
PHD THESIS

Pebble Macro Tree Transducers

with Strong Pebble Handling

Loránd Muzamel

Department of Foundations of Computer Science
University of Szeged

Árpád tér 2., H-6720 Szeged, Hungary
muzamel@inf.u-szeged.hu

Supervisor: Professor Zoltán Fülöp

Ph.D. School in Computer Science

May 29, 2010

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SZTE Doktori Értekezések Repozitórium (SZTE Repository of Dissertations)

https://core.ac.uk/display/11979566?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CONTENTS 2

Contents

1 Introduction 1

2 Definitions 6

2.1 Sets, relations, and strings . 6

2.2 Trees, tree languages, and tree transformations 6

2.3 Substitutions of strings and trees . 7

2.4 Simultaneous induction . 9

3 Pebble macro tree transducers 11

3.1 An informal introduction . 11

3.2 Syntax of pebble macro tree transducers 12

3.3 Semantics of pebble macro tree transducers 14

3.4 Examples of pmtts . 16

4 The problem of circularity 23

5 Generalized yield tree transformations 27

6 Composition of pebble and yield tree transformations 32

7 Decomposition and characterization results for pmtts 37

7.1 Associating an n-ptt and a yield tree transformation with an n-pmtt . . 37

7.2 Proving τM = τM ′ ◦ yield g . 41

7.3 Some remarks on n-PMTT = n-PTT ◦ Y IELD 46

8 Decomposition result for restricted pmtts 49

8.1 Associating an n-ptt and a yield tree transformation with an n-pmtt . . 49

8.2 Proving τM = τM ′ ◦ yieldg . 51

8.3 Sufficient conditions for M to guarantee that M ′ is noncircular 57

9 Simulation of n-ptts by (n− 1)-pmtts 60

10 Further results 79

10.1 Type checking of pmtts . 79

10.2 Deciding circularity problems . 81

CONTENTS 3

10.3 The domain hierarchy of not strongly circular dptts 84

11 Conclusions 89

12 Magyar nyelvű összefoglaló 91

13 Acknowledgments 95

14 The author’s publications cited in the thesis 96

1 INTRODUCTION 1

1 Introduction

Tree translations play an important role, among others, in the specification of the
syntax-directed semantics of a programming language [Iro61, Knu68, Knu71, WM95],
in functional programs working on tree structured data [Vog91], and in the specification
and implementation of XML transformations [MN01, BMN02, MBPS05a], and XML
query languages [Via01].

Tree transducers are computation models for studying the abstract properties of the
different tree translations which exist in practice. For instance, the macro tree trans-
ducer [Eng80, Eng81, CF82, EV85] is a model for syntax-directed translations, the
attributed tree transducer [Fül81, FV98] is a model for the translations realized by
attribute grammars [Knu68, Knu71], and the n-pebble tree transducer [MSV03] is a
model for XML query languages and transformations. The pebble macro tree trans-
ducer of [EM03] is a combination of the pebble tree transducer and the macro tree
transducer, hence it is a model which is suitable for studying the relationship between
pebble tree transducers and macro tree transducers. Each tree transducer computes
a tree transformation, which is a binary relation over abstract trees, i.e., trees over
ranked alphabets.

In this thesis we consider pebble macro tree transducers of [EM03] and equip them
with “strong pebbles” (see [EH05, MSS06]). Strong pebble handling means that the
last dropped pebble can be lifted regardless of the position of the reading head. Hence
we generalize the original model because it allows to lift the last pebble only if the
reading head is on its position. In spite of the generalization, we leave the name pebble
macro tree transducer unchanged in our thesis and refer to the original definition of
[EM03] as a pebble macro tree transducer with “weak pebbles”.

An n-pebble macro tree transducer M is a finite-state machine that translates input
trees to output trees. Let us take an input tree s to M . M has a reading head, which
is a pointer u to a node of s, and can move this pointer up and down along the edges
of s. The n pebbles, denoted by 1, . . . , n, can be dropped at and lifted from the nodes
of s in a stack-like fashion: if 0 ≤ l ≤ n pebbles are on s and the symbol of node u is
scanned, then the following can be made.

• Pebble (l + 1) can be dropped at u (provided l < n).

• Pebble l can be lifted (provided l ≥ 1) regardless of its position (strong pebble
handling).

In contrast, weak pebble handling of the original definition allows to lift pebble l only
if it is on the current node u, cf. [EM03].

M makes a computation over sentential forms which are trees over the output symbols
and so called configurations. The computation starts with the initial configuration,
i.e., a tree consisting of a single node, which contains the information that M is in the
initial state with the reading head at the root of s and no pebbles on s. A step of
the computation is made in the way that an outside-active configuration node 〈q, h〉 of
the current sentential form ξ is extended. (The concept outside-active means that no

1 INTRODUCTION 2

ancestor of 〈q, h〉 in ξ is a configuration, hence we define an OI-semantics for M .) Here
q is the current state and h = (u, π), where u is the current node and π = [u1; . . . ;ul],
l ≤ n is a vector containing the nodes of s which hold pebbles 1, . . . , l. M can test the
label of the current node u, its “child position”, (i.e., whether u is the root of s or the
jth child of its parent), and the presence of pebbles at node u. Depending on the test,
M generates a tree which may contain further configurations and is replaced for 〈q, h〉
in a second-order fashion (meaning that a node, anywhere inside the sentential form,
is replaced). Pebble tree transducers, in contrast, have their configurations only at leaf
nodes of the sentential form. In this way M computes the next sentential form ξ ′. If
a sentential form t is computed which contains no configurations, then it is called an
output tree for s and it is said that M translates s into t. There may be computations
which never terminate because they get into an infinite cycle. In this case no output
tree is computed. We call this phenomenon circularity.

The problem whether n-pebble macro tree transducers are more powerful than n-pebble
macro tree transducers with weak pebble handling (i.e., than n-pebble macro tree
transducers of [EM03]) is still open. We are only able to demonstrate the advantage
of the use of strong pebbles: in Example 3.6 we give a 1-pebble tree transducer such
that the equivalent pebble tree transducers with weak pebble, at least those which we
know, have more states and rules.

In the following we give a short summary of the topics which we consider in the thesis.

We define three concepts of circularity: weak circularity, circularity and strong circu-
larity. The hierarchy of the three concepts, not surprisingly, is that strong circularity
implies circularity, which implies weak circularity (Lemma 4.3). Hence, the most natu-
ral concept is the strong circularity because the “smallest” condition for a pebble macro
tree transducer M to guarantee that no computation of M gets into a cycle is that M
is not strongly circular. Yet, we use also the other two circularity concepts because
we could only prove some of our results by assuming that a pebble tree transducer
is noncircular (e.g., in Lemma 8.4) or a pebble macro tree transducer is not weakly
circular (e.g., the main results in Section 8.3).

We also consider the composition and the decomposition of tree transformations com-
puted by n-pebble macro tree transducers. In general, in the composition theory of
tree transformations we consider if the composition of two (or more) tree transforma-
tions computed by some tree transducers can be computed by a single tree transducer.
The composition appears in applications in a natural way: in multi-pass compilers, as a
model for deforestation in functional languages [Küh98, Voi02], and as implementations
of queries to a (possibly iterated) view of an XML database. The decomposition of a
tree transformation computed by a tree transducer means to consider if the tree trans-
formation appears as the composition of (mainly two) tree transformations computed
by “simpler” machines. The decomposition may help to understand the work of the
original machine.

We give an example of both a composition and a decomposition. It was shown in
[EV85], see also [FV98], that the composition of a total and deterministic top-down
tree transformation [Eng75, Rou70] and a yield transformation can be computed by a
total and deterministic macro tree transducer (a composition result) and vice versa, that

1 INTRODUCTION 3

each tree transformation computed by a deterministic and total macro tree transducer
is equal to the composition of a deterministic and total top-down tree transformation
and a yield transformation (a decomposition result). By putting the above composition
and decomposition result together, we obtain the characterization dtMAC = dtTOP ◦
dtYIELD of the class of tree transformations computed by deterministic and total
macro tree transformations, where the notations should be clear from the context. Let
us mention that this result leads to show that the composition closure of deterministic
and total macro tree transformations and of attributed tree transformations [Fül81,
FV98] coincide, see Chapter 6 of [FV98].

Since pebble macro tree transducers are somewhat similar to macro tree transducers,
we consider if “yield-like” composition and decomposition results can be obtained for
them like the above one. (The fact that for macro attributed tree transformations
such a composition and a decomposition result exists [KV94], see also Theorem 7.29
of [FV98], just confirms us to believe that we can find some for pebble macro tree
transducers as well.)

First, we prove a yield-like composition result for pebble macro tree transducers.
Namely, for every n-pebble tree transducer M and yield tree transformation yieldg

(were g is a mapping from leaves to sets of trees), we construct an n-pebble macro tree
transducer M ′ such that τM ′ = τM ◦ yieldg holds. If M and yieldg are deterministic
(total), then also M ′ is deterministic (total). Hereby, we obtain the composition result
n-PTT ◦YIELD ⊆ n-PMTT , where n-PMTT and n-PTT are the classes of tree trans-
formations computed by n-pebble macro and n-pebble tree transducers, respectively,
and YIELD is the class of (nondeterministic) yield tree transformations (Lemma 6.1).
This construction is a generalization of the one appearing in the recalled composition
of deterministic and total top-down tree transformations and deterministic and total
yield tree transformations.

Then we decompose pebble macro tree transformations. Namely, for every pebble
macro tree transducer M , we effectively give a pebble tree transducer M ′ and a yield
tree transformation yieldg such that τM = τM ′ ◦ yieldg (Lemma 7.7). Hence we get
the decomposition result n-PMTT ⊆ n-PTT ◦YIELD (Corollary 7.9). Combining this
decomposition with the composition result n-PTT ◦YIELD ⊆ n-PMTT of Lemma 6.1,
we obtain our first main result, i.e., the characterization n-PMTT = n-PTT ◦YIELD
(Theorem 7.10).

We note that in the proof of Lemma 7.7 we more or less follow the classical technique
applied for the decomposition of total and deterministic macro tree transformations
in [EV85, FV98]. However, our construction also works for nondeterministic and for
circular (i.e, not terminating) pebble macro tree transducers. Unfortunately, it is a
weakness of our construction that the pebble tree transducer M ′ is strongly circular
and not deterministic (even if M is not circular and deterministic). We discuss this
problem in Section 7.3. Therefore, we also consider if there is another decomposition
technique, which preserves determinism and noncircularity (at least for a restricted
class of pebble macro tree transducers). It turns out that the answer is positive. In
Definition 8.1 we provide an alternative construction method for M ′ and yieldg which
works for some special pebble macro tree transducers. We show in Lemmas 8.4 and

1 INTRODUCTION 4

8.6 that, if M is deterministic (or context-linear) and M ′ is noncircular, then indeed
τM = τM ′ ◦yieldg holds. Next we examine whether a reasonable syntactic restriction on
M can be made to guarantee that M ′ is noncircular. A trivial restriction is that M is a
macro tree transducer: in this case M ′ will be a top-down tree transducer, see [EV85],
which cannot be circular, hence Lemmas 8.4 and 8.6 work and the decomposition
results stated in Corollaries 8.7 and 8.8 hold. Another natural restriction would be
that M is noncircular, however it is not sufficient because there is a noncircular pebble
macro tree transducer M such that the pebble tree transducer M ′ is circular, see
Example 8.2. An appropriate restriction is that M is not weakly circular. We show
that, if M is not weakly circular in the construction mentioned above, then M ′ is
noncircular. Hence, for every not weakly circular and deterministic (or context-linear)
M , the decomposition equation τM = τM ′ ◦ yieldg holds (Corollary 8.10). Since every
partial yield tree transformation can be computed by a noncircular and deterministic
0-pebble tree transducer (Theorem 5.2), we obtain another main result of the thesis:
each not weakly circular and deterministic (resp. context-linear) n-pebble macro tree
transformation is the composition of a noncircular and total and deterministic (resp.
nondeterministic) n-pebble tree transformation and a noncircular and deterministic
0-pebble tree transformation (Theorem 8.11).

The next topic we consider in the thesis is the solution of an open problem raised
in Section 8 of [EM03]. Namely, we prove in Theorem 9.6 that each n-pebble tree
transducer M (provided n ≥ 1) can be simulated by an (n − 1)-pebble macro tree
transducer M ′, i.e., that n-PTT ⊆ (n−1)-PMTT . The idea behind the construction is
that we can replace the power of pebble n (the last pebble) of the pebble tree transducer
by macro calls.

There are some important consequences of Theorems 7.10 and 9.6 (Theorem 10.3).
The most interesting ones are the decomposition results n-PTT ⊆ 0-PTT n+1 and
n-PTT ⊆ sMTT n+1 for every n ≥ 1 and their macro versions n-PMTT ⊆ 0-PTT n+2

and n-PMTT ⊆ sMTT n+2 for every n ≥ 0, where sMTT is the class of stay-
macro tree transformations of [EM03]. These decompositions were obtained in Theo-
rems 10 and 35, and Section 8 of [EM03] for the weak pebble handling case. However,
we think that those proofs cannot be generalized for the strong pebble case because the
mapping EncPeb appearing in the proof of Theorem 10 of [EM03] is strongly based on
weak pebble handling.

Then we obtain the following applications of the above decomposition results.

In Lemma 27 of [EM03], it was proved that sMTT ⊆ MON ◦MTT , where MON is
the class of monadic insertions and MTT is the class of macro tree transformations.
Moreover, both the inverses of monadic insertions and of macro tree transformations
preserve regularity of tree languages. These obviously imply that the inverses of stay-
macro tree transformations also preserve regularity. Hence, by n-PMTT ⊆ sMTT n+2,
the inverses of (compositions of) pebble macro tree transformations preserve regularity
(Theorem 10.4), and thus the domains of (compositions of) pebble macro tree trans-
formations are regular (Corollary 10.5).

Next we obtain a type checking result for pebble macro tree transformations. Roughly
speaking, the type checking problem of XML transformations is the question whether

1 INTRODUCTION 5

the results of an XML transformation of trees in an input DTD satisfy an output
DTD. Formally, the type checking problem for pebble macro tree transducers [EM03,
MBPS05a] is the following decision problem. Given two regular tree languages Lin and
Lout, and a pebble macro tree transformation τ , we ask whether, for each input tree
s ∈ Lin, the outputs of s translated by τ are in Lout or not (i.e., if it is true that τ(Lin) ⊆
Lout). Now, we can conclude from the decomposition n-PMTT ⊆ sMTT n+2 and the
fact that the type checking problem for compositions of stay-macro tree transformations
is decidable (see Corollary 44 of [EM03]) that the type checking problem for pebble
macro tree transducers is decidable (Theorem 10.6).

Moreover, we obtain the following decidability results for the circularity problem of
pebble macro tree transducers. Since the inverses of (compositions of) stay-macro
tree transformations preserve regularity, it also follows from the decomposition result
n-PMTT ⊆ sMTT n+2 that the domains of pebble macro tree transformations are
effectively regular (Corollary 10.5). This can be directly used to prove that weak circu-
larity, circularity, and strong circularity are decidable for pebble macro tree transducers
(Theorem 10.8, Theorem 10.9, and Corollary 10.11, respectively).

Finally, we consider domains of pebble tree transformations. In fact, we define the
concept of an n-pebble alternating tree-walking automaton, which models the behaviour
of an n-pebble tree transducer on its domain. It turns out that nonlooping n-pebble
alternating tree-walking automata recognize the domains of not strongly circular pebble
tree transformations. As the main result, we show that the domains of deterministic
and not strongly circular n-pebble tree transformations form a proper hierarchy with
respect to n (Theorem 10.25).

The thesis is organized as follows. In Section 2 we define the necessary basic concepts,
then in Section 3 we introduce pebble macro tree transducers. In Section 4 we define
and discuss the three concepts of circularity. In Section 5 we generalize the concept
of the yield tree transformation introduced in [EV85] and show that every (determin-
istic) yield tree transformation can be computed by a (noncircular and deterministic)
0-pebble tree transducer. In Section 6 we show that the composition of an n-pebble tree
transformations and a yield tree transformation can be computed by an n-pebble tree
transducer. In Section 7 we present our yield-like decomposition result for (general)
pebble macro tree transducers and in Section 8 for restricted pebble macro tree trans-
ducers. In Section 9 we show that each n-pebble tree transducer can be simulated by
an (n− 1)-pebble tree transducer. In Section 10 we list the corollaries and applications
of the main result of Section 9. Finally, in Section 11 we conclude our results and give
some future research topics.

The results of Sections 5, 6, and 8 are published in [FM08], the results of Sections 7, 9
in [FM09], and the results of Section 10, in [FM08, FM09], and [Muz08].

2 DEFINITIONS 6

2 Definitions

2.1 Sets, relations, and strings

We denote the set of nonnegative integers by N. For every n ∈ N, we let [n] = {1, . . . , n}.
The empty set is denoted by ∅.

Sometimes we identify a singleton set {a} with a. For a set A, P(A) denotes the power
set of A. Moreover A∗ denotes the set of strings over A; the empty string is denoted by
ε. For a string u ∈ A∗, |u| denotes its length and, for a symbol a ∈ A, |u|a denotes the
number of occurrences of a in u. For every n ≥ 0, we define A≤n = {u ∈ A∗ | |u| ≤ n}.
For every u ∈ A∗, and 1 ≤ l ≤ |u|, u(l) denotes the l-th symbol in u.

Let u, v, w ∈ A∗ be strings. Then w is a prefix of v if there is a string w ′ ∈ A∗ such
that v = ww′, note that ε and v are prefixes of v. A prefix w of v with w 6= v is a
proper prefix of v.

If A is an alphabet, i.e., a finite, nonempty set, then any subset L ⊆ A∗ is called a
language. If L is a finite and nonempty language, then we write the strings of the
language L∗ in the form [u1; . . . ;ul], where l ≥ 0 and u1, . . . , ul ∈ L. The empty string
over L is denoted by [].

Let ρ ⊆ A×B be a binary relation. The fact that (a, b) ∈ ρ for some a ∈ A and b ∈ B
is also denoted by a ρ b. For A′ ⊆ A, we define ρ(A′) = {b ∈ B | ∃a ∈ A′ : a ρ b}. In
case A = B, the lth power of ρ for l ≥ 0, the transitive closure, the reflexive, transitive
closure, and the inverse of ρ are denoted by ρl, ρ+, ρ∗, and ρ−1 respectively.

The composition of ρ ⊆ A× B and τ ⊆ B × C is the binary relation ρ ◦ τ = {(a, c) ⊆
A×C | there is a b ∈ B such that a ρ b and b τ c}. Note that (ρ◦τ)(a) = τ(ρ(a)). The
notion of composition is extended to classes of relations. For two classes C1 and C2 of
relations we define C1 ◦ C2 = {ρ ◦ τ | ρ ∈ C1 and τ ∈ C2}. For a class C and every n ≥ 1
we define Cn = C if n = 1 and Cn = Cn−1 ◦ C otherwise.

Let ⇒⊆ A × A be a binary relation. We say that ⇒ is terminating if there is not an
infinite sequence a1, a2, . . . of the elements of A such that a1 ⇒ a2 ⇒ Moreover, ⇒
is locally confluent if, for every a, b, c ∈ A, the transitions a⇒ b and a⇒ c imply that
there is a d ∈ A such that b ⇒∗ d and c ⇒∗ d. For every a, b ∈ A, the element b is a
normal form of a (with respect to ⇒) if a⇒∗ b and there is no c ∈ A such that b⇒ c.
If a has exactly one normal form, then we denote it by nf (a,⇒) and say that nf (a,⇒)
exists. We will use the following fact, cf. [Hue80] or [Boo83].

Proposition 2.1 If a binary relation ⇒⊆ A×A is terminating and locally confluent,
then nf (a,⇒) exists for every a ∈ A.

2.2 Trees, tree languages, and tree transformations

A ranked alphabet is an ordered pair (Σ, rank), where Σ is a finite set and rank is a
mapping of type Σ → N. For every k ≥ 0, we define Σ(k) = {σ ∈ Σ | rank(σ) =
k}. Moreover, we denote by maxr (Σ) the maximum of ranks of symbols of Σ, i.e.,

2 DEFINITIONS 7

maxr (Σ) = max{rank (σ) | σ ∈ Σ}. In the rest of the thesis, we drop rank and write
just Σ for (Σ, rank). Moreover, Σ and ∆ will denote ranked alphabets. For a set A,
we denote by 〈Σ, A〉 the ranked alphabet Σ× A with ranking rank(〈σ, a〉) = rank(σ)
for every 〈σ, a〉 ∈ Σ×A.

The set of trees over Σ and a set A, denoted by TΣ(A), is the smallest set T ⊆ (Σ ∪
{(,)} ∪ {, })∗ such that Σ(0) ∪A ⊆ T and whenever k ≥ 1, σ ∈ Σ(k), and t1, . . . , tk ∈ T ,
then σ(t1, . . . , tk) ∈ T . In case A = ∅, we write TΣ for TΣ(A). Certainly, TΣ = ∅ if and
only if Σ(0) = ∅.

For every tree s ∈ TΣ, we define the set pos(s) ⊆ N
∗ of the nodes of s as follows. We

let pos(s) = {ε} if s ∈ Σ(0), and pos(s) = {ε} ∪ {iu | 1 ≤ i ≤ k, u ∈ pos(si)} if
s = σ(s1, . . . , sk) for some k ≥ 1, σ ∈ Σ(k) and s1, . . . , sk ∈ TΣ. Here ε corresponds to
the root node labeled by σ and, for every u ∈ pos(s) with l children, ui is the i-th child
of u for all 1 ≤ i ≤ l.

Now, for a tree s ∈ TΣ and a node u ∈ pos(s), the subtree of s at u, denoted by s/u
and the label of s at node u, denoted lab(s, u) ∈ Σ are defined in a standard way. By
the root of s we mean the label of s at node ε. Moreover, u is a leaf of s if, for every
i ∈ N, ui 6∈ pos(s). Finally we define the parent of u, denoted by parent(u) and the
child number of u, denoted by childno(u) as follows:

(i) if u = ε, then childno(u) = 0 and parent (u) is undefined,

(ii) if u = u′j for some u′ ∈ pos(s) and j ∈ N, then childno(u) = j and parent(u) = u′.

Any set L ⊆ TΣ is a tree language and any relation τ ⊆ TΣ×T∆ is a tree transformation.
The domain of τ is dom(τ) = {s ∈ TΣ | ∃t ∈ T∆ : (s, t) ∈ τ}. Let C be a tree
transformation class. Then dom(C) = {dom(τ) | τ ∈ C}.

The complement of L is the tree language L = TΣ−L. If L is a class of tree languages,
then co-L = {L | L ∈ L}.

We will freely use the concepts of a regular tree language and a (finite) tree automaton.
The unfamiliar reader can consult [GS84, GS97] for these concepts. We denote the
class of regular tree languages by REG. We will need the following result.

Proposition 2.2 REG = co-REG.

The inverse of a tree transformation τ ⊆ TΣ×T∆ preserves regularity if, for each regular
tree language L ⊆ T∆, the tree language τ−1(L) is regular.

2.3 Substitutions of strings and trees

Computation with trees is based on operations called tree substitution. In this subsec-
tion we introduce the ones which we will need in the thesis.

We maintain the fixed set Y = {y1, y2, . . .} of variables. For every m ≥ 0, we let Ym =
{y1, . . . , ym}. We will assume Y to be disjoint with each ranked alphabet considered in
this thesis.

2 DEFINITIONS 8

First we define string substitution. Let A be an alphabet, n ≥ 0 an integer,
u, v1, . . . , vn ∈ A∗ strings, and a1, . . . , an ∈ A pairwise different symbols (which are
not necessarily in u). We denote by u[a1 ← v1, . . . , an ← vn] the result of substituting
v1, . . . , vn simultaneously for the occurrences of a1, . . . , an in u, respectively. Note that
u[a1 ← v1, . . . , an ← vn] ∈ A∗.

Now we introduce the concept of string substitution defined by condition. Let A be an
alphabet and P : A×A∗ → {true , false} a binary predicate such that {(a,w) ∈ A×A∗ |
P (a,w) = true} is a partial function. Then, for every u ∈ A∗, we define

u[a← w | P (a,w) = true] = u[a1 ← w1, . . . , an ← wn],

where {(a1, w1), . . . , (an, wn)} = {(a,w) ∈ A×A∗ | P (a,w) = true}.

Since trees are also strings, a special case of the string substitution is the first-order
tree substitution. Let n ≥ m ≥ 0, s ∈ TΣ(Ym) and t1, . . . , tn ∈ TΣ(A). Then the string
s[y1 ← t1, . . . , yn ← tn] is also a tree and it is in TΣ(A).

Next we define the second-order tree substitution. Let s ∈ TΣ be a tree, n ≥
0, σ1, . . . , σn ∈ Σ different symbols of rank k1, . . . , kn, respectively, and t1 ∈
TΣ(Yk1), . . . , tn ∈ TΣ(Ykn

) trees. The result of the second-order tree substitution of
σ1, . . . , σn by t1, . . . , tn, respectively, in s, is the tree denoted by s[[σ1 ← t1, . . . , σn ←
tn]] ∈ TΣ which is defined as follows.

(i) If s = α ∈ Σ(0), then

- if α = σi for some 1 ≤ i ≤ n, then s[[σ1 ← t1, . . . , σn ← tn]] = ti,

- otherwise s[[σ1 ← t1, . . . , σn ← tn]] = α.

(ii) If s = σ(s1, . . . , sk), for some k ≥ 1, σ ∈ Σ(k) and s1, . . . , sk ∈ TΣ, then

- if σ = σi for some 1 ≤ i ≤ n (and hence k = ki), then s[[σ1 ← t1, . . . , σn ← tn]] =
ti[y1 ← s1[[σ1 ← t1, . . . , σn ← tn]], . . . , yki

← ski
[[σ1 ← t1, . . . , σn ← tn]]],

- otherwise s[[σ1 ← t1, . . . , σn ← tn]] =
σ(s1[[σ1 ← t1, . . . , σn ← tn]], . . . , sk[[σ1 ← t1, . . . , σn ← tn]]).

The second-order tree substitution defined by condition is introduced as follows. Let
P : Σ × TΣ(Y) → {true, false} be a binary predicate such that {(σ, t) ∈ Σ × TΣ(Y) |
P (σ, t) = true} is a partial function and, for every σ ∈ Σ and t ∈ TΣ(Y), if P (σ, t) =
true, then t ∈ TΣ(Yrank(σ)). For every tree s ∈ TΣ,

s[[σ ← t | P (σ, t) = true]] = s[[σ1 ← t1, . . . , σn ← tn]],

where {(σ, t) ∈ Σ× TΣ(Y) | P (σ, t) = true} = {(σ1, t1), . . . , (σn, tn)}.

Next we define the first-order and the second-order substitution for a node of a tree.

Let s ∈ TΣ, t ∈ TΣ(Y) and u ∈ pos(s). The result of the first-order substitution of t for
u in s is the tree s[u← t] ∈ TΣ(Y) defined as follows.

2 DEFINITIONS 9

(i) If s = α ∈ Σ(0) (which implies u = ε), then s[u← t] = t.

(ii) If s = σ(s1, . . . , sk) for some k ≥ 1, σ ∈ Σ(k) and s1, . . . , sk ∈ TΣ, then

• if u = ε, then s[u← t] = t;

• if u = iv, where 1 ≤ i ≤ k and v ∈ pos(si), then

s[u← t] = σ(s1, . . . , si−1, si[v ← t], si+1, . . . , sk).

The result of the second-order substitution of t for u in s is the tree s[[u← t]] ∈ TΣ(Y)
defined as follows. Let lab(s, u) = σ ∈ Σ(k) for some k ≥ 0. Then

s[[u← t]] = s[u← t[y1 ← s/u1, . . . , yk ← s/uk]].

Note that if t ∈ TΣ or k = 0, then s[[u← t]] = s[u← t].

Finally we define OI substitution of trees, see [ES77]. The term “OI” is an abbreviated
form of “Outside-In”. Let s ∈ TΣ(Y) be a tree, n ≥ 0, and L1, . . . , Ln ⊆ TΣ(Y) tree
languages. The result of the OI substitution of L1, . . . , Ln in s is the tree language

s
OI
← (L1, . . . , Ln) ⊆ TΣ(Y) defined by induction as follows.

(i) If s ∈ Y , then

s
OI
← (L1, . . . , Ln) =

{
Li if s = yi for some 1 ≤ i ≤ n
{s} otherwise.

(ii) If s = σ(s1, . . . , sk) for some k ≥ 0, σ ∈ Σ(k), and s1, . . . , sk ∈ TΣ(Y), then

s
OI
← (L1, . . . , Ln) = {σ(t1, . . . , tk) | for every 1 ≤ i ≤ k, ti ∈ si

OI
← (L1, . . . , Ln)}.

In case n = 0 we have s
OI
← () = {s}. In particular, we write σ(L1, . . . , Ln) for

σ(y1, . . . , yn)
OI
← (L1, . . . , Ln).

The result of the OI substitution of L1, . . . , Ln in the tree language L ⊆ TΣ(Y) is the
tree language

L
OI
← (L1, . . . , Ln) =

⋃

s∈L

s
OI
← (L1, . . . , Ln).

Note that ∅
OI
← (L1, . . . , Ln) = ∅ and in case n = 0 we have L

OI
← () = L.

2.4 Simultaneous induction

In proofs concerning pebble macro tree transducers we will apply the following version
of simultaneous induction.

Let K : (N − {0}) → {true, false} and L : N → {true, false} be predicates. For every
l ≥ 1, we say that K[l] holds if K(1) = true, . . . ,K(l) = true and we say that K holds
if, for every l ≥ 1, K[l] holds. We use the same terminology for l ≥ 0, L[l], and L.

2 DEFINITIONS 10

The simultaneous induction is a proof method which, in certain concrete instances of
K and L, is suitable to prove that K and L hold. Moreover, it can be used for pebble
macro tree transducers very well because statements concerning them can be described
as instances of K and L.

Let K and L be predicates as above and consider the following three statements:

IB: L(0) holds.

IS1: For every l ≥ 0, if L[l] holds, then K(l + 1) holds.

IS2: For every l ≥ 1, if K[l] holds, then L(l) holds.

The principle of Simultaneous induction is based on the fact that if statements IB,
IS1, and IS2 hold, then also K and L hold. Here IB, IS1, and IS2 are the base of the
induction, the induction step 1, and the induction step 2, respectively.

3 PEBBLE MACRO TREE TRANSDUCERS 11

3 Pebble macro tree transducers

3.1 An informal introduction

We provide an intuitive introduction for pebble macro tree transducers, before defining
their syntax in an exact way.

An n-pebble macro tree transducer M is a finite-state device that takes an input tree
and generates an output tree. Each state has a rank, hence states are ranked symbols.
M has finitely many rules of the form 〈q, σ, b, j〉(y1, . . . , ym)→ ζ.

On the left-hand side of the rule, q is a state of M , σ is an input symbol, b is a bit vector
which can be used to test the presence of the pebbles at a node of the input tree, and j
is a number to test the child number of a node of the input tree. Finally, the symbols
y1, . . . , ym are so called parameter variables. The right-hand side ζ of the rule is a tree
over the output symbols, the parameter variables y1, . . . , ym and ranked pairs of the
form 〈q, ϕ〉, where q is a state and ϕ is an instruction. The tree ζ is built in the way
as the right-hand side of a rule of a macro tree transducer in [EV85], i.e., it contains
recursive calls of applications of other rules. Instruction can be moving instructions as
stay , up, and down i and pebble instructions as drop and lift .

M takes an input tree s and makes a computation over sentential forms.

A general sentential form ξ is a tree over output symbols and configurations. A config-
uration is a pair 〈q, h〉, where q is a current state and h = (u, [u1; . . . ;ul]) is a pebble
configuration, where u is a pointer to a current node of s and [u1; . . . ;ul] is a vector of
pointers to the nodes of s where pebbles 1, . . . , l are placed, respectively.

At the beginning of the computation, the current state of M is its initial state and the
current node is the root node of s. Moreover there are no pebbles at the nodes of s.
Thus the initial sentential form is the configuration 〈q0, (ε, [])〉, where q0 is the initial
state of M , ε is the pointer to the root of s, and [] is an empty list of the pebble pointers.
Then, M acts as follows. It takes a configuration node 〈q, h〉 with h = (u, [u1; . . . ;ul])
of the current sentential form ξ. Then M takes a rule r : 〈q, σ, b, j〉(y1, . . . , ym) →
ζ, if any, such that σ is the label of node u of s, the bit vector b fits the presence
of pebbles at u, and j is the child number of node u. Now M applies the rule r
to the sentential form ξ in the following way. Every instruction ϕ occurring in ζ is
applied to the pebble configuration (u, [u1; . . . ;ul]). The result of the application of ϕ
to (u, [u1; . . . ;ul]) is denoted by ϕ((u, [u1; . . . ;ul])). For instance, if ϕ = downi, then
ϕ((u, [u1; . . . ;ul])) = (ui, [u1; . . . ;ul]) indicating that the pointed moves down to the
ith son of the current node u. Furthermore, if ϕ = drop, then ϕ((u, [u1; . . . ;ul])) =
(u, [u1; . . . ;ul;u]) indicating that the next pebble is dropped at node u. The pebbles
are used in a stack-like fashion, i.e., if l ≤ n pebbles are on the tree s, then either the
(l + 1)th pebble can be dropped (provided l < n) or the lth pebble can be lifted. The
obtained pebble configuration ϕ((u, [u1; . . . ;ul])) is substituted for ϕ in ζ. This process
yields a tree ζ ′. Finally ζ ′, which may contain the variables y1, . . . , ym, is substituted for
the configuration node 〈q, h〉 in a second-order way in ξ. The result of this substitution
yields the next sentential form.

3 PEBBLE MACRO TREE TRANSDUCERS 12

The computation may produce a sentential form which contains no configurations.
Such a sentential form is the output of M to the input s. Note that a computation
may never terminate due to circles in the computation. This problem will be discussed
in Section 4.

The concept of n-pebble macro tree transducers of [EM03] was introduced with weak
pebble handling. In [FM09] we generalized it by allowing strong pebble handling to
the model, see [EH07, MSS06], however we left its original name unchanged. Roughly
speaking, strong pebble handling of a tree-walking device generalizes weak pebble han-
dling only in lifting of pebbles as follows:

Lifting pebbles in weak pebble handling: If 1 ≤ l ≤ n pebbles are placed on the input
tree, then pebble l can be lifted provided that it is at the current node;

Lifting pebbles in strong pebble handling: If 1 ≤ l ≤ n pebbles are placed on the input
tree, then pebble l can be lifted regardless of its position;

Next we define n-pebble macro tree transducers (with strong pebble handling) in an
exact way. We follow [FM09] in elaborating the details.

3.2 Syntax of pebble macro tree transducers

We will need the concepts of the “instructions” of a pebble macro tree transducer.

Definition 3.1 For every integer d ≥ 0 we define the set

Id = {drop , lift , stay , up, down 1, down2, . . . , downd}.

The elements of Id are called instructions. For a symbol σ ∈ Σ, n ≥ 0, bit vector
b ∈ {0, 1}≤n, and j ∈ {0, 1, . . . ,maxr (Σ)}, let Iσ,b,j,n ⊆ I be the smallest subset of In

satisfying that

(i) stay ∈ Iσ,b,j,n,

(ii) if j 6= 0, then up ∈ Iσ,b,j,n,

(iii) for every 1 ≤ i ≤ rank (σ) we have down i ∈ Iσ,b,j,n,

(iv) if |b| < n, then drop ∈ Iσ,b,j,n, and

(v) if b 6= ε then lift ∈ Iσ,b,j,n.

If n is clear from the context, we also write Iσ,b,j for Iσ,b,j,n. �

In the present thesis the bit vector b ∈ {0, 1}≤n will store the following information
about a given node u of an input tree s: (1) There are |b| pebbles placed at s and
(2) pebble i is at u iff b(i) = 1. Note that, in the definition of instructions in [EM03],
condition (v) requires that both b 6= ε and b(|b|) = 1 hold. This assures the weak
pebble handling, i.e., that the last pebble can be lifted only if it is on the position of
the pointer.

3 PEBBLE MACRO TREE TRANSDUCERS 13

Definition 3.2 For n ≥ 0, an n-pebble macro tree transducer (shortly n-pmtt) is a
system M = (Q,Σ,∆, q0, R), where

• Q is a ranked alphabet, the set of states,

• Σ and ∆ are called the input ranked alphabet and the output ranked alphabet,
respectively,

• q0 ∈ Q(0) is a distinguished state of rank 0, the initial state, and

• R is a finite set of rules of the form 〈q, σ, b, j〉(y1, . . . , ym) → ζ, where m ≥ 0,
q ∈ Q(m), σ ∈ Σ, b ∈ {0, 1}≤n, j ∈ {0, 1, . . . ,maxr (Σ)} and ζ ∈ T∆∪〈Q,Iσ,b,j〉(Ym).
(Note that here the set 〈Q, Iσ,b,j〉 is a ranked alphabet and the rank of an element
〈q, ϕ〉 ∈ 〈Q, Iσ,b,j〉 is equal to the rank of q.) �

In order to make the right-hand sides of the rules of M well defined, from now on in
this thesis we will assume that ∆ is disjoint with 〈Q, Imaxr(Σ)〉. By a pebble macro tree
transducer (pmtt) we mean an n-pmtt for some n ≥ 0.

We will need the following syntactical restrictions for pmtts, which are similarly defined
in [EM03].

Definition 3.3 An n-pmtt M = (Q,Σ,∆, q0, R) is called

• an n-pebble tree transducer (n-ptt) if each state in Q has rank zero;

• a stay-macro tree transducer (smtt) if n = 0 and there is no up instruction in the
right-hand sides of the rules;

• a macro tree transducer (mtt) if it is an smtt and there is no stay instruction in
the right-hand sides of the rules; �

By a pebble tree transducer (ptt) we mean an n-ptt for some n ≥ 0.

For every q ∈ Q(m), σ ∈ Σ, b ∈ {0, 1}≤n, and j ∈ {0, 1, . . . ,maxr (Σ)}, let
rhsM (q, σ, b, j) = {ζ ∈ T∆∪〈Q,Iσ,b,j〉(Ym) | 〈q, σ, b, j〉(y1, . . . , ym) → ζ ∈ R}. If M is
clear from the context, then we write rhs(q, σ, b, j) for rhsM (q, σ, b, j).

Next we introduce other syntactic restrictions for pmtts.

Definition 3.4 The n-pmtt M is

• deterministic (resp. total), if, for every q ∈ Q(m), σ ∈ Σ, b ∈ {0, 1}≤n, and
j ∈ {0, 1, . . . ,maxr (Σ)}, we have |rhs(q, σ, b, j)| ≤ 1 (resp. |rhs(q, σ, b, j)| ≥ 1),

• context-linear, if, for every rule 〈q, σ, b, j〉(y1, . . . , ym) → ζ ∈ R and 1 ≤ i ≤ m,
we have |ζ|yi

≤ 1. �

We call the variables y1, . . . , ym occurring in the specification of a rule of a pmtt pa-
rameter variables or just parameters. A tree s ∈ TΣ is called an input tree to M or just
an input tree.

3 PEBBLE MACRO TREE TRANSDUCERS 14

3.3 Semantics of pebble macro tree transducers

Next we make some preparations for defining the semantics of a pmtt. Let M =
(Q,Σ,∆, q0, R) be an n-pmtt.

For an input tree s ∈ TΣ, an n-pebble configuration (or: pebble configuration) over s
and M is a pair h = (u, π), where u ∈ pos(s) is a node of s and π ∈ (pos(s))≤n, i.e., π
is a string over pos(s) of length at most n. The set of pebble configurations over s and
M is denoted by PCM,s.

A pebble configuration h = (u, π) ∈ PCM,s, with π = [u1; . . . ;ul] contains the informa-
tion that the node being scanned by M (the current node) of the input tree s is u and
M put l = |π| pebbles on the nodes u1, . . . , ul of s.

A pebble configuration will be a part of a configuration of M . Further, configurations
of M will occur in sentential forms computed by M . The pmtt M computes the next
sentential form by applying a rule to a configuration. However, a rule can be applied
to that configuration only if its left hand-side fits to the result of a certain test of h,
where h is the pebble configuration in the involved configuration of M . The result of
this test is defined as follows.

Let s ∈ TΣ and h = (u, [u1; . . . ;ul]) ∈ PCM,s. Then test(h) = (σ, b, j), where σ =
lab(s, u), j = childno(u), and b ∈ {0, 1}∗ is a string (bit vector) of length l such that,
for every 1 ≤ i ≤ l, and b(i) = 1 if ui = u and b(i) = 0 otherwise.

Let test(h) = (σ, b, j) and take an instruction ϕ ∈ Iσ,b,j. The execution of ϕ on h is the
pebble configuration ϕ(h) defined in the following way.

ϕ(h) =







(u, [u1; . . . ;ul]) if ϕ = stay ,
(parent (u), [u1; . . . ;ul]) if ϕ = up,
(ui, [u1; . . . ;ul]) if ϕ = down i,
(u, [u1; . . . ;ul;u]) if ϕ = drop ,
(u, [u1; . . . ;ul−1]) if ϕ = lift .

Note that in case ϕ ∈ {stay , up, down i | i ≥ 1}, ϕ(h) does not have effect on [u1; . . . ;ul].
Hence we might write (ϕ(u), [u1; . . . ;ul]) instead of ϕ(h).

Definition 3.5 A configuration of M (over s) is a pair 〈q, h〉, where q ∈ Q and h ∈
PCM,s. �

The set of configurations of M over s is denoted by CM,s. Note that the set CM,s is a
ranked alphabet with rank (〈q, h〉) = rank (q) for every 〈q, h〉 ∈ CM,s. The set T∆∪CM,s

is the set of sentential forms of M (over s). Let us note that, if M is an n-ptt, then
the rank of each configuration in CM,s is 0. Hence, a configuration may occur only at
a leaf of a sentential form ξ ∈ T∆∪CM,s

. In order to make the sentential forms of M
well defined, from now on in this thesis we will assume that ∆ is disjoint with CM,s for
each s ∈ TΣ.

We introduce the computation relation of M as a binary relation over sentential
forms. For technical reasons, we define the computation relation over the larger set
T∆∪CM,s

(Y). We also call the elements of T∆∪CM,s
(Y) sentential forms.

3 PEBBLE MACRO TREE TRANSDUCERS 15

u u

. . .

〈q, σ, b, j〉(y1, . . . , ym)→

yi yj

〈q, h〉

⇒M,s

yl yl

(= ζ)

ξ1 = = ξ2

η1 ηm

ηi ηj

〈q, ϕ〉

〈q, ϕ(h)〉

Figure 1: For ξ1, ξ2 ∈ T∆∪CM,s
(Y), the step ξ1 ⇒M,s ξ2 with rule

〈q, σ, b, j〉(y1, . . . , ym)→ ζ.

A step of the computation is a substitution of a tree for a configuration 〈q, h〉 occurring
in a sentential form ξ. Following [EM03] we allow only outside-in substitution, i.e.,
OI-semantics, cf. [EV85, Fis68], which means that the configuration 〈q, h〉, occurring
at node u ∈ pos(s), is substituted in ξ only if no proper ancestor of u is labeled by a
configuration in CM,s.

The intuition behind the idiom outside-in is the following. If we consider a tree as a
hierarchic term (with parentheses), then the inner part of it is the one which is deeply
inside this hierarchy. Therefore the outside-in substitution described above proceeds
from outer part to the inner part of the tree.

Formally, we define the following. A node u ∈ pos(ξ) of a sentential form ξ of M is
an outside active node if lab(ξ, u) ∈ CM,s and, for every proper prefix u′ of u, it holds
lab(ξ, u′) ∈ ∆. Let us observe that if M is a ptt, then, due to the above note, each
node u ∈ pos(ξ) satisfying lab(ξ, u) ∈ CM,s is an outside active node.

Let s ∈ TΣ be an input tree. The computation relation of M on s, denoted by ⇒M,s,
is a binary relation over T∆∪CM,s

(Y) defined as follows. For every ξ1, ξ2 ∈ T∆∪CM,s
(Y)

we have ξ1 ⇒M,s ξ2 if and only if

3 PEBBLE MACRO TREE TRANSDUCERS 16

1. there is an outside-active node u ∈ pos(ξ1) such that lab(ξ1, u) = 〈q, h〉 with

〈q, h〉 ∈ C
(m)
M,s for some m ≥ 0,

2. there is a rule 〈q, σ, b, j〉(y1, . . . , ym)→ ζ in R such that test(h) = (σ, b, j) and

ξ2 = ξ1[[u← ζ[[〈q, ϕ〉 ← 〈q, ϕ(h)〉(y1, . . . , yrank(q)) | q ∈ Q, ϕ ∈ Iσ,b,j]]]].

We demonstrate one step of the derivation ⇒M,s in Figure 1.

The tree transformation computed by M is the relation

τM = {(s, t) ∈ TΣ × T∆ | 〈q0, (ε, [])〉 ⇒
∗
M,s t}.

The classes of tree transformations computed by n-pmtts, n-ptts, smtts, and mtts
are denoted by n-PMTT , n-PTT , sMTT , and MTT , respectively. The deterministic
subclass of each above class is denoted by prefixing the class with d. For instance,
n-dPMTT stands for the class of tree transformations computed by deterministic n-
pebble macro tree transducers.

3.4 Examples of pmtts

In this subsection we give an example of a 1-ptt and examples of two 1-pmtts.

Example 3.6 Let M1 = (Q,Σ,∆, q0, R) be the 1-ptt defined as follows.

• Q = {q0, q1, q2}

• Σ = {σ(2), α(0)}

• ∆ = {1(1), 2(1),#(1), α(0)}

• R consists of the rules:

(r1): 〈q0, σ, ε, 0〉 → 〈q0, drop〉

(r2): 〈q0, σ, b, j〉 → 1(〈q0, down1〉) (b ∈ {0, 1}, j ∈ {0, 1, 2})

(r3): 〈q0, σ, b, j〉 → 2(〈q0, down2〉) (b ∈ {0, 1}, j ∈ {0, 1, 2})

(r4): 〈q0, σ, 0, j〉 → α (j ∈ {0, 1, 2})

(r5): 〈q0, α, 0, j〉 → α (j ∈ {0, 1, 2})

(r6): 〈q0, σ, 0, j〉 → #(〈q1, lift〉) (j ∈ {0, 1, 2})

(r7): 〈q0, α, 0, j〉 → #(〈q1, lift〉) (j ∈ {0, 1, 2})

(r8): 〈q1, σ, ε, j〉 → 〈q2, drop〉 (j ∈ {0, 1, 2})

(r9): 〈q1, α, ε, j〉 → 〈q2, drop〉 (j ∈ {0, 1, 2})

(r10): 〈q2, σ, b, j〉 → 〈q2, up〉 (b ∈ {0, 1}, j ∈ {1, 2})

(r11): 〈q2, α, b, j〉 → 〈q2, up〉 (b ∈ {0, 1}, j ∈ {1, 2})

(r12): 〈q2, σ, b, 0〉 → 〈q0, stay〉 (b ∈ {0, 1})

3 PEBBLE MACRO TREE TRANSDUCERS 17

(r13): 〈q2, α, b, 0〉 → 〈q0, stay〉 (b ∈ {0, 1})

Intuitively, M1 works on an input tree s ∈ TΣ in the following way.

(1) First M1 drops the pebble at the root of s, see rule (r1).

(2) The iteration step. Assume that the pointer points at node u ∈ pos(s). Then M1

chooses nondeterministically among the following activities.

(a) If lab(s, u) = σ, then M1 moves down to the ith child of u and writes i to the output
for some i ∈ {1, 2}, see rules (r2)-(r3). Then the iteration starts again.

(b) If the pebble is not at u, then M1 writes a separator # to the output, replaces the
pebble to the current node u (by applying lift and drop , note that M1 has a strong
pebble), finally M1 moves up to the root node, see rules (r6)-(r13). Then the iteration
starts again.

(c) If the pebble is not at u, then M1 writes α to the output and terminates, see rules
(r4)-(r5).

It is easy to see that, taking s as input, M1 outputs all monadic trees of the form
u1#u2# . . . uk−1#ukα, where

• u1, . . . , uk ∈ pos(s),

• k ≥ 1 and u1 6= ε, and

• for each 2 ≤ i ≤ k we have ui−1 6= ui.

Observe that we omitted the braces in monadic trees of T∆. The second condition
holds, because M1 cannot terminate without writing out at least one position of s,
due to the fact that initially the pebble is placed at the root of s. Finally, the third
condition holds, because, while computing ui, the pebble is kept at the position ui−1.
On the other hand, a # or an α can be written out at ui only if the pebble is not there,
see (b) and (c).

Hence, the tree transformation induced by M1 is

τM1 = {(s, u1#u2# . . . uk−1#ukα) | s ∈ TΣ, k ≥ 1, u1, . . . , uk ∈ pos(s),

u1 6= ε, and for each 2 ≤ i ≤ k, ui−1 6= ui}.

We note that the tree transformation τM1 can also be computed by a 1-ptt with weak
pebble handling. However, those which we know do this in a more complicated way
with more states and rules. Therefore, we think the above example demonstrates the
advantage of the strong pebble handling well. �

Example 3.7 Let us fix the ranked alphabet Σ = {σ(2), α(0), β(0)}. We will use the
following concepts concerning a tree s ∈ TΣ.

We call s a right-α-tree if its rightmost leaf is labeled by α. For example the trees α,
σ(α, α), and σ(σ(β, β), α) are right-α-trees, while β and σ(α, β) are not.

3 PEBBLE MACRO TREE TRANSDUCERS 18

Assume that there are k leaf nodes of s. Then bin(s) is the full binary tree over
{σ, α} of height k + 1. For example, bin(α) = bin(β) = σ(α, α) and bin(σ(β, α)) =
σ(σ(α, α), σ(α, α)).

The leftmost path of s is the path from the root of s to its leftmost leaf node.

Now we describe intuitively, how our 1-pmtt M2 works. It processes an input tree
s ∈ TΣ in three phases. The first two phases are sequential (pebble tree-walking)
computations, while the last phase is a computation with branchings and pure macro
calls. These three phases are as follows.

Phase 1: Initially, the pointer of M2 is at the root of s. Descending on the leftmost
path of s, M2 moves its pointer to the topmost node u on that leftmost path which is
the root of a right-α-tree. Then M2 marks u with its pebble and continues in Phase 2.
If such a u does not exist, then M2 terminates with no output, cf. the rules of R1 below.

Phase 2: Starting in the node pebbled in Phase 1, by a recursive descending search,
M2 finds the downmost node u′ on the leftmost path of s, such that u′ is the root of
a right-α-tree. During the search, the root of the current candidate is marked by the
pebble. Once another node is found on the leftmost path below the current candidate
which is the root of a right-α-tree, by applying lift and drop instructions and its strong
pebble capability, M2 replaces the pebble on this node. Note that, due to strong pebble
handling, this pebble actualization can be realized easily.

Phase 3: Let s′ be the right-α-tree found in Phase 2. Using macro calls, M2 computes
bin(s′) for the s′, cf. the rules of R3.

Let M2 = (Q,Σ, {σ, α}, q0, R), where Q and R are defined as follows.

• Q = Q(1) ∪Q(0), where Q(1) = {qbin} and Q(0) = {q0, q1, q2, q3, qα, qβ}.

• R = R1 ∪R2 ∪R3, where

R1 consists of the rules:

(r1): 〈q0, σ, ε, j〉 → 〈q0, down2〉, (j ∈ {0, 1, 2})

(r2): 〈q0, α, ε, 2〉 → 〈qα, up〉,

(r3): 〈q0, β, ε, 2〉 → 〈qβ, up〉,

(r4): 〈qα, σ, ε, 2〉 → 〈qα, up〉,

(r5): 〈qα, σ, ε, j〉 → 〈q1, drop〉, (j ∈ {0, 1})

(r6): 〈qβ, σ, ε, 2〉 → 〈qβ, up〉,

(r7): 〈qβ, σ, ε, j〉 → 〈q0, down1〉, (j ∈ {0, 1})

(r8): 〈q0, α, ε, j〉 → 〈qbin , stay〉(α), (j ∈ {0, 1})

R2 consists of the rules:

(r9): 〈q1, σ, 1, j〉 → 〈q1, down1〉, (j ∈ {0, 1})

(r10): 〈q1, σ, 0, j〉 → 〈q1, down2〉, (j ∈ {1, 2})

(r11): 〈q1, α, 0, 2〉 → 〈qα, up〉,

3 PEBBLE MACRO TREE TRANSDUCERS 19

s =

s′ =

σ

σ σ

σ α α σ

σ σ α β

β α α β

bin(s′) =

σ

σ σ

α α α α

Figure 2: The trees s, s′, and bin(s′).

(r12): 〈q1, β, 0, 2〉 → 〈qβ, up〉,

(r13): 〈qα, σ, 0, 2〉 → 〈qα, up〉,

(r14): 〈qα, σ, 0, 1〉 → 〈q2, lift〉,

(r15): 〈q2, σ, ε, 1〉 → 〈q1, drop〉,

(r16): 〈qβ, σ, 0, 2〉 → 〈qβ, up〉,

(r17): 〈qβ, σ, 0, 1〉 → 〈q1, down1〉,

(r18): 〈q1, α, 0, 1〉 → 〈qbin , lift〉(α),

(r19): 〈q1, β, 0, 1〉 → 〈q3, up〉,

(r20): 〈q3, σ, 0, 1〉 → 〈q3, up〉

(r21): 〈q3, σ, 1, 1〉 → 〈qbin , lift〉(α),

and R3 consists of the rules:

(r22): 〈qbin , σ, ε, j〉(y1)→ 〈qbin , down1〉(〈qbin , down2〉(y1)), (j ∈ {0, 1, 2})

(r23): 〈qbin , α, ε, j〉(y1)→ σ(y1, y1), and (j ∈ {0, 1, 2})

(r24): 〈qbin , β, ε, j〉(y1)→ σ(y1, y1). (j ∈ {0, 1, 2})

Note that M2 is deterministic. As we saw, the tree transformation induced by M2 is

τM2 = {(s, bin(s′)) | s ∈ TΣ, and s′ is the

downmost right-α-tree on the leftmost path of s}

We give an example of a computation of M2. For this, let s =
σ(σ(σ(σ(β, α), σ(α, β)), α), σ(α, σ(α, β))) be an input tree. The trees s, s′, and bin(s′)
can be seen in Fig. 2, where s′, the tree marked by a dashed ellipse, is the downmost
right-α-tree the root of which occurs in the leftmost path of s. Now M2 works on s as
follows.

3 PEBBLE MACRO TREE TRANSDUCERS 20

Phase 1:

〈q0, (ε, [])〉 ⇒M2 〈q0, (2, [])〉 ⇒M2 〈q0, (22, [])〉 ⇒M2 〈q0, (222, [])〉
⇒M2 〈qβ, (22, [])〉 ⇒M2 〈qβ, (2, [])〉 ⇒M2 〈qβ , (ε, [])〉
⇒M2 〈q0, (1, [])〉 ⇒M2 〈q0, (12, [])〉 ⇒M2 〈qα, (1, [])〉
⇒M2 〈q1, (1, [1])〉

Phase 2:

〈q1, (1, [1])〉 ⇒M2 〈q1, (11, [1])〉 ⇒M2 〈q1, (112, [1])〉
⇒M2 〈q1, (1122, [1])〉 ⇒M2 〈qβ, (112, [1])〉
⇒M2 〈qβ, (11, [1])〉 ⇒M2 〈q1, (111, [1])〉
⇒M2 〈q1, (1112, [1])〉 ⇒M2 〈qα, (111, [1])〉
⇒M2 〈q2, (111, [])〉 ⇒M2 〈q1, (111, [111])〉
⇒M2 〈q1, (1111, [111])〉 ⇒M2 〈q3, (111, [111])〉
⇒M2 〈qbin , (111, [])〉(α)

Phase 3:

〈qbin , (111, [])〉(α) ⇒M2 〈qbin , (1111, [])〉(〈qbin , (1112, [])〉(α))
⇒M2 σ(〈qbin , (1112, [])〉(α), 〈qbin , (1112, [])〉(α))
⇒2

M2
σ(σ(α, α), σ(α, α))

Hence, τM2(s) = σ(σ(α, α), σ(α, α)). �

Finally, we give an example of an 1-pmtt with weak pebble handling.

Example 3.8 Let M3 = (Q,Σ,∆, q0, R) be a pebble macro tree transducer, where

• Q = Q(0) ∪Q(1), Q(0) = {q0, q1, q2, q3, q
′
0, q

′
1, q

′′
0}, and Q(1) = {q′′1},

• Σ = {σ(2), α(0), β(0)},

• ∆ = {a(1), e(0)},

• R = R1 ∪R2 ∪R3 with R1, R2, and R3 being the following sets of rules.

• R1:

(r1): 〈q0, α, ε, 0〉 → 〈q′′0 , stay〉

(r2): 〈q0, σ, ε, 0〉 → 〈q0, down1〉

(r3): 〈q0, γ, ε, 1〉 → 〈q′0, drop〉, for every γ ∈ Σ

(r4): 〈q1, γ, 1, 1〉 → 〈q1, lift〉, for every γ ∈ Σ

(r5): 〈q1, γ, ε, 1〉 → 〈q2, up〉, for every γ ∈ Σ

(r6): 〈q2, σ, ε, j〉 → 〈q0, down2〉, for every j ∈ {0, 2}

(r7): 〈q0, α, ε, 2〉 → 〈q3, up〉

(r8): 〈q3, σ, ε, 2〉 → 〈q3, up〉

(r9): 〈q3, σ, ε, 0〉 → 〈q′′0 , stay〉

• R2:

3 PEBBLE MACRO TREE TRANSDUCERS 21

(r10): 〈q′0, α, 1, 1〉 → 〈q1, stay〉

(r11): 〈q′0, α, 0, j〉 → 〈q′1, up〉, for every j ∈ {1, 2}

(r12): 〈q′0, σ, b, j〉 → 〈q′0, down1〉, for every b ∈ {0, 1} and j ∈ {1, 2}

(r13): 〈q′0, σ, b, j〉 → 〈q′0, down2〉, for every b ∈ {0, 1}, and j ∈ {1, 2}

(r14): 〈q′1, σ, 0, j〉 → 〈q′1, up〉, for every j ∈ {1, 2}

(r15): 〈q′1, σ, 1, 1〉 → 〈q1, stay〉

• R3:

(r16): 〈q′′0 , σ, ε, 0〉 → 〈q′′1 , down2〉(〈q
′′
1 , down2〉(e))

(r17): 〈q′′0 , α, ε, 0〉 → a(e)

(r18): 〈q′′1 , σ, ε, 2〉(y1)→ 〈q
′′
1 , down2〉(〈q

′′
1 , down2〉(y1))

(r19): 〈q′′1 , α, ε, 2〉(y1)→ a(y1)

Intuitively, M3 works on an input tree s as follows. It checks the shape of s and it
associates an output to s only if s has the shape σ(s1, σ(s2, . . . , σ(sk, α) . . .)) for some
k ≥ 0 and, for every 1 ≤ i ≤ k, it holds that |si|α ≥ 1. For this, M3 first moves the
reading head, with its rules in R1, to the root of subtrees s1, . . . , sk in order. After
finding the root of a subtree si, it puts a pebble there in order to find the way back
to that position. Then it checks, with its rules in R2, if the tree si contains at least
one symbol α. Note that, during this latter activity, M3 acts nondeterministically due
to the rules (r12) and (r13). In case the test fails, M3 halts because of the lack of an
appropriate rule. However, if the check is successful, then M3 computes the output
tree with rules in R3, which is a monadic tree of height 2k + 1. For this, it needs the
macro rules with parameters (r18) and (r19), cf. Example 4.3 in [EV85].

In fact, M3 computes the tree transformation

τM3 = {(σ(s1, σ(s2, . . . , σ(sk, α) . . .)), a2k

(e)) | k ≥ 0, |s1|α ≥ 1, . . . , |sk|α ≥ 1}.

Note that τM3 is a partial function.

As an example, we give the computation of M3 on the input tree s = σ(σ(α, β), α).
For the sake of better readability we drop M3 from ⇒M3,s.

〈q0, (ε, [])〉 ⇒s 〈q0, (1, [])〉
⇒s 〈q

′
0, (1, [1])〉

}

rules (r2), (r3) in R1

〈q′0, (1, [1])〉 ⇒s 〈q′0, (11, [1])〉
⇒s 〈q′1, (1, [1])〉
⇒s 〈q1, (1, [1])〉






rules (r12), (r11), (r15) in R2

〈q1, (1, [1])〉 ⇒s 〈q1, (1, [])〉
⇒s 〈q2, (ε, [])〉
⇒s 〈q0, (2, [])〉
⇒s 〈q3, (ε, [])〉
⇒s 〈q′′0 , (ε, [])〉







rules (r4), (r5), (r6), (r7), (r9) in R1

3 PEBBLE MACRO TREE TRANSDUCERS 22

〈q′′0 , (ε, [])〉 ⇒s 〈q′′1 , (2, [])〉(〈q′′1 , (2, [])〉(e))
⇒s a(〈q′′1 , (2, [])〉(e))
⇒s a(a(e))






rules (r16), (r19), (r19) in R3

It is an exercise to show that τM3 can also be computed by a deterministic 1-pebble
macro tree transducer. Indeed the test of the existence of a symbol α with rules in R2

can also be performed by traversing the corresponding subtree, e.g., in preorder way.
However, such a deterministic 1-pebble macro tree transducer has more rules than M3

does. �

Further examples of relations computed by pebble tree transducers as well as pebble
macro tree transducers can be found in [EM03].

4 THE PROBLEM OF CIRCULARITY 23

4 The problem of circularity

In this section we discuss circularity properties of pmtts. A computation of a pmtt M
may not terminate because it has a subcomputation which starts in a configuration
〈q, h〉 ∈ CM,s being at an outside-active node of the current sentential form and the
result of this subcomputation is a sentential form which also contains 〈q, h〉 at an
outside-active node. Now after substituting the result of the subcomputation for 〈q, h〉,
we get a sentential form which also has an outside-active node with label 〈q, h〉. Hence,
the computation may lead to a circulus vitiosus. If M is deterministic, then it does.
Since we face this phenomenon later, we introduce the following circularity concepts
and discuss them. The results of this section can be found in Section 4.1 of [FM08].

Let M = (Q,Σ,∆, q0, R) be an n-pmtt.

The first concept that we introduce, called weak circularity, seems to be unnatural,
however we will need it in Section 8.3.

Definition 4.1 Let s ∈ TΣ be an input tree. We define the relation one-stepM,s ⊆
CM,s ×CM,s as follows: (〈q, h〉, 〈p, f〉) ∈ one-stepM,s if and only if there is a sentential
form ξ ∈ T∆∪CM,s

(Y) such that

• 〈q, h〉(y1, . . . , yrank(q))⇒M,s ξ and

• there is a (not necessarily outside-active) node u ∈ pos(ξ) such that lab(ξ, u) =
〈p, f〉.

If M and s are clear from the context, then we write one-step for one-stepM,s. A
configuration 〈q, h〉 ∈ CM,s is weakly circular if (〈q, h〉, 〈q, h〉) ∈ one-step+.

We say that M is weakly circular if there is an input tree s ∈ TΣ such that CM,s

contains a weakly circular configuration. Otherwise M is not weakly circular. �

Now we make steps to define the concepts of circularity and strong circularity.

Definition 4.2 Let s ∈ TΣ be an input tree. A configuration 〈q, h〉 ∈ CM,s is circular
if there is a sentential form ξ ∈ T∆∪CM,s

(Y) such that

• 〈q, h〉(y1, . . . , yrank(q))⇒
+
M,s ξ and

• there is an outside-active node u ∈ pos(ξ) such that lab(ξ, u) = 〈q, h〉.

We say that M is

1) circular if there is an input tree s such that CM,s contains a circular configuration
(cf. page 659 of [EM03]). Otherwise M is noncircular.

2) strongly circular if there is an input tree s, a sentential form ξ ∈ T∆∪CM,s
(Y), such

that 〈q0, (ε, [])〉 ⇒
∗
M,s ξ, and ξ contains a circular configuration in an outside-active

node. Otherwise M is not strongly circular. �

4 THE PROBLEM OF CIRCULARITY 24

It should also be clear that a macro tree transducer (and thus also a top-down tree
transducer) can be neither weakly circular, nor circular, nor strongly circular. In the
rest of this subsection we compare strong circularity, circularity, and weak circularity.

Lemma 4.3 a) If M is strongly circular, then it is circular.

b) If M is circular, then it is weakly circular.

Proof. The proof of a) follows from the definition of strong circularity and circularity
(Definition 4.2).

Let us prove b). If M is circular, then there is an input tree s ∈ TΣ, a
configuration 〈q, h〉 ∈ CM,s and a sentential form ξ ∈ T∆∪CM,s

(Y) such that

〈q, h〉(y1, . . . , yrank(q)) ⇒
l
M,s ξ for some l ≥ 1 and the configuration 〈q, h〉 occurs in

ξ at an outside-active node. Then, obviously, (〈q, h〉, 〈q, h〉) ∈ one-step l ⊆ one-step+,
hence M is weakly circular. �

The converse of statements a) and b) of Lemma 4.3 do not hold even for 0-ptts, as the
following examples show.

Example 4.4 Let M1 = ({q
(0)
0 , q

(0)
1 }, {α

(0) , γ(1)}, {α(0)}, q0, R) be a 0-ptt, where R =
{〈q0, α, 0〉 → α, 〈q0, γ, 0〉 → α, 〈q0, α, 1〉 → 〈q1, stay〉, 〈q1, α, 1〉 → 〈q0, stay〉}.

It is easy to see that M1 is deterministic and, for every input tree s ∈ T{α,γ}, we
have 〈q0, ε〉 ⇒M1,s α. Hence, M1 is not strongly circular. On the other hand, if
we pick s = γ(α) to be an input tree and the configuration 〈q1, 1〉 ∈ CM1,s, then
〈q1, 1〉 ⇒

2
M1,s 〈q1, 1〉 which means that M1 is circular.

Let M2 = ({q
(0)
0 , q

(1)
1 }, {α

(0)}, {α(0)}, q0, R) be a 0-pmtt, where R consists of the follow-
ing two rules:

• 〈q0, α, 0〉 → 〈q1, stay〉(〈q0, stay〉),

• 〈q1, α, 0〉(y1)→ α.

The only input tree to M2 is s = α and there are only two configurations over s: 〈q0, ε〉
and 〈q1, ε〉. Moreover, since M2 is deterministic, there is only one computation for each,
namely

〈q0, ε〉 ⇒M2,s 〈q1, ε〉(〈q0, ε〉)⇒M2,s α and

〈q1, ε〉(y1)⇒M2,s α.

Hence none of the two configurations is circular which proves that M2 is noncircular.

On the other hand M2 is weakly circular because, for s = α, we have (〈q0, ε〉, 〈q0, ε〉) ∈
one-stepM2,s. �

It is easy to see that, for ptts the circularity and weak circularity concepts are equiva-
lent.

4 THE PROBLEM OF CIRCULARITY 25

Lemma 4.5 Let us assume that M is an n-ptt. Then M is circular if and only if it is
weakly circular.

Proof. The part “⇒” follows from Lemma 4.3 thus we prove part “⇐” only.

We observe that, since M is a ptt, configurations occur only at leaves of a sentential form
ζ, thus an application of a rule to a configuration does not delete other configurations
from ζ. Now assume that M is weakly circular, i.e., there is an input tree s ∈ TΣ

and a configuration 〈q, h〉 ∈ CM,s with (〈q, h〉, 〈q, h〉) ∈ one-step+. Then there is a
sentential form ξ such that 〈q, h〉 ⇒+

M,s ξ and 〈q, h〉 occurs in ξ. Since 〈q, h〉 occurs
at an outside-active node of ξ, see the note after Definition 3.5, we obtain that M is
circular. �

Let us note, that the circularity (and hence also weak circularity) of M may not have
any effect on the computation of M . In fact, it may be that M is circular but for every
input tree s, sentential form η ∈ T∆∪CM,s

with 〈q0, (ε, [])〉 ⇒
∗
M,s η, and outside-active

node u ∈ pos(η) with lab(η, u) = 〈q, h〉, the configuration 〈q, h〉 is not circular. In other
words, M may be circular but none of the circular configurations is accessible from the
initial configuration. On the other hand, the strong circularity always has an effect on
the computation of M .

We note that the circularity of attribute grammars [Knu68, Knu71] and of attributed
tree transducers [Fül81, FV98] was also defined in the sense of point 1) of Definition 4.2.
Informally speaking, an attribute grammar is circular if there is a derivation tree t of
the underlying context-free grammar such that the dependency graph of t contains a
cycle. However, if an attribute grammar is circular, then this does not mean that the
computation of the value of the designated synthesized attribute at the root of t gets
into that cycle.

In this paper, among others, we are interested in pmtts which are noncircular. We
denote the tree transformation classes computed by not weakly circular, noncircu-
lar, and not strongly circular n-pebble (macro) tree transducers, by n-P (M)TTnwc,
n-P (M)TTnc, and n-P (M)TTnsc, respectively. Moreover, the prefixes d, t, and cl de-
note the deterministic, total, context-linear subclasses of these classes.

We will need the following proposition in Section 8.2.

Proposition 4.6 Assume that M is an n-ptt. If M is deterministic, total, and noncir-
cular, then, for every input tree s ∈ TΣ and sentential form ξ ∈ T∆∪CM,s

, nf (ξ,⇒M,s)
exists and nf (ξ,⇒M,s) ∈ T∆.

Proof. (Sketch.) Let s ∈ TΣ be an input tree. The proposition follows from the
following three statements.

(1) If M is deterministic, then the relation ⇒M,s is locally confluent.

(2) If M is total, then, for every sentential form ξ ∈ T∆∪CM,s
, each normal form of ξ is

in T∆.

(3) If M is noncircular, then the relation ⇒M,s is terminating.

4 THE PROBLEM OF CIRCULARITY 26

The proof of (1) is easy and analogous to the corresponding one for attributed tree
transducers, cf. the proof Lemma 5.20 in [FV98]. Statement (2) follows from the
fact that if M is total, then a sentential form containing a configuration cannot be a
normal form. (3) can be proved by showing that the existence of an infinite sequence
ξ1 ⇒M,s ξ2 ⇒M,s . . . would imply the existence of a circular configuration. See the
corresponding proof for attributed tree transducers in Lemma 5.24 of [FV98]. �

5 GENERALIZED YIELD TREE TRANSFORMATIONS 27

5 Generalized yield tree transformations

In this section we generalize the yield mappings of [Eng81, EV85]. In these papers
the underlying mapping of a yield mapping is a total function, which associates with
every nullary symbol a tree with variables. Here we generalize by permitting that
the underlying mapping associates with every nullary symbol a finite (maybe empty)
set of such trees. As a special case, we obtain partial yield tree transformations (cf.
[MBPS05b]), which we will relate with 0-pmtts. The results of this section can be found
in Section 5 of [FM08].

Definition 5.1 Let Σ and ∆ be ranked alphabets, m ≥ 0, and g : Σ(0) → P(T∆(Ym)) a
mapping. We call g deterministic (resp. total) if, for every α ∈ Σ(0), we have |g(α)| ≤ 1
(resp. |g(α)| ≥ 1).

The tree transformation yield g : TΣ → P(T∆(Ym)) induced by g is defined as follows.

(i) For every α ∈ Σ(0), let yield g(α) = g(α).

(ii) For every σ(s0, s1, . . . , sk) ∈ TΣ, where k ≥ 0, σ ∈ Σ(k+1), and s0, s1, . . . , sk ∈ TΣ,

let yield g(σ(s0, s1, . . . , sk)) = yield g(s0)
OI
← (yieldg(s1), . . . , yieldg(sk)). �

If g is deterministic (total), then, for every s ∈ TΣ, we have |yield g(s)| ≤ 1
(|yield g(s)| ≥ 1). A tree transformation defined in the above way is called a yield tree
transformation. A yield tree transformation is deterministic (total) if the underlying
mapping g is deterministic (total). We denote the class of yield tree transformations,
and deterministic (total) yield tree transformations by YIELD, dYIELD (tYIELD),
respectively, and combine the prefixes d and t in the usual way.

It should be clear that dtYIELD ⊆ dYIELD ⊆ YIELD and dtYIELD ⊆ tYIELD ⊆
YIELD.

Let us note that the yield mapping introduced in Section 2.3 of [EV85] (cf. also Defi-
nition 4.30 in [FV98]) is, in our sense, a deterministic and total yield tree transforma-
tion. In that paper, the class of all yield mappings is denoted by YIELD (which is our
dtYIELD). Hence we deviate from the conventional notation.

For every tree language L ⊆ TΣ, we let yieldg(L) =
⋃
{yieldg(s) | s ∈ L}.

If a mapping g : Σ(0) → P(T∆(Ym)) is deterministic, then we consider it as a partial
mapping of type Σ(0) → T∆(Ym). In this case yieldg is a partial mapping of type
TΣ → T∆(Ym).

Deterministic yield tree transformations can be expressed in terms of the first-order
tree substitution defined by condition. It is an exercise to show that if the mapping g is
deterministic, then, for every s = σ(s0, s1, . . . , sk) ∈ TΣ and t ∈ T∆(Ym), the equation
yield g(s) = t holds if and only if

• yield g(s0) = t for some t ∈ T∆(Ym) and

• for every 1 ≤ j ≤ k, if |t|yj
≥ 1, then yield g(sj) = tj for some tj ∈ T∆(Ym) and

5 GENERALIZED YIELD TREE TRANSFORMATIONS 28

• t = t[yj ← tj | 1 ≤ j ≤ k and |t|yj
≥ 1].

In Lemma 36 of [EM03] it was proved that each deterministic and total yield tree
transformation yieldg can be computed by a deterministic and total 0-ptt M . In the
next lemma we show that the restriction total can be dropped. Moreover, we show that
M is noncircular.

Theorem 5.2 (cf. Lemma 36 of [EM03]) dYIELD ⊆ 0-dPTTnc

Proof. Let Σ and ∆ be ranked alphabets, m ≥ 0, and g : Σ(0) → T∆(Ym) a determinis-
tic mapping. Following the proof of Lemma 36 of [EM03], we give a deterministic 0-ptt
M = (Q,Σ,Γ, q0, R), and we show that for every s ∈ TΣ, we have yieldg(s) = τM(s).
For this, let

• Q = {q0, q1, . . . , qm, q′1, . . . , q
′
m},

• Γ = ∆ ∪ {y
(0)
1 , . . . , y

(0)
m },

• R is the smallest set satisfying the conditions (r1) – (r7), where J = maxr (Σ).

(r1) for every σ ∈ Σ(k), k ≥ 1 and 0 ≤ j ≤ J , 〈q0, σ, j〉 → 〈q0, down1〉 ∈ R,

(r2) for every α ∈ Σ(0) with g(α) 6= ∅ and, for every 0 ≤ j ≤ J , 〈q0, α, j〉 →
g(α)[yµ ← 〈qµ, stay〉 | µ ∈ [m]] ∈ R,

(r3) for every µ ∈ [m] and σ ∈ Σ, 〈qµ, σ, 1〉 → 〈q′µ, up〉 ∈ R,

(r4) for every µ ∈ [m] and 2 ≤ j ≤ J , 〈qµ, σ, j〉 → 〈qµ, up〉 ∈ R,

(r5) for every µ ∈ [m] and σ ∈ Σ, 〈qµ, σ, 0〉 → yµ ∈ R,

(r6) for every µ ∈ [m], k ≥ µ + 1, σ ∈ Σ(k), and 0 ≤ j ≤ J , 〈q′µ, σ, j〉 →
〈q0, downµ+1〉 ∈ R,

(r7) for every µ ∈ [m], k < µ + 1, σ ∈ Σ(k), and 0 ≤ j ≤ J , 〈q′µ, σ, j〉 →
〈qµ, stay〉 ∈ R.

We note, the only difference between M and the 0-ptt given in [EM03] is that we define
rules of type (r2) only for those α’s which satisfy g(α) 6= ∅.

It should be clear that M is deterministic.

Next we show that yieldg = τM by proving Statements 1 and 2.

Statement 1. For every input tree s ∈ TΣ and node u ∈ pos(s) if yieldg(s/u) 6= ∅, then

〈q0, u〉 ⇒
∗
M,s yieldg(s/u)[yµ ← 〈qµ, u〉 | 1 ≤ µ ≤ m].

Statement 2. For every input tree s ∈ TΣ and node u ∈ pos(s) if yieldg(s/u) = ∅, then
there exists no t ∈ TΓ such that 〈q0, u〉 ⇒

∗
M,s t.

Before proving these two statements, we show that they verify yieldg = τM . Take an
input tree s ∈ TΣ. We distinguish two cases. First, let us assume that yieldg(s) 6= ∅.
Then, by Statement 1 for u = ε, we get

5 GENERALIZED YIELD TREE TRANSFORMATIONS 29

〈q0, ε〉 ⇒
∗
M,s yieldg(s)[yµ ← 〈qµ, ε〉 | µ ∈ [m]].

Moreover, applying rules of type (r5), we have

yieldg(s)[yµ ← 〈qµ, ε〉 | µ ∈ [m]]⇒∗
M,s yieldg(s),

hence τM (s) = yieldg(s).

Now assume yieldg(s) = ∅. Then, by Statement 2 for u = ε, there is no t ∈ TΓ such
that 〈q0, ε〉 ⇒

∗
M,s t, which means τM(s) = ∅ = yieldg(s).

Next we prove Statements 1 and 2.

Proof of Statement 1. The proof is the same as that of the corresponding part of
Lemma 36 in [EM03]. In that lemma the condition yieldg(s/u) 6= ∅ holds because
g is a total mapping.

Proof of Statement 2. We apply induction on the structure of the tree s/u.

(i) Let s/u = α ∈ Σ(0). Since yieldg(s/u) = ∅, we have g(α) = ∅. Hence, due to
the definition of rules (r2) of M , there is no computation step from the configuration
〈q0, u〉, which proves Statement 2.

(ii) Let s/u = σ(s0, . . . , sk) for some k ≥ 0, σ ∈ Σ(k+1) and s0, s1, . . . , sk ∈ TΣ. Then, by
the characterization of deterministic yield mappings with first-order tree substitution,
there are two cases.

Case 1: yieldg(s0) = ∅. Then, due to rules (r1), we get

〈q0, u〉 ⇒M,s 〈q0, u1〉.

Moreover, by the induction hypothesis, there exists no t ∈ TΓ such that 〈q0, u1〉 ⇒∗
M,s t.

Since M is deterministic, there is no t ∈ TΓ such that 〈q0, u〉 ⇒
∗
M,s t.

Case 2: yieldg(s0) 6= ∅, however there is a 1 ≤ j ≤ k such that |yieldg(s0)|yj
≥ 1 and

yieldg(sj) = ∅.

Now, due to rules (r1) and Statement 1, we obtain

〈q0, u〉 ⇒M,s 〈q0, u1〉 ⇒∗
M,s yieldg(s0)[yµ ← 〈qµ, u1〉 | µ ∈ [m]] = ξ.

Since |yieldg(s0)|yj
≥ 1, the configuration 〈qj , u1〉 occurs in ξ. Moreover,

〈qj, u1〉 ⇒M,s

⇒M,s 〈q′j, u〉 (rule (r3))

⇒M,s 〈q0, u(j + 1)〉 (rule (r6)).

By the induction hypothesis, there exists no t′ ∈ TΓ for which 〈q0, u(j + 1)〉 ⇒∗
M,s t′.

Consequently, there exists no t ∈ TΓ such that ξ ⇒∗
M,s t. Since M is deterministic, this

finishes the proof of Statement 2.

Finally, we show that M is noncircular.

First ,,we make M total” by adding some dummy rules to R. More exactly, we introduce
the 0-ptt M ′ = (Q,Σ,Γ′, q0, R

′), where

• Q, Σ, and q0 are the same as in M ,

5 GENERALIZED YIELD TREE TRANSFORMATIONS 30

• Γ′ = Γ ∪ {nil(0)}, where nil is a new nullary symbol,

• R′ = R ∪ {〈q0, α, j〉 → nil | α ∈ Σ(0), 0 ≤ j ≤ J, rhsM (q0, α, j) = ∅}.

It should be clear that M ′ is deterministic and total and that M ′ is noncircular if and
only if M has this property. This equivalence follows from that the rules we added
cannot cause a cycle in any computation because their right-hand side is a nullary
symbol.

Hence it is sufficient to show that M ′ is noncircular. Therefore, we show that, for every
input tree s ∈ TΣ, u ∈ pos(s), and p ∈ Q, the configuration 〈p, u〉 ∈ CM ′,s is not circular
because there exists an output tree t ∈ TΓ′ such that 〈p, u〉 ⇒∗

M ′,s t. This will follow
from Statements 4, 5, and 6 proved below. Statement 3 will be needed in the proof of
Statements 4 and 5.

As a preparation, we define the set L(u) of sentential forms as

L(u) = TΓ′∪{〈qµ,u〉|µ∈[m]}.

Statement 3. For every configuration 〈q0, u〉 ∈ CM ′,s there is a sentential form ξ ∈ L(u)
such that 〈q0, u〉 ⇒

∗
M ′,s ξ.

Proof of Statement 3. The proof is the same as the proof of the Claim of Lemma 36.
of [EM03], since M ′ computes a total and deterministic yield tree transformation.

Statement 4. For every µ ∈ [m] and configuration 〈qµ, u〉 ∈ CM ′,s, there is an output
tree t ∈ TΓ′ such that 〈qµ, u〉 ⇒∗

M ′,s t.

Proof of Statement 4. Induction on the length of u.

(i) If u = ε, then, by rules of type (r5), 〈qµ, ε〉 ⇒M ′,s yµ ∈ TΓ′ .

(ii) Let u = u′j, for some u′ ∈ pos(s) and 1 ≤ j ≤ J . We distinguish two cases.

Case 1: j ≥ 2. Then, by rules of type (r4), 〈qµ, u〉 ⇒M ′,s 〈qµ, u′〉. Moreover, by the
induction hypothesis, there is a t ∈ TΓ′ such that 〈qµ, u′〉 ⇒∗

M ′,s t. Thus we obtain
〈qµ, u〉 ⇒∗

M ′,s t.

Case 2: j = 1. Then, by rules of type (r3), 〈qµ, u〉 ⇒M ′,s 〈q
′
µ, u′〉 and we continue the

proof by distinguishing two subcases.

The first subcase is when

〈q′µ, u′〉 ⇒M ′,s 〈qµ, u′〉 with rules of type (r7).

Then, by the induction hypothesis, there is a tree t ∈ TΓ′ such that 〈qµ, u′〉 ⇒∗
M ′,s t,

hence also 〈qµ, u〉 ⇒∗
M ′,s t.

The second one is when

〈q′µ, u′〉 ⇒M ′,s 〈q0, u
′(µ + 1)〉 with rules of type (r6).

Now, by Statement 3, there is a sentential form ξ ∈ L(u′(µ + 1)) such that 〈q0, u
′(µ +

1)〉 ⇒∗
M ′,s ξ, i.e., such that 〈qµ, u〉 ⇒∗

M ′,s ξ. Moreover, by Case 1, for every configuration
〈qν , u

′(µ + 1)〉 ∈ CM ′,s which occurs in ξ, there is a tree t′ ∈ TΓ′ such that 〈qν , u
′(µ +

1)〉 ⇒∗
M ′,s t′. Consequently, there is a tree t ∈ TΓ′ such that ξ ⇒∗

M ′,s t. For this tree t

5 GENERALIZED YIELD TREE TRANSFORMATIONS 31

also 〈qµ, u〉 ⇒∗
M ′,s t. This finishes the proof of Statement 4.

Statement 5. For every configuration 〈q0, u〉 ∈ CM ′,s there is a tree t ∈ TΓ′ such that
〈q0, u〉 ⇒

∗
M ′,s t.

Proof of Statement 5. By Statement 3, there is a sentential form ξ ∈ L(u) such that
〈q0, u〉 ⇒

∗
M ′,s ξ. Moreover, by Statement 4, for every configuration 〈qµ, u〉 ∈ CM ′,s

occurring in ξ, there is a tree t′ ∈ TΓ′ such that 〈qµ, u〉 ⇒∗
M ′,s t′. This implies that

there exists a tree t ∈ TΓ′ such that ξ ⇒∗
M ′,s t. For this tree t also 〈q0, u〉 ⇒

∗
M ′,s t.

Statement 6. For every µ ∈ [m] and configuration 〈q ′µ, u〉 ∈ CM ′,s, there is a tree t ∈ TΓ′

such that 〈q′µ, u〉 ⇒∗
M ′,s t.

Proof of Statement 6. Then, either

〈q′µ, u〉 ⇒M ′,s 〈q0, u(µ + 1)〉 with rules of type (r6) or

〈q′µ, u〉 ⇒M ′,s 〈qµ, u〉 with rules of type (r7).

In the first case it follows from Statement 5, in the second one it follows from State-
ment 4 that there is a tree t ∈ TΓ′ such that 〈q′µ, u〉 ⇒∗

M ′,s t.

This finishes the proof of our lemma. �

Later on we will use the following version of the inclusion result of Lemma 36 of [EM03]
and Theorem 5.2.

Theorem 5.3 YIELD ⊆ 0-PTT

Proof. The construction of the 0-ptt and the proof of its correctness are similar to the
corresponding part of the proof of Theorem 5.2. �

Since we use Theorem 5.3 in decompositions of arbitrary (maybe circular) pmtts, we
do not consider circularity issues here. We just note that the proof of that M of
Theorem 5.2 is deterministic does not apply here because in that proof we strongly
used the fact that M is deterministic.

6 COMPOSITION OF PEBBLE AND YIELD TREE TRANSFORMATIONS 32

6 Composition of pebble and yield tree transformations

In this section we will prove that the composition of a pebble tree transformation and
a yield tree transformation can be computed by a pebble macro tree transducer. The
idea behind the construction is that we apply the yield tree transformation to the right-
hand sides of the rules of the pebble tree transducer. Results of this section can be
found in Section 7 of [FM08]. We note that the pebble macro tree transducer model
of [FM08] works with weak pebble handling. However, this fact is not used there in
the proof of the following lemma. Hence the composition result works also for pebble
macro tree transducers of this thesis.

Lemma 6.1 For all n ≥ 0 we have n-PTT ◦ Y IELD ⊆ n-PMTT .

Proof. Let M = (Q,Σ,Γ, q0, R) be an n-ptt. Let ∆ be a ranked alphabet, m ≥ 0, and
g : Γ(0) → P(T∆(Ym)) a mapping. We construct an n-pebble macro tree transducer
M ′, such that τM ◦ yieldg = τM ′ . For this, let M ′ = (Q′,Σ,∆ ∪ {y1, . . . , ym}, qin, R′),
where Q′, qin, and R′ are given as follows.

Let d = maxr (Σ).

• Q′ = {q′ | q ∈ Q} ∪ {qin}, where for every q ∈ Q, the state q′ has rank m and qin

has rank 0.

• We extend g to g′ : Γ(0) ∪ 〈Q, Id〉 → P(T∆∪〈Q′,Id〉(Ym)) by defining g′(〈q, ϕ〉) =
{〈q′, ϕ〉(y1, . . . , ym)}, for every state-instruction pair 〈q, ϕ〉 ∈ 〈Q, Id〉.

• Let R′ be the smallest set of rules satisfying the following conditions.

– For every σ ∈ Σ the rule 〈qin, σ, ε, 0〉 → 〈q′0, stay〉(y1, . . . , ym) is in R′.

– For every rule 〈q, σ, b, j〉 → ζ of R and ζ ′ ∈ yieldg′(ζ), the rule
〈q′, σ, b, j〉(y1, . . . , ym)→ ζ ′ is in R′.

In the rest of this proof let s ∈ TΣ be an input tree. For every pebble configuration
h ∈ ICM,s with test(h) = (σ, b, j), we introduce the following abbreviations for second-
order substitutions:

[[. . .]]h = [[〈q, ϕ〉 ← 〈q, ϕ(h)〉 | q ∈ Q,ϕ ∈ Iσ,b,j]]

and

[[. . .]]′h = [[〈q′, ϕ〉 ← 〈q′, ϕ(h)〉(y1, . . . , ym) | q′ ∈ Q′ − {qin}, ϕ ∈ Iσ,b,j]].

The correctness of the construction is verified by proving the following two statements.

Statement 1:

K(l): For every 〈q, h〉 ∈ CM,s and t ∈ TΓ, if 〈q, h〉 ⇒l
M,s t, then for each t′ ∈ yieldg′(t)

we have 〈q′, h〉(y1, . . . , ym)⇒∗
M ′,s t′.

6 COMPOSITION OF PEBBLE AND YIELD TREE TRANSFORMATIONS 33

L(l): For every h ∈ ICM,s, where test(h) = (σ, b, j), ζ ∈ TΓ∪〈Q,Iσ,b,j〉, and t ∈ TΓ, if

ζ[[. . .]]h ⇒
l
M,s t, then for all t′ ∈ yieldg′(t), there is a ζ ′ ∈ yieldg′(ζ) such that

ζ ′[[. . .]]′h ⇒
∗
M ′,s t′.

Statement 2:

K(l): For every 〈q′, h〉 ∈ CM ′,s and t′ ∈ T∆, if 〈q′, h〉(y1, . . . , ym)⇒l
M ′,s t′, then there is

a tree t ∈ TΓ, where 〈q, h〉 ⇒∗
M,s t, and t′ ∈ yieldg′(t).

L(l): For every h ∈ ICM,s, where test(h) = (σ, b, j), ζ ∈ TΓ∪〈Q,Iσ,b,j〉, ζ ′ ∈ yieldg′(ζ),

and t′ ∈ T∆(Ym), if ζ ′[[. . .]]′h ⇒
l
M ′,s t′, then there is a tree t ∈ TΓ, such that

ζ[[. . .]]h ⇒
∗
M,s t and t′ ∈ yieldg′(t).

We note that for each tree t ∈ TΓ we have yieldg′(t) = yieldg(t).

The inclusion τM ◦ yieldg ⊆ τM ′ follows from Statement 1 due to the following. Let
(s, t′) ∈ τM ◦ yieldg. Then there is a tree t ∈ TΓ such that 〈q0, (ε, [])〉 ⇒

l
M,s t

for some l ≥ 1 (meaning that (s, t) ∈ τM) and t′ ∈ yieldg(t). By predicate
K(l) of Statement 1 we obtain that 〈q ′0, (ε, [])〉(y1, . . . , ym) ⇒∗

M ′,s t′, moreover, since
〈qin, (ε, [])〉 ⇒M ′,s 〈q

′
0, (ε, [])〉(y1, . . . , ym), we also get that 〈qin, (ε, [])〉 ⇒∗

M ′,s t′, hence
(s, t′) ∈ τM ′ .

The inclusion τM ′ ⊆ τM ◦ yieldg follows from Statement 2 due to the following. Let
(s, t′) ∈ τM ′ . Then 〈qin, (ε, [])〉 ⇒M ′,s 〈q

′
0, (ε, [])〉(y1, . . . , ym) ⇒l

M ′,s t′ for some l ≥ 1.
Hence, by predicate K(l) of Statement 2 we obtain that there is a tree t ∈ TΓ such that
t′ ∈ yieldg(t) and 〈q0, (ε, [])〉 ⇒

∗
M,s t, which means that (s, t′) ∈ τM ◦ yieldg.

Now we have left to prove Statements 1 and 2.

Proof of Statement 1:

IB: (proof of L(0))

Let us assume that ζ[[. . .]]h ⇒
0
M,s t. It follows t = ζ, hence yieldg′(ζ) = yieldg′(t). Thus

for each t′ ∈ yieldg′(ζ) we can pick ζ ′ = t′ which gives the transition ζ ′[[. . .]]′h ⇒
∗
M ′,s t′.

IS1: (proof of L[l]⇒ K(l + 1))

Assume that 〈q, h〉 ⇒l+1
M,s t holds. Then there exists a sentential form ξ ∈ TΓ∪CM,s

such that 〈q, h〉 ⇒M,s ξ ⇒l
M,s t. Thus there is a rule 〈q, σ, b, j〉 → ζ ∈ R, where

test(h) = (σ, b, j) and ζ[[. . .]]h = ξ.

Let t′ ∈ yieldg′(t) be an arbitrary tree. By the induction hypothesis L(l), there is a
tree ζ ′ ∈ yieldg′(ζ), such that ζ ′[[. . .]]′h ⇒

∗
M ′,s t′.

Moreover, by the definition of M ′, the rule 〈q′, σ, b, j〉(y1, . . . , ym) → ζ ′ is in R′, hence
〈q′, h〉(y1, . . . , ym)⇒M ′,s ζ ′[[. . .]]′h, which concludes that 〈q′, h〉(y1, . . . , ym)⇒∗

M ′,s t′.

IS2: (proof of K[l]⇒ L(l))

Assume that ζ[[. . .]]h ⇒
l
M,s t. We continue the proof by induction on ζ. The case

ζ = α ∈ Γ(0) is not possible because l ≥ 1. Hence we have cases (i) and (ii).

6 COMPOSITION OF PEBBLE AND YIELD TREE TRANSFORMATIONS 34

(i) If ζ = 〈q, ϕ〉 ∈ 〈Q, Id〉, then yieldg′(ζ) is singleton and is equal to
〈q′, ϕ〉(y1, . . . , ym) = ζ ′. By the induction hypothesis K[l] we get that ζ ′[[. . .]]′h ⇒

∗
M ′,s t′

for all t′ ∈ yieldg′(t).

(ii) Let ζ = δ(ζ0, . . . , ζk) for some k ≥ 0, δ ∈ Γ(k), and ζ0, . . . , ζk ∈ TΓ∪〈Q,Iσ,b,j〉.

We make the following observations.

a) There are integers l0, . . . , lk ≤ l and output trees t0, . . . , tk ∈ TΓ such that

ζ0[[. . .]]h ⇒
l0
M,s t0, . . . , ζk[[. . .]]h ⇒

lk
M,s tk

and t = δ(t0, . . . , tk).

b) Let t′ ∈ yieldg′(t). By Definition 5.1

t′ = t′0[y1 ← t′1, . . . , yk ← t′k],

where t′0 ∈ yieldg′(t0), . . . , t
′
k ∈ yieldg′(tk).

c) By the induction hypothesis on ζ, there are trees ζ ′
0 ∈ yieldg′(ζ0), . . . , ζ

′
k ∈ yieldg′(ζk),

such that

ζ ′0[[. . .]]
′
h,⇒∗

M ′,s t′0, . . . , ζ
′
k[[. . .]]

′
h,⇒∗

M ′,s t′k.

d) Let us pick ζ ′ to be the tree ζ ′0[y1 ← ζ ′1, . . . , yk ← ζ ′k]

e) By Definition 5.1 ζ ′ ∈ yieldg′(ζ).

f) Hence,

ζ ′[[. . .]]′h = ζ ′0[[. . .]]
′
h[y1 ← ζ ′1[[. . .]]

′
h, . . . , yk ← ζ ′k[[. . .]]

′
h]

⇒∗
M ′,s t′0[y1 ← ζ ′1[[. . .]]

′
h, . . . , yk ← ζ ′k[[. . .]]

′
h]

⇒∗
M ′,s t′0[y1 ← t′1, . . . , yk ← t′k]

= t′.

This ends the proof of Statement 1.

Proof of Statement 2:

IB: (proof of L(0))

Assume that ζ ′[[. . .]]′h ⇒
0
M ′,s t′. Then obviously ζ ′ = t′. Let us choose t to be equal to

ζ. Then it follows easily that t′ ∈ yieldg′(t), and ζ[[. . .]]h ⇒
∗
M,s t.

IS1: (proof of L[l]⇒ K(l + 1))

Assume that 〈q′, h〉(y1, . . . , ym) ⇒l+1
M ′,s t′. Then there is a sentential form ξ ′ ∈

T∆∪CM′s
(Ym), where 〈q′, h〉(y1, . . . , ym) ⇒M ′,s ξ′ ⇒l

M ′,s t′. Hence, there is a rule
〈q′, σ, b, j〉(y1, . . . , ym) → ζ ′ ∈ R′, such that test(h) = (σ, b, j), and ξ ′ = ζ ′[[. . .]]′h. By
the construction of M ′, there is a rule 〈q, σ, b, j〉 → ζ ∈ R, such that ζ ′ ∈ yieldg′(ζ).
These prove the following.

• By the induction hypothesis L(l), there is a tree t ∈ TΓ such that ζ[[. . .]]h ⇒
∗
M,s t

and t′ ∈ yieldg′(t).

• 〈q, h〉 ⇒M,s ζ[[. . .]]h.

6 COMPOSITION OF PEBBLE AND YIELD TREE TRANSFORMATIONS 35

Thus we obtain that there is a tree t ∈ TΓ such that 〈q, h〉 ⇒∗
M,s t and t′ ∈ yieldg′(t).

IS2: (proof of K[l]⇒ L(l))

Assume that ζ ′[[. . .]]′h ⇒
l
M ′,s t′. (Recall that ζ ′ ∈ yieldg′(ζ) for a tree ζ ∈ TΓ∪〈Q,Iσ,b,j〉

and t′ ∈ T∆(Ym).) We prove by induction on ζ. The case ζ = α ∈ Γ(0) is not possible
because l ≥ 1. Hence we have cases (i) and (ii).

(i) Let ζ = 〈q, ϕ〉 ∈ 〈Q, Id〉. Then yieldg′(ζ) is singleton and ζ ′ can only be
〈q′, ϕ〉(y1, . . . , ym). Thus, by the induction hypothesis K[l], there is a tree t ∈ TΓ,
such that 〈q, ϕ〉[[. . .]]h ⇒

∗
M,s t, and t′ ∈ yieldg′(t).

(ii) Let ζ = δ(ζ0, . . . , ζk), for k ≥ 0 and ζ0, . . . , ζk ∈ TΓ∪〈Q,Iσ,b,j〉. We make the following
observations.

a) By Definition 5.1 ζ ′ = ζ ′0[y1 ← ζ ′1, . . . , yk ← ζ ′k], where ζ ′0 ∈ yieldg′(ζ0), . . . , ζ
′
k ∈

yieldg′(ζk)

b) It follows from the derivation ζ ′[[. . .]]′h ⇒
l
M ′,s t′ and a) that there are numbers

l0, . . . , lk ≤ l, t′0, . . . , t
′
k ∈ T∆(Ym) such that ζ ′0[[. . .]]

′
h ⇒

l0
M ′,s t′0, . . . , ζ

′
k[[. . .]]

′
h ⇒

lk
M ′,s t′k,

moreover t′ = t′0[y1 ← t′1, . . . , yk ← t′k].

c) By the induction hypothesis on ζ there are trees t0, . . . , tk ∈ TΓ where ζ0[[. . .]]h ⇒
∗
M,s

t0, . . . , ζk[[. . .]]h ⇒
∗
M,s tk and t′0 ∈ yieldg′(t0), . . . , t

′
k ∈ yieldg′(tk).

Let us choose t = δ(t0, . . . , tk). We are left to prove that t′ ∈ yieldg′(t), and
ζ[[. . .]]h ⇒

∗
M,s t. Hence

t′ = t′0[y1 ← t′1, . . . , yk ← t′k]

∈ t′0
OI
← (yieldg′(t1), . . . , yieldg′(tk))

⊆ yieldg′(t0)
OI
← (yieldg′(t1), . . . , yieldg′(tk))

= yieldg′(t).

On the other hand

ζ[[. . .]]h = δ(ζ0[[. . .]]h, . . . , ζk[[. . .]]h)
⇒∗

M,s δ(t0 . . . , tk)

= t.

This completes the proof of Statement 2 and this lemma. �

Let us observe that the construction of M ′ from M in the proof of Lemma 6.1 pre-
serves noncircularity and in case yieldg is deterministic, the construction also preserves
determinism. (On the contrary, M ′ is not total, even if M and g are total, since there
is no computation from state qin if the pointer points to a non-root node or there are
pebbles on the input tree.) Moreover, if M is a top-down tree transducer, then M ′ is
a macro tree transducer. Thus we obtain the following corollaries.

Corollary 6.2 For each n ≥ 0 we have

• n-dPTT ◦ dY IELD ⊆ n-dPMTT ,

• n-PTTnc ◦ Y IELD ⊆ n-PMTTnc,

6 COMPOSITION OF PEBBLE AND YIELD TREE TRANSFORMATIONS 36

• n-dPTTnc ◦ dY IELD ⊆ n-dPMTTnc,

• T ◦ Y IELD ⊆MTT , and

• dT ◦ dY IELD ⊆ dMTT . �

7 DECOMPOSITION AND CHARACTERIZATION RESULTS FOR PMTTS 37

7 Decomposition and characterization results for pmtts

In this section, if not specified otherwise, M = (Q,Σ,∆, q0, R) stands for an arbitrary
n-pmtt. We associate with M a total n-ptt M ′ and a yield tree transformation yield g.
Then we prove that τM = τM ′ ◦yield g holds. Using Lemma 6.1 and this decomposition,
we give a characterization of tree transformations computed by n-pmtts in terms of the
compositions of tree transformations computed by n-ptts and yield transformations.
The results of this section can be found in Section 4 of [FM09].

7.1 Associating an n-ptt and a yield tree transformation with an n-

pmtt

Definition 7.1 Let d = 1 + max{maxr (Q),maxr (Σ),maxr (∆), 2}. The n-ptt associ-
ated with M is M ′ = (Q′,Σ,Γ, q′0, R

′), where

• Q′ = Q′(0) = {q′ | q ∈ Q},

• Γ is the smallest ranked alphabet defined by

– Γ(0) = {δ′ | δ ∈ ∆} ∪ {α1, . . . , αd} ∪ {nil} ∪ {#}, where δ′, α1, . . . , αd, nil,
and # are new symbols,

– Γ(i) = {ci} for every 1 ≤ i ≤ d.

• In order to give the rule set R′, we need the mapping comb : T∆∪〈Q,Id〉(Yd) →
TΓ∪〈Q′,Id〉, cf. Lemma 5.5 in [EV85] and also Lemma 4.34 in [FV98]. For each
ζ ∈ T∆∪〈Q,Id〉(Yd), the tree comb(ζ) is defined by induction on ζ as follows.

(i) If ζ = yi for some 1 ≤ i ≤ d, then comb(ζ) = αi.

(ii) Assume that ζ = 〈q, ϕ〉(ζ1, . . . , ζk), where k ≥ 0, q ∈ Q(k), ϕ ∈ Id, and
ζ1, . . . , ζk ∈ T∆∪〈Q,Id〉(Yd). Then

comb(ζ) = ck+1(〈q
′, ϕ〉, comb(ζ1), . . . , comb(ζk)).

(iii) Assume that ζ = δ(ζ1, . . . , ζk), where k ≥ 0, δ ∈ ∆(k), and ζ1, . . . , ζk ∈
T∆∪〈Q,Id〉(Yd). Then

comb(ζ) = ck+1(δ
′, comb(ζ1), . . . , comb(ζk)).

In Fig. 3 we give an example of comb(ζ).

Now, for each q ∈ Q,σ ∈ Σ, b ∈ {0, 1}≤n, and 0 ≤ j ≤ maxr (Σ), let

Rq,σ,b,j = {〈q′, σ, b, j〉 → nil} (1)
∪ {〈q′, σ, b, j〉 → comb(ζ) | ζ ∈ rhsM (q, σ, b, j)} (2)
∪ {〈q′, σ, b, j〉 → c3(#, 〈q′, stay〉, 〈q′, stay〉)} (3)

Then we define
R′ =

⋃

q∈Q,σ∈Σ,b∈{0,1}≤n,

0≤j≤maxr(Σ)

Rq,σ,b,j.

7 DECOMPOSITION AND CHARACTERIZATION RESULTS FOR PMTTS 38

comb











〈q1, stay〉

〈q2, up〉 y2

β











=

c3

〈q′1, stay〉 c2 α2

〈q′2, up〉 c1

β′

Figure 3: An example of comb(ζ).

Let yield g be the tree transformation induced by the mapping g : Γ(0) → P(T∆(Yd))
defined in the following way.

• For every k ≥ 0, δ ∈ ∆(k), let g(δ′) = {δ(y1, . . . , yk)},

• for every 1 ≤ i ≤ d, let g(αi) = {yi},

• let g(#) = {y1, y2}, and

• let g(nil) = ∅. �

Next we demonstrate the construction applied in Definition 7.1.

Example 7.2 Consider M2 of Example 3.7. Then

M ′
2 = ({q′0, q

′
1, q

′
2, q

′
3, q

′
α, q′β}

︸ ︷︷ ︸

Q′

, {σ(2), α(0), β(0)}
︸ ︷︷ ︸

Σ

, {c
(1)
1 , c

(2)
2 , c

(3)
3 , σ′(0), α′(0)}

︸ ︷︷ ︸

Γ

, q′0, R
′),

where R′ contains the rules (1) and (3) of Definition 7.1 as well as the following rules:

- 〈q′0, σ, ε, j〉 → c1(〈q
′
0, down2〉) (j ∈ {0, 1, 2})

- 〈q′0, α, ε, 2〉 → c1(〈q
′
α, up〉)

- 〈q′0, β, ε, 2〉 → c1(〈q
′
β , up〉)

- 〈q′α, σ, ε, 2〉 → c1(〈q
′
α, up〉)

- 〈q′α, σ, ε, j〉 → c1(〈q
′
1, drop〉) (j ∈ {0, 1})

- 〈q′β, σ, ε, 2〉 → c1(〈q
′
β, up〉)

- 〈q′β, σ, ε, j〉 → c1(〈q
′
0, down1〉) (j ∈ {0, 1})

- 〈q′0, α, ε, j〉 → c2(〈q
′
bin , stay〉, c1(α

′)) (j ∈ {0, 1})

- 〈q′1, σ, 1, j〉 → c1(〈q
′
1, down1〉) (j ∈ {0, 1})

- 〈q′1, σ, 0, j〉 → c1(〈q
′
1, down2〉) (j ∈ {1, 2})

- 〈q′1, α, 0, 2〉 → c1(〈q
′
α, up〉)

- 〈q′1, β, 0, 2〉 → c1(〈q
′
β , up〉)

7 DECOMPOSITION AND CHARACTERIZATION RESULTS FOR PMTTS 39

collect(t1, . . . , tη) =

c3

t1 c3

t2

c3

tη nil

Figure 4: The tree collect(t1, . . . , tη) for some trees t1, . . . , tη ∈ TΓ.

- 〈q′α, σ, 0, 2〉 → c1(〈q
′
α, up〉)

- 〈q′α, σ, 0, 1〉 → c1(〈q
′
2, lift〉)

- 〈q′2, σ, ε, 1〉 → c1(〈q
′
1, drop〉)

- 〈q′β, σ, 0, 2〉 → c1(〈q
′
β, up〉)

- 〈qβ, σ, 0, 1〉 → c1(〈q
′
1, down1〉)

- 〈q′1, α, 0, 1〉 → c2(〈q
′
bin , lift〉, c1(α

′))

- 〈q′1, β, 0, 1〉 → c1(〈q
′
3, up〉)

- 〈q′3, σ, 0, 1〉 → c1(〈q
′
3, up〉)

- 〈q′3, σ, 1, 1〉 → c2(〈q
′
bin , lift〉, c1(α

′))

- 〈q′bin , σ, ε, j〉 → c2(〈q
′
bin , down1〉, c2(〈q

′
bin , down2〉, α1)) (j ∈ {0, 1, 2})

- 〈q′bin , α, ε, j〉 → c3(σ
′, α1, α1) (j ∈ {0, 1, 2})

- 〈q′bin , β, ε, j〉 → c3(σ, α1, α1) (j ∈ {0, 1, 2})

Moreover, g(σ′) = σ(y1, y2), g(α′) = α, and g(α1) = y1. �

Now we introduce a technical notation, the concept of “collecting” trees of TΓ, which
will be used in Lemma 7.7. In fact, we collect finitely many trees of TΓ in a certain
manner in order to produce a new tree in TΓ.

Definition 7.3 Let t1, . . . , tη ∈ TΓ for some η ≥ 0. Then collect(t1, . . . , tη) is a tree in
TΓ, defined by induction on η as follows.

(i) If η = 0 then collect() = nil.

(ii) If η > 0 then collect(t1, . . . , tη) = c3(#, t1, collect(t2, . . . , tη)). �

Fig. 4 illustrates collect(t1, . . . , tη). The following two lemmas show useful properties
of collecting trees.

7 DECOMPOSITION AND CHARACTERIZATION RESULTS FOR PMTTS 40

Lemma 7.4 Let t1, . . . , tη ∈ TΓ for some η ≥ 0. Then yieldg(collect(t1, . . . , tη)) =
yieldg(t1) ∪ . . . ∪ yieldg(tη).

Proof. We prove by induction on η.

(i) If η = 0 then obviously, yieldg(collect(t1, . . . , tη)) = yieldg(collect()) = yieldg(nil) =
∅. Moreover, yieldg(collect(t1))∪. . .∪yieldg(collect(tη)) = ∅, since it is the empty union.

(ii) Let η > 0. Then

yieldg(collect(t1, . . . , tη))
= yieldg(c3(#, t1, collect(t2, . . . , tη)))

= yieldg(#)
OI
← (yieldg(t1), yieldg(collect(t2, . . . , tη)))

= {y1, y2}
OI
← (yieldg(t1), yieldg(collect(t2, . . . , tη)))

= yieldg(t1) ∪ yieldg(collect(t2, . . . , tη))
= yieldg(t1) ∪ yieldg(t2) ∪ . . . ∪ yieldg(tη)

(by the induction hypothesis).

�

Lemma 7.5 Let s ∈ TΣ, and 〈q′, h〉 ∈ CM ′,s. Moreover, assume that there are η ≥ 0
and t1, . . . , tη ∈ TΓ such that 〈q′, h〉 ⇒∗

M ′,s ti for every 1 ≤ i ≤ η. Then 〈q′, h〉 ⇒∗
M ′,s

collect(t1, . . . , tη).

Proof. By induction on η. Assume that test(h) = (σ, b, j).

(i) If η = 0 then, by (1) of Definition 7.1, the rule 〈q ′, σ, b, j〉 → nil is in R′, hence we
obtain that 〈q′, h〉 ⇒M ′,s nil = collect().

(ii) Let η > 0. Then it follows that

〈q′, h〉 ⇒M ′,s c3(#, 〈q′, h〉, 〈q′, h〉) (by (3) of Definition 7.1)
⇒∗

M ′,s c3(#, t1, 〈q
′, h〉) (since 〈q′, h〉 ⇒∗

M ′,s t1)

⇒∗
M ′,s c3(#, t1, collect(t2, . . . , tη)) (by the induction hypothesis)

= collect(t1, . . . , tη). (by Definition 7.3)

�

We will also need the following technical lemma.

Lemma 7.6 For every tree ζ ∈ T∆(Yd), we have ζ = yieldg(comb(ζ)).

Proof. The proof is performed by structural induction on ζ.

(i) If ζ = yi ∈ Yd, then yieldg(comb(ζ)) = yieldg(αi) = yi = ζ.

7 DECOMPOSITION AND CHARACTERIZATION RESULTS FOR PMTTS 41

(ii) If ζ = δ(ζ1, . . . , ζk) for some k ≥ 0, δ ∈ ∆(k), and ζ1, . . . , ζk ∈ T∆(Yd), then

yieldg(comb(ζ))
= yieldg(ck+1(δ

′, comb(ζ1), . . . , comb(ζk)))

= yieldg(δ
′)

OI
← (yieldg(comb(ζ1)), . . . , yieldg(comb(ζk)))

= yieldg(δ
′)

OI
← (ζ1, . . . , ζk)

(by the induction hypothesis)

= δ(y1, . . . , yk)
OI
← (ζ1, . . . , ζk)

= δ(ζ1, . . . , ζk)
= ζ.

�

7.2 Proving τM = τM ′ ◦ yield g

We will need the following concept. For every s ∈ TΣ, ξ ∈ T∆∪CM,s
(Y), and l ≥ 0 we

define
Ms(ξ, l) = {t ∈ T∆(Y) | ∃l′ ≤ l : ξ ⇒l′

M,s t}.

Note that τM (s) =
⋃

l≥0 Ms(〈q0, (ε, [])〉, l). Now we prove our main decomposition
result.

Lemma 7.7 τM = τM ′ ◦ yield g.

Proof. Let us fix an arbitrary input tree s ∈ TΣ. For every pebble configuration
h ∈ PCM,s with test(h) = (σ, b, j), we introduce the abbreviations for the following
second-order and first-order substitutions:

[[. . .]]h = [[〈p, ϕ〉 ← 〈p, ϕ(h)〉(y1, . . . , yrank(p)) | p ∈ Q,ϕ ∈ Iσ,b,j]]

and
[[. . .]]′h = [[〈p′, ϕ〉 ← 〈p′, ϕ(h)〉 | p′ ∈ Q′, ϕ ∈ Iσ,b,j]].

First we prove that τM(s) ⊆ yield g(τM ′(s)). In fact, we prove the following stronger
statement by simultaneous induction.

Statement 1.

K(l): For every m ≥ 0, q ∈ Q(m), h ∈ PCM,s with test(h) = (σ, b, j), and
t ∈ T∆(Ym), if 〈q, h〉(y1, . . . , ym) ⇒l

M,s t, then there is a tree t′ ∈ TΓ such that
〈q′, h〉 ⇒∗

M ′,s t′ and t ∈ yieldg(t
′).

L(l): Let h ∈ PCM,s with test(h) = (σ, b, j), ζ ∈ T∆∪〈Q,Iσ,b,j〉(Yd), and L ⊆
Ms(ζ[[. . .]]h, l) a finite, nonempty tree language. Then there is a tree t′ ∈ TΓ

such that comb(ζ)[[. . .]]′h ⇒
∗
M ′,s t′ and L ⊆ yieldg(t

′).

7 DECOMPOSITION AND CHARACTERIZATION RESULTS FOR PMTTS 42

The desired inclusion follows from K because for every output tree t ∈ T∆, if t ∈
τM(s), i.e., 〈q0, (ε, [])〉 ⇒

l
M,s t for some l ≥ 1, then there is a tree t′ ∈ TΓ such that

〈q′0, (ε, [])〉 ⇒
∗
M ′,s t′ and t ∈ yield g(t

′), i.e., t ∈ yield g(τM ′(s)).

Proof of Statement 1.

IB: (proof of L(0))

Let us assume that L ⊆ Ms(ζ[[. . .]]h, 0) and L 6= ∅. Then necessarily ζ ∈ T∆(Yd) and
L = {ζ}. Since yieldg(comb(ζ)) = ζ (see Lemma 7.6), we obtain that comb(ζ) ∈ TΓ.
Hence, if we choose t′ = comb(ζ), then comb(ζ)[[. . .]]′h ⇒

0
M ′,s t′ and L ⊆ yieldg(t

′).

IS1: (proof of L[l]⇒ K(l + 1))

Assume that 〈q, h〉(y1, . . . , ym) ⇒l+1
M,s t. Then there exists a sentential form ξ ∈

T∆∪CM,s
(Ym) such that 〈q, h〉(y1, . . . , ym) ⇒M,s ξ ⇒l

M,s t. Moreover, there is a tree

ζ ∈ rhsM (q, σ, b, j) such that ζ[[. . .]]h = ξ and hence ζ[[. . .]]h ⇒
l
M,s t.

Now let L = {t} ⊆Ms(ζ[[. . .]]h, l). By the induction hypothesis L[l] we obtain that there
is a tree t′ ∈ TΓ such that comb(ζ)[[. . .]]′h ⇒

∗
M ′,s t′ and t ∈ yieldg(t

′) (i.e., L ⊆ yieldg(t
′)).

Finally, by (2) of Definition 7.1, the rule 〈q ′, σ, b, j〉 → comb(ζ) is in R′ and hence the
derivation 〈q′, h〉 ⇒M ′,s comb(ζ)[[. . .]]′h ⇒

∗
M ′,s t′ holds. This proves K[l + 1].

IS2: (proof of K[l]⇒ L(l))

Let L ⊆ Ms(ζ[[. . .]]h, l) be an arbitrary finite, nonempty set of output trees. We prove
by induction on ζ. Note that neither ζ ∈ ∆(0) nor ζ ∈ Yd is possible because l ≥ 1.
Hence we have cases (i) and (ii).

(i) Let ζ = δ(ζ1, . . . , ζk) for some k ≥ 1, δ ∈ ∆(k), and ζ1, . . . , ζk ∈ T∆∪〈Q,Iσ,b,j〉(Yd). We
make the following observations.

(a) It is straightforward that there are finite and nonempty tree languages L1 ⊆
Ms(ζ1[[. . .]]h, l), . . . , Lk ⊆Ms(ζk[[. . .]]h, l) such that L ⊆ δ(L1, . . . , Lk).

(b) By induction hypothesis on ζ, there are trees t′1, . . . , t
′
k ∈ TΓ such that

comb(ζ1)[[. . .]]
′
h ⇒

∗
M ′,s t′1, . . . , comb(ζk)[[. . .]]

′
h ⇒

∗
M ′,s t′k and L1 ⊆ yield g(t

′
1), . . . , Lk ⊆

yield g(t
′
k).

Let us choose t′ = ck+1(δ
′, t′1, . . . , t

′
k). It follows from (a) and (b) that

comb(ζ)[[. . .]]′h ⇒
∗
M ′,s t′. Moreover, we have

L ⊆ δ(L1, . . . , Lk)

= δ(y1, . . . , yk)
OI
← (L1, . . . , Lk)

⊆ yield g(δ
′)

OI
← (yield g(t

′
1), . . . , yield g(t

′
k))

= yield g(ck+1(δ
′, t′1, . . . , t

′
k))

= yield g(t
′).

This proves case (i). Note that we did not use induction hypothesis K[l] in this case.

(ii) Let ζ = 〈p, ϕ〉(ζ1, . . . , ζk) for some k ≥ 0, 〈p, ϕ〉 ∈ 〈Q, Id〉
(k), and ζ1, . . . , ζk ∈

T∆∪〈Q,Iσ,b,j〉(Yd).

7 DECOMPOSITION AND CHARACTERIZATION RESULTS FOR PMTTS 43

(a) Since L is finite and nonempty, there are finite tree languages

L̂ ⊆Ms(〈p, ϕ(h)〉(y1, . . . , yk), l)
L1 ⊆Ms(ζ1[[. . .]]h, l − 1)

...
Lk ⊆Ms(ζk[[. . .]]h, l − 1)

such that L ⊆ L̂
OI
← (L1, . . . , Lk). Moreover, L 6= ∅ implies that L̂ 6= ∅. On the other

hand, it may be possible that Lµ = ∅ for some 1 ≤ µ ≤ k. Let {i1, . . . , ij} be the set of
all indexes 1 ≤ µ ≤ k, for which Lµ 6= ∅.

(b) By induction hypothesis on ζ, there are trees t′i1 , . . . , t
′
ij
∈ TΓ such

that comb(ζi1)[[. . .]]
′
h ⇒∗

M ′,s t′i1 , . . . , comb(ζij)[[. . .]]
′
h ⇒∗

M ′,s t′ij and Li1 ⊆

yield g(t
′
i1

), . . . , Lij ⊆ yield g(t
′
ij

).

(c) For each 1 ≤ µ ≤ k where µ 6∈ {i1, . . . , ij}, let t′µ be an arbitrary tree in TΓ such
that comb(ζµ)[[. . .]]′h ⇒

∗
M ′,s t′µ. Note that t′µ exists since, by the existence of rules (1)

of Definition 7.1, M ′ can output symbol nil for each configuration. Hence M ′ can give
output from each sentential form.

(d) Assume that L̂ = {t̂1, . . . , t̂η}. Since L̂ ⊆ Ms(〈p, ϕ(h)〉(y1, . . . , yk), l), it fol-
lows from K[l] that there are trees t̂′1, . . . , t̂

′
η ∈ TΓ such that 〈p′, ϕ(h)〉 ⇒∗

M ′,s

t̂′1, . . . , 〈p
′, ϕ(h)〉 ⇒∗

M ′,s t̂′η and t̂1 ∈ yield g(t̂
′
1), . . . , t̂η ∈ yield g(t̂

′
η).

(e) It follows from Lemma 7.5 that 〈p′, ϕ(h)〉 ⇒∗
M ′,s collect(t̂′1, . . . , t̂

′
η). Moreover,

L̂ = {t̂1, . . . , t̂η}
⊆ yield g(t̂

′
1) ∪ . . . ∪ yield g(t̂

′
η)

= yield g(collect(t̂
′
1, . . . , t̂

′
η)) (by Lemma 7.4).

(f) Let us choose t′ to be the tree ck+1(collect(t̂
′
1, . . . , t̂

′
η), t

′
1, . . . , t

′
k).

Now, by (b)-(f) we get that comb(ζ)[[. . .]]′h ⇒
∗
M ′,s t′. Moreover,

L ⊆ L̂
OI
← (L1, . . . , Lk)

⊆ yield g(collect(t̂
′
1, . . . , t̂

′
η))

OI
← (yield g(t

′
1), . . . , yield g(t

′
k))

= yield g(ck+1(collect(t̂
′
1, . . . , t̂

′
η), t

′
1, . . . , t

′
k))

= yield g(t
′).

This finishes the proof of Statement 1.

Now we prove that yield g(τM ′(s)) ⊆ τM (s). We prove the following stronger statement
by (a variant of the) simultaneous induction.

Statement 2.

K(0): true

K(l): For every m ≥ 0, 〈q, h〉 ∈ C
(m)
M,s, t′ ∈ TΓ, and t ∈ T∆(Ym), if 〈q′, h〉 ⇒l

M ′,s t′

and t ∈ yieldg(t
′), then 〈q, h〉(y1, . . . , ym)⇒∗

M,s t.

7 DECOMPOSITION AND CHARACTERIZATION RESULTS FOR PMTTS 44

L(l): For every h ∈ PCM,s with test(h) = (σ, b, j), ζ ∈ T∆∪〈Q,Iσ,b,j〉(Yd), t′ ∈ TΓ,

and t ∈ T∆(Yd), if comb(ζ)[[. . .]]′h ⇒
l
M ′,s t′ and t ∈ yieldg(t

′) then ζ[[. . .]]h ⇒
∗
M,s t.

The required inclusion follows from K because for every output tree t ∈ T∆, if t ∈
yield g(τM ′(s)), i.e., there is a t′ ∈ TΓ such that 〈q′0, (ε, [])〉 ⇒

l
M ′,s t′ for some l ≥ 1 and

t ∈ yield g(t
′), then 〈q0, (ε, [])〉 ⇒

∗
M,s t, i.e., t ∈ τM (s).

Proof of Statement 2.

IB: (proof of L(0))

Assume that t ∈ yieldg(t
′) and comb(ζ)[[. . .]]′h ⇒

0
M ′,s t′. Then t′ = comb(ζ), which

implies ζ ∈ T∆(Yd). By Lemma 7.6 we obtain t = yieldg(t
′) = yieldg(comb(ζ)) = ζ.

Since ζ ∈ T∆(Yd), we also get ζ[[. . .]]h = ζ ⇒0
M,s t.

IS1: (proof of K[l] ∧ L[l]⇒ K(l + 1))

Let us assume that 〈q′, h〉 ⇒l+1
M ′,s t′ and t ∈ yieldg(t

′). Then there is a sentential form

ξ′ ∈ TΓ∪CM′,s
such that 〈q′, h〉 ⇒M ′,s ξ′ ⇒l

M ′,s t′ and thus there is a rule 〈q′, σ, b, j〉 →
ζ ′ ∈ R′ such that ζ ′[[. . .]]′h = ξ′. We distinguish the following cases, according to (1),
(2), and (3) of Definition 7.1.

Case 1: ζ ′ = nil. Now l = 0, yield g(t
′) = ∅ and thus t 6∈ yield g(t

′). Hence the condition
K[l + 1] holds.

Case 2: ζ ′ = comb(ζ) for some ζ ∈ rhsM (q, σ, b, j). Since ζ ∈ rhsM (q, σ, b, j), we
obtain that 〈q, h〉(y1, . . . , ym) ⇒M,s ζ[[. . .]]h. Moreover, since comb(ζ)[[. . .]]′h ⇒

l
M ′,s t′

and t ∈ yield g(t
′), by the induction hypothesis L[l] we get ζ[[. . .]]h ⇒

∗
M,s t and, hence

〈q, h〉(y1, . . . , ym)⇒∗
M,s t holds.

Case 3: ζ ′ = c3(#, 〈q′, stay〉, 〈q′, stay〉). Then there are 1 ≤ l1, l2 < l and t′1, t
′
2 ∈ TΓ

such that 〈q′, h〉 ⇒l1
M ′,s t′1, 〈q

′, h〉 ⇒l2
M ′,s t′2, and t′ = c3(#, t′1, t

′
2). Since t ∈ yield g(t

′)
and yield g(t

′) = yield g(t
′
1) ∪ yield g(t

′
2), we have t ∈ yield g(t

′
1) or t ∈ yield g(t

′
2). Then,

by the induction hypothesis K[l1] or K[l2], we get that 〈q, h〉(y1, . . . , ym)⇒∗
M,s t.

IS2: (proof of K[l]⇒ L(l))

Assume that t ∈ yield g(t
′) and comb(ζ)[[. . .]]′h ⇒

l
M ′,s t′. We finish the proof by induction

on ζ. Neither ζ = α ∈ ∆(0) nor ζ = yi because l ≥ 1. Hence, we have cases (i) and (ii).

(i) ζ = δ(ζ1, . . . , ζk) for some k ≥ 1, δ ∈ ∆(k), and ζ1, . . . , ζk ∈ T∆∪〈Q,Iσ,b,j〉(Yd).

Then comb(ζ) = ck+1(δ
′, comb(ζ1), . . . , comb(ζk)). Moreover, since

comb(ζ)[[. . .]]′h ⇒
l
M ′,s t′, there are integers l1, . . . , lk ≤ l and trees t′1, . . . , t

′
k ∈ TΓ such

that comb(ζ1)[[. . .]]
′
h ⇒

l1
M ′,s t′1, . . . , comb(ζk)[[. . .]]

′
h ⇒

lk
M ′,s t′k and t′ = ck+1(δ

′, t′1, . . . , t
′
k).

Since t ∈ yieldg(t
′), we get that t = δ(t1, . . . , tk) with t1 ∈ yieldg(t

′
1), . . . , tk ∈

yieldg(t
′
k).

By the induction hypothesis on ζ, we obtain that ζ1[[. . .]]h ⇒
∗
M,s t1, . . . , ζk[[. . .]]h ⇒

∗
M,s tk.

This concludes that ζ[[. . .]]h ⇒
∗ t.

(ii) Assume that ζ = 〈p, ϕ〉(ζ1, . . . , ζk) for some k ≥ 0, 〈p, ϕ〉 ∈
〈Q, Id〉

(k), and ζ1, . . . , ζk ∈ T∆∪〈Q,Iσ,b,j〉(Yd). Then, obviously, comb(ζ) =

7 DECOMPOSITION AND CHARACTERIZATION RESULTS FOR PMTTS 45

ck+1(〈p
′, ϕ〉, comb(ζ1), . . . , comb(ζk)). We make the following observations.

(a) There are l′ ≤ l, l1, . . . , lk < l and t
′
, t′1, . . . , t

′
k ∈ TΓ, such that 〈p′, ϕ(h)〉 ⇒l′

M ′,s

t
′
, comb(ζ1)[[. . .]]

′
h ⇒

l1
M ′,s t′1, . . . , comb(ζk)[[. . .]]

′
h ⇒

lk
M ′,s t′k, and t′ = ck+1(t

′
, t′1, . . . , t

′
k).

(b) Since t ∈ yieldg(t
′), there is a tree t ∈ T∆(Yd) such that t ∈ yieldg(t

′
) and t ∈ t

OI
←

(yieldg(t
′
1), . . . , yieldg(t

′
k)).

(c) Recall that by |t|yj
we denote the number of occurrences of yj in t. Assume that

{i1, . . . , ij} is the index set {1 ≤ µ ≤ d | |t|yj
≥ 1}. Moreover, let ηi1 = |t|yi1

, . . . , ηij =

|t|yij
, and let u

[1]
i1

, . . . , u
[ηi1

]
i1

, . . . , u
[1]
ij

, . . . , u
[ηij

]

ij
∈ pos(t) be the pairwise different nodes of

t such that lab(t, u
[1]
i1

) = . . . = lab(t, u
[ηi1

]

i1
) = yi1 , . . . , lab(t, u

[1]
ij

) = . . . = lab(t, u
[ηij

]

ij
) =

yij .

(d) By the definition of yieldg(t
′), there are trees

ti1
[1], . . . , ti1

[ηi1
], . . . , tij

[1], . . . , tij
[ηij

] ∈ T∆(Yd)

such that t = t[u
[κ]
iν
← t

[κ]
iν
| 1 ≤ ν ≤ j, 1 ≤ κ ≤ iν].

(e) Since 〈p′, ϕ(h)〉 ⇒l′

M ′,s t
′
for some l′ ≤ l, by the induction hypothesis K[l], we have

〈p, ϕ(h)〉(y1, . . . , yk)⇒
∗
M,s t.

(f) By the induction hypothesis on ζ, we obtain that ζiν [[. . .]]h ⇒
∗
M,s t

[κ]
iν

for 1 ≤ ν ≤ j
and 1 ≤ κ ≤ iν .

Consequently, we obtain

ζ[[. . .]]h = 〈p, ϕ(h)〉(ζ1[[. . .]]h, . . . , ζk[[. . .]]h)
⇒∗

M,s t[yi1 ← ζi1 [[. . .]]h, . . . , yij ← ζij [[. . .]]h]

⇒∗
M,s t[u

[κ]
iν
← t

[κ]
jν
| 1 ≤ ν ≤ j, 1 ≤ κ ≤ iν]

= t,

which proves IS2. This finishes also the proof of Statement 2 and of Lemma 7.7. �

Now we demonstrate how the above decomposition works by our running example.

Example 7.8 Let us consider the 1-pmtt M2 and input tree s of Example 3.7, and
the 1-ptt M ′

2 mapping g of Example 7.2. Then, it is easy to see that τM2(s) =
σ(σ(α, α), σ(α, α)). Moreover, if we let

t′ =

23 c1
︷ ︸︸ ︷

c1(. . . c1(c2(c2(c3(σ
′, α1, α1), c2(c3(σ

′, α1, α1), α1)), c1(α
′))) . . .),

and t′′ = #(t′, t′, nil), then straightforwardly (s, t′′) ∈ τM ′
2

and

yield g(t
′′) = yield g(t

′) ∪ yield g(t
′) ∪ yield g(nil) = {σ(σ(α, α), σ(α, α))}.

�

Since M is an arbitrary n-pmtt, we obtain the following result.

7 DECOMPOSITION AND CHARACTERIZATION RESULTS FOR PMTTS 46

Corollary 7.9 For each n ≥ 0, the inclusion n-PMTT ⊆ n-PTT ◦ Y IELD holds. �

The next characterization result follows from Lemma 7.9 and from the converse inclu-
sion n-PTT ◦ Y IELD ⊆ n-PMTT of Lemma 6.1, where n ≥ 0 is arbitrary.

Theorem 7.10 For each n ≥ 0, we have n-PMTT = n-PTT ◦ Y IELD. �

Let us observe that the proofs of Lemmas 7.7 and 6.1 do not depend on the type of
pebble handling either. Hence Corollary 7.9 and Theorem 7.10 also hold for the weak
pebble handling.

7.3 Some remarks on n-PMTT = n-PTT ◦ Y IELD

(A) Unfortunately, the n-ptt M ′ constructed in Definition 7.1 is nondeterministic and
strongly circular (even if the n-pmtt M is deterministic and noncircular). To discuss
why, let us consider rules of R′ of type (1), (2), and (3) in Definition 7.1.

First let us observe that rules of type (3) make M ′ strongly circular immediately.
However, we need these rules in the case that M is nondeterministic for the following
purpose. The n-pmtt M can make several copies of a parameter ξ of a macro call,
and then, due to nondeterminism, can process those copies in different ways. Since
M ′ has no macro capability, in lack of rules of type (3), it keeps one copy of ξ and
then the yield mapping will substitute the result of the (nondeterministic) processing
of ξ for different occurrences of a parameter variable. Therefore the same tree will be
substituted for different occurrences of a parameter variable and we have not simulated
the work of M . Now, by rules of type (3), M ′ can compute a tree of which the image
under the yield mapping is the set of all trees that M can compute from ξ. Then this
set will be OI-substituted for different occurrences of a parameter variable, and thus
we achieve the same result as M did.

Note that if M is deterministic, then the rules of type (3) can be omitted from M ′.
However, even in this case M ′ may be strongly circular, even if M is noncircular, see
Example 8.2 later in this thesis.

The nondeterminism of M ′ is due to the rules of type (1), which we need in any case for
the following reason. It is possible that a macro call occurs nested in the same macro call
in a sentential form of M . Still, the computation of M terminates because the nested
macro call will be deleted during the computation. However, M ′ cannot simulate this
deletion because it has no macro capability, hence its corresponding computation does
not terminate and the simulation of M is not guaranteed. Now, by applying the dummy
rule (1), we can force that computation of M ′ to terminate and then the yield mapping
will compute the result of the computation of M .

We can summarize by saying that the price of shifting the yield-like decomposition of
macro tree transformations to pebble macro tree transformations is that, unfortunately,
we lose determinism and noncircularity.

(B) Using some results of [EV86] concerning regular tree grammars and context-free
tree grammars with storage, we can provide an alternative proof of Corollary 7.9. To

7 DECOMPOSITION AND CHARACTERIZATION RESULTS FOR PMTTS 47

see this we first recall some necessary concepts.

The reader is assumed to be familiar with top-down tree transducers, see [Rou70],
[Eng75], or [FV98]. A top-down tree transducer is linear (nondeleting) if, for every
rule r, it holds that each variable in the left-hand side of r occurs at most once (at
least once) in the right-hand side of r. We denote the class of linear, nondeleting and
deterministic top-down tree transformations by lndT . Moreover we need from [EV85]
the tree transformation setΣ,+,θ : TΣ∪{+,θ} → P(TΣ), which is defined as follows. The
symbols + 6∈ Σ and θ 6∈ Σ are new, with rank 2 and 0, respectively. Moreover, (i)
setΣ,+,θ(θ) = ∅, (ii) setΣ,+,θ(σ(s1, . . . , sk)) = {σ(t1, . . . , tk) | t1 ∈ setΣ,+,θ(s1), . . . , tk ∈
setΣ,+,θ(sk)}, and (iii) setΣ,+,θ(+(s1, s2)) = setΣ,+,θ(s1) ∪ setΣ,+,θ(s2), where k ≥ 0,
σ ∈ Σ(k), and s1, . . . , sk ∈ TΣ∪{+,θ}. The class of all tree transformations setΣ,+,θ is
denoted by SET .

We also need the concept of a regular tree grammar and of a context-free tree grammar,
cf. [GS84, GS97] and [ES78], respectively. Both regular tree grammars and context-free
tree grammars can be extended with a storage type S, see [EV86]. We will abbreviate
these concepts as RT(S)-grammars and CFT(S)-grammars, respectively. These devices
take an input element of the storage type S and produce an output tree, i.e., both
RT(S)-grammars and CFT(S)-grammars are storage-to-tree transducers. Let RT (S)
and CFT (S) denote the class of transformations induced by RT(S)-grammars and
CFT(S)-grammars.

Particular storage types are e.g. “Tree-walk”, “Tree-walk with n weak pebbles”, and
“Tree-walk with n (strong) pebbles” for n ≥ 0. Now, if we take S =“Tree-walk”,
then RT(S)-grammars precisely correspond to 0-ptts, see Section 3.3 of [EM03], and
similarly, CFT(S)-grammars correspond to 0-pmtts. Analogously, in case S =“Tree-
walk with n pebbles”, grammars RT(S) and CFT(S) are the same as n-ptts and n-
pmtts, respectively.

Next, we recall some necessary results based on the above concepts.

(a) By a careful reading of the proof of Theorem 3.26 of [EV86] we see that Corol-
lary 3.27 of the same article states the inclusion CFT (S) ⊆ RT (S) ◦ lnMTT ,
where l and n denote linear and nondeleting, respectively, and mean the same
as for top-down tree transducers. Now letting S be the storage type “Tree-walk
with n pebbles” we also obtain that n-PMTT ⊆ n-PTT ◦ lnMTT .

(b) By Theorems 4.8 and 6.10 of [EV85] we have lndtMTT ⊆ lndtT ◦dtY IELD and
lnMTT ⊆ lndtMTT ◦ SET , respectively.

(c) The equality n-PTT ◦ lndtT = n-PTT can be proved by the usual product
construction, as it was done, e.g., for top-down tree transducers in Theorem 1 of
[Bak79].

(d) It is easy to see that Y IELD = dtY IELD ◦ SET .

7 DECOMPOSITION AND CHARACTERIZATION RESULTS FOR PMTTS 48

Now we are able to give the alternative proof of Corollary 7.9 we mentioned above.

n-PMTT ⊆ n-PTT ◦ lnMTT (by (a))
⊆ n-PTT ◦ lndtMTT ◦ SET (by (b))
⊆ n-PTT ◦ lndtT ◦ dtY IELD ◦ SET (by (b))
= n-PTT ◦ dtY IELD ◦ SET (by (c))
= n-PTT ◦ Y IELD (by (d)).

(C) Finally we mention that Theorem 7.10 can be generalized to regular tree grammars
and context-free tree grammars with an arbitrary storage type as follows. In fact, we
can straightforwardly extend both Corollary 7.9 and Lemma 6.1 to CFT(S) and RT(S)
grammars, and obtain the decomposition CFT (S) ⊆ RT (S)◦Y IELD and composition
RT (S) ◦ Y IELD ⊆ CFT (S), respectively. Hence we get the following theorem.

Theorem 7.11 For each storage type S we have CFT (S) = RT (S) ◦ Y IELD. �

Finally we note that, by Definition 7.1, M ′ and yield g can be obtained from M in
polynomial time. On the contrary, Theorem 3.26 of [EV86] needs exponential time with
respect the size of M . Fore more complexity issues of the characterization n-PMTT =
n-PTT ◦ Y IELD, see [FM09].

8 DECOMPOSITION RESULT FOR RESTRICTED PMTTS 49

8 Decomposition result for restricted pmtts

In this section we give the decomposition of a tree transformation computed by a n-pmtt
M into the composition of an n-ptt tree transformation and a yield tree transformation
in an alternative way. We do this in order to attain that some good properties (non-
circularity, determinism) of M are preserved for the pmtt. Again, we associate with
M a total n-ptt M ′ and a yield tree transformation yieldg and discuss some properties
of M ′. Then we prove that τM = τM ′ ◦ yieldg holds provided M is deterministic (or
context-linear) and M ′ is noncircular. Finally, we conclude by giving sufficient condi-
tions for M which guarantees that M ′ is noncircular. The results of this section can
be found in Section 6 of [FM08]. Again, it is irrelevant that the pebble macro tree
transducer model of [FM08] works with weak pebble handling.

In this section let M = (Q,Σ,∆, q0, R) be an n-pmtt and d = maxr (Q ∪ Σ ∪∆).

8.1 Associating an n-ptt and a yield tree transformation with an n-

pmtt

Definition 8.1 We define the total n-ptt M ′ and the yield tree transformation yieldg

associated with M as follows.

The n-ptt associated with M is M ′ = (Q′,Σ,Γ, q′0, R
′), where

• Q′ = Q′(0) = {q′ | q ∈ Q},

• Γ is the ranked alphabet defined by

– Γ(0) = {δ′ | δ ∈ ∆} ∪ {α1, . . . , αd} ∪ {nil},

– for every i ≥ 1,

Γ(i) =

{
{ci} if Q(i−1) ∪∆(i−1) 6= ∅
∅ otherwise.

• In order to give the rule set R′, we need the mapping comb : T∆∪〈Q,Id〉(Yd) →
TΓ∪〈Q′,Id〉 that we define as follows, cf. Lemma 5.5 in [EV85] and Lemma 4.34 in
[FV98].

(i) For every 1 ≤ i ≤ d, let comb(yi) = αi,

(ii) for every k ≥ 0, state q ∈ Q(k), instruction ϕ ∈ Id, and trees ζ1, . . . , ζk ∈
T∆∪〈Q,Id〉(Yd) let

comb(〈q, ϕ〉(ζ1, . . . , ζk)) = ck+1(〈q
′, ϕ〉, comb(ζ1), . . . , comb(ζk)),

(iii) for every symbol δ ∈ ∆(k) with k ≥ 0 and trees ζ1, . . . , ζk ∈ T∆∪〈Q,Id〉(Yd),
let

comb(δ(ζ1, . . . , ζk)) = ck+1(δ
′, comb(ζ1), . . . , comb(ζk)).

Now let R′ = R1 ∪R2 with

R1 = {〈q′, σ, b, j〉 → comb(ζ) | 〈q, σ, b, j〉(y1, . . . , ym)→ ζ ∈ R}

8 DECOMPOSITION RESULT FOR RESTRICTED PMTTS 50

and

R2 = {〈q′, σ, b, j〉 → nil | m ≥ 0, q ∈ Q(m), σ ∈ Σ, b ∈ {0, 1}≤n,
0 ≤ j ≤ maxr (Σ), and rhsM (q, σ, b, j) = ∅}

Moreover, let yieldg be the tree transformation induced by the deterministic and partial
mapping g : Γ(0) → T∆(Yd) defined in the following way.

• For every k ≥ 0, symbol δ ∈ ∆(k), let g(δ′) = δ(y1, . . . , yk),

• for every 1 ≤ i ≤ d, let g(αi) = yi, and

• let g(nil) = ∅. �

It is easy to show that M ′ is total and that if M is deterministic, then so is M ′. In
particular, if M is a macro tree transducer, then M ′ is a total top-down tree transducer,
cf. the construction described in Lemma 5.5 of [EV85] and Lemma 4.34 of [FV98].

We made M ′ total because of a phenomenon, which shows up already in case that M is
a macro tree transducer and which can be described as follows. Note that we are going
to achieve that τM = τM ′ ◦ yieldg. Since we work with OI derivation mode, M may
compute a sentential form ξ from an input tree s which contains a configuration 〈q, u〉
in a parameter position for which there is no applicable rule of M . Then, in a later step
of its computation, M deletes that configuration thus it eventually produces an output
tree for s. But, since there is no rule of M for 〈q, u〉, the top-down tree transducer
M ′ will not have a rule for its configuration corresponding to 〈q, u〉. Moreover, that
configuration of M ′ cannot be in a parameter position, because M ′ is a top-down tree
transducer, hence it will not be deleted. This means M ′ cannot produce an output tree
for s, hence τM = τM ′ ◦ yieldg will not hold. We manage this problem by making M ′

total by providing it with extra rules with a nullary symbol nil on their right-hand side.
Thus M ′ produces output for every input tree s. Then yieldg, being partial, simulates
the deletion of M by deleting the occurrences of nil from its input tree.

Another problem is the circularity. It may happen that, while M is noncircular, M ′ is
strongly circular. This is demonstrated in the following example.

Example 8.2 Let M2 be the 0-pmtt of Example 4.4 (which is noncircular).

The total 0-ptt associated with M2 is

M ′
2 = ({q′0, q

′
1}, {α}, {α

′(0), α
(0)
1 , nil(0), c

(1)
1 , c

(2)
2 }, q

′
0, R

′),

where R′ consists of the rules

• 〈q′0, α, 0〉 → c2(〈q
′
1, stay〉, c1(〈q

′
0, stay〉)),

• 〈q′1, α, 0〉 → c1(α
′).

The configuration 〈q′0, ε〉 is circular because

8 DECOMPOSITION RESULT FOR RESTRICTED PMTTS 51

〈q′0, ε〉 ⇒M ′
2,α c2(〈q

′
1, ε〉, c1(〈q

′
0, ε〉)),

and 〈q′0, ε〉 labels an outside-active node in the latter sentential form, hence M ′
2 is

strongly circular. �

Hence, M ′ cannot produce output for an input tree s, for which M can and again
τM = τM ′ ◦ yieldg does not hold. We handle this problem by requiring that M ′ is
noncircular, see Lemma 8.4. Moreover, we give a condition for M which guarantees
that M ′ is noncircular, hence the decomposition works. This condition will be that M
is not weakly circular, cf. Lemma 8.9.

8.2 Proving τM = τM ′ ◦ yieldg

In this subsection comb : T∆∪〈Q,Id〉(Yd) → TΓ∪〈Q′,Id〉 is the mapping introduced in
Definition 8.1, M ′ = (Q′,Σ,Γ, q′0, R

′) and yieldg stand for the total n-ptt and the yield
tree transformation associated with M in the sense of Definition 8.1.

We will show that in certain cases τM = τM ′ ◦ yieldg holds. We need the following
technical lemma. For first reading its proof can be skipped.

Lemma 8.3 For every tree ζ ∈ T∆(Yd), we have ζ = yieldg(comb(ζ)).

Proof. The proof is performed by structural induction on ζ.

(i) If ζ = yi ∈ Yd, then yieldg(comb(ζ)) = yieldg(αi) = yi = ζ.

(ii) If ζ = δ(ζ1, . . . , ζk) for some k ≥ 0, δ ∈ ∆(k) and ζ1, . . . , ζk ∈ T∆(Yd), then

yieldg(comb(ζ))
= yieldg(ck+1(δ

′, comb(ζ1), . . . , comb(ζk)))
= yieldg(δ

′)[y1 ← yieldg(comb(ζ1)), . . . , yk ← yieldg(comb(ζk))]
= δ(y1, . . . , yk)[y1 ← yieldg(comb(ζ1)), . . . , yk ← yieldg(comb(ζk))]
= δ(yieldg(comb(ζ1)), . . . , yieldg(comb(ζk)))
= δ(ζ1, . . . , ζk) (by induction hypothesis)
= ζ.

�

The first decomposition result we prove is the following. Recall that if M ′ is noncircular,
then M is also noncircular, but the reverse direction is not always true.

Lemma 8.4 If M is deterministic and M ′ is noncircular, then τM = τM ′ ◦ yieldg.

Proof. Let s ∈ TΣ be an arbitrary input tree. First let us note, that M ′ is deter-
ministic, total, and noncircular. Hence, by Proposition 4.6, for every sentential form
ξ ∈ TΓ∪CM′,s

, the normal form nf (ξ,⇒M ′,s) exists and it is in TΓ.

For every pebble configuration h ∈ ICM,s with test(h) = (σ, b, j), we introduce the
following abbreviations for second-order substitutions:

[[. . .]]h = [[〈p, ϕ〉 ← 〈p, ϕ(h)〉(y1, . . . , yrank(p)) | p ∈ Q,ϕ ∈ Iσ,b,j]]

8 DECOMPOSITION RESULT FOR RESTRICTED PMTTS 52

and

[[. . .]]′h = [[〈p′, ϕ〉 ← 〈p′, ϕ(h)〉 | p′ ∈ Q′, ϕ ∈ Iσ,b,j]].

Now we prove two statements from which the equation τM = τM ′ ◦yieldg follows. Both
statements are in fact two families of predicates which can be proved by simultaneous
induction, see Section 2.4.

Statement 1.

K(l): For every m ≥ 0, configuration 〈q, h〉 ∈ C
(m)
M,s, and output tree t ∈ T∆(Ym), if

〈q, h〉(y1, . . . , ym)⇒l
M,s t, then yieldg(nf (〈q′, h〉,⇒M ′,s)) = t.

L(l): For every pebble configuration h ∈ ICM,s with test(h) = (σ, b, j),
tree ζ ∈ T∆∪〈Q,Iσ,b,j〉(Yd), and t ∈ T∆(Yd), if ζ[[. . .]]h ⇒l

M,s t, then
yieldg(nf (comb(ζ)[[. . .]]′h,⇒M ′,s)) = t.

Proof of Statement 1.

IB: (proof of L(0))

Let us assume that ζ[[. . .]]h ⇒
0
M,s t. It follows t = ζ, hence also ζ ∈ T∆(Yd). Since

comb(ζ) ∈ TΓ, we have comb(ζ)[[. . .]]′h = comb(ζ) and thus nf (comb(ζ)[[. . .]]′h,⇒M ′,s) =
comb(ζ). Now, by Lemma 8.3, yieldg(comb(ζ)) = ζ = t.

IS1: (proof of L[l]⇒ K(l + 1))

Assume that 〈q, h〉(y1, . . . , ym) ⇒l+1
M,s t holds. Then there exists a sentential form

ξ ∈ T∆∪CM,s
(Ym) such that 〈q, h〉(y1, . . . , ym) ⇒M,s ξ ⇒l

M,s t. Thus there is a rule
〈q, σ, b, j〉(y1, . . . , ym)→ ζ ∈ R satisfying ζ[[. . .]]h = ξ.

Now, by the definition of M ′, the rule 〈q′, σ, b, j〉 → comb(ζ) is in R′, hence 〈q′, h〉 ⇒M ′,s

comb(ζ)[[. . .]]′h and thus nf (〈q′, h〉,⇒M ′ ,s)nf (comb(ζ)[[. . .]]′h,⇒M ′,s). On the other hand,
by the induction hypothesis L[l], we obtain yieldg(nf (comb(ζ)[[. . .]]′h,⇒M ′,s)) = t.

IS2: (proof of K[l]⇒ L(l))

Assume that ζ[[. . .]]h ⇒
l
M,s t. We continue the proof by induction on ζ. The cases

ζ = α ∈ ∆(0) and ζ = yi ∈ Yd are not possible because l ≥ 1. Hence we have cases (i)
and (ii).

(i) Let ζ = δ(ζ1, . . . , ζk) for some k ≥ 1, δ ∈ ∆(k), and ζ1, . . . , ζk ∈ T∆∪〈Q,Iσ,b,j〉(Yd).
There are integers l1, . . . , lk ≤ l and output trees t1, . . . , tk ∈ T∆(Yd) such that

ζ1[[. . .]]h ⇒
l1
M,s t1, . . . , ζk[[. . .]]h ⇒

lk
M,s tk

and δ(t1, . . . , tk) = t. By induction hypothesis on ζ,

yieldg(nf (comb(ζ1)[[. . .]]
′
h,⇒M ′,s)) = t1, . . . , yieldg(nf (comb(ζk)[[. . .]]

′
h,⇒M ′,s)) = tk.

Since

8 DECOMPOSITION RESULT FOR RESTRICTED PMTTS 53

comb(ζ)[[. . .]]′h
= ck+1(δ

′, comb(ζ1), . . . , comb(ζk))[[. . .]]
′
h

= ck+1(δ
′, comb(ζ1)[[. . .]]

′
h, . . . , comb(ζk)[[. . .]]′h),

we obtain

yieldg(nf (comb(ζ)[[. . .]]′h,⇒M ′,s))
= yieldg(nf (ck+1(δ

′, comb(ζ1)[[. . .]]
′
h, . . . , comb(ζk)[[. . .]]′h),⇒M ′,s))

= yieldg(ck+1(δ
′,nf (comb(ζ1)[[. . .]]

′
h,⇒M ′,s), . . . ,nf (comb(ζk)[[. . .]]

′
h,⇒M ′,s)))

= δ(y1, . . . , yk)[y1 ← yieldg(nf (comb(ζ1)[[. . .]]
′
h,⇒M ′,s)), . . . ,

yk ← yieldg(nf (comb(ζk)[[. . .]]
′
h,⇒M ′,s))]

= δ(y1, . . . , yk)[y1 ← t1, . . . , yk ← tk]
= δ(t1, . . . , tk)
= t.

This proves case (i). Note that we did not use the induction hypothesis K[l] in this
case.

(ii) Let ζ = 〈p, ϕ〉(ζ1, . . . , ζk) for some k ≥ 0, 〈p, ϕ〉 ∈ 〈Q, Id〉
(k), and ζ1, . . . , ζk ∈

T∆∪〈Q,Iσ,b,j〉(Yd). We make the following observations (a)-(d).

(a) By our assumption in L[l], there are l′ ≤ l and t ∈ T∆(Yk) such that
〈p, ϕ(h)〉(y1, . . . , yk) ⇒

l′

M,s t. Moreover, for every 1 ≤ j ≤ k with |t|yj
≥ 1, there

are a lj < l and tj ∈ T∆(Yd) satisfying

ζj[[. . .]]h ⇒
lj
M,s tj

Moreover, t[yj ← tj | 1 ≤ j ≤ k, |t|yj
≥ 1] = t.

Here we used that M is deterministic: the same tree tj can be substituted for different
occurrences of yj.

(b) By induction hypothesis K[l], we have yieldg(nf (〈p′, ϕ(h)〉,⇒M ′ ,s)) = t.

(c) Since M ′ is deterministic, total, and noncircular,

nf (comb(ζ1)[[. . .]]
′
h,⇒M ′,s), . . . ,nf (comb(ζk)[[. . .]]

′
h,⇒M ′,s)

exist and they are in TΓ, cf. Proposition 4.6.

(d) By the induction hypothesis on ζ, for every 1 ≤ j ≤ k with |t|yj
≥ 1, we have

yieldg(nf (comb(ζj)[[. . .]]
′
h,⇒M ′,s)) = tj.

Since

comb(ζ)[[. . .]]′h = ck+1(〈p
′, ϕ〉, comb(ζ1), . . . , comb(ζk))[[. . .]]

′
h

= ck+1(〈p
′, ϕ(h)〉, comb(ζ1)[[. . .]]

′
h, . . . , comb(ζk)[[. . .]]′h)

we get

8 DECOMPOSITION RESULT FOR RESTRICTED PMTTS 54

yieldg(nf (comb(ζ)[[. . .]]′h,⇒M ′,s))
= yieldg(nf (ck+1(〈p

′, ϕ(h)〉, comb(ζ1)[[. . .]]
′
h, . . . , comb(ζk)[[. . .]]

′
h),⇒M ′,s))

= yieldg(ck+1(nf (〈p′, ϕ(h)〉,⇒M ′ ,s),nf (comb(ζ1)[[. . .]]
′
h,⇒M ′,s), . . . ,

nf (comb(ζk)[[. . .]]
′
h,⇒M ′,s)))

= yieldg(nf (〈p′, ϕ(h)〉,⇒M ′ ,s))
OI
← (yieldg(nf (comb(ζ1)[[. . .]]

′
h,⇒M ′,s)), . . . ,

yieldg(nf (comb(ζk)[[. . .]]
′
h,⇒M ′,s)))

= t
OI
← (t1, . . . , tk)

= t[yj ← tj | 1 ≤ j ≤ k, |t|yj
≥ 1]

= t.

This finishes the proof of Statement 1. Now we form and prove Statement 2.

Statement 2.

K(l): For every m ≥ 0, configuration 〈q, h〉 ∈ C
(m)
M,s, trees t′ ∈ TΓ and t ∈ T∆(Ym), if

〈q′, h〉 ⇒l
M ′,s t′ and yieldg(t

′) = t, then 〈q, h〉(y1, . . . , ym)⇒∗
M,s t.

L(l): For every pebble configuration h ∈ ICM,s with test(h) = (σ, b, j), tree ζ ∈
T∆∪〈Q,Iσ,b,j〉(Yd), trees t′ ∈ TΓ and t ∈ T∆(Yd), if comb(ζ)[[. . .]]′h ⇒

l
M ′,s t′ and

yieldg(t
′) = t, then ζ[[. . .]]h ⇒

∗
M,s t.

Proof of Statement 2.

IB: (proof of L(0))

Assume comb(ζ)[[. . .]]′h ⇒
0
M ′,s t′ and yieldg(t

′) = t. Then t′ = comb(ζ)[[. . .]]′h, which
implies t′ = comb(ζ) and ζ ∈ T∆(Yd). By Lemma 8.3 we obtain t = yieldg(t

′) =
yieldg(comb(ζ)) = ζ. Since ζ ∈ T∆(Yd), we also get ζ[[. . .]]h = ζ ⇒0

M,s t.

IS1: (proof of L[l]⇒ K(l + 1))

Let us assume that 〈q′, h〉 ⇒l+1
M ′,s t′ and yieldg(t

′) = t. Then there is a ξ′ ∈ TΓ∪CM′ ,s

such that 〈q′, h〉 ⇒M ′,s ξ′ ⇒l
M ′,s t′. Note that ξ′ 6= nil, otherwise l = 0, t′ = nil, and

t 6= yieldg(t
′). Hence there is a rule 〈q′, σ, b, j〉 → comb(ζ) ∈ R′ with comb(ζ)[[. . .]]′h = ξ′

applicable for 〈q′, h〉 for some ζ ∈ T∆∪〈Q,Iσ,b,j〉. By the construction of R′, we have
〈q, σ, b, j〉(y1, . . . , ym) → ζ ∈ R and thus 〈q, h〉(y1, . . . , ym) ⇒M,s ζ[[. . .]]h. More-
over, by the induction hypothesis L[l], we have ζ[[. . .]]h ⇒

∗
M,s t. Then it follows that

〈q, h〉(y1, . . . , ym)⇒∗
M,s t.

IS2: (proof of K[l]⇒ L(l))

Now assume that comb(ζ)[[. . .]]′h ⇒
l
M ′,s t′ for some l ≥ 1 and yieldg(t

′) = t. We finish

the proof by induction on ζ. The cases ζ = α ∈ ∆(0) and ζ = yi ∈ Yd are not possible
because l ≥ 1.

(i) Let ζ = δ(ζ1, . . . , ζk) for some k ≥ 1, δ ∈ ∆(k), and ζ1, . . . , ζk ∈ T∆∪〈Q,Iσ,b,j〉(Yd).
Then, obviously, comb(ζ) = ck+1(δ

′, comb(ζ1), . . . , comb(ζk)) and thus there are integers
l1, . . . , lk ≤ l and trees t′1, . . . , t

′
k ∈ TΓ such that

comb(ζ1)[[. . .]]
′
h ⇒

l1
M ′,s t′1, . . . , comb(ζk)[[. . .]]

′
h ⇒

lk
M ′,s t′k

and ck+1(δ
′, t′1, . . . , t

′
k) = t′.

8 DECOMPOSITION RESULT FOR RESTRICTED PMTTS 55

Since yieldg(t
′) = t and yieldg(t

′) = δ(y1, . . . , yk)[y1 ← yieldg(t
′
1), . . . , yk ← yieldg(t

′
k)],

there are output trees t1, . . . , tk ∈ T∆(Yd) such that yieldg(t
′
1) = t1, . . . , yieldg(t

′
k) = tk

and t = δ(t1, . . . , tk).

Now, by induction hypothesis on ζ, we have ζ1[[. . .]]h ⇒
∗
M,s t1, . . . , ζk[[. . .]]h ⇒

∗
M,s tk.

Consequently, ζ[[. . .]]h = δ(ζ1[[. . .]]h, . . . , ζk[[. . .]]h)⇒∗
M,s δ(t1, . . . , tk) = t.

(ii) Let ζ = 〈p, ϕ〉(ζ1, . . . , ζk) for some k ≥ 0, 〈p, ϕ〉 ∈ 〈Q, Id〉
(k), and ζ1, . . . , ζk ∈

T∆∪〈Q,Iσ,b,j〉(Yd). Then, obviously, comb(ζ) = ck+1(〈p
′, ϕ〉, comb(ζ1), . . . , comb(ζk)). We

make the following observations.

(a) There are l′ ≤ l, l1, . . . , lk < l, and t
′
, t′1, . . . , t

′
k ∈ TΓ, such that 〈p′, ϕ(h)〉 ⇒l′

M ′,s

t
′
, comb(ζ1)[[. . .]]

′
h ⇒

l1
M ′,s t′1, . . . , comb(ζk)[[. . .]]

′
h ⇒

lk
M ′,s t′k,

and t′ = ck+1(t
′
, t′1, . . . , t

′
k).

(b) Since yieldg(t
′) = t,

• there is a tree t ∈ T∆(Yd) such that yieldg(t
′
) = t,

• for every 1 ≤ j ≤ k for which |t|yj
≥ 1, there is a tree tj ∈ T∆(Yd), such that

yieldg(t
′
j) = tj.

Moreover, we have

yieldg(t
′) = yieldg(t

′
)

OI
← (yieldg(t

′
1), . . . , yieldg(t

′
k))

= t[yj ← yieldg(t
′
j) | 1 ≤ j ≤ k, |t|yj

≥ 1]

(because g is deterministic)
= t[yj ← tj | 1 ≤ j ≤ k, |t|yj

≥ 1]
= t.

(c) By induction hypothesis K[l], we have 〈p, ϕ(h)〉(y1, . . . , yk)⇒
∗
M,s t.

(d) By induction hypothesis on ζ, for every j with |t|yj
≥ 1, we have ζj[[. . .]]h ⇒

∗
M,s tj.

Consequently, we obtain

ζ[[. . .]]h = 〈p, ϕ(h)〉(ζ1[[. . .]]h, . . . , ζk[[. . .]]h)
⇒∗

M,s t[yj ← ζj [[. . .]]h | 1 ≤ j ≤ d, |t|yj
≥ 1]

⇒∗
M,s t[yj ← tj | 1 ≤ j ≤ d, |t|yj

≥ 1]

= t,

which proves IS2. This finishes also the proof of Statement 2.

Finally, we show that τM = τM ′ ◦ yield g, i.e., that, for every input tree s ∈ TΣ, we have
τM(s) = yield g(τM ′(s)).

The inclusion τM (s) ⊆ yield g(τM ′(s)) follows from K of Statement 1, because for ev-

ery output tree t ∈ T∆, if t ∈ τM (s), i.e., 〈q0, (ε, [])〉 ⇒
l
M,s t for some l ≥ 1, then

yield g(τM ′(s)) = yield g(nf (〈q′0, (ε, [])〉,⇒M ′ ,s)) = t, i.e., t ∈ yield g(τM ′(s)).

The inclusion yield g(τM ′(s)) ⊆ τM (s) follows from K of Statement 2, because for

8 DECOMPOSITION RESULT FOR RESTRICTED PMTTS 56

every output tree t ∈ T∆, if t ∈ yield g(τM ′(s)), i.e., there is a t′ ∈ TΓ such that

〈q′0, (ε, [])〉 ⇒
l
M ′,s t′ for some l ≥ 1 and yield g(t

′) = t, then 〈q0, (ε, [])〉 ⇒
∗
M,s t, i.e.,

t ∈ τM(s).

This finishes the proof of Lemma 8.4. �

Now we state and prove a variant of Lemma 8.4 for context-linear pmtts. As a prepara-
tion for this, we show that the computation steps of a context-linear pmtt preserve the
linearity of sentential forms. For (total, deterministic) nondeleting macro tree trans-
ducers, a similar preservation lemma is Lemma 6.7 in [EM99].

Lemma 8.5 Assume that the pmtt M is context-linear. For every input tree

s ∈ TΣ, m ≥ 0, configuration 〈q, h〉 ∈ C
(m)
M,s, and output tree t ∈ T∆(Ym), if

〈q, h〉(y1, . . . , ym)⇒∗
M,s t, then t is linear in Ym.

Proof. The proof can be performed by simultaneous induction. To form the predicates
K and L, we introduce an abbreviation: for each pebble configuration h ∈ ICM,s with
test(h) = (σ, b, j), let

[[. . .]]h = [[〈p, ϕ〉 ← 〈p, ϕ(h)〉(y1, . . . , yrank(p)) | p ∈ Q,ϕ ∈ Iσ,b,j]].

Now let K and L be formed as follows.

K(l): For every m ≥ 0, q ∈ Q(m), and t ∈ T∆(Ym), if 〈q, h〉(y1, . . . , ym) ⇒l
M,s t, then t

is linear in Ym.

L(l): For each tree ζ ∈ T∆∪〈Q,Iσ,b,j〉(Ym) which is linear in Ym, and t ∈ T∆(Ym), if

ζ[[. . .]]h ⇒
l
M,s t, then t is linear in Ym.

The proof is standard and our lemma follows from K. �

Now we can state and prove our second main decomposition result.

Lemma 8.6 If M is context-linear and M ′ is noncircular, then τM = τM ′ ◦ yieldg.

Proof. The proof is analogous to the proof of Lemma 8.4. We will use the abbreviations
[[. . .]]h and [[. . .]]′h introduced in that proof.

The equality τM = τM ′ ◦ yieldg follows in a standard way from the following two
statements. We note, that Statement 1. is formulated differently to the proof of
Lemma 8.4 because of lack of determinism of M .

Statement 1.

K(l): For every m ≥ 0, configuration 〈q, h〉 ∈ C
(m)
M,s, and output tree t ∈ T∆(Ym), if

〈q, h〉(y1, . . . , ym) ⇒l
M,s t, then there is a tree t′ ∈ TΓ such that 〈q′, h〉 ⇒∗

M ′,s t′

and yieldg(t
′) = t.

L(l): For every pebble configuration h ∈ ICM,s with test(h) = (σ, b, j), trees ζ ∈
T∆∪〈Q,Iσ,b,j〉(Yd) and t ∈ T∆(Yd), if ζ[[. . .]]h ⇒

l
M,s t, then there is a t′ ∈ TΓ, such

that comb(ζ)[[. . .]]′h ⇒
∗
M ′,s t′ and yieldg(t

′) = t.

8 DECOMPOSITION RESULT FOR RESTRICTED PMTTS 57

Statement 2.

K(l): For every m ≥ 0, configuration 〈q, h〉 ∈ C
(m)
M,s, and trees t′ ∈ TΓ and t ∈ T∆(Ym),

if 〈q′, h〉 ⇒l
M ′,s t′ and yieldg(t

′) = t, then 〈q, h〉(y1, . . . , ym)⇒∗
M,s t.

L(l): For every pebble configuration h ∈ ICM,s with test(h) = (σ, b, j), and trees
ζ ∈ T∆∪〈Q,Iσ,b,j〉(Yd), t′ ∈ TΓ and t ∈ T∆(Yd), if comb(ζ)[[. . .]]′h ⇒

l
M ′,s t′ and

yieldg(t
′) = t, then ζ[[. . .]]h ⇒

∗
M,s t.

The proof of Statement 1 and 2 is analogous to that of the corresponding two statements
in Lemma 8.4. The only difference is the following. In the proof of case (ii) of IS2 of
Statement 1. of Lemma 8.4, we used the fact that M is deterministic in decomposing
the tree t: different occurrences of a variable yj in the tree t can be substituted by the
same tree tj . Now, in the proof of the corresponding part of IS2 of Statement 1 of the
present lemma, we can use that M is context-linear. In fact, by Lemma 8.5, the tree t
will be linear in Yk, hence there are no different occurrences of a variable yj in t. �

Note that the ptt M ′ of Lemma 8.4 is restricted to be noncircular. If we allowed M ′

to be not strongly circular, then the proof of this Lemma 8.4 would fail, since in point
(c) of IS2 of the Proof of Statement 1 we require that M ′ will terminate from each
sentential form. The same is true for Lemma 8.6.

8.3 Sufficient conditions for M to guarantee that M ′ is noncircular

Let M ′ be the total n-pebble tree transducer and yieldg the yield tree transformation
which are associated with M (Definition 8.1). As we saw in the previous subsection, it is
desirable that M ′ is noncircular because in that case, provided that M is deterministic
or context-linear, the tree transformation τM can be decomposed into τM ′ and yieldg.
We will see later (Corollary 10.10), that it is decidable whether a ptt is circular or not.
However, there are some obvious conditions which guarantee that M ′ is noncircular.
Such a condition is that M is a macro tree transducer. In this case we obtain two
further variants of the yield decomposition theorems in [EV85].

Corollary 8.7 dMTT ⊆ dtT ◦ dY IELD

Proof. If the pmtt appearing in Definition 8.1 is a (ordinary) deterministic macro tree
transducer, then the pebble tree transducer M ′ associated with M will be a determin-
istic and total top-down tree transducer, cf. the note after Definition 8.1. Hence M ′

cannot be circular and thus, by Lemma 8.4, it holds that τM = τM ′ ◦ yieldg. �

Corollary 8.8 clMTT ⊆ tT ◦ dY IELD

Proof. If the pmtt appearing in Definition 8.1 is a macro tree transducer, then the
pebble tree transducer M ′ associated with M will be a total top-down tree transducer,
cf. the note after Definition 8.1. Hence M ′ is noncircular. If we even assume that
M is context-linear, then the requirements of Lemma 8.6 are fulfilled, hence τM =
τM ′ ◦ yieldg. �

8 DECOMPOSITION RESULT FOR RESTRICTED PMTTS 58

In the rest of this subsection, we give a condition for M which is equivalent to that M ′

is noncircular. Let M ′ = (Q′,Σ,Γ, q′0, R
′) be the n-pebble tree transducer associated

with M .

Lemma 8.9 M is weakly circular if and only if M ′ is circular.

Proof. By Lemma 4.5, it is sufficient to show that M is weakly circular if and only if
M ′ is weakly circular.

According to Definition 8.1, for each rule in R′, either it has the form 〈q′, σ, b, j〉 →
comb(ζ), where 〈q, σ, b, j〉(y1, . . . , ym) → ζ ∈ R or its right-hand side is a tree in TΓ.
Moreover, the state-instruction pairs which occur in comb(ζ) are 〈q ′

1, ϕ1〉, . . . , 〈q
′
k, ϕk〉

if and only if the ones which occur in ζ are 〈q1, ϕ1〉, . . . , 〈qk, ϕk〉. This implies that, for
every input tree s ∈ TΣ,

one-stepM ′,s = {(〈q′, h〉, 〈p′, f〉) | (〈q, h〉, 〈p, f〉) ∈ one-stepM,s}

and thus one-step+
M ′,s is the “primed copy” of one-step+

M,s. �

We will prove the decidability of the wc problem in Corollary 10.11.

Now we combine the above circularity results with the decomposition results obtained
in Section 8.2. Let us denote the class of tree transformations computed by not weakly
circular n-pmtts by n-PMTTnwc. The prefixes d, t, and cl mean the same as before.
Then we obtain the following results.

Corollary 8.10

n-dPMTTnwc ⊆ n-dtPTTnc ◦ dYIELD and

n-clPMTTnwc ⊆ n-tPTTnc ◦ dYIELD .

Proof. It immediately follows from Lemmas 8.4, 8.6, and 8.9. �

Theorem 8.11

n-dPMTTnwc ⊆ n-dtPTTnc ◦ 0-dPTTnc and

n-clPMTTnwc ⊆ n-tPTTnc ◦ 0-dPTTnc.

Proof. It follows from Corollary 8.10 and Theorem 5.2. �

In Section 8 of [EM03] it was conjectured that the composition closure of pebble
macro tree transformations and of pebble tree transformations coincide, i.e., PMTT ∗ =
PTT ∗.

The following theorem says that (under certain circumstances) for the not weakly cir-
cular subclasses of PMTT and PTT , the above conjecture holds.

Theorem 8.12 For every n ≥ 0,

8 DECOMPOSITION RESULT FOR RESTRICTED PMTTS 59

n-dPMTT ∗
nwc = n-dPTT ∗

nc and

n-clPMTT ∗
nwc = n-PTT ∗

nc.

Proof. It follows from Lemma 4.5, Theorem 8.11, and the fact that every 0-ptt is an
n-ptt. �

In [KV94], macro attributed tree transducers were introduced as a combination of macro
tree transducers of [EV85] and of attributed tree transducers of [Fül81]. Moreover, it
was shown that the class of tree transformations computed by (noncircular) macro at-
tributed tree transducers is equal to the two-fold composition of the class of tree trans-
formations computed by attributed tree transducers. In [EM03] they observed that this,
for the pebble approach, suggests 0-dPMTT ⊆ (0-dPTT)2 and 0-PMTT ⊆ (0-PTT)2

and asked whether this holds or not. As consequence of Theorem 8.11, we obtain a
partial solution of this open problem. In fact, we can decompose only not weakly cir-
cular deterministic 0-pmtts and not weakly circular context-linear (nondeterministic)
0-pmtts. However, we can state that the resulting ptts in both cases will be noncircular.
We have summarized this in the following corollary.

Corollary 8.13

0-dPMTTnwc ⊆ (0-dPTTnc)
2 and

0-clPMTTnwc ⊆ (0-PTTnc)
2.

Proof. Apply Theorem 8.11 for n = 0. �

Finally, combining Corollary 6.2 and the results of the present section, we can prove
more characterization results for restricted pmtts.

Corollary 8.14 For each n ≥ 0 we have that n-dPMTTnwc ⊆ n-dtPTTnc◦dYIELD ⊆
n-dPMTTnc.

Proof. The inclusion n-dPMTTnwc ⊆ n-dtPTTnc◦dYIELD follows from Corollary 8.10
and the inclusion n-dtPTTnc ◦ dYIELD ⊆ n-dPMTTnc follows from Corollary 6.2. �

As usual, putting together composition and decomposition results, one gets a charac-
terization of a tree transformation class in terms of the composition of other, simpler
ones. If we do that with the decomposition results of Section 7 and the composition
results of this section, we obtain the following characterization of deterministic (OI)
macro tree transformations.

Corollary 8.15 dMTT = dtT ◦ dY IELD.

Proof. The inclusion dMTT ⊆ dtT ◦ dY IELD comes from Corollary 8.7, while the
reverse inclusion can be obtained from Corollary 6.2. �

We note that the above equation is a slight generalization of the well know equality
dtMTT = dtT ◦ dtY IELD, which was proved in [EV85]. It is interesting that the de-
composition and composition results concerning pmtts result only in a characterization
of deterministic macro tree transformations.

9 SIMULATION OF N -PTTS BY (N − 1)-PMTTS 60

9 Simulation of n-ptts by (n− 1)-pmtts

In Section 8 of [EM03] the question was raised whether an n-ptt can be simulated by an
(n− 1)-pmtt (both with weak pebbles), i.e., whether the power of the last pebble can
be replaced by macro calls. In this section we show that the answer is positive even in
the strong pebble case, i.e., for each n-ptt M , we effectively construct an (n− 1)-pmtt
M ′ such that τM = τM ′ . Results of this section can be found in Section 5 of [FM09].

In order to make the proof simpler, we will assume that our n-ptt M = (Q,Σ,∆, q0, R)
is in normal form, meaning that, for each rule 〈q, σ, b, j〉 → ζ ∈ R, we have either
ζ = 〈q′, ϕ〉 (pebble tree-walking rule) or ζ = δ(〈q1, stay〉, . . . , 〈qk, stay〉) (output rule).
In Lemma 2 of [EM03] it was proved that ptts and ptts in normal form, both with
weak pebble handling, have the same computation power. The proof can obviously be
adapted for strong pebble handling, hence the following holds.

Proposition 9.1 For each n ≥ 0 and n-ptt M we can effectively construct an n-ptt
M ′ in normal form such that τM = τM ′ . �

First we prove the simulation result for n = 1. To make the construction and the
proof more readable, we drop b = ε from the left-hand side of a rule of a 0-pmtt and
write such a rule in the form 〈q, σ, j〉(y1, . . . , ym) → ζ. Moreover, we drop the second
component of every pebble configuration (u, []) of a 0-pmtt and denote that pebble
configuration just by u. Finally, we write the pebble configurations (u, []) and (u, [u ′])
of a 1-ptt as (u,−) and (u, u′), respectively.

For a given 1-ptt M = (Q,Σ,∆, q0, R) being in normal form, we associate a 0-pmtt M ′,
called the 0-pmtt associated with M , such that τM = τM ′ . In the following, we describe
intuitively how M ′ works. Let us assume that Q = {q0, q1, . . . , qm}, where m ≥ 0.

(A) Every state of M ′ has rank 0 or m + 1. The states with rank 0 are the states in
Q and the pairs (q, here), while the states with rank m + 1 are the pairs (q, toParent)
and (q, toChildω), where q ∈ Q and 1 ≤ ω ≤ maxr (Σ).

(B) For each configuration of the form 〈q, (u,−)〉 of M , 〈q, u〉 is a configuration also of
M ′ and each pebble-free computation step of M is also made by M ′.

(C) Whenever M is in configuration 〈q, (u, u′)〉 (i.e., M is in state q, the pointer of M
is at node u and the pebble is dropped at node u′ of the current input tree), the pmtt
M ′ realizes this configuration as a special sentential form which contains no output
symbols. We call such a sentential form the path tree of 〈q, (u, u′)〉 and denote it by
path tree(〈q, (u, u′)〉). The construction of path tree(〈q, (u, u′)〉) follows the idea applied
in the proof of Lemma 34 of [EM03], where 0-ptts were simulated by smtts.

In fact, path tree(〈q, (u, u′)〉) has the following properties.

• It is a fully balanced m + 1-ary tree of configurations of M ′, the height of which
is equal to the number of the nodes in the shortest path from u to u′. Recall that
m + 1 is the number of the states of Q. Each node of path tree(〈q, (u, u′)〉) is a
configuration of the form 〈(q, d), u〉, where q is a state of M , u is a node in the
path from u to u′, and d is a direction flag detailed later.

9 SIMULATION OF N -PTTS BY (N − 1)-PMTTS 61

u = 1

s = σ

γ σ

α α α
u′ = 21

〈(q, toParent),

u
︷︸︸︷

1 〉

〈(q0, toChild 2), ε〉 〈(q1, toChild 2), ε〉

〈(q0, toChild 1), 2〉 〈(q1, toChild 1), 2〉 〈(q0, toChild 1), 2〉 〈(q1, toChild 1), 2〉

〈(q0, here), 21
︸︷︷︸

u′

〉 〈(q1, here), 21
︸︷︷︸

u′

〉 〈(q0, here), 21
︸︷︷︸

u′

〉 〈(q1, here), 21
︸︷︷︸

u′

〉 〈(q0, here), 21
︸︷︷︸

u′

〉 〈(q1, here), 21
︸︷︷︸

u′

〉 〈(q0, here), 21
︸︷︷︸

u′

〉 〈(q1, here), 21
︸︷︷︸

u′

〉

Figure 5: An example of an input tree s ∈ TΣ, a configuration 〈q, (u, u′)〉 ∈ CM,s, and
path tree(〈q, (u, u′)〉) where Q = {q0, q1} (hence, m = 1).

• The configuration being at the root of path tree(〈q, (u, u′)〉) has the form
〈(q, d), u〉.

• For each non-leaf configuration 〈(q, d), u〉 in path tree(〈q, (u, u′)〉), the states of
M being in the m + 1 children of 〈(q, d), u〉 are q0, q1, . . . , qm, respectively.

• The direction flag d of each configuration 〈(q, d), u〉 in path tree(〈q, (u, u′)〉) can
be

– here , if u is equal to u′;

– toParent , if the next node in the path from u to u′ is the parent node of u;

– toChildω for some 1 ≤ ω ≤ maxr (Σ), if the next node in the path from u to
u′ is the ω-th child of u.

• For each 1 ≤ i ≤ height(path tree(〈q, (u, u′)〉)), the node-components and the
direction flags of each configuration on the i-th level of path tree(〈q, (u, u ′)〉) are
the same u and d, respectively, where u is the i-th node of the path from u to u′

and d is the direction of the first step from u towards u′. Hence, at the root of
path tree(〈q, (u, u′)〉) we have u = u, while at the leaves of path tree(〈q, (u, u′)〉)
have node u = u′ and d = here .

An example of a configuration 〈q, (u, u′)〉 ∈ CM,s and of path tree(〈q, (u, u′)〉) can be
seen in Fig. 5.

(D) M ′ simulates each computation step 〈q, h〉 ⇒M,s 〈q
′, h′〉 of M by computing

path tree(〈q′, h′〉) from path tree(〈q, h〉). Note that the path tree of a configuration
with no pebble is the configuration itself.

9 SIMULATION OF N -PTTS BY (N − 1)-PMTTS 62

Now we define M ′ formally.

Definition 9.2 Let M = (Q,Σ,∆, q0, R) be a 1-ptt in normal form and Q =
{q0, . . . , qm}. The 0-pmtt associated with M is the 0-pmtt M ′ = (Q′,Σ,∆, q0, R

′),
where

Q′ =
Q ∪ {(q, here)(0), (q, toParent)(m+1), (q, toChildω)(m+1) | q ∈ Q, 1 ≤ ω ≤ maxr (Σ)}

and R′ is the smallest rule set satisfying the following conditions. Let σ ∈ Σ, 0 ≤ j ≤
maxr (Σ), k ≥ 0, q, p, p1, . . . , pk ∈ Q, and δ ∈ ∆(k).

(r1) If 〈q, σ, ε, j〉 → δ(〈p1, stay〉, . . . , 〈pk, stay〉) is in R, then the rule

• 〈q, σ, j〉 → δ(〈p1, stay〉, . . . , 〈pk, stay〉)

is in R′. (If the pebble is not placed on the input and M outputs symbol, then
so does M ′.)

(r2) If 〈q, σ, ε, j〉 → 〈p, ϕ〉 is in R for ϕ ∈ {stay , up, down i | 1 ≤ i ≤ maxr (Σ)}, then
the rule

• 〈q, σ, j〉 → 〈p, ϕ〉

is in R′. (If the pebble is not placed on the input and M moves the pointer to a
direction, then so does M ′.)

(r3) If 〈q, σ, ε, j〉 → 〈p, drop〉 is in R, then the rule

• 〈q, σ, j〉 → 〈(p, here), stay〉

is in R′. (If M drops the pebble then M ′ drops a “virtual pebble” by labelling
the current state by here.);

(r4/1) If 〈q, σ, 1, j〉 → 〈p, lift〉 is in R, then the rule

• 〈(q, here), σ, j〉 → 〈p, stay〉

is in R′.

(r4/0) If 〈q, σ, 0, j〉 → 〈p, lift〉 is in R, then the rules

• 〈(q, d), σ, j〉(y1 , . . . , ym+1)→ 〈p, stay〉

are in R′, for each direction d ∈ {toParent , toChild ω | 1 ≤ ω ≤ maxr (Σ)}. (If M
lifts the pebble, then M ′ lifts the “virtual pebble” by removing the direction flag
d (or here) from the current state and, if any, deleting the subtrees of the current
configuration.);

(r5/1) If 〈q, σ, 1, j〉 → δ(〈p1, stay〉, . . . , 〈pk, stay〉) is in R, then the rule

• 〈(q, here), σ, j〉 → δ(〈(p1, here), stay〉, . . . , 〈(pk, here), stay〉)

9 SIMULATION OF N -PTTS BY (N − 1)-PMTTS 63

is in R′.

(r5/0) If 〈q, σ, 0, j〉 → δ(〈p1, stay〉, . . . , 〈pk, stay〉) is in R, then the rules

• 〈(q, d), σ, j〉(y1 , . . . , ym+1)→

δ(〈(p1, d), stay 〉(y1, . . . , ym+1), . . . , 〈(pk, d), stay 〉(y1, . . . , ym+1))

are in R′, for each direction d ∈ {toParent , toChild ω | 1 ≤ ω ≤ maxr (Σ)}. (If the
pebble is on the input and M writes an output symbol, then so does M ′.);

(r6/1) If 〈q, σ, 1, j〉 → 〈p, stay〉 is in R, then the rule

• 〈(q, here), σ, j〉 → 〈(p, here), stay〉

is in R′.

(r6/0) If 〈q, σ, 0, j〉 → 〈p, stay〉 is in R, then the rules

• 〈(q, d), σ, j〉(y1 , . . . , ym+1)→ 〈(p, d), stay 〉(y1, . . . , ym+1)

are in R′, for each direction d ∈ {toParent , toChild ω | 1 ≤ ω ≤ maxr (Σ)}. (If the
pebble is on the input and M stays at the current node, then so does M ′ and the
direction flag remains the same.)

(r7/1) If 〈q, σ, 1, j〉 → 〈p, up〉 is in R, then the rule

• 〈(q, here), σ, j〉 →

〈(p, toChild j), up〉(〈(q0, here), stay〉, . . . , 〈(qm, here), stay〉)

is in R′.

(r7/0) If 〈q, σ, 0, j〉 → 〈p, up〉 is in R, then the rules

• 〈(q, toParent), σ, j〉(y1, . . . , ym+1)→ yν+1, where p = qν

• 〈(q, toChildω), σ, j〉(y1, . . . , ym+1)→ 〈(p, toChild j), up〉(

〈(q0, toChildω), stay〉(y1, . . . , ym+1), . . . ,

〈(qm, toChildω), stay〉(y1, . . . , ym+1))

are in R′, where 1 ≤ ω ≤ maxr (Σ). (The pointer is at node u with child number
j and M moves up. If the pebble is not upwards of u, then M ′ also moves up,
annotates its state by direction toChild j, and spawns m + 1 child configurations
with node component u and with all the possible states labeled by the previous
direction flag, for the case of returning to u. Otherwise, M ′ gets closer to the
“virtual pebble” by returning the parameter with the appropriate state.)

(r8/1) If 〈q, σ, 1, j〉 → 〈p, down i〉 is in R, then the rule

• 〈(q, here), σ, j〉 →

〈(p, toParent), stay〉(〈(q0, here), stay〉, . . . , 〈(qm, here), stay〉)

is in R′.

9 SIMULATION OF N -PTTS BY (N − 1)-PMTTS 64

(r8/0) If 〈q, σ, 0, j〉 → 〈p, down i〉 is in R, then the rules

• 〈(q, toParent), σ, j〉(y1, . . . , ym+1)→ 〈(p, toParent), down i〉(

〈(q0, toParent), stay〉(y1, . . . , ym+1), . . . , 〈(qm, toParent), stay〉(y1, . . . , ym+1))

• 〈(q, toChildω), σ, j〉(y1, . . . , ym+1)→ 〈(p, toParent), down i〉(

〈(q0, toChildω), stay〉(y1, . . . , ym+1), . . . , 〈(qm, toChildω), stay〉(y1, . . . , ym+1))

are in R′ for every 1 ≤ ω ≤ maxr (Σ) with ω 6= i, moreover, the rule

• 〈(q, toChild i), σ, j〉(y1, . . . , ym+1)→ yν+1, where p = qν

is also in R′. (These two kinds of rules correspond to (r7/1) and (r7/0), respec-
tively, in the case that M moves down.) �

We make the following observations concerning M ′ in Definition 9.2.

Observation 9.3 (a) The construction of M ′ preserves determinism. Moreover, (b)
the construction of M ′ works for 1-ptts with weak pebble handling because these latters
are special 1-ptts.

Before proving the main result of this section, we give the formal definition of path tree .

Definition 9.4 Let M = (Q,Σ,∆, R) be a 1-ptt in normal form, where Q =
{q0, . . . , qm}, s ∈ TΣ an input tree, and M ′ the 0-pmtt associated with M as in Defini-
tion 9.2. Then path treeM,s : CM,s → TCM′,s

is the mapping such that, for each state
q ∈ Q and nodes u, u′ ∈ pos(s),

(i) path treeM,s(〈q, (u,−)〉) = 〈q, u〉;

(ii) if u = u′, then path treeM,s(〈q, (u, u′)〉) = 〈(q, here), u)〉;

(iii) if u′ = uωu′′ for some 1 ≤ ω ≤ maxr (Σ) and u′′ ∈ N
∗, i.e., u′ is a proper

descendant of u and it is in the ω-th subtree of u, then

path treeM,s(〈q, (u, u′)〉) = 〈(q, toChild ω), u〉(

path treeM,s(〈q0, (downω(u), u′)〉), . . . , path treeM,s(〈qm, (downω(u), u′)〉));

(iv) if the longest common prefix of u and u′ is a proper prefix of u, i.e., the deepest
common ancestor of u and u′ is above u, then

path treeM,s(〈q, (u, u′)〉) = 〈(q, toParent), u〉(

path treeM,s(〈q0, (up(u), u′)〉), . . . , path treeM,s(〈qm, (up(u), u′)〉)).

If M and s are clear from the context then we write path tree(〈q, (u, u′)〉) rather than
path treeM,s(〈q, (u, u′)〉). �

Now we can prove the following result.

9 SIMULATION OF N -PTTS BY (N − 1)-PMTTS 65

Lemma 9.5 1-PTT ⊆ 0-PMTT and 1-dPTT ⊆ 0-dPMTT .

Proof. Let M = (Q,Σ,∆, q0, R) be a 1-ptt and Q = {q0, . . . , qm}. By Proposition
9.1 we can assume that M is in normal form. Moreover, let M ′ = (Q′,Σ,∆, q0, R

′) be
the 0-pmtt associated with M . If M is deterministic, then M ′ is also deterministic by
Observation 9.3(a). We show that τM = τM ′ . For this, we fix an input tree s ∈ TΣ and
show that τM (s) = τM ′(s) holds. In fact, we prove the following two statements.

Statement 1. For each l ≥ 1, 〈q, h〉 ∈ CM,s, and t ∈ T∆, if 〈q, h〉 ⇒l
M,s t then

path tree(〈q, h〉)⇒∗
M ′,s t.

Statement 2. For each l ≥ 1, 〈q, h〉 ∈ CM,s, and t ∈ T∆, if path tree(〈q, h〉) ⇒l
M ′,s t then

〈q, h〉 ⇒∗
M,s t.

Then, the inclusion τM(s) ⊆ τM ′(s) can be obtained as follows. Let t ∈ τM (s), then
there is an l ≥ 0 such that 〈q0, (ε,−)〉 ⇒l

M,s t. Hence, by Definition 9.4(i) and State-
ment 1 we get path tree(〈q0, (ε,−)〉) = 〈q0, ε〉 ⇒

∗
M ′,s t and thus, t ∈ τM ′(s).

Similarly, we obtain the inclusion τM ′(s) ⊆ τM (s) from Statement 2.

In the rest of the proof we use the following notation and abbreviation. We denote by
u and u′ arbitrary nodes of s. Moreover, we refer shortly by (ri), 1 ≤ i ≤ 4, and (ri/j),
4 ≤ i ≤ 8 and 0 ≤ j ≤ 1, to the corresponding part of Definition 9.2. Finally, we
abbreviate the expression induction hypothesis by IH. We give the IH explicitly only
in the proof of Subcase 1.1 of Statements 1 and 2. Later we use IH implicitly.

Proof of Statement 1. Assume that 〈q, h〉 ⇒l
M,s t and test(h) = (σ, b, j). We prove by

induction on l.

(i) Let l = 1. Since M is in normal form, there is an output rule 〈q, σ, b, j〉 → δ in R,
such that t = δ. We distinguish the following three cases, according to the shape of h.

Case 1: h = (u,−). Then b = ε and, by Definition 9.4(i), we have path tree(〈q, h〉) =
〈q, u〉. Moreover, by (r1), the rule 〈q, σ, j〉 → δ is in R′, which concludes that
path tree(〈q, h〉)⇒M ′,s t.

Case 2: h = (u, u). Then b = 1 and, by Definition 9.4(ii), we have path tree(〈q, h〉) =
〈(q, here), u〉. Moreover, by (r5/1) the rule 〈(q, here), σ, j〉 → δ is in R′, which concludes
that path tree(〈q, h〉)⇒M ′,s t.

Case 3: h = (u, u′) such that u 6= u′. Then b = 0 and, by Definition 9.4(iii)-(iv), the
root of path tree(〈q, h〉) is 〈(q, d), u〉 for some direction d ∈ {toParent , toChild ω | 1 ≤
ω ≤ maxr (Σ)}. Moreover, by (r5/0) the rule 〈(q, d), σ, b, j〉(y1 , . . . , ym+1)→ δ is in R′,
which concludes that path tree(〈q, h〉)⇒M ′,s t.

(ii) Assume that l > 1. We distinguish four cases, according to the shape of h.

Case 1: h = (u,−). Then b = ε and, by Definition 9.4(i), path tree(〈q, h〉) = 〈q, u〉.
Now we distinguish three subcases, according to the form of the rule applied in the first
step of the computation of t.

Subcase 1.1: 〈q, h〉 ⇒M,s δ(〈p1, h〉, . . . , 〈pk, h〉)⇒
l−1
M,s t. We observe the following.

(a) The rule 〈q, σ, ε, j〉 → δ(〈p1, stay〉, . . . , 〈pk, stay〉) is in R. Hence, by (r1), the

9 SIMULATION OF N -PTTS BY (N − 1)-PMTTS 66

rule 〈q, σ, j〉 → δ(〈p1, stay〉, . . . , 〈pk, stay〉) is in R′, which implies that 〈q, u〉 ⇒M ′,s

δ(〈p1, u〉, . . . , 〈pk, u〉).

(b) There are integers l1, . . . , lk ≤ l − 1 and trees t1, . . . , tk ∈ T∆ such that, t =
δ(t1, . . . , tk) and 〈p1, h〉 ⇒

l1
M,s t1, . . . , 〈pk, h〉 ⇒lk

M,s tk.

(c) By Definition 9.4(i), path tree(〈p1, h〉) = 〈p1, u〉, . . . , path tree(〈pk, h〉) = 〈pk, u〉.

(d) By the induction hypothesis

path tree(〈p1, h〉)⇒
∗
M ′,s t1, . . . , path tree(〈pk, h〉)⇒

∗
M ′,s tk.

Hence, we conclude that

path tree(〈q, h〉)
= 〈q, u〉
⇒M ′,s δ(〈p1, u〉, . . . , 〈pk, u〉) (by (a))

= δ(path tree(〈p1, h〉), . . . , path tree(〈pk, h〉)) (by (c))
⇒∗

M ′,s δ(t1, . . . , tk) (by (d))

= t.

Subcase 1.2: 〈q, h〉 ⇒M,s 〈p, ϕ(h)〉 ⇒l−1
M,s t, where ϕ ∈ {stay , up, down i | 1 ≤ i ≤

rank (σ)}.

(a) There is a rule 〈q, σ, ε, j〉 → 〈p, ϕ〉 in R. By (r2), the rule 〈q, σ, j〉 → 〈p, ϕ〉 is in R′,
which implies 〈q, u〉 ⇒M ′,s 〈p, ϕ(u))〉.

(b) It follows from Definition 9.4(i) that path tree(〈p, ϕ(h)〉) = 〈p, ϕ(u)〉 (recall that
h = (u,−)).

Thus we obtain

path tree(〈q, h〉) = 〈q, u〉
⇒M ′,s 〈p, ϕ(u))〉 (by (a))

= path tree(〈p, h〉) (by (b))
⇒∗

M ′,s t. (by IH)

Subcase 1.3: 〈q, h〉 ⇒M,s 〈p, drop(h)〉 ⇒l−1
M,s t. Note that drop(h) = (u, u).

(a) The rule 〈q, σ, ε, j〉 → 〈p, drop〉 is in R. Then, by (r3), the rule 〈q, σ, j〉 →
〈(p, here), stay〉 is in R′, hence 〈q, u〉 ⇒M ′,s 〈(p, here), u〉.

(b) By Definition 9.4(ii), path tree(〈p, drop(h)〉) = 〈(p, here), u〉.

Hence we obtain

path tree(〈q, h〉) = 〈q, u〉
⇒M ′,s 〈(p, here), u〉 (by (a))

= path tree(〈p, drop(h)〉) (by (b))
⇒∗

M ′,s t. (by IH)

Case 2: h = (u, u). Then necessarily b = 1 and path tree(〈q, h〉) = 〈(q, here), u〉. We
distinguish five subcases, according to the form of the rule applied in the first step of
the derivation.

9 SIMULATION OF N -PTTS BY (N − 1)-PMTTS 67

Subcase 2.1: 〈q, h〉 ⇒M,s δ(〈p1, h〉, . . . , 〈pk, h〉)⇒
l−1
M,s t.

(a) The rule 〈q, σ, 1, j〉 → δ(〈p1, stay〉, . . . , 〈pk, stay〉) is in R. Hence, by (r5/1), the
rule 〈(q, here), σ, j〉 → δ(〈(p1, here), stay〉, . . . , 〈(pk, here), stay〉) is in R′, which implies
〈(q, here), u〉 ⇒M ′,s δ(〈(p1, here), u〉, . . . , 〈(pk, here), u〉).

(b) There are integers l1, . . . , lk ≤ l − 1 and trees t1, . . . , tk ∈ TΣ such that, t =
δ(t1, . . . , tk) and 〈p1, h〉 ⇒

l1
M,s t1, . . . , 〈pk, h〉 ⇒lk

M,s tk.

(c) By Definition 9.4(ii), path tree(〈p1, h〉) = 〈(p1, here), u〉, . . . , path tree(〈pk, h〉) =
〈(pk, here), u〉.

Hence it follows that

path tree(〈q, h〉)
= 〈(q, here), u〉
⇒M ′,s δ(〈(p1, here), u〉, . . . , 〈(pk, here), u〉) (by (a))

= δ(path tree(〈p1, h〉), . . . , path tree(〈pk, h〉)) (by (c))
⇒∗

M ′,s δ(t1, . . . , tk) (by IH)

= t.

Subcase 2.2: 〈q, h〉 ⇒M,s 〈p, h〉 ⇒l−1
M,s t.

(a) There is a rule 〈q, σ, 1, j〉 → 〈p, stay〉 in R. By (r6/1), the rule 〈(q, here), σ, j〉 →
〈(p, here), stay〉 is in R′, hence 〈(q, here), u〉 ⇒M ′,s 〈(p, here), u〉.

(b) It follows from Definition 9.4(ii) that path tree(〈p, h〉) = 〈(p, here), u〉.

Hence, we conclude that

path tree(〈q, h〉) = 〈(q, here), u〉
⇒M ′,s 〈(p, here), u〉 (by (a))

= path tree(〈p, h〉) (by (b))
⇒∗

M ′,s t. (by IH)

Subcase 2.3: 〈q, h〉 ⇒M,s 〈p, up(h)〉 ⇒l−1
M,s t.

(a) There is a rule 〈q, σ, 1, j〉 → 〈p, up〉 in R. By (r7/1), the rule 〈(q, here), σ, j〉 →
〈(p, toChild j), up〉(〈(q0, here), stay〉, . . . , 〈(qm, here), stay〉) is in R′, which implies

〈(q, here), u〉 ⇒M ′,s 〈(p, toChild j), up(u)〉(〈(q0, here), u〉, . . . , 〈(qm, here), u〉).

(b) It follows from Definition 9.4(iii) that

path tree(〈p, h〉) = 〈(p, toChild j), up(u)〉(〈(q0, here), u〉, . . . , 〈(qm, here), u〉).

Hence, we conclude that

path tree(〈q, h〉) = 〈(q, here), u〉
⇒M ′,s 〈(p, toChild j), up(u)〉(

〈(q0, here), u〉, . . . , 〈(qm, here), u〉) (by (a))
= path tree(〈p, up(h)〉) (by (b))
⇒∗

M ′,s t. (by IH)

9 SIMULATION OF N -PTTS BY (N − 1)-PMTTS 68

Subcase 2.4: 〈q, h〉 ⇒M,s 〈p, down i(h)〉 ⇒l−1
M,s t for some 1 ≤ i ≤ rank(σ).

(a) There is a rule 〈q, σ, 1, j〉 → 〈p, down i〉 in R. By (r8/1), the rule 〈(q, here), σ, j〉 →
〈(p, toParent), down i〉(〈(q0, here), stay〉, . . . , 〈(qm, here), stay〉) is in R′, which implies

〈(q, here), u〉 ⇒M ′,s 〈(p, toParent), down i(u)〉(〈(q0, here), u〉, . . . , 〈(qm, here), u〉).

(b) It follows from Definition 9.4(iii) that

path tree(〈p, h〉) = 〈(p, toParent), down i(u)〉(〈(q0, here), u〉, . . . , 〈(qm, here), u〉).

Hence we conclude that

path tree(〈q, h〉) = 〈(q, here), u〉
⇒M ′,s 〈(p, toParent), down i(u)〉(

〈(q0, here), u〉, . . . , 〈(qm, here), u〉) (by (a))
= path tree(〈p, down i(h)〉) (by (b))
⇒∗

M ′,s t. (by IH)

Subcase 2.5: 〈q, h〉 ⇒M,s 〈p, lift(h)〉 ⇒l−1
M,s t. Note that lift(h) = (u,−).

(a) The rule 〈q, σ, 1, j〉 → 〈p, lift〉 is in R. By (r4/1), the rule 〈(q, here), σ, j〉 → 〈p, stay〉
is in R′, which implies 〈(q, here), u〉 ⇒M ′,s 〈p, u〉.

(b) By Definition 9.4(i), we have path tree(〈p, lift(h)〉) = 〈p, u〉.

Thus we get

path tree(〈q, h〉) = 〈(q, here), u〉
⇒M ′,s 〈p, u〉 (by (a))

= path tree(〈p, lift(h)〉) (by (b))
⇒∗

M ′,s t. (by IH)

Case 3: h = (u, u′) such that u′ = uωu′′ for some 1 ≤ ω ≤ maxr (Σ) and u′′ ∈ N
∗. Then

necessarily b = 0 and

path tree(〈q, h〉) = 〈(q, toChild ω), u〉(

path tree(〈q0, downω(h)〉), . . . , path tree(〈qm, downω(h)〉)). (9.1)

Now we distinguish six subcases, according to the type of the rule applied in the first
step of the derivation.

Subcase 3.1: 〈q, h〉 ⇒M,s δ(〈p1, h〉, . . . , 〈pk, h〉)⇒
l−1
M,s t.

(a) The rule 〈q, σ, 0, j〉 → δ(〈p1, stay〉, . . . , 〈pk, stay〉) is in R. Hence, by (r5/0), the rule

〈(q, toChildω), σ, j〉(y1, . . . , ym+1)→

δ(〈(p1, toChildω), stay〉(y1, . . . , ym+1), . . . ,

〈(pk, toChildω), stay〉(y1, . . . , ym+1))

9 SIMULATION OF N -PTTS BY (N − 1)-PMTTS 69

is in R′. Moreover, it follows from (9.1) that

path tree(〈q, h〉) ⇒M ′,s δ(〈(p1, toChildω), u〉(path tree(〈q0, downω(h)〉), . . . ,
path tree(〈qm, downω(h)〉))

...
〈(pk, toChildω), u〉(path tree(〈q0, downω(h)〉), . . . ,

path tree(〈qm, downω(h)〉))).

(b) There are integers l1, . . . , lk ≤ l − 1 and trees t1, . . . , tk ∈ TΣ such that, t =
δ(t1, . . . , tk) and 〈p1, h〉 ⇒

l1
M,s t1, . . . , 〈pk, h〉 ⇒lk

M,s tk.

(c) By Definition 9.4(iii), we obtain that for each 1 ≤ i ≤ k we have

path tree(〈pi, h〉) = 〈(pi, toChildω), u〉(

path tree(〈q0, downω(h)〉), . . . , path tree(〈qm, downω(h)〉)).

Hence, we conclude that

path tree(〈q, h〉)
= 〈(q, toChildω), u〉(path tree(〈q0, downω(h)〉), . . . ,

path tree(〈qm, downω(h)〉)) (by (9.1))
⇒M ′,s δ(〈(p1, toChildω), u〉(path tree(〈q0, downω(h)〉), . . . ,

path tree(〈qm, downω(h)〉))
...

〈(pk, toChildω), u〉(path tree(〈q0, downω(h)〉), . . . ,
path tree(〈qm, downω(h)〉))) (by (a))

= δ(path tree(〈p1, h〉), . . . , path tree(〈pk, h〉)) (by (c))
⇒∗

M ′,s δ(t1, . . . , tk) (by IH)

= t.

Subcase 3.2: 〈q, h〉 ⇒M,s 〈p, h〉 ⇒l−1
M,s t.

(a) There is a rule 〈q, σ, 0, j〉 → 〈p, stay〉 in R. By (r6/0), the rule
〈(q, toChildω), σ, j〉(y1, . . . , ym+1) → 〈(p, toChildω), stay〉(y1, . . . , ym+1) is in R′. More-
over, it follows from (9.1) that

path tree(〈q, h〉)⇒M ′,s 〈(p, toChildω), u〉(

path tree(〈q0, downω(h)〉), . . . , path tree(〈qm, downω(h)〉)).

(b) By Definition 9.4(iii), we have

path tree(〈p, h〉) = 〈(p, toChild ω), u〉(

path tree(〈q0, downω(h)〉), . . . , path tree(〈qm, downω(h)〉)).

9 SIMULATION OF N -PTTS BY (N − 1)-PMTTS 70

Hence, we conclude that

path tree(〈q, h〉)
= path tree(〈q, h〉) = 〈(q, toChild ω), u〉(

path tree(〈q0, downω(h)〉), . . . , path tree(〈qm, downω(h)〉)) (by (9.1))
⇒M ′,s 〈(p, toChildω), u〉(

path tree(〈q0, downω(h)〉), . . . , path tree(〈qm, downω(h)〉)) (by (a))
= path tree(〈p, h〉) (by (b))
⇒∗

M ′,s t. (by IH)

Subcase 3.3: 〈q, h〉 ⇒M,s 〈p, up(h)〉 ⇒l−1
M,s t.

(a) There is a rule 〈q, σ, 0, j〉 → 〈p, up〉 in R. By (r7/0), the rule

〈(q, toChildω), σ, j〉(y1, . . . , ym+1)→ 〈(p, toChild j), up〉(
〈(q0, toChildω), stay〉(y1, . . . , ym+1), . . . ,
〈(qm, toChildω), stay〉(y1, . . . , ym+1))

is in R′. Moreover, it follows from (9.1) that

path tree(〈q, h〉)⇒M ′,s 〈(p, toChild j), up(u)〉(

path tree(〈q0, h〉), . . . , path tree(〈qm, h〉)).

(b) It follows from Definition 9.4(iii) that

path tree(〈p, up(h)〉) = 〈(p, toChild j), up(u)〉(

path tree(〈q0, h〉), . . . , path tree(〈qm, h〉)).

Hence, we conclude that

path tree(〈q, h〉)
= 〈(q, toChildω), u〉(

path tree(〈q0, downω(h)〉), . . . , path tree(〈qm, downω(h)〉)) (by (9.1))
⇒M ′,s 〈(p, toChild j), up(u)〉(path tree(〈q0, h〉), . . . , path tree(〈qm, h〉)) (by (a))

= path tree(〈p, up(h)〉) (by (b))
⇒∗

M ′,s t. (by IH)

Subcase 3.4: 〈q, h〉 ⇒M,s 〈p, down i(h)〉 ⇒l−1
M,s t for some 1 ≤ i ≤ rank(σ) with i 6= ω.

(a) There is a rule 〈q, σ, 0, j〉 → 〈p, down i〉 in R. By (r8/0), the rule

〈(q, toChildω), σ, j〉(y1, . . . , ym+1)→ 〈(p, toParent), down i〉(

〈(q0, toChildω), stay〉(y1, . . . , ym+1), . . . , 〈(q0, toChildω), stay〉(y1, . . . , ym+1))

is in R′. Moreover, it follows from (9.1) that

path tree(〈q, h〉)⇒M ′,s

〈(p, toParent), down i(u)〉(path tree(〈q0, h〉), . . . , path tree(〈qm, h〉)).

9 SIMULATION OF N -PTTS BY (N − 1)-PMTTS 71

(b) By Definition 9.4(iii), we have

path tree(〈p, down i(h)〉) =

〈(p, toParent), down i(u)〉(path tree(〈q0, h〉), . . . , path tree(〈qm, h〉))

Hence, we conclude that

path tree(〈q, h〉)
= 〈(q, toChildω), u〉(

path tree(〈q0, downω(h)〉), . . . , path tree(〈qm, downω(h)〉)) (by (9.1))
⇒M ′,s 〈(p, toChild j), down i(u)〉(path tree(〈q0, h〉), . . . , path tree(〈qm, h〉)) (by (a))

= path tree(〈p, down i(h)〉) (by (b))
⇒∗

M ′,s t. (by IH)

Subcase 3.5: 〈q, h〉 ⇒M,s 〈p, downω(h)〉 ⇒l−1
M,s t.

There is a rule 〈q, σ, 0, j〉 → 〈p, downω〉 in R. By (r8/0), the rule
〈(q, toChildω), σ, j〉(y1, . . . , ym+1) → yν+1 is in R′, such that p = qν . Moreover, it
follows from (9.1) that path tree(〈q, h〉)⇒M ′,s path tree(〈p, downω(h)〉).

Hence, we conclude that

path tree(〈q, h〉) ⇒M ′,s path tree(〈p, downω(h)〉)
⇒∗

M ′,s t. (by IH)

Subcase 3.6: 〈q, h〉 ⇒M,s 〈p, lift(h)〉 ⇒l−1
M,s t. Note that lift(h) = (u,−).

(a) The rule 〈q, σ, 0, j〉 → 〈p, lift〉 is in R. Then, by (r4/0), the rule
〈(q, toChildω), σ, j〉(y1, . . . , ym) → 〈p, stay〉 is in R′. Moreover, it follows from (9.1)
that path tree(〈q, h〉)⇒M ′,s 〈p, u〉.

(b) By Definition 9.4(i) we have path tree(〈p, lift(h)〉) = 〈p, u〉.

Hence, we conclude that

path tree(〈q, h〉) ⇒M ′,s 〈p, u〉 (by (a))
= path tree(〈p, lift(h)〉) (by (b))
⇒∗

M ′,s t. (by IH)

Case 4: h = (u, u′) such that the longest common prefix of u and u′ is a proper prefix
of u. The proof of this case is analogous to Case 3, hence we leave it.

With this we have finished the proof of Statement 1.

Proof of Statement 2. Assume that path tree(〈q, h〉)⇒l
M ′,s t and that test(h) = (σ, b, j).

We prove by induction on l.

(i) Let l = 1. We observe that, since M is in normal form, (r1), (r5/1), and (r5/0) yield
that M ′ can write at most one output symbol in one computation step. Consequently,
t = δ ∈ ∆(0). Now we distinguish the following cases, according to the form of h.

9 SIMULATION OF N -PTTS BY (N − 1)-PMTTS 72

Case 1: h = (u,−). Then b = ε and, by Definition 9.4(i), path tree(〈q, h〉) = 〈q, u〉
holds. Hence, the rule 〈q, σ, j〉 → δ is in R′. Since this rule is obtained in (r1), the
output rule 〈q, σ, ε, j〉 → δ is in R. This concludes that 〈q, h〉 ⇒M,s δ.

Case 2: h = (u, u). Then b = 1 and, by Definition 9.4(ii), path tree(〈q, h〉) =
〈(q, here), u〉 holds. Hence, the rule 〈(q, here), σ, j〉 → δ is in R ′. This rule is obtained
in (r5/1), hence the output rule 〈q, σ, 1, j〉 → δ is in R. Thus we have 〈q, h〉 ⇒M,s δ.

Case 3: h = (u, u′) with u 6= u′. Then b = 0 and, by Definition 9.4(iii)-(iv), the root
of path tree(〈q, h〉) is 〈(q, d), u〉 for some direction d ∈ {toParent , toChild ω | 1 ≤ ω ≤
maxr (Σ)}. Hence, the rule 〈(q, d), σ, j〉 → δ is in R′. This rule is obtained in (r5/0),
thus the output rule 〈q, σ, 0, j〉 → δ is in R. Hence we have 〈q, h〉 ⇒M,s δ.

(ii) Assume that l ≥ 1. Again we abbreviate induction hypothesis by IH and distinguish
four cases, according to the shape of h.

Case 1: h = (u,−). Then b = ε and, by Definition 9.4(i), path tree(〈q, h〉) = 〈q, u〉
holds. We distinguish three subcases, according to the type of the rule applied in the
first step of the computation of t.

Subcase 1.1: 〈q, u〉 ⇒M ′,s δ(〈p1, u〉, . . . , 〈pk, u〉)⇒
l−1
M ′,s t. We observe the following.

(a) The rule 〈q, σ, j〉 → δ(〈p1, stay〉, . . . , 〈pk, stay〉) is in R′. This rule is obtained in
(r1). Hence, necessarily, the rule 〈q, σ, ε, j〉 → δ(〈p1, stay〉, . . . , 〈pk, stay〉) is in R, which
concludes 〈q, h〉 ⇒M,s δ(〈p1, h〉, . . . , 〈pk, h〉).

(b) There are integers l1, . . . , lk ≤ l − 1 and trees t1, . . . , tk ∈ TΣ such that, t =
δ(t1, . . . , tk) and 〈p1, u〉 ⇒

l1
M ′,s t1, . . . , 〈pk, u〉 ⇒

lk
M ′,s tk.

(c) By Definition 9.4(i) path tree(〈p1, h〉) = 〈p1, u〉, . . . , path tree(〈pk, h〉) = 〈pk, u〉.

(d) By the induction hypothesis

〈p1, h〉 ⇒
∗
M,s t1, . . . , 〈pk, h〉 ⇒

∗
M,s tk.

Hence, we conclude that

〈q, h〉 ⇒M,s δ(〈p1, h〉, . . . , 〈pk, h〉) (by (a))
⇒∗

M,s δ(t1, . . . , tk) (by (d))

= t.

Subcase 1.2: 〈q, u〉 ⇒M ′,s 〈p, ϕ(u)〉 ⇒l−1
M,s t for some ϕ ∈ {stay , up, down i | 1 ≤ i ≤

rank (σ)}. We observe the following.

(a) There is a rule 〈q, σ, j〉 → 〈p, ϕ〉 in R′. This rule is obtained in (r2), thus the rule
〈q, σ, ε, j〉 → 〈p, ϕ〉 is in R. This concludes 〈q, h〉 ⇒M,s 〈p, ϕ(h))〉.

(b) It follows from Definition 9.4(i) that path tree(〈p, ϕ(h)〉) = 〈p, ϕ(u)〉 (recall that
h = (u,−)).

Hence, we obtain
〈q, h〉 ⇒M,s 〈p, ϕ(h))〉 (by (a))

⇒∗
M,s t. (by IH)

9 SIMULATION OF N -PTTS BY (N − 1)-PMTTS 73

Subcase 1.3: 〈q, u〉 ⇒M ′,s 〈(p, here), u〉 ⇒l−1
M ′,s t.

(a) The rule 〈q, σ, j〉 → 〈(p, here), stay〉 is in R′. This rule is obtained in (r3). Hence,
necessarily, the rule 〈q, σ, j〉 → 〈(p, here), stay〉 is in R′, which concludes 〈q, h〉 ⇒M ′,s

〈p, drop(h)〉.

(b) By Definition 9.4(ii), path tree(〈p, drop(h)〉) = 〈(p, here), u〉. Note that drop(h) =
(u, u).

Hence, we conclude that

〈q, h〉 ⇒M,s 〈p, drop(h)〉 (by (a))
⇒∗

M,s t. (by IH)

Case 2: h = (u, u). Then necessarily b = 1 and path tree(〈q, h〉) = 〈(q, here), u〉. We
distinguish five subcases, according to the type of the rule applied in the first step of
the computation of t.

Subcase 2.1: 〈(q, here), u〉 ⇒M ′,s δ(〈(p1, here), u〉, . . . , 〈(pk, here), u〉)⇒l−1
M ′,s t.

(a) The rule 〈(q, here), σ, j〉 → δ(〈(p1, here), stay〉, . . . , 〈(pk, here), stay〉) is in R′ due
to (r5/1). Hence, the rule 〈q, σ, 1, j〉 → δ(〈p1, stay〉, . . . , 〈pk, stay〉) is in R necessarily,
which concludes 〈q, h〉 ⇒M,s δ(〈p1, h〉, . . . , 〈pk, h〉).

(b) There are integers l1, . . . , lk ≤ l − 1 and trees t1, . . . , tk ∈ TΣ such that, t =
δ(t1, . . . , tk) and 〈(p1, here), u〉 ⇒l1

M ′,s t1, . . . , 〈(pk, here), u〉 ⇒lk
M ′,s tk.

(c) By Definition 9.4(ii), path tree(〈p1, h〉) = 〈(p1, here), u〉, . . . , path tree(〈pk, h〉) =
〈(pk, here), u〉.

Hence, we conclude that

〈q, h〉 ⇒M,s δ(〈p1, h〉, . . . , 〈pk, h〉) (by (a))
⇒∗

M,s δ(t1, . . . , tk) (by IH)

= t.

Subcase 2.2: 〈(q, here), u〉 ⇒M ′,s 〈(p, here), u〉 ⇒l−1
M ′,s t. We observe the following.

(a) There is a rule 〈(q, here), σ, j〉 → 〈(p, here), stay〉 in R′. This rule is obtained in
(r6/1), hence the rule 〈q, σ, 1, j〉 → 〈p, stay〉 is in R. Thus we have 〈q, h〉 ⇒M,s 〈p, h〉.

(b) It follows from Definition 9.4(ii) that path tree(〈p, h〉) = 〈(p, here), u〉.

Hence, we conclude that

〈q, h〉 ⇒M,s 〈p, h〉 (by (a))
⇒∗

M,s t. (by IH)

Subcase 2.3:

〈(q, here), u〉 ⇒M ′,s 〈(p, toChild j), up(u)〉(〈(q0, here), u〉, . . . , 〈(qm, here), u〉)⇒l−1
M ′,s t.

(a) There is a rule

〈(q, here), σ, j〉 → 〈(p, toChild j), up〉(〈(q0, here), stay〉, . . . , 〈(qm, here), stay〉)

9 SIMULATION OF N -PTTS BY (N − 1)-PMTTS 74

obtained in (r7/1) in R′. Hence the rule 〈q, σ, 1, j〉 → 〈p, up〉 is in R, which concludes
〈q, h〉 ⇒M,s 〈p, up(h)〉.

(b) It follows from Definition 9.4(iii) that

path tree(〈p, h〉) = 〈(p, toChild j), up(u)〉(〈(q0, here), u〉, . . . , 〈(qm, here), u〉).

Hence, we conclude that

〈q, h〉 ⇒M,s 〈p, up(h)〉 (by (a))
⇒∗

M,s t. (by IH)

Subcase 2.4:

〈(q, here), u〉 ⇒M ′,s

〈(p, toParent), down i(u)〉(〈(q0, here), u〉, . . . , 〈(qm, here), u〉)⇒∗
M ′,s t.

(a) There is a rule

〈(q, here), σ, j〉 → 〈(p, toParent), down i〉(〈(q0, here), stay〉, . . . , 〈(qm, here), stay〉)

in R′ due to (r8/1). Thus the rule 〈q, σ, 1, j〉 → 〈p, down i〉 is in R, which concludes
〈q, h〉 ⇒M,s 〈p, down i(h)〉.

(b) It follows from Definition 9.4(iii) that

path tree(〈p, h〉) = 〈(p, toParent), down i(u)〉(〈(q0, here), u〉, . . . , 〈(qm, here), u〉).

Hence, we obtain
〈q, h〉 ⇒M,s 〈p, down i(h)〉 (by (a))

⇒∗
M,s t. (by IH)

Subcase 2.5: 〈(q, here), u〉 ⇒M ′,s 〈p, u〉 ⇒l−1
M ′,s t. We observe the following.

(a) The rule 〈(q, here), σ, j〉 → 〈p, stay〉 is in R′. This rule is obtained in (r4/1), Hence,
the rule 〈q, σ, j〉 → 〈p, lift〉 is in R, which concludes 〈q, h〉 ⇒M,s 〈p, lift(h)〉.

(b) By Definition 9.4(i), path tree(〈p, lift(h)〉) = 〈p, u〉.

Hence, we conclude that

〈q, h〉 ⇒M,s 〈p, lift(h)〉 (by (a))
⇒∗

M,s t. (by IH)

Case 3: h = (u, u′) such that u′ = uωu′′ for some 1 ≤ ω ≤ maxr (Σ) and u′′ ∈ N
∗. Then

necessarily b = 0 and

path tree(〈q, h〉) = 〈(q, toChild ω), u〉(

path tree(〈q0, downω(h)〉), . . . , path tree(〈qm, downω(h)〉)). (9.2)

9 SIMULATION OF N -PTTS BY (N − 1)-PMTTS 75

We distinguish six subcases, according to the type of the rule applied in the first step
of the computation of t.

Subcase 3.1:

path tree(〈q, h〉) ⇒M ′,s δ(〈(p1, toChildω), u〉(path tree(〈q0, downω(h)〉), . . . ,
path tree(〈qm, downω(h)〉))

...
〈(pk, toChildω), u〉(path tree(〈q0, downω(h)〉), . . . ,

path tree(〈qm, downω(h)〉)))

⇒l−1
M ′,s t.

(a) The rule

〈(q, toChildω), σ, j〉(y1, . . . , ym+1)→

δ(〈(p1, toChildω), stay〉(y1, . . . , ym+1), . . . ,

〈(pk, toChildω), stay〉(y1, . . . , ym+1))

is in R′. This rule is obtained in (r5/0). Hence necessarily, the rule 〈q, σ, 0, j〉 →
δ(〈p1, stay〉, . . . , 〈pk, stay〉) is in R, which concludes 〈q, h〉 ⇒M,s δ(〈p1, h〉, . . . , 〈pk, h〉).

(b) By Definition 9.4(iii), we obtain that for each 1 ≤ i ≤ k we have

path tree(〈pi, h〉) = 〈(pi, toChildω), u〉(

path tree(〈q0, downω(h)〉), . . . , path tree(〈qm, downω(h)〉)).

(c) There are integers l1, . . . , lk ≤ l − 1 and trees t1, . . . , tk ∈ TΣ such that, t =
δ(t1, . . . , tk) and path tree(〈p1, h〉)⇒

l1
M ′,s t1, . . . , path tree(〈pk, h〉)⇒lk

M,s tk.

Hence, we conclude that

〈q, h〉 ⇒M,s δ(〈p1, h〉, . . . , 〈pk, h〉) (by (a))
⇒∗

M,s δ(t1, . . . , tk) (by IH)

= t.

Subcase 3.2:

path tree(〈q, h〉)⇒M ′,s 〈(p, toChildω), u〉(

path tree(〈q0, downω(h)〉), . . . , path tree(〈qm, downω(h)〉))⇒l−1
M ′,s t.

(a) The rule 〈(q, toChild ω), σ, j〉(y1, . . . , ym+1) → 〈(p, toChildω), stay〉(y1, . . . , ym+1) is
in R′. This rule is obtained in (r6/0). Hence the rule 〈q, σ, 0, j〉 → 〈p, stay〉 in R, which
concludes 〈q, h〉 ⇒M,s 〈p, h〉.

(b) By Definition 9.4(iii)

path tree(〈p, h〉) = 〈(p, toChild ω), u〉(

path tree(〈q0, downω(h)〉), . . . , path tree(〈qm, downω(h)〉)).

9 SIMULATION OF N -PTTS BY (N − 1)-PMTTS 76

Hence, we conclude that

〈q, h〉 ⇒M,s 〈p, h〉 (by (a))
⇒∗

M,s t. (by IH)

Subcase 3.3:

path tree(〈q, h〉)⇒M ′,s 〈(p, toChild j), up(u)〉(

path tree(〈q0, h〉), . . . , path tree(〈qm, h〉))⇒l−1
M ′,s t.

(a) The rule

〈(q, toChildω), σ, j〉(y1, . . . , ym+1)→ 〈(p, toChild j), up〉(
〈(q0, toChildω), stay〉(y1, . . . , ym+1), . . . ,
〈(qm, toChildω), stay〉(y1, . . . , ym+1))

is in R′. This rule is obtained in (r7/0). Hence necessarily, the rule 〈q, σ, 0, j〉 → 〈p, up〉
is in R, which concludes 〈q, h〉 ⇒M,s 〈p, up(h)〉.

(b) It follows from Definition 9.4(iii) that

path tree(〈p, up(h)〉) = 〈(p, toChild j), up(u)〉(

path tree(〈q0, h〉), . . . , path tree(〈qm, h〉)).

Hence, we obtain
〈q, h〉 ⇒M,s 〈p, up(h)〉 (by (a))

⇒∗
M,s t. (by IH)

Subcase 3.4:

path tree(〈q, h〉)⇒M ′,s

〈(p, toParent), down i(u)〉(path tree(〈q0, h〉), . . . , path tree(〈qm, h〉))⇒l−1
M ′,s t.

for some 1 ≤ i ≤ rank (σ), i 6= ω. We observe the following.

(a) The rule

〈(q, toChildω), σ, j〉(y1, . . . , ym+1)→ 〈(p, toParent), down i〉(

〈(q0, toChildω), stay〉(y1, . . . , ym+1), . . . , 〈(q0, toChildω), stay〉(y1, . . . , ym+1))

is in R′. This rule is obtained in (r8/0). Hence the rule 〈q, σ, 0, j〉 → 〈p, down i〉 is in
R, which concludes 〈q, h〉 ⇒M,s 〈p, down i(h)〉.

(b) By Definition 9.4(iii)

path tree(〈p, down i(h)〉) =

〈(p, toParent), down i(u)〉(path tree(〈q0, h〉), . . . , path tree(〈qm, h〉))

9 SIMULATION OF N -PTTS BY (N − 1)-PMTTS 77

Thus we get
〈q, h〉 ⇒M,s 〈p, down i(h)〉 (by (a))

⇒∗
M,s t. (by IH)

Subcase 3.5: path tree(〈q, h〉) ⇒M ′,s path tree(〈p, downω(h)〉)⇒l−1
M ′,s t.

The rule 〈(q, toChild ω), σ, j〉(y1, . . . , ym+1) → yν+1 is in R′. This rule is obtained in
(r8/0). Hence necessarily, the rule 〈q, σ, 0, j〉 → 〈p, downω〉 is in R such that p = qν ,
which concludes 〈q, h〉 ⇒M,s 〈p, downω(h)〉.

Hence, we conclude that

〈q, h〉 ⇒M,s 〈p, downω(h)〉
⇒∗

M,s t. (by IH)

Subcase 3.6: path tree(〈q, h〉) ⇒M ′,s 〈p, u〉 ⇒l−1
M ′,s t. We observe the following.

(a) The rule 〈q, σ, 0, j〉 → 〈p, lift〉 is in R. Then it follows from (r4/0), that the
rule 〈(q, toChild ω), σ, j〉(y1, . . . , ym) → 〈p, stay〉 is in R′. It follows from (9.1) that
〈q, h〉 ⇒M,s 〈p, lift(h)〉. Note that lift(h) = (u,−).

(b) By Definition 9.4(i), path tree(〈p, lift(h)〉) = 〈p, u〉.

Hence, we conclude that

〈q, h〉 ⇒M,s 〈p, lift(h)〉 (by (a))
⇒∗

M,s t. (by IH)

Case 4: h = (u, u′) such that the longest common prefix of u and u′ is a proper prefix
of u. The proof of this case is analogous to Case 3, hence we leave it.

With this, we have finished the proof of Statement 2 and also of Lemma 9.5. �

We can straightforwardly extend Lemma 9.5 for n-ptts and (n−1)-pmtts, where n ≥ 1,
such that each n-pmtt M can be simulated by an n− 1-pmtt M ′.

Theorem 9.6 For each n ≥ 1, n-PTT ⊆ (n − 1)-PMTT and n-dPTT ⊆ (n −
1)-dPMTT .

Proof. Let M be an n-ptt, construct the (n− 1)-pmtt M ′ in the following way.

• The use of pebbles 1, . . . , n− 1 of M is simulated in the trivial way, i.e., step-by-
step, with the n− 1 pebbles of M ′.

• The use of the last pebble of M is simulated by path-tree-like macro calls of M ′

as in case n = 1.

The construction preserves determinism obviously. �

Note that the proof of Theorem 9.6 is based on Lemma 9.5 and this latter, by Obser-
vation 9.3(b), works for weak pebble handling. Moreover, it is straightforward that the

9 SIMULATION OF N -PTTS BY (N − 1)-PMTTS 78

above extension of Lemma 9.5 for n-ptts and (n−1)-pmtts preserves weak pebble han-
dling. Hence we have n-PTT w ⊆ (n− 1)-PMTTw and n-dPTTw ⊆ (n− 1)-dPMTTw,
where the subscript w denotes the weak pebble versions of the corresponding tree trans-
formation classes. This answers the question raised in the Conclusion of [EM03].

10 FURTHER RESULTS 79

10 Further results

This section consists of three subsections. In Subsection 10.1 we show some conse-
quences and give some applications of the results obtained in Sections 5, 7 and 9. In
particular, we show that the inverses of compositions of pebble macro tree transforma-
tions effectively preserve regularity and that the domains of (compositions of) pebble
macro tree transformations are effectively regular. Then we apply these results to show
that the type checking and the (more general) almost always type checking problems
for pebble macro tree transformations are decidable.

In Subsection 10.2 we consider the decision problems for the concepts of circularity
that we introduced in Section 4. We show that each of them is decidable.

In Subsection 10.3 we introduce the concept of a pebble alternating tree-walking au-
tomaton and show that the tree languages recognized by deterministic non-looping
pebble alternating tree-walking automata form a strict hierarchy with respect to the
number of pebbles. An immediate consequence of this result is that the domains of
deterministic and not strongly circular n-pebble tree transformations form a proper
hierarchy with respect to n.

The results of Subsections 10.1, 10.2, and 10.3 can be found in Section 6 of [FM09],
Section 4.2 of [FM08], and [Muz08], respectively.

10.1 Type checking of pmtts

By Theorems 7.9 and 5.3 we obtain the following decomposition.

Corollary 10.1 For each n ≥ 0, we have n-PMTT ⊆ n-PTT ◦ 0-PTT . �

Next we recall an inclusion result, which is proved in Lemma 34 of [EM03].

Proposition 10.2 0-PTT ⊆ sMTT . �

Then we can show the following inclusions.

Theorem 10.3 For each n ≥ 0,

(1) n-PMTT ⊆ 0-PTT ◦ YIELDn+1,
(2) n-PMTT ⊆ 0-PTT n+2,
(3) n-PMTT ⊆ sMTT n+2.

and for each n ≥ 1,

(4) n-PTT ⊆ 0-PTT ◦ YIELDn,
(5) n-PTT ⊆ 0-PTT n+1,
(6) n-PTT ⊆ sMTTn+1.

10 FURTHER RESULTS 80

Proof. We prove (1) by induction on n. The case n = 0 is verified by Theorem 7.10.
If n > 0, then we have

n-PMTT ⊆ n-PTT ◦ YIELD (by Corollary 7.9)
⊆ (n− 1)-PMTT ◦YIELD (by Theorem 9.6)
⊆ 0-PTT ◦YIELDn ◦ YIELD (by the induction hypothesis)
= 0-PTT ◦YIELDn+1.

Then, (2) follows from (1) and Theorem 5.3, while (3) follows from (2) and Proposi-
tion 10.2.

We prove (4) as follows

n-PTT ⊆ (n− 1)-PMTT (by Theorem 9.6)
⊆ 0-PTT ◦YIELDn. (by (1))

and leave the proof of (5) and (6). �

Note that (5) was shown in Theorem 10 of [EM03] for weak pebble handling. Above, we
gave not only an alternative proof but generalized their result. The mapping EncPeb
appearing in the proof of Theorems 10 of [EM03] is strongly based on the weak pebble
handling, hence we think that proof cannot be generalized for the strong pebble case.
We also note that (6) and (3) were also concluded in Theorem 35 and in Section 8 of
[EM03], respectively, for weak pebble handling.

In the next result we will need the particular tree transformation called monadic in-
sertion, cf. Example 6 of [EM03]. Assume that ∆ = Σ ∪ {σ(1) | σ ∈ Σ}. A monadic
insertion (or regular insertion) is a tree transformation monΣ ⊆ TΣ× T∆ that consists
of all pairs (s, t) such that s ∈ TΣ and t is obtained from s by inserting an arbitrary
number of unary symbols σ above each σ-labeled node in s. We denote the class of all
monadic insertions monΣ by MON .

Theorem 10.4 The inverses of compositions of pebble macro tree transformations
effectively preserve regularity.

Proof. It is enough to prove the statement for one pebble macro tree transformation,
hence, by (3) of Theorem 10.3, it is enough to prove that the inverse of an arbitrary
stay-macro tree transformation effectively preserves regularity. This can be seen as
follows (see [EM03, MBPS05a]). By Lemma 27 of [EM03], sMTT ⊆ MON ◦MTT ,
where MON is the class of monadic insertions introduced in Section 2.2. The inverse
of a monadic insertion effectively preserves regularity because this inverse just removes
barred symbols from trees, therefore it can easily be realized by a linear top-down tree
transducer. Moreover, linear top-down tree transformations preserve regularity of tree
languages [Tha69, Eng75]. By Theorem 7.4 of [EV85], the inverse of each macro tree
transformation also effectively preserves regularity. We conclude that the inverse of
each stay-macro tree transformation effectively preserves regularity, which finishes the
proof. �

Corollary 10.5 The domains of (compositions of) pebble macro tree transformations
are effectively regular.

10 FURTHER RESULTS 81

Proof. Let τ ⊆ TΣ×T∆ be a composition of pebble macro tree transformations. Since
dom(τ) = τ−1(T∆) and T∆ is a regular tree language, by Theorem 10.4 we obtain that
dom(τ) is effectively regular. �

As another application, we will show that the type checking and the (more general)
almost always type checking problems for pebble macro tree transformations are de-
cidable. By the type checking problem of a tree transformation class C we mean the
following decision problem.

Input: A tree transformation τ ⊆ TΣ × T∆ of C and regular tree languages Lin ⊆ TΣ,
Lout ⊆ T∆.

Output:

{
“yes” if τ(Lin) ⊆ Lout (i.e., τ(Lin)− Lout = ∅)
“no” otherwise.

Moreover, the almost always type checking problem (introduced in [EM03]) is specified
as follows.

Input: A tree transformation τ ⊆ TΣ × T∆ of C and regular tree languages Lin ⊆ TΣ,
Lout ⊆ T∆.

Output:

{
“yes” if τ(Lin)− Lout is finite
“no” otherwise.

Theorem 10.6 The type checking and the almost always type checking problems of
pebble macro tree transformations are decidable.

Proof. The proof the type checking case simply follows from (3) of Theorem 10.3 and
Corollary 44 of [EM03], which states that the type checking problem of compositions
of stay-macro tree transformations are decidable.

The proof of the almost always type checking case is similarly obtainable from (2) of
Theorem 10.3 and Theorem 45 of [EM03]. �

10.2 Deciding circularity problems

The circularity problem of attribute grammars and attributed tree transducers is decid-
able, see the decision algorithm in [Knu68, Knu71] and its adaptation for attributed tree
transducers in [FV98], respectively. Here we consider the following decision problems.

Weak circularity problem (wc-problem): Given a pebble (macro) tree transducer M , is it
weakly circular, or not? The circularity problem (c-problem) and the strong circularity
problem (sc-problem) are defined analogously.

Lemma 10.7 The sc-problem for deterministic pmtts is decidable.

Proof. Let M = (Q,Σ,∆, q0, R) be a deterministic n-pmtt.

Assume first that M is total. Now, since M is deterministic, M is not strongly circular if
and only if dom(τM) = TΣ. By Corollary 10.5, the tree language dom(τM) is effectively
regular while TΣ is obviously regular. Moreover, as a corollary of Theorem 10.3 of

10 FURTHER RESULTS 82

Section 10 of Chapter II of [GS84], the equivalence problem for regular tree languages
is decidable. Hence the sc-problem for total and deterministic pmtts is decidable.

If M is not total, then we construct a total and deterministic n-pmtt M ′ =

(Q,Σ,∆′, q0, R
′), such that ∆′ = ∆ ∪ {γ

(0)
0 , γ

(1)
1 , . . . , γ

(d)
d }, where d = maxr (Q),

and γ0, γ1, . . . , γd are new symbols of ranks 0, . . . , d, respectively, R′ is the small-
est set of rules such that each rule of R is in R′, and for every m ≥ 0, q ∈ Q(m),
σ ∈ Σ, b ∈ {0, 1}≤n, and j ∈ {0, . . . ,maxr (Σ)}, if rhsM(q, σ, b, j) = ∅, then the rule
〈q, σ, b, j〉(y1, . . . , ym) → γm(y1, . . . , ym) is in R′. It is easy to see that M ′ is strongly
circular iff M is strongly circular. This proves our lemma. �

In the following theorem we reduce the sc-problem for nondeterministic pmtts to the
sc-problem of deterministic pmtts.

Theorem 10.8 The sc-problem for pmtts is decidable.

Proof. Let M = (Q,Σ,∆, q0, R) be a nondeterministic n-pmtt. We construct a
deterministic n-pmtt M ′, such that M is strongly circular iff M ′ is. For this, let
d = max{|rhsM (q, σ, b, j)| | q ∈ Q, σ ∈ Σ, b ∈ {0, 1}≤n, j ∈ {0, . . . ,maxr (Σ)}} be the
maximum of the numbers of nondeterministic choices of M , and M ′ = (Q,Σ,∆′, q0, R

′),
where

• ∆′ = ∆ ∪ {δ1, . . . , δd} for new symbols δ1, . . . , δd of rank 1, . . . , d, respectively,
and

• R′ is the smallest set containing the following rules.

For every m ≥ 0, q ∈ Q(m), σ ∈ Σ, b ∈ {0, 1}≤n and j ∈ {0, . . . ,maxr (Σ)}, if
rhsM(q, σ, b, j) = {ζ1, . . . , ζl}, and l ≥ 1, then the rule 〈q, σ, b, j〉(y1, . . . , ym) →
δl(ζ1, . . . , ζl) is in R′.

It is easy to prove that M is strongly circular iff so is M ′. �

In the next theorem we prove that not only the sc-problem, but also the c-problem is
decidable for pmtts. We will show that each configuration 〈q, h〉 of a pmtt M can be
encoded by a particular input tree, and we can simulate the computation of M starting
in 〈q, h〉 by a pmtt M ′. Hence, if 〈q, h〉 is a circular configuration, then (starting in the
initial configuration) M ′ will loop when processing the tree which encodes 〈q, h〉, i.e.,
M ′ is strongly circular. Thus, for deciding the c-problem of M , it is sufficient to decide
the sc-problem of M ′.

We note that pmtts (even 0-ptts) are able to make a preorder traversal of an input tree
(see the preorder traversals made by pebble tree-walking automata in [EH99, EHB99]).
This essential feature of pmtts is due to the fact that a pmtt can test the child number
and the label of the current node.

Theorem 10.9 The c-problem for pmtts is decidable.

Proof. Let M = (Q,Σ,∆, q0, R) be an n-pmtt and Σ′ = {〈σ, b〉 | σ ∈ Σ, b ∈ {0, 1}≤n}∪
{(q, 〈σ, b〉) | q ∈ Q, σ ∈ Σ, b ∈ {0, 1}≤n}, where the rank of each symbol 〈σ, b〉 (or

10 FURTHER RESULTS 83

(q, 〈σ, b〉)) of Σ′ is the rank of σ. For every tree s ∈ TΣ′ , let trunc(s) ∈ TΣ be the
tree retrieved from s by deleting the states and bitvectors. We can construct an n-
pmtt M ′ = (Q′,Σ′,∆, q′0, R

′) which works as follows. We describe M ′ intuitively on an
arbitrary input tree s ∈ Σ′.

• In the first phase of the computation, M ′ checks, whether s fulfills the following
requirements or not (by making at most n + 2 preorder traversals). If one of the
items a) b) or c) is not true for s, then M ′ stops without producing an output.

a) There must be exactly one node u in s labelled by a symbol of the form
(q, 〈σ, b〉) in s. All the other nodes in s are of the form 〈σ, b〉 (1 preorder
traversal).

b) There is a number 0 ≤ l ≤ n, such that every node of s is labelled by a
symbol 〈σ, b〉 (or (q, 〈σ, b〉)) ∈ Σ′ with |b| = l (1 preorder traversal).

c) For every 1 ≤ k ≤ l, there must be exactly one node in s, labelled by a
symbol 〈σ, b〉 (or (q, 〈σ, b〉)) ∈ Σ′, where b(k) = 1 (l preorder traversals).

• For every 1 ≤ k ≤ l, let uk be the (only) node, where the k-th bit of the bit
vector component is 1. By making l preorder traversals, M ′ places pebble 1 at
node u1,. . . , and pebble l at node ul, respectively.

• Finally, by a preorder traversal, M ′ searches the (only) node u labelled by the
symbol of the form (q, 〈σ, b〉), and simulates M starting out from u, respecting
only the Σ-components of the nodes (i.e. M ′ simulates the calculation of M
on trunc(s), where pebbles 1, . . . , l are placed at nodes u1, . . . , ul, respectively,
starting out at node u).

It is straightforward that M ′ is strongly circular iff M is circular, since if s fulfills
properties a), b), and c), then s determines a configuration 〈q, (u, [u1; . . . ;ul])〉 of
M and trunc(s). Thus, if M can fall into an infinite cycle from the configuration
〈q, (u, [u1; . . . ;ul])〉, then so can M ′ starting out from its initial configuration, and vice
versa. With this, we have reduced the c-problem of pmtts to the sc-problem of pmtts,
which is decidable by Theorem 10.8. �

Since ptts are special pmtts, by Theorems 10.8 and 10.9, we obtain the following result.

Corollary 10.10 Both the sc-problem and the c-problem for ptts are decidable.

We have also obtained the following.

Corollary 10.11 The wc-problem for pmtts is decidable.

Proof. Given a pmtt M , construct the ptt M ′ associated with M (Definition 8.1).
By Lemma 8.9, M is weakly circular if and only if M ′ is circular. Since this latter is
decidable by Corollary 10.10, it is also decidable if M is weakly circular. �

10 FURTHER RESULTS 84

10.3 The domain hierarchy of not strongly circular dptts

A hierarchy is a family (Kn | n ≥ 1), where Kn is a class such that Kn ⊆ Kn+1 for
every n ≥ 1. This hierarchy is strict if Kn ⊂ Kn+1 for every n ≥ 1

The tree recognizer n-pebble alternating tree-walking automaton, defined as follows,
models the behaviour of an n-ptt focused on its domain.

Definition 10.12 For n ≥ 0, an n-pebble alternating tree-walking automaton (shortly
n-patwa) is a system A = (Q,Σ, q0, qyes , R), where

• Q is a finite nonempty set, the set of states,

• Σ is a ranked alphabet, the input alphabet,

• q0 ∈ Q is a distinguished state, the initial state,

• qyes 6∈ Q is a new state, the accepting state,

• R is a finite set of rules, of the form 〈q, σ, b, j〉 → {〈p1, ϕ1〉, . . . , 〈pm, ϕm〉} where
q ∈ Q, σ ∈ Σ, b ∈ {0, 1}≤n, 0 ≤ j ≤ maxr (Σ), and p1, . . . , pm, p ∈ Q, ϕ ∈ Iσ,b,j. �

By a pebble alternating tree-walking automaton (patwa) we mean an n-patwa for some
n. A tree s ∈ TΣ is called an input tree to A or just an input tree. In the remainder of
this subsection A stands for the n-patwa A = (Q,Σ, q0, qyes , R).

We say that A is deterministic, if there is at most one rule of R with left-hand side
〈q, σ, b, j〉 for every q ∈ Q, σ ∈ Σ, b ∈ {0, 1}≤n, and j ∈ {0, 1, . . . ,maxr (Σ)}. Next we
introduce further syntactic restrictions for patwa.

Definition 10.13 A is

• an alternating tree-walking automaton (shortly atwa), if A is a 0-patwa.

• an n-pebble tree-walking automaton (shortly n-ptwa)[EH07], if the right-hand side
of its each rule has exactly one element. (By a pebble tree-walking automaton
(ptwa) we mean an n-ptwa for some n.)

• a tree-walking automaton (shortly twa)[AU71], if A is a 0-ptwa. �

In order to define the semantics of patwa, we will use the concept of a pebble configura-
tion, of the execution of an instruction on a pebble configuration, and of a configuration,
cf. Subsection 3.3.

Due to alternation, A is capable to make arbitrary number of parallel computations
(threads) while processing an input tree s. Hence, the computation relation is defined
over the subsets of the set CA,s of configurations over s. Now we turn to introduce this
computation relation.

10 FURTHER RESULTS 85

Definition 10.14 Let s ∈ TΣ be an input tree. The computation relation of A
on s is the binary relation `A,s⊆ P(CA,s) × P(CA,s) such that, for all configura-
tion sets H1,H2 ∈ P(CA,s) we have H1 `A,s H2 if and only if there is a rule
〈q, σ, b, j〉 → {〈p1, ϕ1〉, . . . , 〈pm, ϕm〉} in R and there is a configuration 〈q, h〉 ∈ H1,
such that test(h) = (σ, b, j) and H2 = (H1 − {〈q, h〉}) ∪ {〈p1, ϕ1(h)〉, . . . , 〈pm, ϕm(h)〉}.
�

The n-patwa A works as follows on an input tree s. It starts in the initial configuration
set {〈q0, (ε, [])〉}. Then, applying `A,s step by step, it computes further configuration
sets. The goal is that each parallel computation spawned from the initial configuration
is accepting, in other words, to terminate in an accepting configuration set H ∈ P(CA,s),
which means that the state-component of each configuration in H is qyes . Note that,
by definition, there is no computation step from an accepting configuration set.

Let ACCA,s = {qyes}×PCA,s be the largest accepting configuration set. Thus the tree
language recognized by A is defined as follows.

Definition 10.15 The tree language recognized by A is

L(A) = {s ∈ TΣ | 〈q0, (ε, [])〉 `
∗
A,s H, for some H ⊆ ACCA,s}. �

The classes of tree languages computed by n-patwa, atwa, n-ptwa, and twa are de-
noted by n-PATWA, ATWA, n-PTWA, and TWA, respectively. Moreover, PATWA =
⋃

n≥0 n-PATWA and PTWA =
⋃

n≥0 n-PTWA. The deterministic subclasses of the
above tree language classes are denoted by prefixing their names with the letter d, e.g.,
n-dPATWA, dATWA, etc.

It should be clear that with the growing number of pebbles, the recognizing power of
patwa and ptwa do not decrease, i.e., n-PATWA ⊆ (n + 1)-PATWA, and n-PTWA ⊆
(n + 1)-PTWA for every n ≥ 0. The proof of the following lemma is obvious.

Lemma 10.16 For each n ≥ 0 we have n-PATWA = dom(n-PTT) and n-dPATWA =
dom(n-dPTT). �

Corollary 10.17 dom(PTT) = REG.

Proof. By Corollary 10.5, we have dom(PTT) ⊆ REG. The reverse inclusion follows
from Lemma 10.16, and from the fact that each (conventional) top-down tree automaton
is a special 0-patwa. �

We note that Corollary 10.17 can also be obtained from Theorem 4.7 of [Muz08], stating
that n-PATWA = REG, and from Lemma 10.16. However, in this thesis we did not
elaborate the details of Theorem 4.7 of [Muz08], even if it is a main result of that paper,
because our Corollary 10.5 is a significantly stronger result.

Now we introduce the concept of a looping patwa. Roughly speaking, A is looping, if it
has an infinite computation on an input tree, which starts in the initial configuration.
Note that the looping property for patwa is analogous with the strong circularity of
pebble macro tree transducers (defined in Section 4). However, we use the name looping
because of historical reasons.

10 FURTHER RESULTS 86

More exactly, a configuration 〈q, h〉 ∈ CA,s is a looping configuration, if there is a
configuration set H ⊆ CA,s, such that 〈q, h〉 ∈ H and 〈q, h〉 `+

A,s H. Moreover, A is
looping, if there is an input tree s ∈ TΣ, a configuration set H ⊆ CA,s such that

• H contains a looping configuration and

• 〈q0, (ε, [])〉 `
∗
A,s H.

Otherwise, A is nonlooping.

Let us denote the “nonlooping subclasses” of the above tree language classes by
n-PATWAnl, n-dPATWAnl, etc. The proof of the following lemma is also obvious.

Lemma 10.18 For each n ≥ 0 we have n-PATWAnl = dom(n-PTT nsc) and
n-dPATWAnl = dom(n-dPTT nsc). �

Theorem 1 of [BC06] states that dTWA ⊂ TWA, i.e., that deterministic tree-walking
automata are less powerful than their nondeterministic counterparts. We notice that
the separating tree language treated by [BC06] (which cannot be recognized by a de-
terministic twa) can also be recognized by a nonlooping twa. Thus, dTWAnl ⊂ TWAnl.
Moreover, Proposition 1 of [MSS06] states that dTWA = dTWAnl. Hence we obtain
the following “nonlooping version” of the above proper inclusion result.

Proposition 10.19 dTWA ⊂ TWAnl. �

We will need the following result.

Proposition 10.20 ([MSS06], Theorem 1) dTWA = co-dTWA. �

One of the main results of [BSSS06] is Theorem 1.1 which states that ptwa do not
recognize all regular tree languages, i.e, that PTWA ⊂ REG. Using the obvious fact
that PTWAnl ⊆ PTWA, we obtain the following statement.

Proposition 10.21 PTWAnl ⊂ REG. �

Moreover Theorem 1.2 of [BSSS06] states that the recognizing power of n-ptwa is
strictly less than that of (n+1)-ptwa for each n ≥ 1, i.e, that n-PTWA ⊂ (n+1)-PTWA.

We note that this result implies the proper inclusion TWA ⊂ REG, which was proved in
Theorem 2 of [BC05]. We are going to obtain the “nonlooping version” of the hierarchy
n-PTWA ⊂ (n + 1)-PTWA. For this we make the following observations.

• In [MSS06] it was shown that, for each n-ptwa A with weak pebble handling, a
nonlooping n-ptwa A′ with weak pebble handling can be constructed, such that
L(A) = L(A′). (Weak pebble handling was discussed in Section 1.)

• It was shown in Lemma 5.1 of [BSSS06] that for each n-ptwa A an n-ptwa A′

with weak pebble handling can be constructed, such that L(A) = L(A′).

10 FURTHER RESULTS 87

By the above two observations and by the strict hierarchy n-PTWA ⊂ (n + 1)-PTWA,
n ≥ 1 we conclude the following result.

Proposition 10.22 For each n ≥ 0, n-PTWAnl ⊂ (n + 1)-PTWAnl. �

Next we prove that the class of complements of tree languages in n-dPATWAnl is the
same as n-PTWAnl.

Lemma 10.23 For each n ≥ 0, co-n-dPATWAnl = n-PTWAnl.

Proof. co-n-dPATWAnl ⊆ n-PTWAnl: Let A = (Q,Σ, q0, qyes , R) be a deterministic
and nonlooping n-patwa. We construct the n-ptwa A′ = (Q,Σ, q0, qyes , R

′) such that
R′ is the smallest set of rules satisfying the following conditions.

• For each q ∈ Q, σ ∈ Σ, b ∈ {0, 1}≤n, and j ∈ {0, . . . ,maxr (Σ)}, if there is no rule
in R with left-hand side 〈q, σ, b, j〉, then the accepting rule 〈q, σ, b, j〉 → 〈qyes , stay〉
is in R′.

• Each pebble tree-walking rule 〈q, σ, b, j〉 → 〈p, ϕ〉 of R is also in R ′.

• For each alternating rule 〈q, σ, b, j〉 → {〈p1, stay〉, 〈p2, stay〉}, the pebble tree-
walking rules 〈q, σ, b, j〉 → 〈p1, stay〉 and 〈q, σ, b, j〉 → 〈p2, stay〉 are in R′.

Since M is nonlooping, it is obvious that also M ′ is nonlooping. The proof of L(A′) =
L(A) is straightforward, hence we omit it.

n-PTWAnl ⊆ co-n-dPATWAnl: Let A = (Q,Σ, q0, qyes , R) be a nonlooping ptwa. We
construct the deterministic patwa A′ = (Q′,Σ, q0, q

′
yes , R

′) as follows.

• Q′ = Q ∪ {qyes}

• R′ is the smallest set of rules satisfying the following conditions.

– For each q ∈ Q, σ ∈ Σ, b ∈ {0, 1}≤n, and j ∈ {0, . . . ,maxr (Σ)}, if there is no
rule in R with left-hand side 〈q, σ, b, j〉, then the accepting rule 〈q, σ, b, j〉 →
〈q′yes , stay〉 is in R′.

– For each q ∈ Q, σ ∈ Σ, b ∈ {0, 1}≤n, and j ∈ {0, . . . ,maxr (Σ)}, if
{〈q1, ϕ1〉, . . . , 〈qm, ϕm〉} is the set of state-instruction pairs that are the
right-hand sides of rules in R with left-hand side 〈q, σ, b, j〉, then the rule
〈q, σ, b, j〉 → {〈q1, ϕ1〉, . . . , 〈qm, ϕm〉} is in R′.

Again, it is obvious that A′ is deterministic, nonlooping, and that L(M) = L(M ′). �

Now we prove the following proper inclusion result.

Theorem 10.24 dTWA ⊂ dATWAnl.

10 FURTHER RESULTS 88

Proof. We prove by contradiction. Let us assume that dTWA = dATWAnl and argue
as follows.

a) Obviously, co-dTWA = co-dATWAnl.

b) By a) and Proposition 10.20, we get dTWA = co-dATWAnl.

c) By b) and co-dATWAnl = TWAnl (the case n = 0 of Lemma 10.23), we obtain
dTWA = TWAnl, which contradicts Proposition 10.19. �

Next we prove that the class of tree languages recognized by deterministic and non-
looping n-patwa form a proper hierarchy with respect to n.

Theorem 10.25 For each n ≥ 0, n-dPATWAnl ⊂ (n + 1)-dPATWAnl.

Proof. The inclusion n-dPATWAnl ⊆ (n + 1)-dPATWAnl is obvious. We prove
that the inclusion is proper by contradiction. Let us assume that n-dPATWAnl =
(n+1)-dPATWAnl. Then also co-n-dPATWAnl = co-(n+1)-dPATWAnl and, by Lemma
10.23, we obtain that n-PTWAnl = (n+1)-PTWAnl. However, this contradicts Propo-
sition 10.22. �

Finally, we prove, that deterministic and nonlooping patwa cannot recognize all regular
tree languages.

Theorem 10.26 dPATWAnl ⊂ REG.

Proof. The inclusion dPATWAnl ⊆ REG comes from Lemma 10.18 and Corol-
lary 10.5. We prove that the inclusion is proper by contradiction. For this, assume
that dPATWAnl = REG.

a) Then co-dPATWAnl = co-REG.

b) By a) and Proposition 2.2 we obtain co-dPATWAnl = REG.

c) By b) and Lemma 10.23 we get PTWAnl = REG, which contradicts Proposi-
tion 10.21. �

Applying Lemma 10.18 and Theorems 10.24, 10.25, and 10.26 we obtain the following
theorem.

Theorem 10.27 (1) dTWA ⊂ dom(0-dPTT nsc).

(2) For each n ≥ 0, dom(n-dPTT nsc) ⊂ dom((n + 1)-dPTT nsc).

(3) dom(dPTT nsc) ⊂ REG. �

In Fig. 6 we visualize the strict hierarchy (dom(n-dPTT nsc) | n ≥ 0) and its relation
to the classes REG and dTWA.

11 CONCLUSIONS 89

Cor. 10.17

REG = dom(PTT)

dom(dPTT nsc)

...

dom(1-dPTT nsc)

dom(0-dPTT nsc)

Th. 10.27(3)






Th. 10.27(2)

dTWA

Th. 10.27(1)

Figure 6: The hierarchy (dom(n-dPTT nsc) | n ≥ 0) and its relation to REG and dTWA.

11 Conclusions

We considered pebble macro tree transducers with strong pebble handling. As the first
main result, we proved the characterization n-PMTT = n-PTT ◦YIELD for each n ≥ 0
(Theorem 7.10).

We have also investigated decompositions of special pmtts, such that determinism
and noncircularity are preserved. In fact, we gave the following decompositions of
the tree transformation classes computed by deterministic and by context-linear not
weakly circular pmtts: n-dPMTTnwc ⊆ n-dtPTTnc ◦ dYIELD and n-clPMTTnwc ⊆
n-tPTTnc ◦ dYIELD (Theorem 8.10). As a corollary, we obtained the following results
concerning composition closures: n-dPMTT ∗

nwc = n-dPTT ∗
nc and n-clPMTT ∗

nwc =
n-PTT ∗

nc (Theorem 8.11). Further corollaries are 0-dPMTTnwc ⊆ (0-dPTTnc)
2 and

0-clPMTTnwc ⊆ (0-PTTnc)
2 (Theorem 8.12).

Then we proved that each n-ptt can be simulated by an (n − 1)-pmtt, i.e., that the
inclusion n-(d)PTT ⊆ (n− 1)-(d)PMTT (Theorem 9.6) holds for each n ≥ 1.

As corollaries, we obtained the inclusions n-PMTT ⊆ 0-PTT ◦ YIELDn+1,
n-PMTT ⊆ 0-PTT n+2, and n-PMTT ⊆ sMTT n+2 for every n ≥ 0; and
n-PTT ⊆ 0-PTT ◦ YIELDn, n-PTT ⊆ 0-PTT n+1, and n-PTT ⊆ sMTT n+1 for ev-
ery n ≥ 0 (Theorem 10.3).

We have also proved that the inverses of (compositions of) pebble macro tree transfor-
mations effectively preserve regularity (Theorem 10.4), which implies that the domains
of (compositions of) pebble macro tree transformations are regular languages (Corol-
lary 10.5).

As a contribution to XML theory, we concluded that the type checking problem of
pebble macro tree transformations is decidable (Theorem 10.6).

11 CONCLUSIONS 90

Moreover, we have also obtained from Corollary 10.5 that the three circularity problems
(the sc-problem, the c-problem, and the wc-problem) introduced in this thesis are
decidable for pmtts. (Theorems 10.8, 10.9, and Corollary 10.11).

We also showed that the domains of deterministic and not strongly circular n-pebble
tree transformations form a strict hierarchy with respect to n, see Theorem 10.27 and
Fig. 6.

Using alternative proof methods, we more or less have extended the decomposition
and type checking results of [EM03] for pmtts with strong pebble handling. In the
proof of Theorem 10.3, which is the hearth of the extension, we do not use the tree
transformation EncPeb of [EM03]. In fact EncPeb is applicable only for n-pmtts
with weak pebbles. However, it is an interesting open problem whether we can extend
EncPeb for strong pebbles and use this extension in decomposing n-pmtts (n-ptts) into
0-pmtts (0-ptts), as it was done for the weak pebble case in [EM03].

As we mentioned, the n-ptt M ′ constructed in Definition 7.1 from an arbitrary n-
pmtt M is nondeterministic. However, another construction may exist showing that
n-dPMTT ⊆ n-dPTT ◦dYIELD holds. If this is the case, then (with similar proofs) we
could conclude the deterministic (and maybe also noncircular) versions of the inclusions
obtained in Theorem 10.3.

It is still open whether n-pebble macro tree transducers are more powerful than n-
pebble macro tree transducers with weak pebble handling (i.e., than n-pebble macro
tree transducers of [EM03]). If n-pmtts and n-pmtts with weak pebble handling have
the same transformation capacity and hence, for each n-pmtt, there is and equivalent
n-pmtt with weak pebbles, then we can apply EncPeb to re-obtain our decomposition
results for strong pebble cases, such that determinism and noncircularity is preserved.

12 MAGYAR NYELVŰ ÖSSZEFOGLALÓ 91

12 Magyar nyelvű összefoglaló

A disszertációban kavics makró fatranszformátorokat vizsgálunk. Egy n-kavics makró
fatranszformátor alatt egy olyan M , véges állapotú eszközt értünk, amely egy rangolt
ábécé feletti véges fákat transzformál át egy másik rangolt ábécé feletti véges fákká.
Az input és output ábécé elemein ḱıvül maguk az állapotok is rangolt szimbólumok. M
szabályai 〈q, σ, b, j〉(y1, . . . , ym)→ ζ alakúak, ahol q egy állapot, σ egy input szimbólum,
b egy legfeljebb n hosszúságú bit vektor, j egy nemnegat́ıv egész, y1, . . . , ym paraméter
változók, továbbá ζ egy olyan rangolt fa, melynek csúcsai output szimbólumok, 〈p, ϕ〉
alakú állapot-utaśıtás párok és (levélben) y1, . . . , ym. Megjegyezzük, hogy 〈p, ϕ〉 rangja
megegyezik a p állapot rangjával, valamint a ϕ utaśıtás stay , up vagy down i alakú
lehet.

M rendelkezik egy mutatóval, amely egy s input fa tetszőleges csúcsára mutathat és an-
nak élein mozoghat, továbbá M veremszerűen elhelyezheti-felszedheti az 1, . . . , n számú
kavicsokat s csúcsain. Egy s-en elhelyezett kavics bizonyos információkat nyújthat M -
nek, amely módośıthatja a számı́tást.

M az s input fán vándorolva mondatformák egy sorozatát számı́tja ki. Mondatforma
alatt egy olyan ξ fát értünk, amely output szimbólumokból és 〈p, (u, [u1; . . . ;ul])〉 alakú
konfigurációkból áll valamely 0 ≤ l ≤ n-re, ahol p a konfiguráció állapota, u egy s-beli
csúcs, amelyre M mutatója mutat, végül u1, . . . , ul szintén s-beli csúcsok, amelyek azt
jelölik, hogy az 1, . . . , l számú kavicsok el vannak helyezve s-en, mégpedig rendre az
u1, . . . , ul csúcsokon. Egy 〈p, (u, [u1; . . . ;ul])〉 konfiguráció (u, [u1; . . . ;ul]) részét kavics
konfigurációnak mondjuk. Megjegyezzük, hogy 〈p, (u, [u1; . . . ;ul])〉 rangja megegyezik
p rangjával.

A számı́tás egy speciális mondatformával, a 〈q0, (ε, [])〉 kezdőkonfigurációval indul, ahol
q0 jelenti M kezdőállapotát, ε a gyökérre mutató pointert, [] pedig kavics poźıcióknak
az üres listáját.

Ezek után M a következőképpen működik. Tegyük fel, hogy a számı́tás egy ξ mon-
datformánál tart. Tekintsük ξ-nek egy olyan v csúcsát, amelynek a ćımkéje egy
〈p, (u, [u1; . . . ;ul])〉 alakú konfiguráció, és a ξ gyökerétől v-ig tartó út minden v-től
különböző csúcsának output szimbólum (tehát nem konfiguráció) a ćımkéje. Vegyünk
továbbá egy olyan r : 〈q, σ, b, j〉(y1, . . . , ym) → ζ, M -beli szabályt, feltéve ha létezik,
amelyre teljesül, hogy

• az s input fa u csúcsa σ-val ćımkézett,

• a b bit vektor l hosszú és pontosan azokon az i indexeken 1, ahol ui = u, továbbá

• az s fa u csúcsa j-ik fia az apjának (j = 0 esetben u = ε maga a gyökér).

Ekkor M az r szabályt az alábbikaban léırt módon alkalmazza a ξ mondatforma v
csúcsában a következő mondatforma kiszámı́tására.

1) Minden ζ-ban előforduló ϕ utaśıtás végrehajtódik az (u, [u1; . . . ;ul]), kavics kon-
figuráción, amelyből eredményül keletkezett kavics konfigurációt ϕ((u, [u1; . . . ;ul]))-
lel jelöljük. Ha ϕ = down i (ϕ = up), akkor ϕ((u, [u1; . . . ;ul])) = (u′, [u1; . . . ;ul]),

12 MAGYAR NYELVŰ ÖSSZEFOGLALÓ 92

amely azt jelöli, hogy a mutató elmozdult az u csúcs i-edik fiára (apjára), vagyis u ′-
re. Továbbá, ha ϕ = drop, akkor ϕ((u, [u1; . . . ;ul])) = (u, [u1; . . . ;ul;u]), amely azt
jelenti, hogy M az l + 1-ik kavicsot az u csúcsra helyezte el (feltéve ha l < n). Végül,
ha ϕ = lift , akkor ϕ((u, [u1; . . . ;ul])) = (u, [u1; . . . ;ul−1]), vagyis M az l-edik kavicsot
felszedte az ul csúcsról (feltéve ha l > 0). (Megjegyezzük, hogy kavicsot csak arra
a poźıcióra helyezhetünk, ahová a mutató mutat, mı́g kavicsot felemelni tetszőleges
poźıcióról lehet. Ez utóbbit erős kavics kezelésnek h́ıvjuk, szemben a gyenge kavics
kezeléssel (lásd lentebb).)

2) Tetszőleges ϕ, ζ-ban előforduló utaśıtásra a ϕ((u, [u1; . . . ;ul])) kavics konfiguráció be-
helyetteśıtődik a ζ-beli ϕ szimbólum minden előfordulásába. Jelöljük ζ ′-vel a keletkezett
fát.

3) Végül ζ ′ (amelynek a levelei lehetnek y1, . . . , ym, paraméter változók) másodrendű
módon behelyetteśıtődik a ξ mondatforma 〈p, (u, [u1; . . . ;ul])〉 konfigurációval ćımkézett
v csúcsába. A helyetteśıtés eredményezi a számı́tás következő mondatformáját.

Ha a keletkezett mondatforma nem tartalmaz konfigurációt, akkor ez az M kavics
fatranszformátor s inputjának egy output fája. A tézisben τM -mel jelöljük az M által
kiszámı́tott fatranszformációt, amely az összes ily módon keletkező input-output fákból
álló párok halmaza.

M működésére vonatkozóan az alábbi megjegyzéseket tesszük.

• Az eredetileg [EM03]-ban bevezetett kavics makró fatranszformátor ú.n. gyenge
kavics kezeléssel működik, ami még annyi megszoŕıtást jelent a tézisben szereplő
általánosabb fatranszformátorral szemben, hogy kavicsot csak úgy szedhetünk fel
az input fáról, ha az adott kavics poźıciója egyben a mutató poźıciója. Tehát
csak olyan (u, [u1; . . . ;ul]) kavics konfiguráción hajthatjuk végre a lift utaśıtást,
amelyre u = ul.

• Ha M minden állapota 0 rangú, akkor M egy n-kavics fatranszformátor.

• Lehetséges, hogy M számı́tási sorozata az s input fán soha nem fog output fában
terminálni. Az ilyen esetekről a 4. fejezetben részletesen tárgyalunk és bevezetjük
a vonatkozó gyenge cirkularitás, cirkularitás és erős cirkularitás fogalmakat.

Az első fő eredményünk egy kavics makró fatranszformátorokra vonatkozó
“yield t́ıpusú” kompoźıció. Nevezetesen, tetszőleges M , n-kavics fatranszformátor
és yield g fatranszformáció esetén (ahol g egy 0-rangú szimbólumokból fákba történő
leképezés), megkonstruálunk egy olyan M ′, n-kavics makró fatranszformátort, amelyre
teljesül a τM ◦ yield g = τM ′ egyenlőség. Ezzel bebizonýıtjuk az n-PTT ◦ YIELD ⊆
n-PMTT kompoźıciós eredményt, lásd a 6.1 Lemmát, ahol n-PTT (n-PMTT) jelenti
az n-kavics (makró) fatranszformátorok által kiszámı́tott fatranszformációk osztályát,
mı́g YIELD jelenti a nemdeterminisztikus yield fatranszformációk osztályát. A kom-
poźıciónkkal kapcsolatban megjegyezzük, hogy ha M és yield g determinisztikusak
(totálisak), akkor ugyanúgy M ′ is determinisztikus (totális) lesz.

Továbbá, a fenti eredmény ford́ıtottjaként, kavics makró fatranszformátorokat dekom-
ponálunk. Nevezetesen, tetszőleges M , n-kavics makró fatranszformátorhoz megkonst-

12 MAGYAR NYELVŰ ÖSSZEFOGLALÓ 93

ruálunk egy olyan M ′, n-kavics fatranszformátort és egy yield g fatranszformációt, ame-

lyre τM = τM ′ ◦ yield g, lásd a 7.7 Lemmát. Így kapjuk az n-PMTT ⊆ n-PTT ◦YIELD
dekompoźıciós eredményt, lásd a 7.9 Következményt. Továbbá, a 6.1 Lemmából és
7.9 Következményből nyilvánvalóan következik az n-PMTT = n-PTT ◦YIELD karak-
terizáció (7.10 Tétel).

Sajnos a fenti dekompoźıciós konstrukció gyengesége, hogy M ′ minden esetben erősen
cirkuláris és nem determinisztikus (akármilyen speciálisnak választjuk meg a kiindulási
M -et). Ezt a problémát a 7.3 fejezetben tárgyaljuk részletesebben, ahol olyan, ka-
vics makró fatranszformátorokra vonatkozó dekompoźıciós technikát keresünk, amely
megőrzi a determinisztikusságot és a nemcirkularitást. Megadunk egy olyan dekom-
poźıciós konstrukciót (8.1 Defińıció), amely bizonyos speciális kavics makró fatransz-
formátorokra alkalmazható és amelyik megőrzi az előbb emĺıtett tulajdonságokat. A
8.4 és 8.6 Lemmákban megmutatjuk, hogy ha M determinisztikus (vagy kontext-
lineáris), továbbá M ′ nemcirkuláris, akkor valóban teljesül a τM = τM ′ ◦ yieldg

egyenlőség.

Ezek után megvizsgáljuk, hogy a 8.1 Defińıcióban megadott dekompoźıciós konstrukci-
óban mikor teljesül, hogy M ′ nemcirkuláris. Egy triviális eset az, amikor M egy makró
fatranszformátor. Ekkor nyilvánvalóan M ′ egy felszálló fatranszformátor, lásd [EV85]-
öt, amely biztosan nem lehet cirkuláris. Egy kevésbé triviális eredményünk pedig az,
hogy ha M nem gyengén cirkuláris, akkor M ′ nemcirkuláris. Ezzel megkapjuk tézisünk
egy következő fő eredményét, a 8.10 Következményt, amely kimondja, hogy tetszőleges
determinisztikus (vagy kontext-lineáris) nem gyengén cirkuláris M , n-kavics makró
fatranszformátor esetén megkonstruálhatunk olyan M ′, n-kavics fatranszformátort és
yieldg fatransformációt, amelyre τM = τM ′ ◦ yield g teljesül.

A következő fő eredményünkben, a 9.6 Tételben, bebizonýıtjuk, hogy tetszőleges M , n-
kavics fatranszformátor szimulálható (n−1)-kavics makró fatranszformátorral (feltéve,
ha n ≥ 1). Képletben, tetszőleges n ≥ 1 esetén n-PTT ⊆ (n−1)-PMTT . A konstrukci-
óban rejlő ötlet, hogy a legutolsó kavics működését makró h́ıvásokkal tudjuk szimulálni.

A 7.10 és 9.6 Tételek fontos következményekhez vezetnek. Néhányat összegyűjtöt-
tünk a 10.3 Tételben, melyek közül a legérdekesebbek a következő dekompoźıciók:
n-PTT ⊆ 0-PTT n+1 és n-PTT ⊆ sMTT n+1 tetszőleges n ≥ 1-re, továbbá ezek makró
verziói, vagyis n-PMTT ⊆ 0-PTT n+2 és n-PMTT ⊆ sMTT n+2 tetszőleges n ≥ 0-
ra, ahol sMTT alatt az [EM03]-ban bevezetett stay-makró fatranszformációk osztályát
értjük.

A fenti dekompoźıciós eredményekből a következő eredmények adódnak.

1) Az n-PMTT ⊆ sMTT n+2 tartalmazásból és a stay-makró fatransz-
formációkra vonatkozó [EM03]-beli eredményekből következik, hogy a kavics
makró fatranszformációk (kompoźıciói) megőrzik a regularitást (10.4 Tétel).
Következésképpen a kavics makró fatranszformációk értelmezési tartományai
regulárisak (10.5 Következmény). A 10.4 Tételnek további következménye a 10.6 Tétel,
mely szerint az XML elméletből ismert t́ıpus ellenőrzési és “majdnem mindig” t́ıpus
ellenőrzési problémák eldönthetőek a kavics makró fatranszformációkra.

2) A kavics makró fatranszformációk értelmezési tartományának reguláris voltát ki-

12 MAGYAR NYELVŰ ÖSSZEFOGLALÓ 94

haszálva (10.5 Következmény) megadunk olyan algoritmusokat, amelyek a kavics makró
fatranszformátorok gyenge cirkularitási, cirkularitási valamint erős cirkularitási tulaj-
donságait eldönti (rendre a 10.8, 10.9 Tételek és a 10.11 Következmény).

Végezetül megvizsgáljuk a kavics fatranszformációk értelmezési tartományait.
Definiáljuk az n-kavics alternáló fabejáró automata fogalmát, amely egy n-kavics
fatranszformátor input fán való működését modellezi. Az új automata foga-
lom seǵıtségével a 10.27 Tételben bebizonýıtjuk, hogy a determinisztikus nem
erősen cirkuláris n-kavics fatranszformációk értelmezési tartományaiból képzett
fanyelvosztályok valódi tartalmazási hierarchiát képeznek n értékére vonatkozóan.

A tézis feléṕıtése a következő. A 2. fejezetben definiáljuk a szükséges alapfogalmakat,
majd a 3. fejezetben bevezetjük a kavics makró fatranszformátor fogalmát. A 4. fe-
jezetben definiáljuk a három cirkularitási fogalmat és összefüggéseket állaṕıtunk meg
közöttük. Az 5. fejezetben általánośıtjuk az [EV85]-ben bevezetett yield fatransz-
formációkat, majd a főbb eredményeinkhez szükséges előkésźıtő lemmákat igazolunk
rájuk vonatkozóan. A 6. fejezetben megmutatjuk, hogy minden n-kavics fatransz-
formáció és yield fatranszformáció kompoźıciója kiszámı́tható egy n-kavics fatransz-
formátorral. A 7. fejezetben kimondjuk és bebizonýıtjuk az n-kavics makró fatransz-
formátorokra vonatkozó (általános esetben is működő) dekompoźıciós eredményünket,
a 8. fejezetben pedig speciális kavics makró fatranszformátorokra vonatkozó dekom-
poźıciós eredményeket bizonýıtunk. A 9. fejezetben megmutatjuk, hogy tetszőleges n-
kavics fatranszformátor szimulálható egy (n−1)-kavics fatranszformátorral (feltéve, ha
n ≥ 1). A 10. fejezetben felsoroljuk a kompoźıciós, dekompoźıciós és a 9. fejezetben sz-
ereplő eredmények fontos következményeit és alkalmazásait. Végezetül, a 11. fejezetben
összefoglaljuk eredményeinket és további nyitott problémákat vetünk fel.

Az 5., 6., és 8. fejezetek eredményei [FM08]-ban, a 7. és 9. fejezetek eredményei [FM09]-
ben, a 10. fejezet eredményei [Muz08]-ban és [FM08, FM09]-ben kerültek publikálásra.

13 ACKNOWLEDGMENTS 95

13 Acknowledgments

I would like to express my gratitude to Professor Zoltán Fülöp who supervised my
progress and freely shared his knowledge on the theory of tree automata and tree
transducers. Professor Fülöp invested enormous effort in my training and made me
enthusiastic about the beauty of making research in theoretical computer science.

I am also grateful to Professor Heiko Vogler for a three-month staying at the Faculty
of Informatics of the Technical University of Dresden in 2004. With his support and
without other obligations, I had a very productive research period during that time.

I could not have achieved the strict requirement of the PhD School without the knowl-
edge I got from my mathematics teachers from primary school up to university. In
particular, I thank my secondary school matematics teacher, Mrs Ferdinánd for her
excellent teaching work.

I have an everlasting gratitude towards my family. Their love always provided me with
hope and power to do my studies.

Finally, I thank my bride, Emese Orsolya Barcsa, for her love, support and patience
while I was working on this thesis.

Loránd Muzamel

14 THE AUTHOR’S PUBLICATIONS CITED IN THE THESIS 96

14 The author’s publications cited in the thesis

[FM08] Z. Fülöp and L. Muzamel. Circularity and Decomposition Results for
Pebble Macro Tree Transducers. Journal of Automata, Languages and
Combinatorics, 13(1):3–44, 2008.

[FM09] Z. Fülöp and L. Muzamel. Pebble Macro Tree Transducers with Strong Pebble
Handling. Fundam. Inf., 89(2-3):207–257, 2009.

[Muz08] L. Muzamel. Pebble Alternating Tree-Walking Automata and Their
Recognizing Power. Acta Cybernetica, 18(3):427–450, 2008.

Index

accepting state, 83
almost always type checking problem, 80
alternating tree-walking automaton, 83
atwa, 83

binary relation, 6
locally confluent, 6
normal form, 6
terminating, 6

circularity
circular configuration, 22
circular pmtt, 22
circularity problem, 80
strong circularity problem, 80
strongly circular pmtt, 22
weak circularity problem, 80
weakly circular pmtt, 22

composition, 6
context-free grammar, 46

direction flag, 59

hierarchy, 83

initial state, 13, 83
input ranked alphabet, 13, 83
instruction, 12

language, 6
leftmost path, 17
looping configuration, 84
looping patwa, 84

macro tree transducer, 13
macro tree transformation, 4
monadic insertion, 4, 79
mtt, 13

noncircular pmtt, 22
nonlooping patwa, 85
not strongly circular pmtt, 22
not weakly circular pmtt, 22

output ranked alphabet, 13
outside-in substitution, 15

path-tree, 59
patwa, 83
pebble alternating tree-walking automa-

ton, 5, 83
accepting configuration set, 84
computation relation, 84
deterministic, 83
initial configuration set, 84
input tree, 83
recognized tree language, 84

pebble macro tree transducer, 13
computation relation, 15
computed tree transformation, 15
configuration, 14
context linear, 13
deterministic, 13
execution of an instruction, 14
input tree, 13
outside active node, 15
pebble configuration, 14
sentential form, 14
test, 14
total, 13

pebble tree transducer, 13
in normal form, 59

pebble tree-walking automaton, 83
pmtt, 13
preorder traversal, 81
ptt, 13
ptwa, 83

ranked alphabet, 6
regular tree grammar, 46
right-α-tree, 17
rule, 13, 83

simultaneous induction, 9
smtt, 13
state set, 13, 83
stay-macro tree transducer, 13
stay-macro tree transformation, 4
string, 6

empty, 6
length, 6

97

INDEX 98

prefix, 6
proper prefix, 6

strong pebble handling, 12
substitution

OI substitution
in a tree, 9
in a tree language, 9

first-order substitution
for a node, 8
for a variable, 8

second-order substitution
by condition, 8
for a node, 9
for a variable, 8

string substitution, 8
tree substitution, 7

top-down tree transducer, 46
linear, 46
nondeleting, 46

tree, 7
label, 7
leaf, 7
node, 7

child number, 7
parent, 7

root, 7
subtree, 7

tree automaton, 7
tree language, 7

complement, 7
regular, 7

tree transformation, 7
domain, 7
preserving regularity, 7

tree-walking automaton, 83
twa, 83
type checking problem, 4, 80

variable, 7
parameter variable, 13

weak pebble handling, 12

yield tree transformation, 26
deterministic, 26
total, 26

REFERENCES 99

References

[AU71] A. V. Aho and J. D. Ullman. Translations on a context–free grammar.
Inform. Control, 19:439–475, 1971.

[Bak79] B. S. Baker. Composition of top-down and bottom-up tree transductions.
Inform. and Control, 41:186–213, 1979.

[BC05] M. Bojańczyk and T. Colcombet. Tree-walking automata do not recog-
nize all regular languages. In Proceedings of the thirty-seventh annual
ACM symposium on Theory of computing (STOC ’05), pages 234–243,
New York, NY, USA, 2005. ACM Press.

[BC06] M. Bojańczyk and T. Colcombet. Tree-walking automata cannot be de-
terminized. Theoretical Computer Science, 350:164–173, 2006.

[BMN02] G. J. Bex, S. Maneth, and F. Neven. A formal model for an expressive
fragment of XSLT. Information Systems, 27:21–39, 2002.

[Boo83] R. V. Book. Thue-systems and the Church-Rosser property: replacement
systems, specification of formal languages and presentations of monoids.
In L. Cummings, editor, Progress in combinatorics on words, pages 1–38.
Academic Press, New York, 1983.

[BSSS06] M Bojańczyk, M. Samuelides, T. Schwentick, and L. Segoufin. Expressive
power of pebble automata. In ICALP’06: Proceedings of 33rd International
Colloquium on Automata, Languages and Programming, pages 157–168.
Springer Berlin / Heidelberg, 2006.

[CF82] B. Courcelle and P. Franchi–Zannettacci. Attribute grammars and recur-
sive program schemes I–II. Theoret. Comput. Sci., 17:163–191, 235–257,
1982.

[EH99] J. Engelfriet and H. J. Hoogeboom. Tree-walking pebble automata. In Jew-
els are Forever, Contributions on Theoretical Computer Science in Honor
of Arto Salomaa, pages 72–83, London, UK, 1999. Springer-Verlag.

[EH05] J. Engelfriet and Hendrik Jan Hoogeboom. Automata with nested pebbles
capture first-order logic with transitive closure. Technical Report 05-02,
Leiden University, The Netherlands, April 2005.

[EH07] Joost Engelfriet and Hendrik Jan Hoogeboom. Automata with nested
pebbles capture first-order logic with transitive closure. Logical Methods
in Computer Science, 3(2), 2007.

[EHB99] J. Engelfriet, H. J. Hoogeboom, and J.-P. Van Best. Trips on Trees. Acta
Cybernet., 14:51–64, 1999.

[EM99] J. Engelfriet and S. Maneth. Macro Tree Transducers, Attribute Gram-
mars, and MSO Definable Tree Translations. Inform. and Comput.,
154:34–91, 1999.

REFERENCES 100

[EM03] J. Engelfriet and S. Maneth. A Comparison of Pebble Tree Transducers
with Macro Tree Transducers. Acta Informatica, 39:613–698, 2003.

[Eng75] J. Engelfriet. Bottom–up and top–down tree transformations — A com-
parison. Math. Systems Theory, 9:198–231, 1975.

[Eng80] J. Engelfriet. Some open questions and recent results on tree transducers
and tree languages. In R.V. Book, editor, Formal language theory: per-
spectives and open problems, pages 241–286. New York, Academic Press,
1980.

[Eng81] J. Engelfriet. Tree transducers and syntax-directed semantics. Technical
Report Memorandum 363, Technische Hogeschool Twente, March 1981.
also in: Proceedings of the Colloquium on Trees in Algebra and Program-
ming (CAAP 1992), Lille, France 1992.

[ES77] J. Engelfriet and E. M. Schmidt. IO and OI, Part I. J. Comput. System
Sci., 15(3):328–58, 1977.

[ES78] J. Engelfriet and E.M. Schmidt. IO and OI, Part II. J. Comput. System
Sci., 16(1):67–99, 1978.

[EV85] J. Engelfriet and H. Vogler. Macro tree transducers. J. Comput. System
Sci., 31:71–146, 1985.

[EV86] J. Engelfriet and H. Vogler. Pushdown machines for the macro tree trans-
ducer. Theoret. Comput. Sci., 42(3):251–368, 1986.

[Fis68] M.J. Fischer. Grammars with macro–like productions. PhD thesis, Harvard
University, Massachusetts, 1968.

[FM08] Z. Fülöp and L. Muzamel. Circularity and Decomposition Results for
Pebble Macro Tree Transducers. Journal of Automata, Languages and
Combinatorics, 13(1):3–44, 2008.

[FM09] Z. Fülöp and L. Muzamel. Pebble Macro Tree Transducers with Strong
Pebble Handling. Fundam. Inf., 89(2-3):207–257, 2009.

[Fül81] Z. Fülöp. On attributed tree transducers. Acta Cybernet., 5:261–279, 1981.

[FV98] Z. Fülöp and H. Vogler. Syntax-Directed Semantics — Formal Models
Based on Tree Transducers. Monographs in Theoretical Computer Science,
An EATCS Series. Springer-Verlag, 1998.

[GS84] F. Gécseg and M. Steinby. Tree Automata. Akadémiai Kiadó, Budapest,
1984.

[GS97] F. Gécseg and M. Steinby. Tree languages. In G. Rozenberg and A. Sa-
lomaa, editors, Handbook of Formal Languages, volume 3, pages 1–68.
Springer-Verlag, 1997.

REFERENCES 101

[Hue80] G. Huet. Confluent Reductions: Abstract Properties and Applications to
Term Rewriting Systems. J. ACM, 27:797–821, 1980.

[Iro61] E. T. Irons. A syntax directed compiler for ALGOL 60. Comm. of the
ACM, 4:51–55, 1961.

[Knu68] D. E. Knuth. Semantics of context–free languages. Math. Systems Theory,
2:127–145, 1968.

[Knu71] D. E. Knuth. Semantics of context-free languages: Correction. Math.
Systems Theory, 5(1):95–96, 1971. Errata of [Knu68].

[Küh98] A. Kühnemann. Benefits of Tree Transducers for Optimizing Functional
Programs. In V. Arvind and R. Ramanunjam, editors, Foundations of
Software Technology and Theoretical Computer Science, volume 1530 of
LNCS, pages 146–157. Springer-Verlag, 1998.

[KV94] A. Kühnemann and H. Vogler. Synthesized and inherited functions — a
new computational model for syntax–directed semantics. Acta Inform.,
31:431–477, 1994.

[MBPS05a] S. Maneth, A. Berlea, T. Perst, and H. Seidl. XML Type Checking with
Macro Tree Transducers. In Proceedings of the 24th ACM Symposium on
Principles of Database Systems (PODS’ 05), pages 283–294. ACM Press,
2005.

[MBPS05b] S. Maneth, A. Berlea, T. Perst, and H. Seidl. XML Type Checking with
Macro Tree Transducers. In Proceedings of the 24th ACM Symposium on
Principles of Database Systems (PODS’ 05), pages 283–294. ACM Press,
2005.

[MN01] S. Maneth and F. Neven. Recursive structured document transformation.
In R. Connor and R. Mendelzon, editors, Research issues in structured and
semistructured database programming - Revised papers DBLP 99, volume
1949 of Lect. Notes Comput. Sci., pages 80–98. Springer-Verlag, 2001.

[MSS06] A. Muscholl, M. Samuelides, and L. Segoufin. Complementing determinis-
tic tree-walking automata. Information Processing Letters, 99:33–39, 2006.

[MSV03] T. Milo, D. Suciu, and V. Vianu. Typechecking for XML transformers. J.
of Comput. Syst. Sci., 66:66–97, 2003.

[Muz08] L. Muzamel. Pebble Alternating Tree-Walking Automata and Their Rec-
ognizing Power. Acta Cybernetica, 18(3):427–450, 2008.

[Rou70] W.C. Rounds. Mappings and grammars on trees. Math. Systems Theory,
4:257–287, 1970.

[Tha69] J.W. Thatcher. Generalized2 sequential machine maps. IBM Res. Report
RC 2466, 1969.

REFERENCES 102

[Via01] V. Vianu. A Web Odyssey: From Codd to XML. In Proceedings of the
20th ACM Symposium on Principles of Database Systems (PODS’ 01),
pages 1–15. ACM Press, 2001.

[Vog91] H. Vogler. Functional description of the contextual analysis in block–
structured programming languages: a case study of tree transducers. Sci-
ence of Comput. Prog., 16:251–275, 1991.

[Voi02] J. Voigtländer. Conditions for Efficiency Improvement by Tree Transducer
Composition. In Sophie Tison, editor, 13th International Conference on
Rewriting Techniques and Applications, Copenhagen, Denmark, Proceed-
ings, volume 2378 of LNCS, pages 222–236. Springer-Verlag, July 2002.

[WM95] R. Wilhelm and D. Maurer. Compiler Design. Addison-Wesley, 1995.

