and sothe ϕ-omplement of ψ provided by the onstrution (after deleting redundant lauses)is (v, w → u).10.4 Singleton Horn ExtensionsWe give a di�erent proof of the equivalene (a) and (b) in Theorem 10.10, whihalso provides a semanti haraterization of the body building formula. The proof isdivided into two lemmas. Throughout the proof we use Theorem 10.2 without expliitlyreferring to it.Lemma 10.19 Let f, g be Horn funtions suh that f ≤ g. Then g has an f -omplement if and only if there is an x ∈ F(f)∩F(g) suh that T (f)∪{x} is a Hornfuntion.ProofThe �if� diretion follows by noting that T (f)∪{x} is an f -omplement of g. For the�only if� diretion assume that h is an f -omplement of g. Let x be a minimal point(in the ordering de�ned by �≤�) in T (h) \ T (f). Then sine h ∧ g ≤ f it must bethe ase that g(x) = 0. To show that T (f) ∪ {x} is a Horn funtion, assume that
x ∧ y 6∈ T (f) ∪ {x} for some y ∈ T (f). Then x ∧ y � x and h(x ∧ y) = 1 wouldontradit the minimality of x. 2The next lemma gives the semanti haraterization of ϕ̂. It shows that T (ϕ̂) \

T (ϕ) onsists of preisely the singleton Horn extensions of ϕ, i.e., of those pointswhih an be added to the set T (ϕ) maintaining the Horn property. This is a naturalgeneralization of the minimal false points of an anti-monotone funtion.Lemma 10.20 Let ϕ be a Horn formula and x ∈ F(ϕ). Then T (ϕ) ∪ {x} is a Hornfuntion if and only if ϕ̂(x) = 1.ProofFirst we prove the �only if� diretion. Assume for ontradition that ϕ̂(x) = 0. Thenthere is a de�nite Horn impliate C of ϕ suh that
(Body(C), v → Head(C))(x) = 0,where

ϕ 6≤ (Body(C) → v). (10.3)Thus
Body(C)(x) = 1, x(v) = 1 and Head(C)(x) = 0. (10.4)

108 Deomposable Horn FormulasAording to (10.3), there is a truth assignment y ∈ T (ϕ) falsifying Body(C) → v.Hene, taking into aount that y must satisfy C, one has
Body(C)(y) = 1, y(v) = 0 and Head(C)(y) = 1. (10.5)Consider now the truth assignment z = x ∧ y. From (10.4) and (10.5) we get
Body(C)(z) = 1, z(v) = 0 and Head(C)(z) = 0.As z falsi�es C, it holds that z ∈ F(ϕ). Looking at the v-bits of z and x one gets

z � x, implying that T (ϕ) ∪ {x} is not losed under intersetion, a ontradition.Let us now prove the �if� diretion. Assume for ontradition that T (ϕ) ∪ {x} isnot Horn. Then there is a point y ∈ T (ϕ) suh that for z = x∧y it holds that z � xand ϕ(z) = 0. As z ≤ y and ϕ(z) 6= ϕ(y), it must also be the ase that z � y. Let
C be a lause of ϕ falsi�ed by z. Then C(y) = 1 and with z � y this implies that Cis de�nite. As z falsi�es C, it holds that

Body(C)(z) = 1 and Head(C)(z) = 0.Also, as z � y, and y satis�es C
Body(C)(y) = 1 and Head(C)(y) = 1.As z � x, and Head(C)(x) = 1 would imply Head(C)(z) = Head(C)(x ∧ y) = 1, itfollows that
Body(C)(x) = 1 and Head(C)(x) = 0.As x and y are inomparable, there is a variable u suh that x(u) = 1 and y(u) = 0.Hene Body(C) → u is falsi�ed by y, and so it is not an impliate of ϕ. Thus

Body(C), u→ Head(C) is a lause of ϕ̂ falsi�ed by x, a ontradition. 2The �if� diretion of Lemma 10.20 an also be proved by onstruting a Hornformula for T (ϕ)∪{x} for every truth assignment x ∈ T (ϕ̂) \T (ϕ). Let C be a Hornlause falsi�ed by x and v 6= Head(C) be a variable. Then let
χv

C :=

Body(C), v → Head(C) if v 6∈ Clϕ(Body(C)),
Body(C) → v if v ∈ Clϕ(Body(C)), x(v) = 1,
Body(C), v → Head(C) if v ∈ Clϕ(Body(C)), x(v) = 0.Put
χx :=

∧

C(x)=0

∧

v 6=Head(C)

χv
C

 ∧

∧

C(x)=1

C

 .Thus χx is formed from ϕ by replaing lauses C falsi�ed by x with ∧v 6=Head(C) χ
v
C ,and leaving the rest of the formula unhanged. We laim that χx is a Horn formula for

10.5 Conluding Remarks 109
T (ϕ) ∪ {x}. It is lear from the de�nitions that ϕ ≤ χx and χx(x) = 1.It remains to be shown that T (χx) \ T (ϕ) = {x}. If y is a truth assignment with
χx(y) = 1 and ϕ(y) = 0 then y must falsify a lause C of ϕ also falsi�ed by x.Thus Body(C)(x) = Body(C)(y) = 1 and Head(C)(x) = Head(C)(y) = 0. Now
χx(x) = χx(y) = 1 implies that x(v) = y(v) = 0 for every v 6∈ Clϕ(Body(C)), byonsidering the �rst ase in the de�nition of χv

C . Similarly, x(v) = y(v) for variables
v ∈ Clϕ(Body(C)) \Head(C) follows by onsidering the seond and third ases in thede�nition of χv

C .Thus, given a onsequene ψ of ϕ suh that ϕ̂ 6≤ ψ, a ϕ-omplement χx of ψan be onstruted by �rst �nding a truth assignment x with ϕ̂(x) = 1, ϕ(x) = 0and ψ(x) = 0. Suh a truth assignment an be found using a polynomial time Hornsatis�ability algorithm in the usual manner. The formula χx is then a ϕ-omplementof ψ.Example 10.3Let ϕ = (v → w) ∧ u and ψ = u, as in Example 10.2. Then ϕ̂ = (v, u → w) ∧ (v →

u)∧ (w → u). So 0 is a truth assignment satisfying ϕ̂ and falsifying ϕ and ψ, and the
ϕ-omplement of ψ provided by the onstrution (after deleting redundant lauses) is
(v → w) ∧ (w → u), whih di�ers from the ϕ-omplement of Example 10.2.Both onstrutions presented for the omplement may inrease the size of theformula by a linear fator, and it is not known whether this inrease is neessary.(Similar questions for DNFs are studied in [101℄.)10.5 Conluding RemarksRegarding the original motivation of the work presented in this hapter, the resultthat the only deomposable Horn formulas are the almost antimonotone ones are lesssatisfatory. The paper [89℄ proposes some diretions to resolve this dilemma somehow.Related to the result of this hapter, the above paper also ontains some experimentalresults about what fration of impliates of a random Horn formula have omplements.Finally note that the results presented in this hapter�unless noted otherwise�appeared in the paper [89℄, o-authored by the author of the present dissertation.

Appendix ASummaryTheory revision, as part of learning theory is interested in reonstruting some unknownfuntion aquiring information about it via some protool, spei�ed by the given learningmodel. However, as opposed to the general learning problem, it is assumed that thelearner is not new to the given task, but it initially has a hypotheses (in form of someformula) that is assumed to be some rough approximation of the unknown funtion.The e�ieny riteria is that the running time is polynomial in the size of the di�erentparameters, and that the amount of extra information, aquired via the protool is alsopolynomial in the amount of information needed to represent the unknown funtiongiven the initial formula. In the �rst part of the dissertation theoretial results areonsidered from the �eld of theory revision.In the seond part haraterizational results are presented; all showing equivalenebetween some syntatial and some semantial properties of some lasses of Booleanfuntions.Chapters 1�3 are introdutory.In Chapter 4 read-one funtions are onsidered (a funtion is read-one funtionif it is representable with a formula in whih every variable ours at most one), dis-ussing the orresponding results appeared in the paper [52℄. The importane of thisformula lass is rather theoretial, being a nontrivial sublass of Boolean formulas thatis tratable from several di�erent aspets, and has a nie semanti haraterization[58; 74; 102℄. This lass is shown to be e�iently learnable in the query model us-ing membership and equivalene querie [13℄, whih motivated the researh aimed toonstrut an e�ient algorithm for it. The main result of this hapter is a revisionalgorithm for this lass in the deletions-only ase (Algorithm ReviseReadOne), whihis shown to be an e�ient revision algorithm (Theorem 4.7). Additionaly it was shownthat the algorithm is optimal in the sense that both type of query used by AlgorithmReviseReadOne is neessary for the e�ieny (Theorem 4.13 and Theorem 4.14),and that the query omplexity of any revision algorithm for this lass is more or less ofthe same order of magnitude as that of Algorithm ReviseReadOne�or worse (The-orem 4.11).In Chapter 5 the revisability of Boolean threshold funtions are onsidered, dis-ussing the results appeared in the paper [116℄. (A Boolean funtion is said to be a111

112 Summarythreshold funtion if it an be represented by a set of variables R and a threshold θ,suh that it evalutes 1 on exatly those assignments whih assign 1 to at least θ of thevariables in R.) Threshold funtions (although in a more general form) are famous forbeing the basi ingredient of neural networks and support vetor mahines�and hasseveral other appliations as well. Boolean threshold funtions are also known to bee�iently learnable in the query learning model [64℄ (however the learning algorithmpresented in [64℄ uses only membership funtions). The main result is again an algo-rithm (Algorithm ReviseThreshold) whih is an e�ient revision algorithm for thelass of Boolean threshold funtions in the query model (see Theorem 5.5). Again, it isalso examined whether the query omplexity of the algorithm is (more or less) as goodas the optimal, and the answer was found to be positive (Proposition 5.8). In viewof that the learning algorithm of Heged¶s for this lass uses only membership queries,the question whether both type of queries are neessary for the e�ient revision seemseven more appropriate. However, as it is shown by Theorem 5.6 and Theorem 5.7, theanswer is again positive. Finally it is shown that the natural extension of AlgorithmWinnow [92℄ does not give an e�ient revision algorithm for the lass of threshold for-mulas (Proposition 5.9). This is interesting in view of that this algorithm is famous forlearning some formula lasses highly e�iently using some (general) threshold funtionrepresentation.As a losure of the �rst part dealing with theory revision, in Chapter 6 the revisabilityprojetive DNFs is onsidered, disussing the orresponding results appeared in [115℄.Projetive DNF formulas form a sublass of the disjuntive normal form formulas,introdued reently Valiant [128℄. (The motivation for onsidering sublasses of theDNFs has substantially grown after the reent result of Alekhnovih et al. proving that,unless RP = NP, the lass of DNFs is not e�ient learnable [5℄.) This lass was foundby Valiant to be suitable for a speial form of learning, alled projetive learning, thegeneral behind it being that learning, similarly to other biologial proesses, should bearried out on multiple levels in a distributed manner. The main result of this hapteris that a natural extension (Algorithm RevWinn) of Valiant's algorithm is an e�entrevision algorithm for the lass of k-projetive DNFs in the mistake bonded model(Theorem 6.3). The algorithm (just like the one used by Valiant [128℄) onsists oftwo levels. On the lower level simple learning algorithms are run, eah onentratingon just a small part (or restrition) of the funtion to be learned. On the upper levelanother simple algorithm is run, whih, on one hand, learns how to (re)ombine theoutput of the algorithms on the lower level, and, on the other hand, it �lters theinformation forwarded to these algorithms suh that eah one reeives only that partof the information whih is supposed to be relevant for it. In the seond part of theChapter a learnability related parameter, the so alled exlusion dimension of the lassis examined. This parameter is known to be related to the query omplexity of the bestlearning algorithms for a given lass (see [11; 67℄) whih, ombined with the result onthe exlusion dimension derived in the hapter implies the lower bound (⌊n/4⌋
k

)

− 1 forthe query omplexity of this lass (Proposition 6.9).In Chapter 7 a further, haraterization result is presented for projetive DNF formu-

113las, disussing the orresponding result appeared in [115℄. Projetive DNFs are de�nedin a rather semanti way (whih is more apparent from part (a) of Lemma 6.5 fromthe preeding hapter), however the main result of this hapter, Theorem 7.3 gives asimple syntati desription for a sublass of this lass, alled 1-projetive DNFs.In Chapter 8 the relation between the number of terms in a DNF and the number ofprime impliants of it is onsidered, disussing the results appeared in [114℄. (A term tis an impliant of some Boolean funtion f , if any assignment saisfying t also satis�es
f , meanwhile t is said to be a prime impliant of f if, in addition, this does not holdfor any term obtained from t by removing some literals from it.) Setion 8.3 disussesprevioulsy known results on the topi: that if some DNF onsists of K terms, then ithas at most 2K − 1 prime impliants [31; 90; 97℄, and it is also mentioned that thisbound is known to be sharp [88; 90; 97℄. The results get ompleted in the subsequentsetions by giving a haratarization DNFs that have as many prime impliants as thisbound allows (Theorem 8.1). This is shown by reduing the problem to the followingproblem: if in some DNF tautology eah pair of terms on�it in exatly one variable(i.e., eah pair is resolvable) then it posesses a tree-like struture (i.e., there is somevariable v appearing in eah term; there is some variable w appearing in eah termthat ontains v negated, and there is some variable u in eah term that ontains vunnegated; and so on).Chapter 9 onsiders a generalization of the intermediate result in the previous hap-ter (about that DNF tautologies with terms on�iting in exatly one variable pairwisepossess a tree-like struture), disussing the results appeared in [119℄. More preiselyin Theorem 9.1 it is shown that if in some DNF tautology eah pair of terms on�itin at least one but at most two variables, then it also posesses a tree-like struture(also mentioning how it relates to various generalizations motivated by semanti resp.syntati onsiderations). However, further relaxing the bound given for the on�it ofthe terms to three, the above mentioned tree-like struture will not be automati�as isdemonstrated by an example. This problem is also a speial ase of a problem onsid-ered in [93℄, that, given a DNF tautology, the task is to onstrut a deision tree suhthat for eah term of the DNF generated by it there is a term of the tautology that isa subterm of it. They have shown that even for some very simple DNFs this problemrequires a deision tree with extremely big omplexity; however the result presented inthis hapter implies that for eah DNF in the above mentioned restrited lass thereexists always some simple deision tree 1.Finally, in Chapter 10 deomposable Horn formulas are onsidered (onjuntivenormal form formulas in whih every lause ontains at most one unnegated variable),disussing the results from [89℄. Horn formulas, being an expressive lass whih alsoallows for polynomial time inferene, and indeed is generally omputationally tratable,play a entral role in arti�ial intelligene and in omputer siene. The notion ofdeomposability omes from belief revision 2, a �eld interested in revising knowledge1Atually the result states something stronger: for this restrited lass basially the DNFs them-selves an be onsidered as deision trees in some sense.2Belief revision is related to theory revision (at least in it topi);thus�as a losure�the two maintopis of the dissertation meet again.

114 Summarybase in suh a manner that satis�es some �reasonability� properties, that are typiallyformulated in the form of postulates. Deomposability was introdued for generallogis in [41℄, where it was also shown to be equivalent to the existene of somerevision operator satisfying the AGM postulates [4℄�one of the most popular postulatesused in belief revision. The main result of the hapter is Theorem 10.10, showingharaterizations for the existene of a omplement of a Horn funtion onsequene ofanother Horn funtion, whih in turn provides a omplete desription of deomposableHorn formulas. The haraterizations lead to e�ient algorithms for the onstrutionof a omplement whenever it exists (whih is in ontrast with a related, but somewhatmore stringent omplement notion of [60℄, the existene of whih is oasionally NP-omplete to deide). The result, as is purely ombinatiorial, but was meant in [89℄as a �rst step towards what is referred to as �Horn-to-Horn belief revision�: revisionof Horn knowledge bases where the revised knowledge base is also required to beHorn; integrating hopefully e�ient revision (the entral notion in theory revision) andommon sense reasoning (as a main goal in belief revision).

Appendix BÖsszefoglalásAz elméletrevízió � a tanuláselmélet részeként � azt vizsgálja, hogyan rekonstruálhatóhatékonyan valamely ismeretlen függvény különböz® (az adott tanulási modell általmeghatározott) protokollokon keresztül informáiót szerezve a függvényr®l. A tanu-lás szokásos alapszintuáiójától eltér®en azonban itt feltesszük, hogy a tanuló márrendelkezik valamilyen el®ismerettel err®l a függvényr®l, pontosabban, hogy van egykiinduló hipotézise (valamilyen formula képében), mely a tanulandó függvényt bizonyosértelemben jól közelíti. A futásid®re vonatkozó hatékonysági kritérium az, hogy legyenpolinomálisan korlátos a probléma különböz® paramétereinek méretében, az informá-ióelméleti pedig az, hogy a protokollon keresztül szerzett informáió mennyisége legyenpolinomiálisan korlátos azon informáió mennyiségében, amennyivel az ismeretlen függ-vény leírható a kezdeti hipotézis ismeretében. A disszertáió els® felében elméleti ered-ményeket tárgyaltunk az elméletrevízió témaköréb®l.A disszertáió második felében karakterizáiós eredményeket vizsgáltunk, melyekmind Boole-függvények valamely szemantikus illetve szintaktikus tulajdonságai közöttmutattak ekvivaleniát.Az els® három fejezet bevezet® jelleg¶.A 4. fejezetben read-one függvényekkel foglalkoztunk (egy függvény read-one� azaz egyszer olvasó �, ha reprezentálható olyan formulával, melyben minden vál-tozó legfeljebb egyszer fordul el®); ezen vizsgálatok alapjául az [52℄ ikk idevágóeredményei szolgáltak. Ezen függvényosztály elméleti szempontból igen jelent®s, tek-intve, hogy Boole-függvényeknek egy olyan, nemtriviális részhalmaza, melynek elemei(sok tekintetben) algoritmikusan hatékonyan kezelhet®k, ráádasul egy kellemes szeman-tikus karakterizáiója is ismert [58; 74; 102℄. A függvényosztályról az is ismert (lásd[13℄), hogy hatékonyan tanulható az úgynevezett query model (tanulás kérdések által)keretein belül, ha a tanuló használhat mind membership query-t (értékre kérdezés)mind equivalene query-t (ekvivaleniára kérdezés). A fejezet f® eredménye, hogyaz ott ismertetett ReviseReadOne algoritmus a függvényosztály hatékony revíziójátvalósítja meg a sak-törléses esetben (lásd a 4.7. tételt). További eredményként is-mertetésre került, hogy az algoritmusban használatos két kérdéstípus bármelyikét mel-l®zve a függvényosztály revíziója nem valósítható meg hatékonyan (lásd a 4.13 és a4.14 tételeket), illetve hogy az algoritmus által használt kérdések mennyisége nagysá-115

116 Összefoglalásgrendileg lényegében szintén optimális (lásd a 4.11 tételt).Az 5. fejezetben küszöbfüggvényekkel foglalkoztunk; ezen vizsgálatok alapjáula [116℄ ikk idevágó eredményei szolgáltak. (Egy függvényt küszöbfüggvénynek te-kintünk, ha reprezentálható változók egy R halmazával és egy θ küszöb értékkel olyanmódon, hogy a függvény pontosan azon értékadások esetén ad 1-et, melyek az R-beli változók közül legalább θ-hoz 1-et rendelnek értékül.) A küszöbfüggvények je-lent®ségét jelzi, hogy (habár a fentinél általánosabb formában megadva) a mester-séges neuronhálók illetve SVM-ek (support vetor mahine-ek) egyik alap épít®kövekénthasználatosak. Küszöbfüggvényekr®l is ismert, hogy hatékonyan tanulhatók a querymodel keretein belül, ám ezen függvényosztály esetén ehhez elég sak a member-ship query-k használata (lásd a [64℄ ikkben ismertetett algoritmust). A fejezet f®eredménye, hogy az ott ismertetett ReviseThreshold algoritmus a függvényosztályhatékony revízióját valósítja meg az általános esetben (lásd az 5.5. tételt). Ezen felülmegintsak bizonyításra került, hogy az algoritmus által használt kérdések mennyi-sége nagyságrendileg lényegében optimális (lásd az 5.8. állítást). Figyelembe véve,hogy � amint az fent említetésre került � a függvényosztály hatékonyan tanulhatósak membership query-k használatával is, ebben az esetben még aktuálisabb a kérdés,hogy vajon a hatékony revízióhoz szükség van-e mindkett®re. A válasz, mint azt az5.6. és 5.7. tételek mutatják, igenl®. Végezetül megmutattuk, hogy Littlestonehíres Winnow Algoritmusa (mely a [92℄ ikkben került ismertetésre), illetve annakegy megfelel®, természetes elméletrevíziós kiterjesztése nem hatékony revíziós algo-ritmus ezen függvényosztályra. Ez azért is meglep®, mert ezen algoritmus az által válthíressé, hogy bizonyos függvények tanulását kimagaslóan hatékonyan valósítja meg, ésráadásul (általánosabb értelemben vett) küszöbfüggvényként reprezentálja a mindenkorihipotézisét.A 6. fejezetben, az elméletrevízióval foglalkozó els® rész zárásaként projektív DNFformulákkal foglalkoztunk; ezen vizsgálatok alapjául a [115℄ ikk idevágó eredményeiszolgáltak. A diszjunktív normálformájú formulák részosztályát alkotó projektív DNFformulák Valiant [128℄ ikkében kerültek bevezetésre. (A DNF-ek különböz® rész-osztályainak vizsgálata azáltal kapott még nagyobb hangsúlyt, hogy Alekhnovih-ék [5℄ikkükben megmutatták, hogy � hasak az NP és RP osztályok nem egyenl®ek � aDNF-ek osztálya nem tanulható hatékonyan.) A formulaosztály jelent®ségét az szol-gáltatta Valiant számára, hogy alkalmasnak bizonyultak az ún. projektív tanulásra,melynek lényege, hogy a tanulás, a biológiában meg�gyelhet® más folyamatokhoz ha-sonlóan, több szinten, osztott módon történik. A fejezet f® eredménye, hogy az ottismertetett RevWinn algoritmus, mely Valiant tanulóalgoritmusának egy természeteskiterjesztése, a projektív DNF formulák hatékony revízióját valósítja meg a mistakebounded model (hibakorlátozott modell) keretein belül (lásd a 6.3. tételt). Az al-goritmus, Valiant eredeti algoritmusához hasonlóan, két szintb®l tev®dik össze. Azalsó szinten egy egyszer¶ tanulóalgoritmus több példánya kerül futtatásra, melyek minda tanulandó függvény (pontosabban a függvény értelmezési tartományának) egy kisszeletére (avagy projekiójára) �gyelnek sak. A fels® szinten megintsak egy egyszer¶tanulóalgoritmus használatos (ezúttal viszont sak egy darab), egyrészt azzal a éllal,

117hogy megtanulja, hogyan kell az alsó szinten futtatott egyszer¶ tanulóalgoritmusok általreprezentált hipotéziseket összekapsolni, másrészt azzal, hogy � megsz¶rve az infor-máiót � az alsó szinten lév® minden egyes algoritmusnak sak az ® számára relevánsinformáiót továbbítsa. A fejezet második részében a formulaosztály egy, a tanulássalkapsolatos paraméterét, az ún. exlusion dimension (kizárási dimenzió) paraméterétvizsgáltuk (ezen paraméterr®l b®vebben lásd a [11; 67℄ ikkeket). Ezen eredményt,valamint az exlusion dimension és a query omplexity (kérdési bonyolultság) közöttfennálló, ismert összefüggéseket felhasználva megmutatjuk, hogy a formulaosztály nemtanulható kevesebb mint (⌊n/4⌋
k

)

−1 kérdést használva (a legrosszabb eset analízisben).A 7. fejezetben további, karakterizáiós jelleg¶ kérdéseket vizsgáltunk a projektívDNF formulákkal kapsolatosan; ezen vizsgálatok alapjául a [115℄ ikk idevágó ered-ménye szolgált. A projektív DNF-ek szemantikus jelleg¶ módon lettek de�niálva (melyettalán a 6.5 Lemma (a) pontja hangsúlyoz ki a leglátványosabban), ezért is érdekes a7.3 tétel eredménye, mely ezen formulaosztály egy részosztályának, az 1-projektív DNF-eknek egy szemantikus leírását adja meg.A 8. fejezetben egy DNF termjeinek illetve prímimplikánsainak száma közti kap-solatot vizsgáltuk; ezen vizsgálatok alapjául a [114℄ ikk eredményei szolgáltak. (Egy
t term implikánsa egy Boole függvénynek, a t-t kielégít® értékadások a függvényt ismind kielégítik, illetve prímimplikánsa, ha ez a tulajdonság már egy olyan termre semteljesül, melyet t-b®l literálok elhagyásával kaphatunk.) A 8.3. részben a témábanismert korábbi eredményeket ismertettük (a teljesség kedvéért bizonyítással együtt);többek közt azt, hogy egy K tagú DNF-nek legfeljebb 2K − 1 prímimplikánsa lehet[31; 90; 97℄, és hogy ez a korlát éles [88; 90; 97℄. A fejezet f® eredménye, hogyteljes karakterizáióját adja azon DNF-eknek, melyek prímimplikánsainak száma elériezt a fels® korlátot (lásd a 8.1. tételt). A bizonyítás során a problémát visszavezettükarra, hogy ha egy DNF tautológiában minden tag minden másik taggal pontosan egyváltozóban ütközik, akkor a DNF-nek egy speiális fa struktúrája van.A 9. fejezetben azon probléma került általánosításra, melyre az el®z® fejezet ere-deti problémája vissza lett vezetve; ezen vizsgálatok alapjául a [119℄ ikk eredményeiszolgáltak. Pontosabban azt mutattuk meg (lásd a 9.1. tételt), hogy ha egy DNF-benminden tag minden másik taggal legalább egy, de legfeljebb két változóban ütközik,akkor szintén rendelkezik a fent említett fa jelleg¶ struktúrával, de ha a megengedettütközések számát már háromra növeljük, akkor ez a struktúra már nem jelenik megminden esetben. Kifejtére került továbba az is, hogy ez az eredmény hogyan vis-zonyul különböz® további, szemantikus illetve szintaktikus megfontolások által vezéreltáltalánosításokhoz. Megemlítettük azt is, hogy ez a probléma egy speiális esete a [93℄ikkben tárgyalt problémának, mely azzal foglalkozik, hogy egy adott DNF tautológiaesetén mekkora a legkisebb olyan döntési fa, amely olyan DNF tautológiát generál,aminek minden tagja az adott DNF valamely termjének kib®vítése plusz literálokkal.Végezetül, a 10. fejezetben ún. felbontható Horn fromulákat vizsgáltunk (Hornformula egy olyan CNF, amelyben minden klóz legfeljebb egy negálatlan változót tartal-maz); ezen vizsgálatok alapjául a [89℄ ikk eredményei szolgáltak. A Horn formulák igenfontos szerepet játszanak a mesterséges intelligeniában, illetve általában a számítás-

118 Összefoglalástudományban, melynek alapja, hogy a formulaosztály kifejez®képessége relatíve igenjó, és emellett algoritmikusan hatékonyan kezelhet®. A felbonthatóság fogalma a be-lief revision témaköréb®l származik 1, mely témakör f®ként tudásbázisok (hétköznapiértelemben vett) raionalitási tulajdonságokat teljesít® revíziójával foglalkozik, melyekettipikusan posztulátumok formájában fogalmaznak meg. A felbonthatóság fogalmát ál-talános logikákra fogalmazták meg a [41℄ ikkben, ahol megmutatták, hogy az AGMposztulátumok [4℄ (a legismertebb posztulátumok egyike a témakörben) teljesülésénekszükséges és elégséges feltétele, hogy az adott logikában létezzen felbontható revíz-iós operátor. A fejezet f® eredményeként a 10.10. tételben karakterizáltuk, hogymilyen esetkben van egy Horn formulának egy másik (®t implikáló) Horn formuláranézve komplemense. Ezt felhasználva végül megadtuk a felbontható Horn formulákegy jellemzését. Mint megmutattuk, ha létezik, a komplemens hatékony konstruálható,szemben az irodalolmban egy korábban vizsgált, valamelyest szigorúbb komplemens fo-galommal, melynek meglétének eldöntése bizonyos esetekben NP-nehéz. Az eredménya közölt formában pusztán kombinatorikai jelleg¶, ám mindez egy Horn formula alapúmódszer els® lépéseként került vizsgálatra a a [89℄ ikkben, melynek jöv®beni élja ahatékony revízió ötvözése a belief revison által vizsgált raionalitási tulajdonságokkal.

1Ezen témakör rokon az elméletrevízióval, így a disszertáió végén egy fejezet erejéig bizonyosértelemben újra találkozik a disszertáió két f® témája.

Bibliography[1℄ R. Aharoni and N. Linial. Minimal non-two-olorable hypergraphs and minimalunsatis�able formulas. Journal of Combinatorial Theory Series A, 43(2):196�204,1986.[2℄ H. Aizenstein, T. Heged¶s, L. Hellerstein, and L. Pitt. Complexity theoreti hard-ness results for query learning. Computational Complexity, 7(1):19�53, 1998.[3℄ H. Aizenstein, L. Hellerstein, and L. Pitt. Read-thrie DNF is hard to learn withmembership and equivalene queries. In Pro. 33rd Symposium on Foundations ofComputer Siene (FOCS 1992), pages 523�532. IEEE Computer Soiety Press,1992.[4℄ C. E. Alhourrón, P. Gärdenfors, and D. Makinson. On the logi of theory hange:partial meet funtions for ontration and revision. Journal of Symboli Logi,50:510�530, 1985.[5℄ M. Alekhnovih, M. Braverman, V. Feldman, A. R. Klivans, and T. Pitassi. Learn-ability and automatizability. In Pro. 45th Symposium on Foundations of ComputerSiene (FOCS 2004), pages 621�630. IEEE Computer Soiety Press, 2004.[6℄ D. Angluin. Learning propositional Horn sentenes with hints. Tehnial ReportYALEU/DCS/RR-590, Department of Computer Siene, Yale University, De.1987.[7℄ D. Angluin. Learning regular sets from queries and ounterexamples. Informationand Computation, 75(2):87�106, 1987.[8℄ D. Angluin. Learning with hints. In Pro. 1st. Workshop on Computational LearningTheory (COLT 1988), pages 167�181. Morgan Kaufmann, 1988.[9℄ D. Angluin. Negative results for equivalene queries. Mahine Learning, 5(2):121�150, 1990.[10℄ D. Angluin. Queries and onept learning. Mahine Learning, 2(4):319�342, 1988.[11℄ D. Angluin. Queries revisited. Theoretial Compututer Siene, 313(2):175�194,2004. Earlier version appeared in 12th ALT, 2001.119

120 Bibliography[12℄ D. Angluin, M. Frazier, and L. Pitt. Learning onjuntions of Horn lauses. Ma-hine Learning, 9(2�3):147�164, 1992.[13℄ D. Angluin, L. Hellerstein, and M. Karpinski. Learning read-one formulas withqueries. Journal of the ACM, 40(1):185�210, 1993.[14℄ D. Angluin and M. Kharitonov. When won't membership queries help? Journal ofComputer and Systems Sienes, 50(2):336�355, 1995. Earlier version appearedin 23rd STOC, 1991.[15℄ N. H. Arai, T. Pitassi, and A. Urquhart. The omplexity of analyti tableaux. InPro. 33rd Symposium on Theory of Computing (STOC 2001), pages 356�363,ACM Press, 2001.[16℄ S. Argamon-Engelson and M. Koppel. Tratability of theory pathing. Journal ofArti�ial Intelligene Researh, 8:39�65, 1998.[17℄ P. Auer and P. M. Long. Strutural results about on-line learning models with andwithout queries. Mahine Learning, 36(3):147�181, 1999.[18℄ P. Auer and M. K. Warmuth. Traking the best disjuntion. Mahine Learning,32(2):127�150, 1998. Earlier version appeared in 36th FOCS, 1995.[19℄ L. Babai and P. Frankl. Linear algebra methods in ombinatoris. Preliminaryversion 2, Available from Univ. of Chiago Computer Siene Dept., 1992.[20℄ R. Bennet. Improved Learning with Corrupt Orales. Master's thesis, TehnionUniversity, 2005.[21℄ L. Bisht, N. H. Bshouty, and L. Khoury. Learning with errors in answers tomembership queries. In Pro. 45th Symposium on Foundation of Computer Siene(FOCS 2004), pages 611�620, 2004.[22℄ A. Blum. On-line algorithms in mahine learning. Available from http://www-2.s.mu.edu/~avrim/Papers/pubs.html, 1996.[23℄ A. Blum. Learning boolean funtions in an in�nite attribute spae. MahineLearning, 9:373�386, 1992.[24℄ A. Blum, L. Hellerstein, and N. Littlestone. Learning in the presene of �nitely orin�nitely many irrelevant attributes. Journal of Computer and Systems Sienes,50(1):32�40, 1995. Earlier version in 4th COLT, 1991.[25℄ A. Blum and S. Rudih. Fast learning of k-term DNF formulas with queries.Journal of Computer and Systems Sienes, 51(3):367�373, 1995.[26℄ N. Bshouty. Exat learning Boolean funtion via the monotone theory. Informationand Computation, 123:146�153, 1995.

Bibliography 121[27℄ N. Bshouty and L. Hellerstein. Attribute-e�ient learning in query and mistake-bound models. Journal of Computer and Systems Sienes, 56(3):310�319, 1998.[28℄ N. H. Bshouty and R. Cleve. On the exat learning of formulas in parallel. InPro. 33rd Symposium on the Foundations of Computer Sienes (FOCS 1992),pages 513�522. IEEE Computer Soiety Press, 1992.[29℄ N. H. Bshouty, S. A. Goldman, T. R. Hanok, and S. Matar. Asking questionsto minimize errors. Journal of Computer and Systems Sienes, 52(2):268�286,1996. Earlier version in 6th COLT, 1993.[30℄ L. Carbonara and D. Sleeman. E�etive and e�ient knowledge base re�nement.Mahine Learning, 37(2):143�181, 1999.[31℄ A. K. Chandra and G. Markowsky. On the number of prime impliants. DisreteMathematis, 24:7�11, 1978.[32℄ P. Damashke. Adaptive versus nonadaptive attribute-e�ient learning. MahineLearning, 41(2):197�215, 2000.[33℄ G. Davydov, I. Davydova, and H. Kleine Büning. An e�ient algorithm for theminimal unsatis�ability problem for a sublass of CNF. Annals of Mathematis andArti�ial Intelligene, 23:229�245, 1998.[34℄ L. De Raedt. Logial settings for onept-learning. Arti�ial Intelligene,95(1):187�201, 1997.[35℄ R. Dehter and J. Pearl. Struture identi�ation in relational data. Arti�ialIntelligene, 58(1�3):237�270, 1992.[36℄ A. Dhagat and L. Hellerstein. PAC learning with irrelevant attributes. In Pro.35rd Annual Symposium on Foundations of Computer Siene (FOCS 1994), pages64�74. IEEE Computer Soiety Press, 1994.[37℄ W. F. Dowling and J. H. Gallier. Linear-time algorithms for testing the satis�abilityof propositional Horn formulae. Journal of Logi Programming, 1:267�284, 1984.[38℄ T. Eiter and G. Gottlob. On the omplexity of propositional knowledge baserevision, updates, and ounterfatuals. Arti�ial Intelligene, 57(2�3):227-270,1992.[39℄ R. Fagin, J. Ullman, and M. Y. Vardi. On the semantis of updates in databases.In Pro.2nd, Symposium on Priniples of Database Systems (PODS 1983), pages352�365, ACM Press, 1983.[40℄ R. Feldman. Probabilisti Revision of Logial Domain Theories. PhD thesis, CornellUniversity, 1993.

122 Bibliography[41℄ G. Flouris, D. Plexousakis, and G. Antoniou. On generalizing the AGM postulates:preliminary results and appliations. In Pro. 10th Workshop on Non-MonotoniReasoning (NMR 2004), pages 171�179, 2004.[42℄ G. Flouris, D. Plexousakis, and G. Antoniou. Updating desription logis usingthe AGM theory. In 7th Symposium on Logial Formalizations of CommonsenseReasoning, 2005.[43℄ M. Frazier. Matters Horn and Other Features in the Computational LearningTheory Landsape: The Notion of Membership. PhD thesis, University of Illinoisat Urbana-Champaign, 1994. Tehnial report UIUCDCS-R-94-1858.[44℄ M. Frazier and L. Pitt. Learning from entailment: An appliation to propositionalHorn sentenes. In Pro. 10th International Confenrene on Mahine Learning(ICML 1993), pages 120�127. Morgan Kaufmann, June 1993.[45℄ P. Gärdenfors. Knowledge in Flux. Bradford Books/MIT Press, 1988.[46℄ M. L. Ginsberg. Counterfatuals. Arti�ial Intelligene, 35�79, 1986.[47℄ E. M. Gold. Language identi�ation in the limit. Information and Control,10(5):447�474, 1967.[48℄ O. Goldreih, S. Goldwasser, and S. Miali. How to onstrut random funtions.Journal of the ACM, 33(4):792�807, 1986.[49℄ J. Goldsmith and R. H. Sloan. More theory revision with queries. In Pro. 32ndSymposium on Theory of Computing (STOC 2000), pages 441�448. ACM Press,2000.[50℄ J. Goldsmith and R. H. Sloan. New Horn Revision Algorithms. Journal of MahineLearning Researh, 6:1919�1938, 2005.[51℄ J. Goldsmith, R. H. Sloan, B. Szörényi, and Gy. Turán. Improved algorithms fortheory revision with queries. In Pro. 13th Conferene on Computational LearningTheory (COLT 2000), pages 236�247. Morgan Kaufmann, 2000.[52℄ J. Goldsmith, R. H. Sloan, B. Szörényi, and Gy. Turán. Theory revision withqueries: Horn, read-one, and parity formulas. Arti�ial Intelligene, 156:139�176,2004.[53℄ J. Goldsmith, R. H. Sloan, and Gy. Turán. Theory revision with queries: DNFformulas. Mahine Learning, 47(2�3):257�295, 2002.[54℄ R. L. Graham and H. O. Pollak. On the addressing problem for loop swithing.Bell System Tehnial Journal, 50(8):2459�2519, 1971.[55℄ D. A. Gregory, V. L. Watts, and B. L. Shader. Bilique deompositions andhermitian rank. Linear Algebra and its Appliations, 292:267�280, 1999.

Bibliography 123[56℄ R. Greiner. The omplexity of revising logi programs. Journal of Logi Program-ming, 40:273�298, 1999.[57℄ R. Greiner. The omplexity of theory revision. Arti�ial Intelligene, 107(2):175�217, 1999.[58℄ V. Gurvih. On repetition-free Boolean funtions. Uspekhi MatematiheskikhNauk, 32(1):183�184, 1977. (In Russian).[59℄ P. L. Hammer and A. Kogan. Quasi-ayli propositional Horn knowledge bases:optimal ompression. IEEE Transations on Knowledge and Data Engineering,7(5):751�762, 1995.[60℄ P. L. Hammer and A. Kogan. Essential and Redundant Rules in Horn KnowledgeBases. In Pro. 28th Hawaii International Conferene on System Sienes (HICSS1995, 209�218, 1995.[61℄ P. L. Hammer, A. Kogan, and U. G. Rothblum. Evaluation, strength and relevaneof variables of Boolean funtions. SIAM Journal on Disrete Mathematis, 13:302�312, 2000.[62℄ S. O. Hansson. A Textbook on Belief Dynamis: Theory Change and DatabaseUpdating. Kluwer, 1999.[63℄ D. Haussler, M. Kearns, N. Littlestone, and M. K. Warmuth. Equivalene ofModels for Polynomial Learnability. Information and Computation, 95(2):129�161,1991.[64℄ T. Heged¶s. On training simple neural networks and small-weight neurons. InPro. 1st Eurpean Conferene on Computational Learning Theory (EuroColt 1993),pages 69�82. Oxford University Press, 1994.[65℄ T. Heged¶s. Generalized teahing dimensions and the query omplexity of learning.In Pro. 8th Conferene on Computational Learning Theory, pages 108�117. ACMPress, 1995.[66℄ T. Heged¶s and P. Indyk. On learning disjuntions of zero-one threshold funtionswith queries. In 8th International Workshop on Algorithmi Learning Theory (ALT1997), vol. 1316 of LNAI, pages 446�460. Springer, 1997.[67℄ L. Hellerstein, K. Pillaipakkamnatt, V. Raghavan, and D. Wilkins. How manyqueries are needed to learn? Jourrnal of the ACM, 43(5):840�862, 1996.[68℄ L. Hellerstein and V. Raghavan. Exat learning of DNF formulas using DNFhypotheses. Journal of Computer and Systems Sienes, 70:435�470, 2005.[69℄ D. Helmbold, R. Sloan, and M. K. Warmuth. Learning nested di�erenes ofintersetion losed onept lasses. Mahine Learning, 5(2):165�196, 1990. Earlierversion appeared in 2nd COLT, 1989.

124 Bibliography[70℄ S. Hoory and S. Szeider. A note on unsatis�able k-CNF formulas with few our-renes per variable. SIAM Journal on Disrete Mathematis, 20:523�528, 2006.[71℄ A. Horn. On sentenes whih are true on diret unions of algebras. Journal ofSymboli Logi, 16:14�21, 1951.[72℄ S. Jukna. Extremal Combinatoris. Springer, 2001.[73℄ S. Jukna, A. Razborov, P. Saviký, and I. Wegener. On P versus NP ∩ o-NPfor deision trees and read-one branhing programs. Computational Complexity,8(4):357�370, 1999.[74℄ M. Karhmer, N. Linial, I. Newman, M. Saks, and A. Wigderson. A ombinatorialharaterization of read-one formulae. Disrete Mathematis, 114:275�282, 1993.[75℄ J. Kahn, G. Kalai, and N. Linial. The in�uene of variables on Boolean funtions.In Pro. 29th Annual Symposium on Foundations of Computer Siene (FOCS1988), pages 68�80, 1988.[76℄ M. Kearns, M. Li, L. Pitt, and L. Valiant. On the learnability of Boolean formulae.In Pro. 19th ACM Symposium on Theory of Computing, pages 285�294. ACMPress, 1987.[77℄ M. Kearns and L. Valiant. Cryptographi limitations on learning Boolean formulaeand �nite automata. Journal of the ACM, 41(1):67�95, 1994.[78℄ M. Kearns and U. V. Vazirani. An Introdution to Computational Learning Theory.MIT Press, 1994.[79℄ H. Kleine Büning and T. Lettmann. Propositional Logi: Dedution and Algo-rithms. Cambridge University Press, 1999.[80℄ J. Kivinen and M. K. Warmuth. Additive versus exponentiated gradient updatesfor linear predition. In Pro. 27th Symposium on Theory of Computing (STOC1995), pages 209�218. ACM Press, 1995.[81℄ Z. Kohavi. Swithing and Finite Automata Theory. MGraw-Hill, seond edition,1978.[82℄ M. Koppel, R. Feldman, and A. M. Segre. Bias-driven revision of logial domaintheories. Journal of Arti�ial Intelligene Researh, 1:159�208, 1994.[83℄ J. Kratohvíl, P. Saviký, and Zs. Tuza. One more ourrene of variables makessatis�ability jump from trivial to NP-omplete. SIAM Journal on Computing,22:203�210, 1993.[84℄ O. Kullmann. An appliation of matroid theory to the SAT problem. In 15thConferene on Computational Complexity (COCO 2000), pages 116�124. IEEEComputer Soiety, 2000.

Bibliography 125[85℄ O. Kullmann. The ombinatoris of on�its between lauses. In Pro. 6th Con-ferene on Theory and Appliations of Satis�ability Testing (SAT 2003), vol.2919of LNCS, pages 426�440. Springer, 2003.[86℄ O. Kullmann. On the on�it matrix of lause-sets. Tehnial Report CSR 7-2003,University of Wales at Swansea, 2003.[87℄ E. Kushilevitz and Y. Mansour. Learning deision trees using the Fourier spetrumIn Pro. 23rd Symposium on Theory of Computing (STOC 1991), pages 455�464.ACM Press, 1991.[88℄ J.-M. Laborde. Sur le ardinal maximum de la base omplète d'une fontionbooléenne, en fontion du nombre de onjuntions de l'une de ses formes normales.Disrete Mathematis, 32:209�212, 1980.[89℄ M. Langlois, R. H. Sloan, B. Szörényi, and Gy. Turán. Horn formulas, deompos-ability and Belief Revision. Manusript.[90℄ A. A. Levin. Comparative omplexity of disjuntive normal forms. Metody Disret.Analiz., 36:23�38, 1981. (In Russian)[91℄ N. Littlestone. A mistake-bound version of Rivest's deision-list algorithm. Per-sonal ommuniation to Avrim Blum, 1989.[92℄ N. Littlestone. Learning quikly when irrelevant attributes abound: A new linear-threshold algorithm. Mahine Learning, 2(4):285�318, 1988.[93℄ L. Lovász, M. Naor, I. Newman, and A. Wigderson. Searh problems in the deisiontree model. SIAM Journal on Disrete Mathematis, 8:119�132: 1995.[94℄ W. Maass and Gy. Turán. Lower bound methods and separation results for on-linelearning models. Mahine Learning, 9(2�3):107�145, 1992.[95℄ J. A. Makowsky. Model theory and omputer siene: An appetizer. In Handbookof Logi in Computer Siene, Volume 1 (Bakground: Mathematial Strutures),pages 763�814. Oxford University Press, 1992.[96℄ J. C. C. MKinsey. The deision problem for some lasses without quanti�ers.Journal of Symboli Logi, 8:61�76, 1943.[97℄ C. MMullen and J. Shearer. Prime impliants, minimum overs, and the om-plexity of logi simpli�ation. IEEE Transations on Computers, 35(8):761�762,1986.[98℄ C. Mesterharm. Traking linear-threshold onepts with Winnow. Journal ofMahine Learning Researh, 4:819�838, 2003.[99℄ T. M. Mithell. Mahine Learning. WCB/MGraw-Hill, 1997.

126 Bibliography[100℄ R. J. Mooney. A preliminary PAC analysis of theory revision. In ComputationalLearning Theory and Natural Learning Systems, volume III: Seleting Good Models,pages 43�53. MIT Press, 1995.[101℄ D. Mubayi, Gy. Turán, and Y. Zhao. The DNF exeption problem. TheoretialCompututer Siene, 352:85�96, 2006.[102℄ D. Mundii. Funtions omputed by monotone Boolean formulas with no repeatedvariables. Theoretial Compututer Siene, 66:113�114, 1989.[103℄ D. Ourston and R. J. Mooney. Theory re�nement ombining analytial andempirial methods. Arti�ial Intelligene, 66(2):273�309, 1994.[104℄ K. Pillaipakkamnatt and V. Raghavan. Read-twie DNF formulas are properlylearnable. Information and Computation, 122(2):236�267, 1995. Earlier verionappeared in 1st EuroColt, 1993.[105℄ S. Pinker. The Blank Slate: The Modern Denial of Human Nature. Viking Press,2002.[106℄ L. Pitt and L. G. Valiant. Computational limitations on learning from examples.Jourrnal of the ACM, 35(4):965�984, 1988.[107℄ B. L. Rihards and R. J. Mooney. Automated re�nement of �rst-order Horn-lausedomain theories. Mahine Learning, 19(2):95�131, 1995.[108℄ R. L. Rivest. Learning deision lists. Mahine Learning, 2(3):229�246, 1987.[109℄ J. E. Savage. Models of Computation: Exploring the Power of Computing.Addison Wesley, 1998.[110℄ P. Saviký. On determinism versus unambiquous nondeteminism for deisiontrees. Eletroni Colloquium on Computational Complexity (ECCC), TehnialReport TR02-009, 2002.[111℄ P. Saviký and J. Sgall. DNF tautologies with a limited number of ourrenesof every variable. Theoretial Computer Siene, 238:495�498, 2000.[112℄ M. Shmitt. On methods to keep learning away from intratability. In Pro.International Conferene on Arti�al Neural Networks (ICANN 1995), vol. 1, pages211�216, 1995.[113℄ R. H. Sloan and B. Szörényi. Revising projetive DNF in the presene of noise.In Pro. Kalmár Workshop on Logi and Computer Siene, pages 143�152, 2003.[114℄ R. H. Sloan, B. Szörényi, and Gy. Turán. On k-term DNF with the maximalnumber of prime impliants. Aepted for publiation at SIAM Journal on DisreteMathematis. Earlier version appeared as Eletroni Colloquium on ComputationalComplexity (ECCC) Tehnial Report TR05-023.

Bibliography 127[115℄ R. H. Sloan, B. Szörényi, and Gy. Turán. Projetive DNF Formulae and TheirRevision. Aepted for publiation at Disrete Applied Mathematis. Earlier versionappeared in 16th COLT, 2003.[116℄ R. H. Sloan, B. Szörényi, and Gy. Turán. Revising threshold funtions. TheoretialComputer Siene, 382(3):198�208, 2007.[117℄ R. H. Sloan and Gy. Turán. Learning from inomplete boundary queries usingsplit graphs and hypergraphs. In Pro. 3rd European Conferene on ComputationalLearning Theory (EuroCOLT 1997), vol. 1208 of LNAI, pages 38�50. Springer,1997.[118℄ R. H. Sloan and Gy. Turán. On theory revision with queries. In Pro. 12thConferene on Compututational Learning Theory, pages 41�52. ACM Press, 1999.[119℄ B. Szörényi. Disjoint DNF Tautologies with Con�it Bound Two. Aepted forpubliation at Journal on Satis�ability, Boolean Modeling and Computation.[120℄ C. Stone. Consistent nonparametri regression. Annals of Statistis, 5:595�645,1977.[121℄ G Tardos. Query omplexity, or why is it di�ult to separate NPA∩ oNPA fromPA by random orales A? Combinatoria, 9(4):385�392 1989.[122℄ C. A. Tovey. A simpli�ed NP-omplete satis�ability problem. Disrete AppliedMathematis, 8(1):85�89, 1984.[123℄ G. G. Towell and J. W. Shavlik. Extrating re�ned rules from knowledge-basedneural networks. Mahine Learning, 13(1):71�101, 1993.[124℄ R. Uehara, K. Tsuhida, and I. Wegener. Identi�ation of partial disjuntion,parity, and threshold funtions. Theoretial Computer Siene, 230:131�147, 1999.[125℄ A. Urquhart. The omplexity of propositional proofs. The Bulletin of SymboliLogi, 1(4):425�467, 1995.[126℄ L. G. Valiant. A neuroidal arhiteture for ognitive omputation. Journal of theACM, 47(5):854�882, 2000.[127℄ L. G. Valiant. A Theory of the Learnable. Communiations of the ACM,27(11):1134�1142, 1984.[128℄ L. G. Valiant. Projetion learning. Mahine Learning, 37(2):115�130, 1999.[129℄ L. G. Valiant. Robust logis. Arti�ial Intelligene, 117:231�253, 2000.[130℄ M. H. Van Emden and R. A. Kowalski. The semantis of prediate logi as aprogramming language. Jourrnal of the ACM, 23:733�742, 1976.

128 Bibliography[131℄ V. N. Vapnik and A. Y. Chervonenkis. On the uniform onvergene of relative fre-quenies of events to their probabilities. Theory of Probability and its Appliations,16(2):264�280, 1971.[132℄ I. Wegener. The Complexity of Boolean Funtions. Wiley�Teubner, 1987.[133℄ P. H. Winston, T. O. Binford, B. Katz, and M. Lowry. Learning physial de-sriptions from funtional de�nitions, examples, and preedents. In Pro. NationalConferene on Arti�ial Intelligene, pages 433�439, 1983.[134℄ S. Wrobel. Conept Formation and Knowledge Revision. Kluwer, 1994.[135℄ S. Wrobel. First order theory re�nement. In Advanes in ILP, pages 14�33. IOSPress, Amsterdam, 1995.

