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1 Semiovals

The dissertation is based on four articles of the author [32, 9, 31, 34]. In
the first two chapters we discuss our results on semiovals which are special
types of semi quadratic sets. The notion of semi quadratic sets was introduced
by Buekenhout in 1973. Since that time a lot of attempts were made to
classify all semi quadratic sets, but the problem is still open in general. The
classical examples of semiovals arise from polarities (ovals and unitals), and
from the theory of blocking sets. The study of semiovals is also motivated
by their applications to cryptography.

Definition 1.1. Let Π be a projective plane of order q. A semioval in Π is
a non-empty pointset S with the property that for every point P in S there
exists a unique line tP such that S∩ tP = {P}. This line is called the tangent
to S at P .

For planes of small order the complete spectrum of the sizes and the
number of projectively non-isomorphic semiovals are known.

A more than 35-year old result of Thas and Hubaut states that if S is a
semioval in Π then q + 1 ≤ |S| ≤ q

√
q + 1 and both bounds are sharp [46],

[28].
We present some older results on semiovals with long secants and on the

bounds on the size of a semioval we prove that if the semioval is contained
in the union of three lines, then there are much better bounds on its size:

Proposition 1.2. [32] Let S be a semioval in a projective plane Π of order
q. If S is contained in the union of three lines then

3(q − 1)

2
≤ |S| ≤ 3(q − 1).

The main aim of the first two chapters of the dissertation is to characterize
the semiovals which are contained in the union of at most three lines.

The case when the semioval is contained in less then three lines is easy.
In the case of three lines we have to distinguish two different cases. We
completely characterize the semiovals in PG(2, q) which are contained in
three non-concurrent lines. Using additive group theory, results on difference
sets and combinatorial arguments and we prove the following:

Theorem 1.3. [32] Let S be a semioval in PG(2, q) which is contained in
the union of three non-concurrent lines. Assume that S is not contained in
the union of two lines, thus Li \ {Pj, Pk} 6= ∅ for {i, j, k} = {1, 2, 3}. Then S
belongs to one of the following three classes.
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1. S has a (q−2)-secant and two (t+1)-secants for a suitable t. A semioval
in this class exists if and only if q = 4 and t = 1, q = 8 and t = 4 or
q = 32 and t = 26.

2. S has two (q − 1)-secants and a k-secant. Semiovals in this class exist
for all 1 < k < q.

3. S has three (q−1−d)-secants. Semiovals in this class exist if and only
if d|(q − 1).

We introduce a possible generalization of semiovals and cite some known
results due to B. Csajbók and Gy. Kiss [15] on them.

In the second part of Chapter 1 semiovals contained in three concurrent
lines are studied. This case is much more complicated than the previous one.
We prove the following bound on the size:

Theorem 1.4. [9] If a semioval S in Πq, q > 3, is contained in the union of
three concurrent lines, then |S| ≤ 3dq −√qe.

We also show that this bound is sharp:

Example 1.5. [9] Let q = s2 and let `1, `2, `3 be three concurrent lines in
PG(2, q). Choose Baer sublines `1 ⊂ `1, `2 ⊂ `2, and `3 ⊂ `3 in such a way
that, for any triple of distinct i, j, k ∈ {1, 2, 3}, the Baer subplane Bj,k =
〈`j, `k〉 meets the line `i only in the common point C. Then S = (`1 \ `1) ∪
(`2 \ `2) ∪ (`3 \ `3) is a semioval which has 3(q −√q) points.

This example has an extra property which suggests us to introduce the
concept of strong semiovals.

We give an algebraic description of semiovals in PG(2, q) and using this
description we study strong semiovals. We prove the following:

Theorem 1.6. [9] There is no strong semioval in PG(2, p) if p is an odd
prime.

Using classical results from the theory of group factorization we can com-
pletely characterize strong semiovals in PG(2, p2), p an odd prime:

Theorem 1.7. [9] If S is a strong semioval in PG(2, p2), p an odd prime,
and S is contained in the union of lines `1, `2 and `3, then L \ S can be
described as the point set{

(−1, a, 1), (0, b, 1), (1, i, ci+ f(c)) : a, b, c ∈ GF (p)
}
∪
{
C
}
, (1)

where C = (0, 1, 0), i2 = ε for a non-square element ε of GF (p), GF (p2) is
the extension of GF (p) by i, and eventually, f is a permutation of GF (p).
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We consider strong semiovals S satisfying |S| < 3(q − √q). For the
existence of such a semioval we have the following divisibilty condition.

Theorem 1.8. [9] If S is a strong semioval of cardinality |S| = 3(pm − pl),
m/2 < l < m, in PG(2, q), q = pm odd, then

(p− 1)(p2l−m − 1)2 | (pm−l − 1). (2)

Another result for strong semiovals gives new necessary condition on the
existance of strong semiovals:

Theorem 1.9. [9] If S is a strong semioval in PG(2, pm), where p is an odd
prime, and

m ≤
{

(p− 1)2 p ≡ −1 (mod 4)
2(p− 1)2 p ≡ 1 (mod 4),

then |S| = 3(q −√q).

These results motivate our final conjecture on the non-existence of strong
semiovals different from the above mentioned type.

2 Large Cayley graphs of given degree and di-
ameter

The (∆, D)-problem (or degree/diameter problem) is to determine the
largest possible number of vertices of a graph which has maximum degree
∆ and diameter D.

We recall the old result of Moore:

Theorem 2.1. [27] Let n(∆, D) denote the largest possible number of vertices
that a finite simple graph Γ with maximum degree ∆, and diameter at most
D can have. If ∆ > 2,then:

n(∆, D) =
D∑
i=0

ni ≤
∆(∆− 1)D − 2

∆− 2
.

We restrict our attention to the class of linear Cayley graphs. We present
some constructions where the resulting graphs improve the previously known,
general lower bounds for vertex-transitive graphs. For small number of ver-
tices these are also compared to the known largest vertex transitive graphs
having the same degree and diameter. It turns out that the problem for our
case is to look for special pointsets in projective spaces, namely saturating
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sets. The graphs in our constructions arise from comlete arcs, caps and other
objects of finite projective spaces. The following general lower bound for
vertex-transitive graphs was previously known:

Theorem 2.2. For the family of vertex transitive graphs:

n(∆, 2) ≥
⌊∆ + 2

2

⌋
·
⌈∆ + 2

2

⌉
.

And our new, improved bounds for specific values of degrees:

Theorem 2.3. [31] Let ∆ = 27 · 2m−4 − 1 and m > 7. Then

n(∆, 2) ≥ 256

729
(∆ + 1)2.

If q > 3 is a prime power and ∆ = 2q2 − q − 1 then

n(∆, 2) >
1

4

(
∆ +

√
∆

2
+

5

4

)2

.

3 Rose window graphs
The concept of rose window graphs was introduced by Wilson [41, 47].

Definition 3.1. Given natural numbers n ≥ 3 and 1 ≤ a, r ≤ n−1, the rose
window graph Rn(a, r) is a quartic graph with vertex set {xi | i ∈ Zn}∪{yi | i ∈
Zn} and edge set

{{xi, xi+1} | i ∈ Zn}∪{{yi, yi+r} | i ∈ Zn}∪{{xi, yi} | i ∈ Zn}∪{{xi+a, yi} | i ∈ Zn}.

Wilson was primarily interested in embeddings of graphs Rn(a, r) into
closed surfaces as rotary maps. He gave several examples of such maps, and
concluded the paper by a conjecture that the list of parameters n, a, r given
there is the complete list of parameters giving rose window graphs which
underlie rotary maps. A mapM is an embedding of a finite connected graph
Γ into a surface so that it divides the surface into simply-connected regions,
called the faces of M. To each face f there is associated a closed walk of
Γ with edges surrounding f , to which we shall also refer as a face of M.
An automorphism ofM is an automorphism of Γ which preserves its faces.
Following [48],M is called rotary if it admits automorphisms R and S with
the property that R cyclically permutes the consecutive edges of a face f ,
and S cyclically permutes the consecutive edges incident to some vertex v
of f . In this case the automorphism group Aut(M) of M acts transitively
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on the vertex set, edge set and face set. We remark that the existence of R
ensures that the boundary cycle of f is a so called consistent cycle of Γ, for
details about this concept see [6, 14, 38].

If a rotary map also contains an automorphism T which ‘flips’ an edge e
of f , and preserves f , then we say thatM is reflexible. On the other hand, if
no such automorphism T exists, thenM is called chiral. One of the central
questions regarding maps is the following: which graphs admit an embedding
onto some closed surface as a rotary map [7].

Wilson actually posed the following three questions about rose window
graphs in [47]:

Question 3.2. [47] Given natural numbers n ≥ 3 and 1 ≤ a, r ≤ n− 1,

(i) for which n, a and r is Rn(a, r) edge-transitive;
(ii) when Rn(a, r) is edge-transitive, what is the order of its automorphism

group;
(iii) for which n, a and r is Rn(a, r) the underlying graph of a rotary map?

Trying to answer the first question Wilson identified the following four
families (a)-(d) of edge-transitive rose window graphs Rn(a, r) given below
and conjectured that these graphs exhaust the whole class of edge-transitive
rose window graphs [47, Conjecture 11]:

(a) Rn(2, 1);
(b) R2m(m− 2,m− 1);
(c) R12m(3m+ 2, 3m− 1) and R12m(3m− 2, 3m+ 1);
(d) R2m(2b, r), where b2 = ±1 (mod m), 2 ≤ 2b ≤ m, and r ∈ {1,m − 1}

is odd.

Kovács, Kutnar and Marušič in [33] confirmed this conjecture.
We could answer the second and third question in [34]. Throughout

our work we use some well-known results about coverings and embeddings
of graphs. A graph Γ̃ is called a covering of a graph Γ with a projection
p : Γ̃ → Γ, if p is a surjection from V (Γ̃) to V (Γ) which is locally bijective,
that is, p|N(ev) → N(v) is a bijection for any vertex v ∈ V (Γ) and ṽ ∈ p−1(v).
The graph Γ̃ is also called a covering graph and Γ is the base graph. A covering
Γ̃ of Γ with projection p is said to be regular (or K-covering) if there is a
semiregular subgroup K of Aut(Γ̃) such that Γ is isomorphic to the quotient
Γ̃/K, say by h, and the quotient map Γ̃ → Γ̃/K is the composition ph of p
and h. If Γ̃ is connected, then K is also called the covering transformation
group; moreover if K is cyclic then Γ̃ is also called a cyclic covering of Γ.

A combinatorial description of a K-covering was introduced through a
voltage graph by Gross and Tucker [25]. Let Γ be a graph and K be a finite
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group. By x−1 we mean the reverse arc of an arc x ∈ A(Γ). A voltage
assignment (or, a K-voltage assignment) of Γ is a mapping ζ : A(Γ) → K
with the property that ζ(x−1) = ζ(x)−1 for any x ∈ A(Γ). The values of ζ
are called voltages, and K is the voltage group. The voltage graph Γ ×ζ K
derived from a voltage assignment ζ : A(Γ) → K has vertex set V (Γ) × K,
and edges of the form (u, g)(v, ζ(x)g), where x = (u, v) ∈ A(Γ). Clearly,
Γ×ζ K is a covering of Γ with the first coordinate projection. By letting K
act on V (Γ×ζK) as (u, g)g

′
= (u, gg′), (u, g) ∈ V (Γ×ζK), g′ ∈ K, we obtain

a semiregular group of automorphisms of Γ×ζ K, showing that Γ×ζ K can
in fact be viewed as a K-covering. Given a spanning tree T of Γ, the voltage
assignment ζ is said to be T -reduced if the voltages on the tree arcs equal the
identity element. In [25] it is shown that every regular covering Γ̃ of a graph
Γ can be derived from a T -reduced voltage assignment ζ with respect to an
arbitrary fixed spanning tree T of Γ.

Let Γ̃ be a K-covering of Γ with a projection p. If α ∈ Aut(Γ) and
α̃ ∈ Aut(Γ̃) satisfy α̃p = pα then we call α̃ a lift of α, and α the projection
of α̃. If the covering graph X̃ is connected then the covering transformation
group K is the lift of the trivial subgroup of Aut(Γ). Note that a subgroup
G ≤ Aut(Γ̃) projects if and only if the partition of V (Γ) into the orbits of K
is G-invariant.

The problem of determining whether an automorphism α of Γ lifts or
not can be grasped in terms of voltages as follows. Observe that a voltage
assignment on arcs extends to a voltage assignment on walks in a natural way.
We define a function ᾱ from the set of voltages of fundamental closed walks
based at a fixed vertex v ∈ V (Γ) to the voltage groupK by ᾱ(ζ(C)) = ζ(Cα),
where C ranges over all fundamental closed walk at the base vertex v, and
ζ(C) and ζ(Cα) are the voltages of C and Cα, respectively. The following
two propositions were useful in our work:

Proposition 3.3. [35] Let Γ ×ζ K be a connected K-covering. Then an
automorphism α of Γ lifts if and only if ᾱ extends to an automorphism of K.

Proposition 3.4. [36] Let Γ̃1 = Γ×ζ K and Γ̃2 = Γ×ζ′ K be two connected
K-coverings of a graph Γ where ζ and ζ ′ are T -reduced voltage assignments.
Then Γ̃1 and Γ̃2 are isomorphic if and only if there exist an automorphism
γ ∈ Aut(K) and an automorphism g ∈ Aut(Γ) such that γ(ζ(C)) = ζ ′(Cg)
for every fundamental cycle C with respect to the spanning tree T in Γ.

The following proposition gives a criterion of embeddings of graphs onto
orientable surfaces as rotary maps in terms of their automorphism groups.
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Proposition 3.5. [21] A connected graph Γ of valency at least 3 underlies a
rotary map on an orientable surface if and only if there exists K ≤ Aut(Γ)
satisfying the following properties.

1. K is transitive on the set of arcs of Γ.

2. The vertex stabilizer Kv of a vertex v of Γ is cyclic.

Our main result answers Wilson’s third question:

Theorem 3.6. [34] Let Γ = Rn(a, r) be a rose window graph underlying a
rotary mapM, 1 ≤ a, r ≤ n/2. Then one of the following holds.

1. M is reflexible, and

(a) Γ = Rn(2, 1), gcd(n, 12) > 2,
(b) Γ = R2m(m− 2,m− 1), gcd(m, 60) > 3,
(c) Γ = R12m(3m + 2, 3m − 1) or R12m(3m − 2, 3m + 1), m ≡ 2

(mod 4).

2. M is chiral, and Γ = R2m(2b, r), m > 2, 2 ≤ 2b ≤ m, b2 ≡ −1
(mod m) and r = 1, or r = m− 1 and m is even.
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