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1. Introduction 
Cancer cells evade chemotherapy in many different ways and research into drug resistance 

mechanisms is an important driving force for anticancer drug development. Since the dawn of 

chemotherapy in the 1940’s, many cellular resistance mechanisms have been observed, yet 

there are only a few agents capable of “disarming” these mechanisms.  

 

The lack of efficacy of pharmacological multidrug resistance inhibitors in clinical studies has 

been attributed to numerous factors (reviewed in [1]) and has generated a certain degree of 

scepticism on the role of multidrug transporters. In an effort to resolve the disparity between 

in vitro evidence and clinical observations, our research team have employed a two-pronged 

approach, i.e. to further clarify the structure-function relationship of multidrug transporters 

(related publications [2-5]) and to examine the effect of  the three dimensional multicellular 

architecture of tumours on multidrug transporter function, inhibition and citotoxic drug 

distribution. Exploration of this latter field provides the leading theme of this thesis.  

 

Solid tumours display not only inducible unicellular mechanisms (e.g. efflux pumps) to 

escape cytotoxic effects but a number of inherent properties that confer resistance. The 

inherent, or multicellular resistance (MCR), is produced by high cell density and extensive 

cell-cell contact in the 3-D arrangement of cancer cells. These factors ensure slow penetration 

of chemotherapeutics through the solid tumour [6-7]. Despite neo-angiogenesis, the 

intercapillary distance in tumours remains greater than observed in normal tissues [8]. In 

addition, the blood flow in these new and irregularly formed vessels is often turbulent, or 

intermittent [9]. The inadequate vascularisation results in increased interstitial pressure due to 

decreased drainage of extracellular fluids (for review see [10]). The decreased filtration 

renders diffusion down the concentration gradient as the major driving force in achieving 

significant drug penetration through the avascular tumour regions. 

 

The tumour spheroid (TS) model of avascular regions of solid tumours has been applied to 

investigate the distribution of drugs and novel compounds [11-12]. However, quantification 

of data from experiments with TS is difficult to achieve and the multicell layer (MCL) model 

is better suited to measure flux and to quantify transport. The MCL model comprises several 

layers of cancer cells grown on a semiporous membrane within a cylindrical culture well 

insert [13]. The system has been used to measure flux of chemotherapeutics [7, 14-15]. The 
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route for drug transport in MCL is mainly extracellular, and this can be hindered by several 

factors including cellular uptake [16-17] and metabolism of drugs [15]. However, the flux 

kinetics of chemotherapeutics have only been extensively analysed for tirapazamine. 

Therefore, vital information about the relative contributions of diffusivity, convection, 

cellular uptake and metabolism to intra-tumoural drug kinetics is still missing. Mathematical 

modelling can facilitate the dissection of penetration/flux kinetics and allow the description of 

processes with widely applicable parameters such as diffusion coefficient. 

 

Fluorescence recovery after photobleaching (FRAP) is a well described in vitro method to 

measure diffusion coefficients of therapeutics in tumour tissue, however it is only suitable for 

macromolecules, such as antibodies, vectors etc [18-19]. 

1.1. Vinblastine transport studies   

Vinca alkaloids are strictly cell cycle specific chemotherapeutics, as they act by slowing the 

dynamics of microtubule polymerisation, which is necessary for coordinated segregation of 

chromosomes in metaphase [20]. After IV administration vinblastine has a large volume of 

distribution suggesting quick absorption of the drug into the tissues. In contrast, vinblastine 

was the slowest of a panel of cytostatic drugs to pass through multicell layers (MCL) [7]. 

 

The multidrug efflux pump P-gp is known to limit the efficacy of vinblastine [21]. P-gp 

(ABCB1) is an ABC transporter, whose expression has prognostic value in many cancers [22]. 

Inhibition of P-gp was shown to increase accumulation of P-gp substrates in deeper layers of 

spheroids [13] and to decrease penetration of doxorubicin through MCL [17].  

 

However, the cell lines used in these investigations had previously been selected for high 

level P-gp expression. Clinical samples from drug resistant tumours are believed to display 

considerably lower ABC transporter expression [23]. Consequently, a long-standing debate on 

the precise contribution of P-gp in affecting drug distribution in solid tumours in vivo remains 

unresolved. Investigations have demonstrated that the expression of P-gp is most prevalent in 

the deeper layers of TS that are known to display (i) an altered microenvironment and (ii) 

insensitivity to chemotherapeutic drugs [24].  

 

The aim of the present investigation was to provide detailed flux constants for vinblastine 

through DLD1 MCL with P-gp expression levels relevant to human tumour samples. The flux 
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of sucrose was determined to provide a measure of exclusively interstitial diffusion. 

Furthermore, the measured diffusivity of vinblastine was used to estimate its tissue 

distribution. 

1.2. Platinum compound transport studies 

Platinum drug complexes have been in clinical use for three decades and their greatest 

curative potential is exhibited towards certain subtypes of testicular cancer. The Pt-complexes 

are widely used in cancer chemotherapy but unfortunately their efficacy is limited against the 

majority of malignancies. The reasons for the failure of this important class of 

chemotherapeutic agent are a combination of cellular drug resistance, toxicity and poor whole 

body or cellular pharmacokinetic profiles [25]. Cellular resistance to Pt-drugs is largely 

attributed to up-regulation of DNA repair pathways, low intracellular accumulation and 

inactivation by thiol containing reductants such as glutathione and metallothionein. Toxicity 

of cisplatin and its four-coordinate derivatives is due to inherently high reactivity, which leads 

to premature adduct formation with nucleophilic groups on macromolecules [26]. The 

reactivity results from “aquation” caused by the exchange of Cl- moieties for OH- in a low 

chloride environment, such as that in the intracellular milieu. The activation will ultimately 

manifest as the side effect profile in addition to ensuring that only a minor fraction of the 

plasma platinum dose will be available to form adducts with the DNA [27]. Platinum exists in 

a number of ionisation states and the presence of axial ligands in the six coordinate Pt(IV) 

complexes has generated a series of compounds with considerably lower “aquation” rates 

[28]. The resultant increased stability and reduced covalent binding to serum proteins [28], 

facilitates delivery of Pt(IV) drug to cancer cells at effective concentrations. 

 

The efficacy of Pt(II)-complexes is severely limited due to poor cellular uptake. The main 

pathway for intracellular accumulation of Pt-drugs is thought to be passive diffusion through 

the plasma membrane [29], although the Ctr1 copper importer [30] and the copper export 

pump ATP7B [31] have also been implicated. The introduction of hydrophobic axial ligands 

in Pt(IV)-complexes was thought to provide a strategy to facilitate passive diffusion into 

cancer cells. Unfortunately, the correlation between lipophilicity and cellular uptake was 

weak for Pt(IV) compounds [32], though amongst a range of Pt(IV) compounds cis,trans-

[PtCl2(OH)2(en)] was the least lipophilic (log Poct : -2.78) and had the lowest cellular uptake. 

In contrast, there was a better correlation between the redox potential and uptake of these 

compounds. This finding has generated a model, which proposes that the Pt(IV) drug exists in 
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a dynamic equilibrium across the cell membrane and that the preferable rate of intracellular 

“aquation” and subsequent reactivity effectively traps the drug inside the cell [32]. 

 

Yet despite the many advantageous features of Pt(IV)-complexes that have been demonstrated 

in monolayer cultures of cancer cells, there are few of this class of drug in clinical use. A 

possible explanation for this lack of translation may be the complexity of solid tumours in 

vivo, relative to the in vitro experimental system. Tumours in vivo represent complex 3-D 

cellular organisations with a characteristically harsh microenvironment comprising high cell 

density, low pH, toxic metabolites, low oxygenation and elevated interstitial pressure. Few 

studies have systematically examined the impact of these and other factors on the efficacy of 

Pt(IV)-complexes in solid tumours or provided information on the distribution, diffusivity and 

flux of Pt(IV)-complexes through a solid tumour. It is known that the driving force for passive 

diffusion through the plasma membrane is the concentration gradient of the platinum 

compound. Hence increased penetration of Pt(IV)-complexes into tumour tissues, a higher 

local drug concentration and rapid intracellular aquation may significantly impact on the 

delivery of platinum compounds to nuclear DNA. 

 

The present investigation has examined the pharmacokinetic properties of a reductively 

activated Pt(IV) compound in the multicellular layer three-dimensional tumour model. This 

model enabled a quantitative analysis of the distribution and flux parameters for Pt-drugs 

[33]. The data verified a mathematical model developed to describe drug pharmacokinetics 

within solid tissue. Moreover, a novel elemental imaging analysis by synchrotron radiation 

induced X-ray emission was applied to examine Pt-distribution and the degree of intacellular 

accumulation in multicell layers. 
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2. Aims 
I. To set up a 3-D tumour model suitable for measuring drug diffusivity in tissue. 

II. To characterise this experimental system, i.e. the MCLs in terms of morphology, cell 

proliferation and tissue hypoxia, ABC transporter expression at protein and mRNA level. 

III. To utilise the MCLs and optimise conditions to make it a versatile assay of drug transport 

and distribution. 

IV. Simultaneuosly mathematical modelling was pursued to facilitate quantification of results 

from drug transport experiments. Initially we aimed to describe the inherent characteristics of 

the transport system with and without the MCL.  

V. Mathematical modelling was necessary to quantify drug diffusivity, distribution and 

cellular uptake in the MCL. 

VI. Utilising the experimental and mathemathical model we aimed to describe the transport of 

a typical ABC transporter substrate e.g. vinblastine. 

VII. We aimed to describe the transport of a novel six-coodinate platinum compound and 

compare it to that of a four-coordinate compound, which is similar to cisplatin. 

VIII. The possibility to increase platinum drug penetration by increasing hydrostatic pressure 

was investigated. 

IX. We aimed to experimentally determine drug distribution profile within the MCL and 

compare it to predictions of the mathematical model. 

X. Finally, we aimed to mathematically model cytotoxic drug penetration and distribution in a 

simplified in silico 3-D tumour model. 
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3. Materials and Methods 

3.1. Materials 

[3H]-vinblastine sulphate (10.8 Ci/mmol) and [U-14C]-sucrose (601-660 Ci/mol) were 

purchased from Amersham Biosciences (Little Chalfont, UK). [3H]-vinblastine was prepared 

in methanol and the final solvent concentration was kept below 1% in each experiment. [14C]-

[PtCl2(en)] (34 Ci/mol) (Figure 1a) and [14C]-cis,trans-[PtCl2(OH)2(en)] (6.8 Ci/mol) (Figure 

1b) were synthesised according to published methods [34].  

 

 

 

 

Figure 1 The chemical structures of the four (c; [14C]-cis-[PtCl2(en)]) and six-coordinate 

platinum compounds (b; [14C]-cis,trans-[PtCl2(OH)2(en)]). * indicates the position of the 
14Carbon radio isotopes. 

 

Platinum compounds were dissolved in 100 mM KCl in ddH2O at 0.5 mM concentration and 

stored in aliquots at -20°C. 24-well culture plates and Transwell-Col inserts (polystyrene 

sidewall, 6.5 mm internal diameter, bovine placental collagen type I and III coated 

polytetrafluoroethylene (PTFE) membrane, 0.33 cm2 surface, 400 nm average pore size) were 

from Corning Life Sciences (Schiphol-Rijk, The Netherlands). Penicillin and streptomycin 

were from Cambrex Bioscience (Verviers, France), spinner flasks were from Techne Ltd 

(Cambridge, UK). All other cell culture materials were from Invitrogen (Paisley, UK). OCT, 

haematoxylin and eosin were from RA Lamb (Eastbourne, UK). Agarose was purchased from 

BioWhittaker Biological Applications (Rockland, ME), and Ready Protein + scintillation fluid 

was from Beckman Coulter Inc. (Fullerton, CA). Benzamidine, leupeptin and pepstatin were 

from Calbiochem (Merck Biosciences, Nottingham, UK). ECL Western Blotting Detection 

Kit was from Amersham Biosciences (Little Chalfont, UK). The C219 anti-human P-gp 

antibody was purchased from CIS (Gif-Sur-Yvette, France), MIB1 anti-Ki67 antibody and 
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Aquamount were obtained from DAKOCytomation (Ely, UK), MACH2 horse-radish 

peroxidase labelled anti-mouse secondary antibody was bought from Biocare Medical 

(Concord, USA) and DAKO Peroxidase blocking reagent was from DAKO Corporation 

(Carpintier, USA). Hypoxyprobe™-1 kit was purchased from Chemicon Europe Ltd, UK, Brij 

35 from Fisher Scientific, UK. RLT buffer and DNase were from Qiagen (Crawley, UK). 

Biorad DC protein assay kit was purchased from Biorad (Hercules, USA). All other chemicals 

were at least analytical grade and were purchased from Sigma. 

3.2. Cell lines and MCL culture 

Caco2, MCF7WT, NCI/ADRRes and DLD1 cells were cultured as monolayers according to 

ATCC and previously published protocols [21, 34]. To generate MCL, DLD1 cell monolayers 

were detached from culture flasks with trypsin/EDTA and 3 x 105 cells were seeded into 

Transwell-Col inserts. After a few hours the cells had settled and the inserts were transferred 

into spinner flasks with 50 mL RPMI 1640 medium per insert. Half of the medium was 

refreshed every third day until the MCL were harvested. 

3.3. Morphological characterisation of MCL 

MCL were fixed in 4% buffered paraformaldehyde and 4 % agarose was layered on both 

sides to prevent folding of the MCL during subsequent processing. To facilitate the 

orientation during wax embedding, MCL were cut out from the insert and cast into square 

agarose blocks in the base of a square plastic cuvette. MCL were dehydrated through routine 

histological processing, embedded in paraffin wax and 5 m sections were cut. Sections were 

allowed to dry overnight and stained with haematoxylin and eosin to assess general 

morphology. The thickness of MCL and the PTFE membrane on cross sections was measured 

with a calibrated eyepiece graticule [34]. 

3.4. Detection of proliferating cells by Ki-67 immunohistochemistry 

Paraffin sections of MCL were dewaxed and after antigen retrieval (30 s at 120C in 10 mM 

Tris, 1 mM Na2EDTA, pH 9.0 buffer) stained for Ki-67 [35]. Briefly, the slides were 

incubated for 15 min at room temperature with DAKO Peroxidase blocking reagent in a 

humidified chamber. To reduce non-specific binding, slides were incubated for 30 min in 

PBST with 1 % BSA. The sections were incubated for 1 hour with the MIB1 mouse antibody 

in PBST with 1 % BSA, then for 1 hour with an HRP labelled anti-mouse secondary antibody 

12 



 

(MACH 2). Signal was then developed with 3,3’-diaminobenzidine chromogen. Nuclei were 

counterstained with heamatoxylin and sections were mounted in Aquamount. 

3.5. Detection of hypoxia in MCL 

MCL were incubated with 200 μM pimonidazole (Hypoxyprobe-1) in culture medium for 2 

hours and then fixed in 4% buffered paraformaldehyde. The fixed MCLs were extracted and 

embedded in 4% agarose as described in chapter 3.3. MCLs in agarose moulds were 

dehydrated through routine histological processing and embedded in paraffin for subsequent 

sectioning (5 m). Sections were de-waxed, rehydrated with PBS, washed with PBS/0.2% 

Brij 35 and antigen retrieval achieved with 0.01% Pronase at 40ºC for 40 min. Sections were 

washed with PBS/0.2% Brij 35 at 4ºC between all subsequent steps. Endogenous proxidase 

activity was inhibited with Peroxidazed 1 (BioCarta, Europe) and the primary antibody 

(Hypoxyprobe-1 Mab1) was added for 40 min at 25ºC. Mach 2 goat-anti-mouse HRP 

conjugate (BioCarta, Europe) was added for 45 min and detection was achieved using DAB 

substrate chromogen (DakoCytomation, UK). Sections were counterstained with 

haematoxylin and mounted with aquamount. 

3.6. Detection of mdr1 mRNA expression by real-time quantitative TaqMan RT-PCR 

Trypsinised DLD1, Caco2, MCF7WT and NCI/ADRRes cells from monolayer cultures were 

resuspended in RLT buffer containing 1% β-mercaptoethanol and total mRNA extracted 

according to RNeasy Mini protocol from Qiagen. The residual DNA was digested on the 

column with DNase. Levels of mdr1 mRNA were quantified by real-time quantitative 

TaqMan RT-PCR using the ABI Prism 7700 Sequence Detection System, Sequence Detector 

v1.6.3 software (Applied Biosystems, Warrington, Cheshire, UK). The following 

oligonucleotides were designed with Primer Express Software version 1.0 (Applied 

Biosystems) and were a kind gift of Dr. Steve Hyde (NDCLS, University of Oxford): forward 

mdr1 primer, TGG TTC AGG TGG CTC TG; reverse mdr1 primer, CTG TAG ACA AAC 

GAT GAG CTA TCA CA; FAM labelled mdr1 probe, AGG CCA GAA AAG GTC GGA 

CCA CCA. 18S rRNA was quantified as the endogenous control using the following 

oligonucleotides: forward rRNA primer, CGG CTA CCA CAT CCA AG GAA; reverse 

rRNA primer, GCT GGA ATT ACC GCG GCT; VIC labelled rRNA probe, TGC TGG CAC 

CAG ACT TGC CCT C. To match expected expression levels, 100 ng total RNA for mdr1 

mRNA and 5 ng for rRNA was reverse transcribed. Subsequently, each sample was subjected 
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to TaqMan PCR according to previously published protocols [36]. Relative expression levels 

were calculated using the ΔΔCT method. 

3.7. Detection of P-gp protein expression in DLD1 monolayer cultures and MCL by 

western blotting 

Both monolayer and MCL cultures of DLD1 cells were briefly trypsinised and lysed in 

phosphate buffered saline (PBS) with 2 % SDS and protease inhibitors (1 mM benzamidine, 

20 M leupeptin and 1 M pepstatin). Total protein concentration was determined using the 

Biorad DC protein assay kit and P-gp expression was detected by western blotting as 

previously described [37] using purified P-gp from CHOB30 cells as a positive control. 

3.8. Determination of flux of radiolabelled compounds through MCL 

Inserts with MCL were transferred into 24-well plates with 1 mL fresh medium in the wells 

(Fig. 2). When the insert was moved to a new well, the medium in the donor compartment 

(DC) was replaced by 150 L of fresh RPMI 1640 medium containing [14C]-sucrose and [3H]-

vinblastine-sulphate or a [14C]-labelled platinum compound. During transport studies with 

platinum compounds the RC was not stirred since the flux rates across the membrane were 

identical with or without stirring (data not shown). An agarose overlay has previously been 

used in RC to eliminate convection in a floating insert [7, 16-17]. Unfortunately the presence 

of agarose in the RC has been reported to slow down diffusion [15]. The present experimental 

set-up was able to eliminate convective terms since the insert was kept stable in the culture 

well and fluid levels in the two compartments were equal thus resulting in zero fluid pressure 

gradients (and therefore no convection) across the MCL. In certain experiments, to provide 

convective force against the concentration gradient driven diffusion, the volume of the RC 

was increased to 1500 L. The reverse gradient was created by increasing the DC volume to 

280 L and keeping the RC at 1000 L. These two configurations provide  3 mm H2O 

hydrostatic pressure between the two compartments. The entire experimental apparatus was 

placed into an incubator to maintain standard MCL culture conditions. These conditions were 

used throughout the investigations to minimise temperature gradient driven convection. 
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Figure 2 The experimental set-up for the drug transport assay is illustrated on a cross section 

of a well on a 24-well plate with the insert (a). The donor and receiver chambers are separated 

by the polystyrene wall of the cylindrical insert and the membrane with or without the MCL. 

The letters and indices correspond to variables used in the mathematical modelling (see 

Appendix). Unless it is otherwise specified in all experiments the fluid levels in donor and 

receiver chambers were equal (a). However, in certain experiments the culture medium 

containing the radiolabelled compounds was added to the donor compartment in variable fluid 

volumes (b and c). Fluxes were measured by taking samples form the receiver compartment. 

 

At specific times during the assay, the insert was moved to a new well with fresh culture 

medium, which could potentially induce some convective disturbance [38]. However, the 

timescale of these events is very short compared to the length of the transport assay therefore 

they are unlikely to influence our measurements. To measure diffusive flux of the compounds 

from the DC through the MCL, 800 L samples were taken from each of the used wells. The 

amount of radiolabelled compound was determined by liquid scintillation counting after the 

addition of 4 mL Ready Protein+ scintillation liquid. 

3.9. Non-specific binding of radiolabelled compounds to the plastic of the transport 

apparatus 

Binding to polystyrene can confound flux values. The interaction between polystyrene and 

radiolabelled compounds can be defined as non-specific binding (NSB), i.e. non-saturable and 

linear with respect to drug/ligand concentration (page 238 of [39]). Consequently, the 

proportions of bound and free drug could be estimated at a single drug concentration for the 

present experimental set-up. The NSB of compounds to the lower chamber was measured by 
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incubating the plastic inserts in wells of a 24-well culture plate in medium containing a 9:1 

ratio of cold and radiolabelled compounds. Two hours later, samples were taken from the RC 

to measure the amount of drug that remained in the culture medium. The amount of drug was 

determined by liquid scintillation counting. A similar correction was made for platinum drugs 

in the DC. Following completion of transport assays samples were taken from the DC and the 

PTFE membranes with the MCL were excised to measure bound radioactivity. In control 

experiments without MCLs the PFTE membrane was excised. The percent of added [14C]-Pt-

complex bound to the DC was determined by subtracting the percent bound to PTFE 

membrane in the presence or absence of the MCL, the percent transported to the RC and from 

the percent decrease in the DC at the end of the transport assay. 

3.10. Measuring the mass transfer coefficient and relative porosity of the collagen coated 

PTFE membrane for [14C]-sucrose, [3H]-vinblastine and [14C]-Platinum compounds 

The PTFE membrane may itself impede flux of radiolabelled compounds through the MCL 

system. Consequently, the transport of radiolabelled compounds through the membrane was 

measured using the same experimental setup shown in Figure 2 but in the absence of the 

MCL. The amount of compound transported was determined by scintillation counting after 5, 

10, 15, 20, 25 and 30 minutes incubation using the same set of inserts and adding fresh stock 

solution of the drug-containing medium. During data analysis the membrane was assumed to 

be semiporous with negligible thickness. 

3.11. SRIXE of MCL cross sections 

MCLs were harvested at the end of the transport experiment using the Pt(IV) compound, 

processed as described in chapter 3.3. and 20 m sections were cut from the paraffin blocks. 

The sections were mounted on Formvar coated plastic specimen holders. Micro-SRIXE 

experiments were performed on beamline ID22 at the European Synchrotron Radiation 

Facility (ESRF), Grenoble, France. Fluorescence spectra were collected using a single 

element Si(Li) detector, placed approximately 20 mm from the sample. Two dimensional 

maps corresponding to the integrated K fluorescence signal of an element of interest were 

collected by scanning the sample. The elements analysed were P, S, Cl, K, Ca, Fe, Ni, Cu, Zn. 

Pt was analysed using the L and L fluorescence lines. Elemental contents were quantified 

by comparison to the SRM 1832 and 1833 thin polymer film standards (NBS/NIST, 

Gaithersburg, MD, USA) using the assumption for a thin film target. Sectioned MCLs were 

analysed using a 13 keV monochromatic X-ray beam focused to a 1.8 m x 4.5 m (vertical x 
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horizontal) spot. Samples were mounted and suitable areas of the MCL located by viewing 

the sample with a video-zoom microscope. Scan areas were chosen so as to incorporate a 

representative cross section of the MCL. PyMca, an ESRF code, was used for fitting the 

acquired spectra (http://www.esrf.fr/computing/bliss/downloads/pymca/PyMCA.pdf). This allowed the 

background contribution to be removed, facilitated analysis of overlapping peaks, and 

accounted for the eventual escape peaks. X-ray lines were fitted using the Hypermet function 

and a model for background fitting was chosen as a 10th order polynomial for an exponential 

background model. Computed X-ray line intensities were normalized to the value of the 

incident photon flux. 

 

Data analysis of SRIXE imaging was performed by choosing regions of interest (ROIs) within 

each scan. Such ROIs typically included one ROI encompassing the majority of the scan area 

(“whole MCL”), another encompassing the free surface of the tissue (i.e. DC surface), and 

another encompassing part of the PTFE membrane (i.e. RC surface). The average 

fluorescence spectra from each ROI were fitted using the PyMca X-ray fluorescence fitting 

program. Elemental concentrations (g cm-2) were calculated from peak areas using peak 

area:concentration ratios determined from NIST thin-film standards (SRM 1832 and 1833), 

and then converted to g cm-3 by accounting for the known section thicknesses. Such 

calculations neglected secondary fluorescence processes and assumed that the standards and 

the sample were similar to one another. The Pt-L fluorescence line was used to quantify 

platinum content in a similar fashion to that outlined by Ilinski et al, [40] using fluorescence 

line cross sections (at 13 keV) of Zn-K = 43.089 cm2g-1, and Pt-L= 18.208 cm2g-1 [41]. 

Elemental content of ROIs were compared to that of the “whole MCL” ROI, and the zinc 

content of the ROI. 

3.12. Data analysis 

Data presented are mean ± SD or mean ± SEM. Data were analysed with ANOVA or two-

tailed Student’s t-test using GraphPad Prism 3.2 software and p < 0.05 was considered 

statistically significant. Diffusivity and the rate of cellular uptake were determined using 

programs written in Matlab 7.0.1 software based on the mathematical models described in the 

Appendix. 
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4. Results 

4.1. Characterisation of MCL 

4.1.1. Growth and Histology of MCL 

The MCL system is used only in a few laboratories around the globe, furthermore it has not 

been used in our laboratory. Thus, we characterised it to great detail before embarking on 

transport experiments. 

 

DLD1 colon adenocarcinoma cells were grown in polystyrene inserts on bovine collagen type 

I and II coated porous PTFE membranes that allow movement of small molecules, but prevent 

cells from traversing the membrane. The thickness of the PTFE membranes was measured on 

cross sections using an eyepiece graticule on an upright light microscope and it was 38  1 

m. A minimum of 3 x 105 DLD1 cells were required to fully cover the PTFE membrane as a 

confluent monolayer. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Growth of multicell layers was determined by seeding 3 x 105 DLD1 cells into 

several inserts and subsequent culture in spinner flasks. On specific days, MCL were 

harvested and processed as described in Materials and Methods. The thickness of 

haematoxylin & eosin stained cross sections was measured by a calibrated eyepiece graticule 

of a light microscope. The data points are mean ± SD of several measurements along several 

cross sections of at least 2 MCL. 

 

18 



 

As shown in Figure 3 the MCL grew exponentially from 24.3  5.7 m on day 2 and 

eventually the growth rate slowed down and the MCL reached a thickness of 172  9 m by 

the 14th day of culture. MCLs harvested on the 7th day (131 10 m thickness) were used in 

subsequent transport experiments. 

 

The MCL generated by DLD1 cells displayed much of the cellular heterogeneity found in 

solid tumours (Fig. 4a). The cells close to the PTFE membrane had large cigar shaped nuclei, 

while those towards the “upper” surface gradually became flattened. The distribution of 

proliferating cells also displayed temporal and spatial heterogeneity in MCL. At early stages 

of MCL growth, the proliferating cells were found throughout the tissue (data not shown). At 

later stages of the growth curve, the non-proliferating cell mass (quiescent cell, Q) appeared 

in the central region of the MCL (Fig. 4b). 

Figure 4 Cellular morphology 

and proliferation in DLD1 

multicell layers was studied on 5 

μm paraffin sections, which were 

either stained with H&E (a) or 

Ki-67 expression detected by 

immunohistochemistry (b). 

Arrows indicate cells with 

different nuclear morphology (a) 

and Ki-67 staining (b). Q 

indicates the quiescent area of 

the MCL. (c) Tissue hypoxia was 

detected in 16-day-old DLD1 

MCLs with the hypoxia probe 

pimonidazole on a 5 m paraffin 

cross section (all images were 

taken using an 40x objective) 

(for details see Materials and 

Methods). 
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A pimonidazole based assay was used to detect hypoxia in the MCL (Figure 4c). The MCL 

showed pimonidazole staining towards the upper surface of the tissue, which is indicative of 

hypoxia. This localised hypoxia may be explained by the high demand for oxygen, which 

results from such a densely packed avascular population of cells, similarly to that seen in 

tumour spheroids (see publication # IV.). This suggests that the MCL model is a good 

representation of solid tumour architecture and the associated microenvironment. 

4.1.2. mdr1 mRNA and P-GP expression in MCL 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 Relative mdr1 mRNA and P-glycoprotein expression was studied in DLD1 cells. (a) 

Single cell suspension of cells were subjected to mRNA extraction and real time quantitative 

RT-PCR as detailed in Materials and Methods. Columns indicate mean ± SEM relative mdr1 

mRNA expression levels of 3 independent experiments normalised for loading differences by 

rRNA levels (endogenous control). (b) P-gp expression was detected by western blotting with 

C219 antibody on cell lysates from DLD1 monolayers and MCL. Purified hamster P-gp (2 

μg) was used as a positive control.  

 

It is well established that P-GP is expressed by normal colon epithelial cells and this 

expression is retained after malignant transformation [42]. P-GP can restrict the cellular 
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uptake of anticancer drugs, such as vinblastine in the TS model [12]. Consequently, it was 

necessary to characterise expression levels of P-GP in MCL grown from colon carcinoma 

cells. The mdr1 mRNA levels of DLD1 cells were compared to cells known to express low 

(MCF7WT), intermediate (Caco2) and high (NCI/ADRRes) levels of P-gp. As shown in Figure 

5a, DLD1 cells expressed levels of mdr1 mRNA intermediate between the Caco2 and 

NCI/ADRRes cell lines. This mRNA expression was manifest as measurable expression of the 

protein product (P-gp) in DLD1 cells cultured as monolayers and as MCL (Fig. 5b). Purified 

hamster P-gp was used as a positive control. Moreover, the relative level of P-gp expression 

was marginally higher when the cells were grown as MCL. 

4.1.3. Correlation between MCL thickness and [14C]-sucrose flux 

Figure 6 Correlation between the [14C]-sucrose flux and the thickness of the MCL. The 

cumulative appearance of [14C]-sucrose devided by the total amount added was plotted 

against time. The slope of the steady state (linear) phase was determined by linear regression 

and was plotted as [14C]-sucrose flux (% / min) against the thickness of the MCL, which was 

measured as described in Materials and Methods. The solid and dashed lines are the linear 

regression and the 95% confidence intervals of the data points respectively. 

 

The flux of [14C]-sucrose through the PTFE membrane only was faster than in the presence of 

MCL (Fig. 7a & b, note the different scale of the y axis) and in general the [14C]-sucrose flux 

was slower through thicker MCL (Fig. 6). However, the correlation between [14C]-sucrose 

flux and the thickness of the MCL was weak and the age of the culture predicted the thickness 

of the MCL more accurately (Fig. 3). Thus MCLs were used on the 7th day of culture and 
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displayed a tissue depth of 131 ± 10 μm. The integrity of MCLs was checked with phase 

contrast microscopy before each transport experiment. 

4.2. Drug transport assays 

4.2.1. Mass transfer coefficient and relative porosity of the membrane 

The DC and RC were separated by the polystyrene sidewall of the insert and by the collagen 

coated PTFE membrane in the absence of MCL in the two-compartment system (Fig. 2a). The 

fluids were levelled in the two compartments when 150 μL and 1000 μL media were loaded in 

the DC and RC respectively (Fig. 2a). The flux of radiolabelled compounds between the two 

compartments is hindered not only by MCL but by the PTFE membrane too. In order to 

quantify the membrane’s relative porosity, the diffusivity of the radiolabelled compounds in 

the bathing medium must be ascertained. The diffusivity of sucrose in aqueous solution at 

25°C has previously been measured (5.228*10-6 cm2s-1, [43]) and this value was extrapolated 

to 37°C using the Stokes-Einstein equation (7.0 x 10-6 cm2s-1) [44] 

R

Tk
D B

61  ,            (Equation 1) 

where D1 is the diffusion coefficient, kB is the Boltzman’s constant (1.38*10-23), T is the 

absolute temperature in Kelvin,  is the viscosity of water at 37C (6.92*10-8 Nsm-1),  R is the 

hydrodynamic radius of the molecule. The diffusivity of vinblastine (3.28 x 10-6 cm2s-1) was 

estimated from its molecular radius using the Stokes-Einstein equation (Equation 1) as 

detailed in Table 1. 

 

The non-specific binding (NSB) of compounds to the experimental apparatus, is an 

acknowledged and yet often ignored problem in transport systems [16]. Consequently, the 

NSB of [14C]-sucrose and [3H]-vinblastine to the polystyrene wall of the RC was determined 

at concentrations used in the transport assay. After two hours 10.9 ± 1.3 % (n = 3) and 31.2 ± 

1.7 % (n =3) of the administered [14C]-sucrose and [3H]-vinblastine were bound, respectively. 

The measured amount of the radiolabelled compound in the RC was corrected with the NSB 

for all estimations of drug flux through the MCL. 
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Table 1 Physical, chemical and transport parameters of radiolabelled sucrose, vinblastine and 

platinum compounds (results are mean ± SD) 

 [14C]-sucrose [3H]-vinblastine [14C]-Pt(II) [14C]-Pt(IV) 

MM (g/mol) 342 811 325 359 

MR (nm) 1 0.5 1.0 0.4 0.4 

Dc in medium 

(D1,*10-6 cm2s-1) 2 

7.0 3.3 8.2 8.2 

MTC 

(k, *10-5 cm s-1) 

14 ± 3 

n = 3 

12 ± 3 

n = 3 

2.7 ± 0.6*§ 

n = 3 

2.5 ± 0.4*§ 

n = 3 

Relative porosity of 

membrane (ψ; *10-2)3 

8 ± 2 

n = 3 

14 ± 4* 

n = 3 

1.2 ± 0.3*§ 

n = 3 

1.2 ± 0.2*§ 

n = 3 

Impedance of MCL 

(Γ; *10-2) 4 

0.60 ± 0.13 

n = 3 

0.57 ± 0.06 

n = 3 

2.1 ± 0.3*§ 

n = 3 

2.2 ± 0.4*§ 

n = 4 

Dc in MCL 

(DM; *10-8 cm2s-1) 5 

4.2 ± 0.9 

n = 3 

1.9 ± 0.2 

n = 3 

17.5 ± 2.6*§ 

n = 3 

17.8 ± 3.1*§ 

n = 4 

Uptake rate in MCL 

(g; *10-2 min-1) 

ND ND 17.7 ± 5.5 

n = 3 

16.2 ± 5.3 

n = 4 
1The MR of sucrose was taken from a paper by Venturoli et al [45], MR of vinblastine was 

estimated based on its crystal structure [46] and on its conformation in solution [47]. The MR 

of Pt(II) and Pt(IV) was estimated based on the size of carboplatin (8x4x3 Ǻ) and cisplatin 

(5x3x1.5 Ǻ) as measured in MDLChime (http://www.umass.edu/microbio/chime/getchime.htm). 
2 The sources of Dc’s are detailed in the relevant chapters of the thesis. 
3The relative porosity of the membrane was calculated using Eq. 5. 
4The impedance (Γ) was the fitted parameter in transport assays with MCL. 
5The DM was calculated using the equation Eq. 7. 

* Values for k, ψ, Γ, DM and g were tested with ANOVA. Using Tukey’s post hoc test * 

indicates significant difference from sucrose, § indicates significant difference from 

vinblastine. 

 

The appearance of the two labelled compounds in the RC was measured (CR) over a 30 min 

period (Figure 7a). Applying the mathematical model described in the Appendix generated 

values of 14 ± 0.3 x 10-5 cm s-1 as the mass transfer coefficient for sucrose and 12 ± 0.3 x 10-5 

cm s-1 for vinblastine (Table 1). The relative porosity of the collagen coated PTFE membrane 
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was calculated using Equation 5 (Appendix) and it was almost two fold higher for [3H]-

vinblastine (14 ± 4 x 10-2), than for [14C]-sucrose (8 ± 2 x 10-2) (p < 0.05) (Table 1). 

4.2.2. Diffusive transport of [14C]-sucrose and [3H]-vinblastine in the MCL 

Information on the relative porosity of the PTFE membrane enabled the accurate 

characterisation of the diffusivity of the compounds in the MCL. Flux of sucrose through the 

MCL is exclusively through extracellular diffusion, since (i) disaccharides cannot be taken up 

directly by the cells and (ii) colon cancer cells do not express the brush border enzyme 

sucrase-isomaltase that is responsible for its digestion in intestinal mucosa [48]. [14C]-sucrose 

flux was used as an indicator of interstitial diffusion and its diffusion coefficient in the MCL 

interstitium was calculated to be 4.2 ± 0.9 x 10-8 cm2 s-1 using the mathematical model 

described in Appendix. 

Figure 7 Transport kinetics of [14C]-sucrose () and [3H]-vinblastine () was determined 

through (a) Transwel-Col membranes and (b) MCL. Typically 800 nM [14C]-sucrose or 60 

nM [3H]-vinblastine was administered to the DC. Appearance of radiolabelled compound in 

the RC was measured as described in Materials and Methods. The cumulative concentration 

in the receiver compartment (CR) was divided by the starting concentration in the donor 

compartment (CD) and plotted as the mean percentage  SD of three independent 

experiments. The curves were fitted using the mathematical models described in the 

Appendix.  
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Similarly to sucrose, the flux rate of vinblastine through the MCL was significantly slower 

than that observed through the PTFE membrane alone (Fig. 7a & b). Vinblastine is lipophilic 

and its distribution was expected to include the intracellular space in MCL. Surprisingly, the 

mathematical model that was based purely on diffusion, i.e. without any reaction term, 

described the flux of vinblastine through MCL accurately (Fig. 7b). On the other hand, the 

measured radioactivity in the RC can represent both vinblastine and its metabolites and thus it 

can overestimate the flux of the parental compound. However, there wasn’t any Cyp3A4, 

which is the major metabolising enzyme of vinblastine in vivo, detected in the MCL with 

western immunoblotting techniques (data not shown). The measured diffusivity of [3H]-

vinblastine through the DLD1 MCL was 1.9 ± 0.2 x 10-8 cm2 s-1. The diffusivities of both 

compounds decreased approximately 170 fold in the MCL compared to the medium, so the 

MCL hindered the diffusion of vinblastine to the same extent as it did for sucrose. 

 

In summary, the drug transport assay presented here consists of two compartments separated 

by a MCL with heterogeneous cell populations and low/moderate P-gp expression. Both [3H]-

vinblastine and [14C]-sucrose fluxes were compatible with pure extracellular diffusion and 

[3H]-vinblastine diffusivity was more than two fold slower in the MCL. Due to its slow 

diffusivity, vinblastine will mostly affect cells nearer than 70 μm to the vessel wall. 

4.2.3. Diffusivity and cellular uptake rate of [14C]-Pt(II) and [14C]-Pt(IV) compounds in 

MCL 

The transport of the compounds through the PTFE membrane with or without the MCL was 

measured by loading the radiolabelled drugs to the DC and measuring the radioactivity 

appearing in the RC over time (Figure 2a). Initially, 150 and 1000 μL volumes of culture 

medium were loaded to the DC and RC respectively, to maintain an equivalent fluid level and 

therefore avoid hydrostatic pressure driven convective transport. 

 

The non-specific binding of the compounds to the plastic surfaces in DC and RC was 

determined to improve the accuracy of the subsequent quantitative analyses (Table 2). For 

example, the fraction bound to the DC reduces the effective concentration gradient, whilst the 

fraction bound to the RC falsely reduces the flux rate. The fractions bound to the DC and to 

the RC were used to correct the starting drug concentration and the concentration of the drug 

transported respectively. The cumulative concentration of [14C]-Pt(II) and [14C]-Pt(IV) were 

expressed as a percentage of the initial drug concentration in the DC. 
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Table 2 Binding of the radiolabelled compounds in the MCL system 

Membrane MCL 
%, mean ± SD 

[14C]-Pt(II) [14C]-Pt(IV) [14C]-Pt(II)  [14C]-Pt(IV) 

Added to DC 100 100 100 100 

Decrease in DC 
46.3 ± 2.6 

n = 3 

43.06 ± 2.6 

n = 3 

17.6 ± 3.6 

n = 12 

15.3 ± 4.1 

n = 12 

Membrane ± MCL 
0.1 ± 0.1 

n = 3 

0.3 ± 0.1 

n = 5 

0.7 ± 0.3* 

n = 6 

0.5 ± 0.2* 

n = 9 

Transported 
27.8 ± 5.0 

n = 3 

28.6 ± 3.5 

n = 3 

5.3 ± 0.8 

n = 12 

5.3 ± 0.5 

n = 12 

Bound to RC 
12.8 ± 0.4 

n=3 

16.6 ± 1.2 

n = 3 

12.8 ± 0.4 

n=3 

16.6 ± 1.2 

n = 3 

Bound to DC 
18.5 ± 7.0 

n = 3 

13.9 ± 5.6 

n = 3 

10.1 ± 2.8 

n = 6 

10.5 ± 4.3 

n = 9 

The percentage bound to the DC was calculated by subtracting the percentage bound to 

membrane ± MCL and the percentage transported to the RC from the percentage decrease in 

the DC at the end of the transport assay. These values and the non-specific binding of 

radiolabelled compounds to the RC were measured as it is described in Materials and 

Methods. * indicates statistically significant (p < 0.05) accumulation of the Pt compounds in 

the MCL compared to the PTFE membrane alone. 

 

Figure 8 shows the cumulative amounts of Pt-complexes appearing in the DC of the MCL 

apparatus. Data is provided for fluxes in the presence or absence of the MCL tissue overlaid 

on the PTFE membrane. As expected, the rate and extent of flux was greater for both drugs in 

the absence of the MCL. The data in Figure 8 clearly demonstrates that there was no 

difference between [14C]-Pt(IV) and [14C]-Pt(II) with respect to their cumulative appearance 

in the donor compartment. 

 

Mathematical modelling without a cellular uptake parameter did not fit the data obtained in 

the presence of an MCL, but was an accurate reflection for passage across the PTFE 

membrane alone. The mathematical model comprising an uptake coefficient was used to 

quantify flux of the compounds through the solid tumour model and the data is summarised in 

Table 1. 
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Figure 8 Flux kinetics of [14C]-Pt(II) and [14C]-[Pt(IV) through MCL 

Typically, concentrations of 6 μM [14C]-Pt(II) () and 18 μM [14C]-Pt(IV) () were 

administered to the DC. Appearance of radiolabelled compound in the RC was measured as 

described in Materials and Methods. The cumulative concentration in the receiver 

compartment (CR) was divided by the starting concentration in the donor compartment (CD) 

and plotted as the mean percentage  SD of three independent experiments. The curves were 

fitted using the mathematical models with (+) or without (-) terms for cellular uptake as 

described in the Materials & Methods. Flux was measured through (a) the PFTE membrane 

only and (b) MCL grown on the PFTE membrane. 

 

The Dc of platinum compounds in solution was calculated according to the Stokes-Einstein 

equation (Eq. 1) using the molecular radius (MR). The mass transfer coefficients (k) and 

relative porosity () values of the two platinum compounds through MCLs were 

indistinguishable. The coefficient of diffusion was ascertained for the Pt(IV) and Pt(II) drugs 

through the MCL model utilising the parameters of mass transfer coefficient (k), MCL 

thickness (xM), diffusivity in the medium (D1) and initial drug concentration (CD). The 

calculated diffusion coefficients (DM) and cellular uptake (g) rates were not different for the 

two platinum compounds (Table 1), reflecting similar flux parameters for the two classes of 

platinum complex in a solid tissue. 
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4.2.4. Cellular accumulation of [14C]-Pt in the MCL; SRIXE Analysis 

Accumulation of Pt compounds in the MCL was determined by measuring the radioactivity 

retained in the PTFE membrane  MCL after the transport assays. As shown in Table 2, the 

radioactivity associated with the membrane was higher in the presence of the MCL, although 

there was no significant difference between [14C]-Pt(II) compared to [14C]-Pt(IV).  

 

Figure 9 The cellular accumulation of [14C]-Pt(IV) in MCL: SRIXE analysis 

After the transport assay sections of the MCL were imaged using SRIXE. Fitted images of the 

elemental distributions in segments of a control and a Pt(IV) treated MCL are shown, where 

each pixel represents 3 x 2 m (horizontal x vertical). The images show relative elemental 

concentrations on blue to red colour scale, representing low to high elemental levels. The 

arrowheads indicate the position of the PTFE membrane supporting the MCL. 

 

Data from the mathematical modelling above suggested a significant degree of uptake for Pt-

drugs within the MCL tissue. Image analysis using SRIXE was used to confirm this 

suggestion and the technique enabled an extensive elemental analysis of the MCL tissue. The 

data shows that tissue that had been exposed to the [14C]-Pt(IV) drug was associated with an 

incorporated Pt-signal (Figure 9). This confirmed the experimental and mathematical 

modelling data and demonstrates that flux through solid tissue is associated with a non-

negligible degree of Pt-drug uptake into cells. Quantitation of the Pt signal across the tissue 
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revealed a greater Pt(IV)-complex concentration at the upper surface (i.e. facing the DC) 

(Figure 10). 
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Figure 10 Quantification of the cellular accumulation of [14C]-Pt(IV) in MCL 

The platinum contents of the surfaces exposed to the DC and the RC were quantified and 

normalised relative to a region representative of the entire MCL. Values are expressed as 

percentages, where a value of 100 is indicative of an elemental content identical to that of the 

whole MCL. The data represent the mean and standard error associated with two scans. 

4.2.5. The effect of hydrostatic pressure on the flux of [14C]-Pt(IV) through MCL 

The six-coordinate Pt(IV) compounds have been proposed to display a greater likelihood of 

reduction to the active Pt(II) species in the hostile intra-tumour micro-environment. 

Consequently, ensuring sufficient penetration of Pt(IV) drugs to the deeper layers of a tumour 

remains a key issue. One proposed way of improving penetration is to increase the hydrostatic 

pressure to counteract the increased interstitial pressure generated in tumours. The MCL 

system (Figure 2a-c) provides a convenient means to investigate whether hydrostatic pressure 

can modulate the flux of [14C]-Pt(IV) through solid tumour tissue. Hydrostatic pressure may 

be varied by simply altering the fluid levels in the DC and RC and was applied in both the 

same and opposite directions to the concentration gradient of the MCL system. Figure 11 

shows the cumulative amount of [14C]-Pt(IV) that had penetrated through the MCL in to the 

lower RC, relative to the amount of drug added originally to the DC. 
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Figure 11 The effect of hydrostatic pressure on flux kinetics in MCL 

Hydrostatic pressure was applied by varying the volume of medium added to the DC and the 

RC as described in Materials and Methods. The flux kinetics [14C]-Pt(IV) were determined 

and the cumulative RC concentration relative to the diffusion only values are shown as mean 

± SEM of at least 3 independent experiments.  

 

At a hydrostatic pressure of -3 mm H2O (i.e. against concentration gradient) the amount of 

penetration was reduced from 0.82±0.01% to 0.73±0.01%. In contrast, as the hydrostatic 

pressure was increased to +4 mm H2O (i.e. along the concentration gradient), the flux of 

[14C]-Pt(IV) was increased to 1.06±0.08%. The data therefore indicates that even a relatively 

minor hydrostatic pressure gradient was capable of a significant influence on the flux of [14C]-

Pt(IV) through the MCL tumour model. 

4.3. Diffusion of vinblastine in a cylindrical model system of colon cancer tissue 

Vinblastine is administered IV to patients and it is delivered by the blood to the cancer tissue. 

Blood vessels can be considered as tubes and drug enters tissues in all radial directions from 

the vessels To mimic this situation we designed a model system with radial symmetry from 

blood vessels running parallel to each other and assuming that the surrounding space was 

filled with colon cancer tissue with the same cell volume fraction and impedance as in the 

MCL. 
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Figure 12 Vinblastine concentration profiles in colon cancer tissue 

 

Vinblastine distribution was modelled in cylindrical system with 160 μm radius (r1+ r2) and a 

central vessel that has a radius of 10 μm (r1), as it is show in the insert. The vinblastine 

concentration in the vessel was changing according to observed profiles after a short infusion 

of a single dose of the drug [49]. The graph shows successive predicted profiles at one hour 

intervals using the measured diffusivity of vinblastine. The mathematical model used to 

predict tissue drug concentrations is detailed in the Appendix. 

 

The distance between two vessels represents the average intercapillary distance in tumours 

[8]. A cross section of this model is shown in the insert of Figure 12. The tissue distribution of 

vinblastine was estimated after a single dose of the drug with blood concentration decreasing 

according to a four compartment model [49]. In this model the 70 μm ring of cancer tissue 

proximal to the vessel wall will experience the highest exposure to vinblastine, while tissues 

further away will be relatively spared (Figure 12). 
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5. Discussion 

5.1. The MCL as an experimental model system 

In this study we aimed to provide a model for investigating kinetics of chemotherapeutic drug 

flux in solid tumour nodules. A three-dimensional cancer tissue model (i.e. multicell layer) 

was reproducibly cultured from DLD1 colon cancer cells. The MCL system is widely 

accepted as a good model of solid tumour tissue, in particular the non-vascularised regions or 

nodules [50-51].  

 

The experimental model coupled with mathematical analysis presented here proved suitable 

for measuring the diffusivity of chemotherapeutics in cancer tissue. The MCL grown from 

DLD1 colon cancer cells recapture many key features of colon adenocarcinoma, e.g. cellular 

morphology and severe dysplasia [52]. Furthermore, MCLs display heterogeneity of cell 

cycle status (i.e. proliferating and quiescent) in addition to having a high cell density and 

localised regions of hypoxia, which are common features of many solid tumours. 

 

The applied mathematical model requires that the MCL retain their architecture and cell 

viability during the experiment. The duration of the flux assay was significantly shorter than 

the doubling time of DLD1 cells in monolayer cultures (34 hours, data not shown) and the 

estimated time required by a cell to undergo apoptosis (12-24 hours, [53]). Hence, we can 

assume that there was neither significant proliferation nor cell loss during the experiment. 

 

In order to exclusively measure diffusion, the experimental conditions should exclude 

convection due to a temperature gradient or hydrostatic pressure. To ensure this, the 

experiments were conducted in an incubator and the fluids in the donor and receiver 

compartments were kept at the same level, unless otherwise specified. 

 

This experimental set-up was validated by measuring the flux of [14C]-sucrose, which is 

neither taken up nor metabolised in the MCL. The mathematical model based on Fickian 

diffusion was able to describe the sucrose flux through the MCL. Thus, the presented 

transport assay is suitable to measure the diffusivity of various compounds through the 

32 



 

extracellular space of the MCL and deviations of the flux from the diffusion based 

mathematical model could signal the interaction of the drug with the tumour tissue. 

5.2. Transport of the ABCB1 substrate vinblastine 

Sucrose flux through the MCL was expected to show exclusively extracellular diffusion 

kinetics and, indeed, it was accurately described by the Fickian diffusion model. Although, 

the flux of vinblastine through MCL was considerably slower than sucrose, it was compatible 

with extracellular diffusion. The tissue distribution profile based on the diffusivity of 

vinblastine predicted that cells up to 70 μm away from the circulation will get the highest 

exposure to the drug. 

 

The flux of vinblastine through the MCL was accurately described by the Fickian diffusion 

model suggesting that vinblastine was not metabolised or taken up by cells in this system. 

Vinblastine, which is a lipophilic compound, was expected to enter cells and that its flux 

through the MCL will deviate from Fickian diffusion. However, vinblastine is also a substrate 

of multidrug ABC transporters, which are expressed in colon cancer cells. We’ve found that 

P-gp is expressed at levels intermediate between parental and drug selected cell lines and P-gp 

in DLD1 MCL may have restricted vinblastine distribution to the extracellular space. 

 

This is the first report that provides a quantitative measure for the actual diffusion coefficient 

of vinblastine in 3-D tumour tissue models. To date there are only a few data available about 

drug diffusivity in tumor tissue models and our results are in the same range that has been 

reported previously (Table 3). 

Table 3 Examples of drug diffusivities in MLCs 

Drug Molecular mass (g/mol) Dc in tumour tissue (x 10-7cm2s-1) 

[14C]-urea [13] 60 14.5 

Misonidazole [54] 201 5.5 

Tirapazamine [55] 178 4.0 

 

The penetration of vinblastine through MCL has been reported previously [7]. However, 

kinetic parameters of penetration such as T1/2 are not constants and therefore dependent on 

specific experimental conditions. Furthermore, penetration depends not only on the diffusivity 

of a compound, but also on the hydraulic conductance of the tissue if there is any convection 
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[56]. In addition, penetration can be further diminished by extensive cellular uptake, 

metabolism or binding to specific receptors. We have demonstrated that the diffusion of 

vinblastine was app. 170 times slower in tumour tissue than in solution and 2.5 fold slower 

than that of sucrose.  

 

Which components of the extracellular space in the MCL play a role in limiting vinblastine 

diffusion? The presence of extracellular matrix in 3-D tumour models could increase the 

exerted hindrance (i.e. impedance) of the tissue and should be proportional to the size of 

molecules [57]. However, experimental results do not support a strict correlation between 

molecular size and diffusivity in tissues [58]. Similarly, in this study the impedance of the 

MCL was equal for sucrose and vinblastine, despite the fact that their respective molecular 

radii are different. It is possible that the geometry of the extracellular space is responsible for 

slowing down diffusion of solutes in tissues. To further specify, based on mathematical 

models Tao and Nicholson concluded that impedance is not dependent on cell shape but on 

the relative volume of the extracellular space [59]. These findings emphasise the role of tight 

cell packing and intercellular contacts as limiting factors of transport in the interstitium. Thus, 

it is necessary to dissect flux data, as flux through the 3D model membrane is a sum of many 

different processes. 

 

Would it be beneficial to somehow increase the flux of vinblastine in tumour tissues? 

Vinblastine penetration into tissues with high interstitial pressure will be poor and it will 

likely to reach cells only in the vicinity of blood vessels. Previously the efficacy of vincristine 

was correlated with the proliferating population of cells in monolayers, TS and tumour 

xenografts [60]. Furthermore, we have shown that quiescent cells are insensitive to 

vinblastine in a modified TS model (manuscript # IV.). The mitotically active cells in solid 

tumours reside in close proximity to capillaries and even slowly diffusing vinblastine can 

penetrate to sufficient depth to reach those cells. On the other hand, cells further away from 

the circulation are not sensitive to vinblastine, hence increased penetration of vinblastine is 

unlikely to improve therapeutic efficacy. Drug distribution and target cell populations should 

ideally overlap in tumours and the MCL model can be used to identify drugs that fall short of 

this requirement. 
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5.3. Transport of platinum compounds 

Platinum based chemotherapy remains a vital component of many treatment strategies in 

oncology. As with the majority of “genotoxic” anticancer drugs, the Pt-complexes are beset 

by problems with toxicity, resistance and poor pharmacokinetic properties. A great deal of 

effort has been placed in generating more potent and selective derivatives of conventional 

Pt(II) drugs such as cisplatin. In particular, the six coordinate Pt(IV) complexes offer several 

advantages including lower reactivity and a greater potential for introducing hydrophobicity 

to facilitate cellular uptake. There is little information available on either class of Pt-drug 

relating to their behaviour in solid tumour tissue, so the MCL as solid tumour model was 

utilised to quantify flux behaviour of Pt(II) and Pt(IV)-complexes. Flux through the solid 

tumour model was associated with significant cellular accumulation and was sensitive to 

changes in the applied hydrostatic pressure. 

 

Both of the compounds tested were able to completely penetrate the MCL tissue with the 

diffusion coefficients of 17.5 ± 2.6*10-8 cm2s-1 for the Pt(II) and 17.8 ± 3.1*10-8 cm2s-1 for the 

Pt(IV)-complex. These rates of diffusion were almost ten fold higher than that for the 

hydrophobic anticancer drug vinblastine (1.9 ± 0.2*10-8 cm2s-1) and four fold higher than of 

the highly hydrophilic sucrose (4.2 ± 0.9*10-8 cm2s-1). A similar rapid flux (i.e. % drug min-1) 

of cisplatin compared to vinblastine has been reported in MCL comprising bladder cancer 

cells, whilst etoposide, gemcitabine and paclitaxel displayed faster rates of flux [7]. A major 

advantage of the current approach is the ability to estimate the actual diffusion coefficients, 

which may be directly applied to the prediction of tissue drug concentrations; for example, as 

a function of the distance from a blood vessel (Fig. 12). This rapid flux across the MCL 

should be considered a positive feature for such compounds. A considerable emphasis in the 

design of platinum drugs has been placed on developing lipophilic drugs that can assist in 

circumventing diminished cisplatin accumulation in resistant cell lines, however it may be 

that defeating unicellular resistance may come at the expense of tissue penetration, and 

therefore create the problem of multicellular resistance. It seems that hydrophilic drugs such 

as those examined here allow for excellent tissue penetration. If this feature can be coupled 

with a more readily reducible Pt(IV) compound (the Pt(IV) compound studied here is the 

most inert in a series studied), a drug with good penetration and cytotoxic potential may be 

arrived at. 
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The idea of improving cell penetration and nuclear targeting at the same time by adding an 

anthraquinone moiety to the Pt(II) backbone (Pt-1C3) was explored (manuscript # V). Pt-1C3 

and 1C3 alone had similar IC50’s and were more potent than cisplatin in citotoxicity assays 

with DLD1 cells. However, confocal microscopy revealed that Pt-1C3 was sequestered in the 

lysosomes and spared the nucleus. Similar discouraging results were published about the 

dinuclear anthraquinone modified Pt drug tested on drug resistant A2780 cells [67]. 

 

The Pt(IV) compound used in the present study has been shown to display lower cellular 

accumulation in well oxygenated monolayers of cancer cells [32] and lower serum protein 

binding compared to the Pt(II) parental derivative [28]. Therefore Pt(IV) would be expected 

to display higher flux rates across MCL than Pt(II); unless the compound is rapidly converted 

to the parental Pt(II) version. The latter is highly unlikely since even following a 24 hour 

incubation period in cancer cells detection with micro-XANES revealed that the Pt(IV)-

complex was not significantly reduced to the four coordinate form [61]. The two Pt 

compounds had undistinguishable flux kinetics across the MCL and in both cases the 

mathematical model required the inclusion of a specific component to account for cellular 

uptake within the tissue. Similarly, the calculated diffusion constants and cellular uptake rates 

also failed to detect any pharmacokinetic differences between the two compounds. What is 

the explanation for the similar rates of flux through the solid tissue given the physico-

chemical differences between Pt(II) and Pt(IV) species? Perhaps despite the increased 

propensity to cross membranes, the accumulation of [14C]-cis,trans-[PtCl2(OH)2(en)] is 

limited by the lack of reactivity. For example, if the latter was more reactive and thus 

converted to the corresponding Pt(II) compound the concentration gradient into the cell for 

the Pt(IV) would remain high enough to ensure greater uptake. Consequently, future Pt(IV) 

development would require taking into account both transbilayer diffusion and the 

intracellular reactivity. 

 

In addition to allowing detailed flux analysis, the mathematical model predicts that a 

concentration gradient would exist within the MCL decreasing from the free surface of the 

tissue towards the semiporous PTFE membrane (i.e. DCRC direction). The SRIXE element 

array qualitatively demonstrated that the distribution of the Pt(IV) compound was similar to 

that predicted by the mathematical model, i.e. more Pt was detected close to the free surface 

of the MCL. This is the first report, where the distribution of drugs within the MCL was 

experimentally verified and compared to the one predicted by mathematical modelling. That 
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more Pt was observed close to the upper surface of the MCL is in keeping with previous 

observations with cisplatin detected by antibody in squamous carcinoma cell spheroids, and a 

Pt-porphyrin compound in J82 spheroids observed by fluorescence microscopy that inferred 

more intense drug signal (though both relied on a molecular signature other than the active Pt 

centre itself) at the periphery of spheroids [62-63]. In the case of the Pt-porphyrin complex, it 

took 24 hours before uniform drug distribution could be achieved, though this is not reflective 

of the drug distribution expected to be achieved by a pulse of chemotherapeutic agent. SRIXE  

assay enabled direct quantification of Pt(II) and Pt(IV) distribution within tumour cell 

spheroids. Both compounds showed similar distribution, i.e. being more abundant at the 

periphery of the spheroid and less so in the middle region (manuscript # VI.). These results 

are in line with results from MCL experiments showing a steep downwards gradient of Pt 

content going from the surface to the middle of the MCL. 

 

Most solid tumours have high interstitial pressures that slow drug transit and filtration through 

tissue and consequently drug movement in cancer tissue is largely limited to diffusion [10]. 

Restoring the physiological filtration by increasing the hydrostatic pressure is a possible 

option to improve drug delivery to deeper layers of cancer cells within the 3-dimensional 

solid tumour mass. Our results show that since the flux of the two compounds was sensitive to 

hydrostatic pressure that convection could potentially increase the penetration of tumour mass 

by platinum drugs. This principle, known as convection enhanced delivery (CED), has 

actually been utilised to treat intracranial tumours where the confined space further increases 

the effects of interstitial pressure [64]. Cisplatin is expected to be useful via local drug 

delivery [65] in intracranial tumours due to its reported rapid flux rate, although an 

enhancement by CED has not yet been examined. 

 

The data from the present investigation provides hitherto unknown pharmacokinetic 

properties for two platinum compounds; namely the absolute diffusion coefficient through 

solid tumour tissue. Moreover, both experimental and mathematical models provide a 

convenient means to facilitate the in vitro development of novel six-coordinate platinum 

compounds; particularly to enable a bridge between observations in simple cell monolayer 

systems to the complexities associated with poorly vascularised hypoxic tumours in vivo. 
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6. Summary 
The three-dimensional organisation of cancer cells in solid tumours contributes to the multi-

factorial problem of drug resistance. Impaired diffusion through tumour tissue is often 

thought as a major contributing factor in resistance, yet elucidating intra-tumoural distribution 

of anti-cancer drugs is often neglected.  

 

Our approach to these problems was to develop tools that can help to estimate drug 

distribution in vivo. 3-D tumour models were selected to serve as model systems and drug 

transport was measured in these models. A mathematical model was developed to describe the 

distribution of anti-cancer drugs through solid tumour tissue. The flux of various compounds 

was measured through the multicell layer tumour model comprising DLD1 colon cancer cells. 

Fluxes were determined for sucrose, vinblastine and [14C]-labelled [PtCl2(en)] and cis,trans-

[PtCl2(OH)2(en)] drugs. The mathematical model provided the diffusion coefficients for these 

compounds and together with experimental data it suggested a significant cellular uptake of 

the platinum compounds in the transport system. 

 

Although slow diffusion delays vinblastine penetration into the avascular regions of tumours, 

the proliferating cells susceptible to mitotic spindle poisons are generally in the perivascular 

area of tumours. The flux of the Pt(IV) compound through the MCL was not significantly 

different to that of the Pt(II)-drug nor were the diffusion coefficient or tissue uptake; the latter 

confirmed with elemental imaging analysis by synchrotron radiation induced X-ray emission. 

However, the flux of the Pt(IV) through the MCL was increased by hydrostatic pressure, 

thereby demonstrating the potential to target cancer cells further away from the vessels with 

six-coordinate platinum drugs. 

 

The experimental and mathematical model described has broad applicability for the study of 

anticancer drug diffusion in 3-D tumour tissue. The mathematical model enables accurate 

quantification of drug pharmacokinetic behaviour within solid tissue and may be adapted to 

incorporate the influence of factors mediating pharmacokinetic drug resistance. Determination 

of the diffusivity of chemotherapeutic agents can help to identify compounds with potential in 

pharmacokinetic drug development.  
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7. Appendix 

7.1. Mathematical model to describe drug flux through Transwell-Col membranes only 

The experimental system is depicted in Figure 2 and is modelled as a closed system with mass 

conservation: 

   tCVtCVCV RRDDDD 
0 ,       (Equation 2) 

where VD and VR are the volumes of the donor and receiver compartments (mL), respectively, 

and CDo is the initial concentration of the radiolabelled compound in the donor chamber (nM), 

while CB(0) = 0 nM. The flux through the membrane is proportional to the membrane surface 

area (A, cm2) and the concentration gradient across the membrane. Furthermore the flux 

through the membrane equals the change of concentration of molecules in the receiver 

compartment, hence we get 

      tCtC
V

Ak
tC

dt

d
RD

R
R   ,      (Equation 3) 

where k is the mass transfer coefficient (cm s-1). CD can be eliminated using Eq. 1 and then 

Eq. 2 solved: 
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The fitted parameter was k and the relative porosity of the membrane for the compounds 

(~impedance, ) was determined according to 

x

D
k




1
,         (Equation 5) 

where D1 is the diffusion coefficient of the compound in medium (cm2s-1) and x is the 

measured thickness of the membrane (cm). This model assumes that the non-specific binding 

of compounds to the membrane is negligible.  

7.2. Mathematical model to describe flux of radiolabelled compounds through the MCL 

and the membrane 

The flux of radiolabelled compounds through the MCL was modelled as Fickian diffusion. As 

we described previously the MCL resembles the heterogeneity of solid tumours. However, in 

MCL this heterogeneity appears in planes perpendicular to the axis of the drug concentration 

gradient and thus the insert with the MCL can be seen as an anisotropic cylinder which has its 
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axis along direction x (Fig. 2) and is bounded by planes perpendicular to x and the problem of 

diffusion into it reduces to the corresponding problem in an isotropic cylinder provided Dy= 

Dz, where Dy and Dz are diffusion constants in the other two directions of space [66]. The 

concentration of compounds in the donor compartment was kept constant during the 

experiment. As the concentration only varies along the x axis we can describe the diffusion as 



















x

c
D

xt

c
M ,        (Equation 6) 

where DM is the diffusion coefficient of the compound in the MCL (cm2 s-1) and x is the 

distance from the top free surface of the MCL (cm). DM can be defined by the impedance of 

MCL (Γ) and the diffusivity of the compound in medium (D1, cm2 s-1) as 

1* DDM           (Equation 7). 

The boundary conditions were    

at   , 

for the continuity of the flux at the interface between the MCL and the membrane 

at   

0x
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 
0
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M      tCtxCktxC
x

D RMMM 



 ,,  ,  (Equation 8) 

where xM is the thickness of the MCL. Furthermore the governing equation for the drug 

concentration in the RC (CR(t)) is  

at   Mxx       tCtxC
V

Ak
tC

dt

d
RR

R
R  , .   (Equation 9) 

Eq. 7 and 8 are coupled partial differential equations, which were used to write a program in 

Matlab 7.0.1 to simulate the experimental situation with initial conditions at 

, at 

 
0

0, DCxC 

0x   00, xC Mxx 0 and   00 RC  to calculate Γ and DM. 

7.3. Mathematical modelling of vinblastine distribution in colon cancer tissue with radial 

symmetry 

The model system consists of capillaries running parallel to each other and surrounding colon 

cancer tissue. A cross section of this system is shown in the insert on Figure 12. To describe 

the distribution of vinblastine after a single dose from the central vessel into the surrounding 

cancer tissue we used the following equation: 
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The boundary conditions were  

at   1rr    ttrc ,1  

and at   2rr   0,2 



trc
r . 

The initial conditions were  

at   1rr    00, rc

0,

 

and at   2rr 1r   0rc . 

Equation 9 was solved numerically and tissue drug concentrations were plotted against 

distance from the centre of the vessel in Figure 12. Metabolism was considered to be 

negligible and we kept the cell volume fraction constant. However, applying the measured 

proliferation rate constant and literature values for apoptotic cell death rate and tissue 

metabolism did not influence the drug distribution in the first 6 hours. 

7.4. Mathematical Model to Describe Intra-MCL Drug Pharmacokinetics 

Transport through the Transwell-Col membrane only was described using the model and 

equations detailed in chapter 6.1. 

 

The transport of radiolabelled platinum compounds through the MCL was using a modified 

version of the model described in chapter 6.2, i.e. included another term to account for 

cellular uptake. As the concentration only varies along the x axis we can describe the 

diffusion of the drug in the MCL by 
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




  ,       (Equation 11) 

where DM is the diffusion coefficient of the compound in the MCL (cm2 s-1) and x is the 

distance from the top free surface of the MCL (cm), and g (s-1) is the rate of cellular uptake of 

the compound,  is the cell volume fraction and c (nM) is the drug concentration.. DM can be 

defined by the impedance of MCL (Γ) and the diffusivity of the compound in medium (D1, 

cm2 s-1) as 

1* DDM           (Equation 12). 

The boundary conditions were   

at   , 0x   )(,0 tCtC D

Where the concentration in top compartment is calculated from the mass balance by 

considering the flux of molecules that enters the MCL, i.e. 
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The continuity of the flux at the interface between the MCL and the membrane gives us 

another boundary condition  

at   Mxx       tCtxCktxC
x

D RMMM 



 ,,  ,  (Equation 14) 

where xM is the thickness of the MCL. Furthermore the governing equation for the drug 

concentration in the RC (CR(t)) is  

at  xxx M       tCtxC
V

Ak
tC

dt

d
RR

R
R  , .   (Equation 15) 

Eq. 10-14 are coupled partial differential equations, which were used to write a program in 

Matlab to simulate the experimental situation with initial conditions and 

 to calculate Γ , DM and g. 

MxxC  0at  0

  00 RC
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