PhD értekezés tézisei

TETRAHIDROIZOKINOLIN-VÁZAS DIFUNKCIÓS VEGYÜLETEK SZINTÉZISE ÉS ÁTALAKÍTÁSAI

Schuster Ildikó

Témavezetők: Dr. Lázár László és Prof. Dr. Fülöp Ferenc Szegedi Tudományegyetem Gyógyszerkémiai Intézet

Szegedi Tudományegyetem Gyógyszertudományok Doktori Iskola

2010

A. ELŐZMÉNYEK ÉS CÉLKITŰZÉSEK

Az izokinolin váz számos biológiailag aktív természetes anyagban és szintetikus molekulában megtalálható, közülük többet különféle terápiás céllal a gyógyászatban is alkalmaznak. Ilyen származék a simaizomgörcs-oldó papaverin, a köhögéscsillapító noszkapin, a köptető hatású emetin, az ACE-gátló vérnyomáscsökkentő kinapril, az izomrelaxáns tubokurarin és a dopamin-agonistaként hánytató hatású, ill. a Parkinson-kór kezelésére használatos apomorfin. Az izokinolinvázas vegyületek kedvező terápiás hatásai és változatos preparatív szerves kémiai alkalmazásai miatt nagyszámú, különféle funkciós csoportot tartalmazó aromás és részlegesen telített izokinolinszármazékot állítottak elő. A racém vegyületek mellett számos izokinolinszármazék enantiomertiszta formában történő szintézisének aszimmetrikus módszerét is kifejlesztették.

A Szegedi Tudományegyetem Gyógyszerkémiai Intézetében több évtizede foglalkoznak difunkciós 1- és/vagy 3-szubsztituált 1,2,3,4-tetrahidroizokinolinok szintézisével és átalakításaival. E munkák során számos tetrahidroizokinolinnal kondenzált, öt- és hattagú, 1,3-, 1,2,3- és 1,2,3,4-heterociklust állítottak elő a megfelelő tetrahidroizokinolin-vázas 1,2- és 1,3aminoalkoholok, hidrazino alkoholok, ill. diaminok gyűrűzárásaival. A szintetizált triciklusok térszerkezetének vizsgálata során azt tapasztalták, hogy e vegyületek konformációs, valamint gyűrű-lánc tautomer egyensúlyát mind a szubsztituensek, mind a szubsztituált atomok relatív konfigurációi nagymértékben befolyásolják.

A Gyógyszerkémiai Intézetben folyó szisztematikus kutatásokhoz kapcsolódóan, doktori munkám során célul tűztük ki néhány tetrahidroizokinolin-vázas 1,2- illetve 1,3-aminoalkohol szintetikus alkalmazhatóságának vizsgálatát. Tanulmányozni kívántuk az aminoalkoholok foszfor-, ill. és kénatomot tartalmazó reagensekkel végzett gyűrűzárási reakcióit, valamint az ezekben képződő nitrogén-hídfős 1,2,3-heterociklusok konformációs egyensúlyát befolyásoló szerkezeti hatásokat.

Doktori munkám másik részében 3,4-dihidroizokinolinok 3-komponensű Ugi-reakciókban (U-3CR) történő alkalmazási lehetőségeinek vizsgálatával foglalkoztam. Célunk volt, hogy új, egyszerű módszert találjunk tetrahidroizokinolin-1-karbonsav-származékok szintézisére. Munkánk során azt is vizsgálni kívántuk, hogy nemracém királis savakkal befolyásolható-e a reakció sztereoszelektivitása.

B. EREDMÉNYEK ÉS ÉRTÉKELÉSÜK

A tervezett gyűrűzárások kiindulási anyagául szolgáló tetrahidroizokinolin-vázas 1,2- és 1,3-aminoalkoholokat (4, 7, 10, 12 és 13) irodalmi módszerek szerint állítottuk elő. A régioizomer 4 és 7 vegyületekhez homoveratrilaminból (1) illetve racém *N*-benzoil-3,4-dimetoxifenilalanin metilészterből (5) kiindulva jutottunk. Az alkoholos funkciós csoportot mindkét esetben a megfelelő karbonsav-észter LiAlH₄-es redukciójával alakítottuk ki, melyre a tetrahidroizokinolin váz kiépítése után (4), illetve előtt (7) került sor (1. ábra).

Reakciókörülmények: (i) (COOEt)₂, 140°C; (ii) POCl₃, toluol/EtOH; (iii) H₂, 5% Pt/C, EtOH, szobahőm.; (iv) LiAlH₄, THF, (v) LiAlH₄, THF, forralás, 5 óra; (vi). CH₂O, HCl, H₂O, forralás, 6 óra; (vii) H₂, 10% Pd/C, MeOH, 30 bar, 40°C, 30 óra.

1. ábra

Reakciókörülmények: (i) CH₂O, NaOEt, EtOH, szobahőm.; (ii) NaBH₄, MeOH, 0 °C → szobahőm., majd szobahőm.; (iii) NaBH₄, MeOH, 0 °C → szobahőm., majd szobahőm., 3 óra, majd frakcionált kristályosítás. **2. ábra**

Az $(1R^*, 1^*R^*)$ -1- $(1^{\circ}-fenil-2^{\circ}-hidroxietil)$ -6,7-dimetoxi-1,2,3,4-tetrahidroizokinolint (10) az 1-benzil-6,7-dimetoxi-3,4-dihidroizokinolin (8) hidroximetilezett származékának (9) sztereoszelektív NaBH₄-es redukciójával nyertük. Az 1-(2'-fenil-2'-hidroxietil)-szubsztituált tetrahidroizokinolinokhoz (**12** és **13**) a megfelelő β -amino keton származék (**11**) NaBH₄-es redukciójával jutottunk. Az irodalmi adatokkal ellentétben, a redukció nyerstermékének frakcionált kristályosításával mind az (1*R**,2'*R**), mind az (1*R**,2'*S**) diasztereomereket (**12** és **13**) sikerült izolálnunk (2. ábra).

A fenilszubsztituált tetrahidroizokinolin-1-etanolok (10, 12 és 13) fenilfoszfonil dikloriddal, bisz(2-klóretil)foszforamid dikloriddal, tionil-kloriddal vagy szulfuril-kloriddal végzett gyűrűzárási reakcióival új, 1- ill. 2-fenilszubsztituált 4-[bisz-(2-klóretil)amino]- és 4-fenil-9,10-dimetoxi-1,6,7,11b-tetrahidro-2*H*-1,3,2-oxazafoszfino[4,3-*a*]izokinolin 4-oxidokat (14-19), valamint 9,10-dimetoxi-1,6,7,11b-tetrahidro-2*H*-1,2,3-oxatiazino[4,3-*a*]-izokinolin 4-oxidokat (20-22) és 4,4-dioxidokat (23-25) állítottunk elő (3. ábra).

19

20

21

22

23

24

25

Η

Ph

Η

Η

Ph

Η

Η

Η

Η

Ph

Η

Η

Ph

Η

Ph

Η

Η

Ph

Η

Η

Ph

N(CH₂CH₂Cl)₂

elektronpár

elektronpár

elektronpár

0

0

0

Reakciókörülmények: (i) PhPOCl ₂ , CH ₂ Cl ₂ ,	Et ₃ N, 6 °C	→ szobahőm.,	majd szo	bahőm.,	24 óra;
(ii) $(ClCH_2CH_2)_2NPOCl_2$, CH_2Cl_2 , Et_3N ,	szobahőm.,	48 óra. (iii)	SO ₂ Cl ₂ ,	Et ₃ N,	CH ₂ Cl ₂ ,
-15°C — szobahőm., 2 óra, majd szobahőm.,	48 óra; (iv) S	OCl_2 , Et_3N , CH	$I_2 Cl_2, -15^\circ$	$C \rightarrow szc$	bahőm.,
2 óra, majd szobahőm., 48 óra.					

Ρ

S

S

S

S

S

S

45:55

~0:~100

22:78

16:84

_

10%

~100%

56%

68%

_

3. ábra

3. A régioizomer, tetrahidroizokinolin vázas 1,2-aminoalkoholok (4 és 7) előző pontban felsorolt P- és S-tartalmú reagensekkel végzett gyűrűzárásaival további új gyűrűrendszerek első képviselőit, 1,5,6,10b-tetrahidro-1,3,2-oxazafoszfolo[4,3-a]izokinolinokat 27). 1,5,10,10a-tetrahidro-1,3,2-oxazafoszfolo[3,4-b]izokinolinokat (26. (30,31), 1,5,6,10b-tetrahidro-1,2,3-oxatiazolo[4,3-a]izokinolinokat (28, 29) és egy 1,5,10,10atetrahidro-1,2,3-oxatiazolo[3,4-b]izokinolint (32) állítottunk elő (4. ábra).

31	Р	N(CH ₂ CH ₂ Cl) ₂	43:57	14%
32	S	elektronpár	~100 : ~0	~100%
Reakciókörülm	ények: (i) $PhPOCl_2$, CH_2Cl_2 ,	Et ₃ N,6 °C \rightarrow szobahőm.,	majd szobahőm., 24 óra
ii) (ClCH ₂ CH	$H_2)_2$ NPOC	Cl_2 , CH_2Cl_2 , Et_3N ,	szobahőm., 48 óra; (iii)	SO_2Cl_2 , Et_3N , CH_2Cl_2
1500	1. "	· · · · · · · · · · · · · · · · · · ·	10 / /) COCL EVILOT	

42:58

16%

Р

30

Ph

a; 2, $-15^{\circ}C \rightarrow$ szobahőm., 2 óra, majd szobahőm., 48 óra; (iv) SOCl₂, Et₃N, CH₂Cl₂, $-15^{\circ}C \rightarrow$ szobahőm., 2 óra, majd szobahőm., 48 óra.

4. ábra

4. A gyűrűzárásokban képződő nyerstermékek NMR spektrumai azt mutatták, hogy a P atomhoz kapcsolódó szubsztituens és az annelációs hidrogén relatív helyzetében (cisz illetve transz) különböző diasztereomerek arányát – az egyetlen disztereomerként képződő 15b vegyület kivételével – sem a P-szubsztituens, sem az aminoalkohol típusa vagy szubsztituense nem befolyásolta számottevően. A tionil-kloridos gyűrűzárások esetén azonban jelentős disztereoszelektivitást (de: 56-100%) tapasztaltunk: az S=O csoportot és annelációs hidrogént cisz helyzetben tartalmazó diasztereomerek képződtek az főtermékként. A P-, ill. S-epimer diasztereomerek keverékét a legtöbb esetben oszlopkromatográfiával sikerült szétválasztanunk.

5. Az NMR analízis és az elméleti DFT számítások azt mutatták, hogy az 1-, ill. 2-fenil-szubsztituált tetrahidro-1,3,2-oxazafoszfino[4,3-*a*]izokinolin 4-oxidok (14-19) konformációja független a fenilszubsztituens pozíciójától és a C-2 relatív konfigurációjától. Azt találtuk, hogy a B/C gyűrűk kapcsolódásának geometriáját a P-szubsztituenstől függetlenül befolyásolja a P-4 relatív konfigurációja: a P=O csoportot és az anellációs hidrogént (H-11b) *transz* helyzetben tartalmazó vegyületek (**a** diasztereomer) *cisz¹* konformációval jellemezhetőek, míg *cisz* helyzetű P=O csoport és anellációs hidrogén (**b** diasztereomer) esetén a B/C gyűrűk *transz* kapcsolódásúak (5. ábra).

A B/C gyűrűk lehetséges kapcsolódásai 1,2,3,4-tetrahidroizokinolinnal angulárisan, illetve lineárisan kondenzált, telített, 5- és 6-tagú 1,2,3-O,X,N-heterociklusokban **5. ábra**

- Az 1-, ill. 2-fenilszubsztituált tetrahidro-1,2,3-oxatiazino[4,3-*a*]izokinolin 4-oxidok és 4,4-dioxidok esetén a fenilcsoport pozíciója jelentősen befolyásolta a kedvezményezett konformációt: míg az 1-fenilszubsztituált származékok (20b és 23) esetén a B/C gyűrűk *transz* kapcsolódásúak, a 2-fenilszubsztituált analógok (21b, 22b, 24, 25) konformációs egyensúlya a C-2 relatív konfigurációjától függetlenül a *cisz¹* forma irányába tolódott el.
- 7. A tetrahidroizokinolinnal angulárisan, ill. lineárisan kondenzált 1,2,3-oxatiazolidinek (28, 29, 32 és 33) és 1,3,2-oxazafoszfolidinek (26, 27, 30 és 31) NMR spektroszkópiás vizsgálata arra utalt, hogy a vegyületek heterogyűrűi igen flexibilisek és a konformációs egyensúlyt az egyes konformerek gyors egymásba alakulása jellemzi. Az NMR adatok és a DFT számítások alapján megállapítottuk, hogy az egyensúlyban általában két konformer

vesz részt. Az analóg oxazolo[4,3-*a*]-, ill. [3,4-*b*]izokinolin térszerkezetével összehasonlítva, a kén ill. a foszforatom beépítése jelentősen megváltoztatta a triciklusos váz kedvezményezett konformációját. Mind az angulárisan, mind a lineárisan kondenzált 1,3,2-oxazafoszfolidinek (**26**, **27** és **30**, **31**) esetén azt találtuk, hogy – a homológ **14-19** vegyületekhez hasonlóan – a B/C gyűrűkapcsolódás geometriáját a P-atom relatív konfigurációja határozza meg.

8. Megállapítottuk, hogy az 1-szubsztituálatlan 3,4-dihidroizokinolinok (34) az Ugi-reakcióhoz jól használható kiindulási anyagok: metanolos oldatban, szobahőmérsékleten savakkal és izocianidokkal 2-acil- (35), ill. 2-benziloxikarbonil-1,2,3,4-tetrahidroizokinolin-1karboxamidokká (37) alakulnak. A 35 és 37 vegyületek savas hidrolízisével 1,2,3,4tetrahidroizokinolin-1-karbonsavakat (36) kaptunk (6. és 7. ábra). A kétlépéses eljárás (Ugi-kondenzáció és a karboxamid intermedier ezt követő hidrolízise) a tetrahidroizokinolin-1-karbonsavak előállításának új módszere.

34/36	\mathbf{R}^1	35	\mathbf{R}^1	R^2	\mathbf{R}^3	\mathbb{R}^4	Diasztereomer arány (termelés)*	felesleg (<i>de</i>)
a	Н	a	Н	CH_2Ph	OH	Ph	45 (37) : 55 (30)	10%
b	OMe	b	Н	CH_2Ph	NPhth	Me	51 (2) : 49 (22)	2%
		с	Н	ciklohexil	OH	Ph	50 (32) : 50 (21)	0%
		d	Н	ciklohexil	NPhth	Me	47 (12) : 53 (18)	6%
		e	Н	$\mathbf{B}\mathbf{u}^{t}$	OH	Ph	50 (25) : 50 (26)	0%
		f	OMe	CH_2Ph	OH	Ph	48 (22) : 52 (20)	4%
		g	OMe	CH_2Ph	NPhth	Me	45 (8) : 55 (22)	10%
		h	OMe	ciklohexil	OH	Ph	49 (30) : 51 (26)	2%
		i	OMe	ciklohexil	NPhth	Me	50 (0) : 50 (15)	0%
		j	OMe	\mathbf{Bu}^{t}	OH	Ph	50 (0) : 50 (19)	0%

*A gyorsabban és a lassabban eluálódó diasztereomer aránya és termelése

Reakciókörülmények: (i) R²NC, R³R⁴CHCOOH, MeOH, szobahőm., 1-4 nap; (ii) 10% HCl, forralás, 5-40 óra.

6. ábra

9. A 3,4-dihidroizokinolinok királis, nemracém savak jelenlétében végzett izocianidos kondenzációiban csupán csekély mértékű diasztereoszelektivitást (*de*: 0-10%, 6. ábra) tapasztaltunk. A oszlopkromatográfiával szétválasztott diamid diasztereomerek savas hidrolízise nem vezetett enantiomertiszta termékhez: jelentős mértékű racemizációval a **36a,b** 1,2,3,4-tetrahidroizokinolin-1-karbonsavak enantiomereinek keveréke keletkezett.

1. táblázat

Tetrahidroizokinolin-1-karbonsavak (**36a** vagy **36b**) HPLC-vel meghatározott enantiomer arányai a **35a-g** vegyületek 10%-os sósavas hidrolízisével képződő nyerstermékekben

Vegyület*	Forralási idő (óra) 100% konverzió esetén	Enantiomer arány	Enantiomer felesleg (ee)
35a (G)	17.5	83 : 17	66%
35a (L)	20	13:87	74%
35b (G)	16.5	12:88	76%
35b (L)	9	63 : 37	26%
35c (L)	7	33 : 67	34%
35d (G)	40	42 : 58	16%
35d (L)	40	77:23	54%
35e (L)	13	27:73	46%
35f (G)	15	73:27	46%
35f (L)	5	22:78	56%
35g (G)	12	20:80	60%
35g (L)	40	60 : 40	20%

* (G) = gyorsabban eluálódó diasztereomer, (L) = lassabban eluálódó diasztereomer

 A 2-benziloxikarbonil-1,2,3,4-tetrahidroizokinolin-1-karboxamidok (37) N-szubsztituensét a szokásos katalitikus hidrogénezéssel vagy jégecetes hidrogén-bromidos kezeléssel távolítottuk el. A képződő 1,2,3,4-tetrahidroizokinolin-1-karboxamidok (38) savas hidrolízise a megfelelő 1,2,3,4-tetrahidroizokinolin-1-karbonsavakhoz (36) vezetett (7. ábra).

$R^{1} \xrightarrow{i} R^{1} \xrightarrow{i} R^{1} \xrightarrow{i} R^{2} i$							
	34a-d 37						
V ii vagy iii							
	R^1 NH HCI R^1 NH						
			COOH		R ² H	IN O	
36			3	88			
34/36	R^1	37	R^1	\mathbf{R}^2	38	R^1	R^2
a	Н	a	Н	ciklohexil	a	Н	ciklohexil
b	OMe	b	MeO	ciklohexil	b	MeO	ciklohexil
c	EtO	c	EtO	ciklohexil	с	EtO	ciklohexil
d	OCH ₂ O	d	OCH ₂ O	ciklohexil	d	OCH ₂ O	ciklohexil
	I	e	MeO	CH ₂ Ph	e	MeO	CH_2Ph
		f	MeO	$\mathbf{B}\mathbf{u}^{t}$	f	MeO	$\mathbf{B}\mathbf{u}^{t}$

Reakciókörülmények: (i) PhCH₂OCOCl, R²NC, CHCl₃, szobahőm., 5-24 óra, majd H₂O, szobahőm., 30 perc (46-89%); (ii) 1. 33% HBr/AcOH, 30 perc, szobahőm., 2. NaOH (83-95%); (iii) H₂ (1 atm), Pd/C, EtOH, szobahőm., 4-6 óra (61-89%), (iv) 10% HCl, foralás, 20-25 óra (62-76%). (v) 10% HCl, forralás, 20-65 óra (36-76%).

las,	20-05
7.	ábra

C. KÖZLEMÉNYEK

A tézis alapját képező közlemények

- I. Schuster, A. Sztojkov-Ivanov, L. Lázár, F. Fülöp: Synthesis of 1,2,3,4-Tetrahydroisoquinoline-1-carboxylic Acid Derivatives via Ugi Reactions *Lett. Org. Chem.*, 2007, 4, 102.
 IF: 0.981
- II. I. Schuster, A. Koch, M. Heydenreich, E. Kleinpeter, E. Forró, L. Lázár, R. Sillanpää, F. Fülöp:
 Synthesis and Conformational Analysis of Tetrahydroisoquinoline-fused 1,3,2-Oxazaphospholidines and 1,2,3-Oxathiazolidines
 Eur. J. Org. Chem., 2008, 1464-1472.
- III. I. Schuster, A. Koch, M. Heydenreich, E. Kleinpeter, L. Lázár, F. Fülöp: Synthesis and Conformational Analysis of Phenyl-substituted 1,3,2-Oxazaphosphino[4,3-a]- and 1,2,3-Oxathiazino[4,3-a]isoquinolines *J. Mol. Struct.*, 2008, 888, 124-137.
- IV. I. Schuster, L. Lázár, F. Fülöp: A Convenient Synthesis of 1,2,3,4-Tetrahydroisoquinoline-1-carboxylic Acid Derivatives via Isocyanide-Based Three-Component Reactions Synth. Commun., accepted for publication. IF: 0.981

Egyéb közlemények

V. I. Starke, I. Schuster, F. Fülöp and E. Kleinpeter: Mass Spectra of Tetrahydroisoquinoline-fused 1,3,2-O,N,P and 1,2,3-O,S,N-heterocycles–Influence of Ring Size, Ring Fusion, Heteroatom and Substituent Effects, and the Stereochemistry on Fragmentation *Rapid Commun. Mass Spectrom.*, 2008, 22, 1519-1527. IF: 2.772

D. AZ ÉRTEKEZÉSSEL KAPCSOLATOS ELŐADÁSOK

VI. Schuster Ildikó:

Tetrahidroizokinolin-1-karbonsav származékok előállítása Ugi-reakcióval A Szegedi Ifjú Szerves Kémikusok Támogatásáért Alapítvány Tudományos Előadóülése Szeged, 2005. január 12.

- VII. Schuster Ildikó, Sztojkov-Ivanov Anita, Lázár László, Fülöp Ferenc: Ugi-reakció – új szintézismódszer tetrahidroizokinolin-1-karbonsav-származékok előállítására MTA Heterociklusos Kémiai Munkabizottság ülése Balatonszemes, 2005. május 25-27.
- VIII. Schuster Ildikó, Sztojkov-Ivanov Anita, Lázár László, Fülöp Ferenc: Tetrahidroizokinolin-1-karbonsav származékok előállítása Ugi-reakcióval MKE Vegyészkonferencia Hajdúszoboszló, 2005. június 28-30. Abstr.: P-78, 128. old.
- IX. Ines Starke, Erich Kleinpeter, Ildikó Schuster, László Lázár, Ferenc Fülöp: Fragmentation of P,S-containing Isoquinolines (*Stereochemical aspects*) *Tagung der Deutschen Gesellschaft für Massenspektrometrie* Mainz, 2006. március 3. Abstr.: P3-16.

X. Schuster Ildikó:

Izokinolinnal kondenzált foszfor- és kéntartalmú heterociklusok szintézise és szerkezetvizsgálata *PhD előadói napok* Szeged, 2006. május 3.

- XI. Schuster Ildikó, Andreas Koch, Matthias Heydenreich, Erich Kleinpeter, Lázár László, Fülöp Ferenc:
 Izokinolinnal kondenzált foszfor- és kéntartalmú heterociklusok szintézise és szerkezetvizsgálata
 MTA Heterociklusos Kémiai Munkabizottság ülése
 Balatonszemes, 2006. június 7-9.
- XII. Schuster Ildikó, Andreas Koch, Matthias Heydenreich, Erich Kleinpeter, Lázár László, Fülöp Ferenc:
 Régioizomer 1,3,2-oxazafoszfolo- és 1,2,3-oxatiazoloizokinolinok szintézise és konformációanalízise
 Centenáriumi Vegyészkonferencia Sopron, 2007. május 29 június 1. Abstr. SZ-P-50, 368. old.