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CHAPTER 1

Introduction

Lattices and groups are important algebraic structures and they are the most

important related algebraic structures. They often appear in many branches of

algebra, they are clear enough to consider easily, and rich enough to characterize

many types of algebraic properties.

In this dissertation lattices play more important role than groups, this is why

we put lattices in the title.

The reason why we put invariants in the title is more complex. Traditionally

in mathematics, cf. Wikipedia [Inv1]: “ An invariant is something that does

not change under a set of transformations. The property of being an invariant is

invariance. For the laymen, let us say an invariant is some kind of correspondence

between two types of mathematical objects, so that two ‘similar‘ things correspond

to one and the same object. Invariants are useful in discriminating complicated

objects.

Mathematicians say that a quantity is invariant ”under” a transformation; some

economists say it is invariant ”to” a transformation.

Some examples, ...

• The degree of a polynomial, under linear change of variables

• The dimension of a topological object, under homeomorphism

• The number of fixed points of a dynamical system is invariant under many

mathematical operations.

• Euclidean distance is invariant under orthogonal transformations and under

translations.

• The cross-ratio is invariant under projective transformations.

• The determinant and trace of a square matrix are invariant under changes of

basis.

• The singular values of a matrix are invariant under orthogonal transforma-

tions.

• Lebesgue measure is invariant under translations.
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• The variance of a probability distribution is invariant under translations of

the real line; hence the variance of a random variable is unchanged by the addition

of a constant to it.”

See also [Inv 2]. Invariants have frequently been in the centre of mathematical

investigations. For example ”Klein’s synthesis of geometry as the study of the prop-

erties of a space that are invariant under a given group of transformations, known as

the Erlanger Programme (1872), profoundly influenced mathematical development.

...The Erlanger Programme gave a unified approach to geometry which is now

the standard accepted view.” (Quotation is from [Inv3].) See also [Inv4].

However, beside its strict meaning outlined above, the word ’invariant’ has also

a more general meaning in universal algebra. We obtain this meaning by replacing

transformation, which is a selfmap A → A of a set A by the notion of algebraic

operations. Thus we arrive at the notion of an invariant relation ρ with respect to

an operation f : An → A. In other words, ρ is one of the invariants of f , cf. e.g.

[PK].

The present dissertation uses the word ’invariant’ in both meanings. The reader

will find invariance groups as well as invariant (preserved) relations, namely: con-

gruences and tolerances.

Lattices and invariants proceed along the whole dissertation, but their ratio is

varying chapter by chapter.

In Chapter 2 we start with the invariance groups of threshold functions which

are a special kind of Boolean functions.

In Chapter 3 we extend our investigation to functions on a finite set. In order

to give entirely new proofs for primality theorems, we make use of the operation-

relation duality which is established by the preservation of relations by functions.

Here not only invariant relations, but also lattices (i.e. the lattice of clones) come

into picture, although they play no essential role in the investigation.

All the other chapters are much more connected with lattices consisting of

invariants, which will be congruences (= preserved equivalences) and tolerances

(= preserved symmetric and reflexive relations). In Chapter 4 we analyze dia-

grammatic statements concerning congruences and tolerances. Motivated by these

diagrammatic statements, in Chapter 5 we carry out lattice theoretic investigation
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on the shift of a lattice identity. In Chapter 6 tolerances are in the centre, and some

lattice theoretic points of interest appear. Finally, Chapter 7 brings an essential

contribution to the 34 year old open problem: which congruence lattice identities

can be characterized by Maltsev condition?
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CHAPTER 2

Invariance groups of threshold functions

There are many parts of informatics where Boolean functions, i.e.

{0, 1}n → {0, 1}

mappings are important. The main questions practice raised are the following:

1) How can we represent a Boolean function in the simplest or in the most

economical way?

2) Which Boolean functions can be given as superposition of a given set of

Boolean functions?

A threshold function is a Boolean function, i.e. a mapping {0, 1}n → {0, 1},

with the following property: There exist real numbers w1, ..., wn, t such that

f(x1, . . ., xn) = 1 iff

n
∑

i=1

wixi ≥ t,

where wi is called the weight of xi for i = 1, 2, . . . , n, and t is a constant called the

threshold value.

There is a geometrical interpretation of threshold functions. The set {0, 1}n

can be considered to span a hypercube in the Euclidean space Rn. A Boolean

function is defined by assigning either 0 or 1 to the 2n vertices of the hypercube

{0, 1}n. In the n-dimensional space Rn the set of vertices where the value of the

function is 1 can be separated by a hyperplane from those vertices where the value

is 0. This is why threshold functions are also called linearly separable functions

([Sh]).

Threshold functions are useful to study because they are not only models of

neurons for example, but also it is easy and relatively cheap to realize them by

electrical network ([Sh], [Mu]).

From algebraic point of view, up to now, the main result is the characterization

of threshold functions by fundamental ideals of group rings ([ABGG]). However, new
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investigations in the direction of constraints and taking minors are very promising

([Pip], [CF]).

Surprisingly enough, the number of the n-variable threshold functions is still

not known ([Sh], [Mu]).

In many branches of mathematics, symmetry properties of the investigated

objects are useful if discovered. Permutations of variables leaving a given Boolean

function f(x1, . . . , xn) invariant form a group, which we call the invariance group

G of the function. Barbara Wnuk has published in a paper ([Wn]) written in Polish

that every permutation group is representable as the invariance group of a Boolean

function.

In this chapter we are going to prove that the invariance group of threshold

functions is isomorphic to a direct product of symmetric groups.

We can suppose without loss of generality (see [ABGG] and [YI]) that

w1 < w2 < . . . < wn.

We use the notation: (X) = (x1, . . . , xn); W = (w1, . . . , wn); W (X) =
∑n

i=1 wixi.

If σ ∈ Sn, then let σ(X) = ((xσ(1), . . . , xσ(n)), and for P = (p1, p2, . . . , pn) ∈

{0, 1}n let σ(P ) = (pσ(1), pσ(2), . . . , pσ(n)) ∈ {0, 1}n.

Consider a partition C on the set n = {1, 2, . . . , n}. As usual, we shall denote

the class of C that contains i ∈ n by ī. We call C convex if i < j < k and ī = k̄

together imply ī = j̄. For any convex partition C of n, the ordering < of n induces

an ordering of the set of blocks of n in a natural way: ī < j̄ iff i < j.

We say that a permutation π ∈ Sn preserves a subset n′ of n if for each i ∈ n′,

π(i) ∈ n′ holds. We say that a permutation σ ∈ Sn leaves a Boolean function

invariant, if f(σ(P )) = f(P ) for all P ∈ {0, 1}n. Permutations leaving f invariant

constitute the invariance group of the Boolean function.

THEOREM 2.1 ([Ho1]). For every n-ary threshold function f there exists a

partition Cf of n such that the invariance group G of f consists exactly of those

permutations of Sn which preserve each block of Cf . Conversely, for every partition

C of n there exists a threshold function fC such that the invariance group G of fC

consists exactly of those permutations of Sn that preserve each block of C.

Proof. The proof of Theorem 2.1 requires several subsidiary statements. First,

consider an arbitrary n-ary threshold function f . Let us define the relation ∼ on
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the set n as follows: i ∼ j iff i = j or the transposition (i j) leaves f invariant.

Clearly, this relation is reflexive, and symmetric. Moreover, it is transitive because

(i j)(j k)(i j) = (i k).

Hence ∼ is an equivalence relation.

Claim 2.1. The partition Cf defined by ∼ is convex.

Proof. If it is not so, then there exist i < j < k, i ∼ k, i 6∼ j, hence there

exists a Boolean vector (d1, . . . , dn) ∈ {0, 1}n such that

d + widj + wjdi + wkdk < t, (1)

d + widi + wjdj + wkdk ≥ t, (2)

where d =
∑

q 6=i,j,k cqdq. Now (1) and (2) together with wi < wj imply di = 0 and

dj = 1 because 0 < (2)− (1) = (wj −wi)(dj − di). Since i ∼ k, from (1) and (2) we

infer:

d + widk + wk = d + widk + wjdi + wkdj < t, (3)

d + widk + wj = d + widk + wjdj + wkdi ≥ t. (4)

Now wj ≥ t − d − widk > wk, a contradiction.

Claim 2.1 is proved.

tu

For the reason of convexity, the blocks of ∼ can be given this way:

C1 = {1, . . . , i1},

C2 = {i1 + 1, . . . , i1 + i2}

...

Cl = {i1 + i2 + . . . + il−1 + 1, . . . , i1 + . . . + il}.

Every permutation that is a product of some “permitted” transpositions pre-

serves the blocks of Cf , and belongs to G. We show that if a permutation does not

preserve each blocks of Cf defined by ∼, then it cannot belong to G.
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Claim 2.2. Let γ = (j1 j2 . . . jk−1 ljk . . . jm) ∈ Sn be a cycle of length m + 1

with js ∈ Cp, 1 ≤ s ≤ m, l ∈ Cq, p 6= q. Then γ 6∈ G.

Proof. Let us confine our attention to the following:

(l jk−1)(j1 j2 . . . jk−1 l jk . . . jm) = (j1 j2 . . . jm)(l),

so

(l jk−1) = (j1 j2 . . . jm)(j1 j2 . . . jk−1ljk . . . jm)−1.

If γ were an element of G, then (l jk−1) would be also an element of G which

contradicts the definition of ∼.

Claim 2.2. is proved.

tu

Lemma 2.1 ([Ho1]). If a cycle β ∈ Sn has entries from at least two blocks

of Cf , then β 6∈ G.

Proof. Given the convex partition Cf of (n;≤), for any cycle β of length k we

construct a sequence of cycles of increasing length, called the downward sequence

of β (the reason of this name is that the new entry of each member of the sequence

will always correspond to the smallest weight), as follows: Let p be the greatest

entry of β and let q be the greatest entry of β which is not in p̄. We cancel some

entries of β in such a way that we keep all entries in p̄, and we keep q, and we delete

all the remaining entries of β.

This results in the initial cycle of the downward sequence β(r) of length r; r ≥ 2.

We do not need to define members of the downward sequence with superscripts less

then r. If we have constructed β(i), we obtain the next member β(i+1) of the

downward sequence by taking back the greatest cancelled (and not yet restored)

entry of β to its original place. Thus, the final member of the downward sequence

is β(k) = β. Let us denote by m(i) (i > r), the “new” entry of β(i). If i ≤ r, then

we do not have to define m(i). As an illustration take the following (let n = 8):

C1 ={1, 2},

C2 ={3, 4},

C3 ={5, 6, 7},

C4 ={8},
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and

β = (4 5 1 7 3) = (1 7 3 4 5).

The downward sequence is:

β(3) = (7 4 5),

β(4) = (7 3 4 5), m(4) = 3,

β(5)(= β) = (1 7 3 4 5), m(5) = 1.

It is obvious from the construction of the downward sequence that the weight

corresponding to an arbitrary entry of β(i) is greater than the weight corresponding

to m(i + 1). By Claim 2.2, the initial cycle of the downward sequence (in our

example β(3)) is not in G. Hence there exist A(r) = (a
(r)
1 , . . . , a

(r)
n ) and B(r) =

(b
(r)
1 , . . . , b

(r)
n ) with A(r), B(r) ∈ {0, 1}n and f(A(r)) 6= f(B(r)). We can assume

without loss of generality that f(A(r)) = 0 and f(B(r)) = 1, for otherwise we can

work with β−1 instead of β.

In order to prove that β 6∈ G it suffices to construct A(i) and B(i) for

i = r + 1, r + 2, . . . , k such that f(A(i)) = 0 and f(B(i)) = 1 and β(i)(A(i)) = B(i).

It is enough to (and we are able to) show that if for i ≥ r there ex-

ist A(i) = (a
(i)
1 , . . . , a

(i)
n ) and B(i) = (b

(i)
1 , . . . , b

(i)
n ) with A(i), B(i) ∈ {0, 1}n

such that f(A(i)) = 0 and f(B(i)) = 1 and β(i)(A(i)) = B(i), then we are

able to construct A(i+1) = (a
(i+1)
1 , . . . , a

(i+1)
n ) and B(i+1) = (b

(i+1)
1 , . . . , b

(i+1)
n )

with A(i+1), B(i+1) ∈ {0, 1}n satisfying f(A(i+1)) = 0 and f(B(i+1)) = 1 and

β(i+1)(A(i+1)) = B(i+1). Let us denote by l(j) and r(j) the left and the right neigh-

bour of m(j) in the cycle β(j), respectively. (For the sake of clarity: l(5) = 5 and

r(5) = 7. We shall use this notation for the corresponding components of a concrete

Boolean vector as well: a
(i)
l(j), a

(i)
m(j) and a

(i)
r(j), e.g.: if A(i) = (1, 0, 0, 1, 0, 1, 0, 1), then

a
(i)
l(5) = 0, a

(i)
m(5) = 1, a

(i)
r(5) = 0.

We have three possibilities for A(i):

Case 1. a
(i)
m(i+1) = a

(i)
r(i+1).

Case 2. a
(i)
m(i+1) = 1, a

(i)
r(i+1) = 0.

Case 3. a
(i)
m(i+1) = 0, a

(i)
r(i+1) = 1.
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We show that in the first two cases A(i) is appropriate for A(i+1). In Case 3

the only thing we have to do is to transpose two components of A(i) in order to get

a suitable A(i+1).

Case 1. Let a
(i)
m(i+1) = a

(i)
r(i+1) = y. Put A(i+1) = A(i).

Remember that

β(i) = (. . . l(i + 1) r(i + 1) . . .)

and

β(i+1) = (. . . l(i + 1) m(i + 1) r(i + 1) . . .).

Even though β(i) does not contain m(i+1), β(i+1)(A(i)) = β(i)(A(i)) holds because

a
(i)
(i+1) = a

(i)
r(i+1). If A(i+1) = A(i), then β(i+1)(A(i+1)) = β(i)(A(i)) = B(i). So let

us choose B(i+1) = B(i). Thus f(A(i+1)) = 0, f(B(i+1)) = 1 and β(i+1)(A(i+1)) =

B(i+1) are satisfied. We present this here in a tabular form as well:

xl(i+1) xm(i+1) xr(i+1)

A(i) y y a
(i)
r(i+1)

B(i) b
(i)
l(i+1) y y

A(i+1) y y a
(i)
r(i+1)

B(i+1) b
(i+1)
l(i+1) y y

Case 2. a
(i)
m(i+1) = 1, a

(i)
r(i+1) = 0.

Now, A(i) is appropriate for A(i+1) but that is not the case for B(i) and B(i+1).

Let A(i+1) = A(i), and B(i+1) = β(i+1)(A(i+1)). We can get the Boolean vector

B(i+1) from B(i) if we transpose b
(i)
l(i+1) and b

(i)
m(i+1), i.e.:

b
(i+1)
l(i+1) = 1, and b

(i+1)
m(i+1) = 0,

while

b
(i)
l(i+1) = 0, and b

(i)
m(i+1) = 1;

furthermore, all the other components of B(i+1) and B(i) are identical. Since m(i+1)

corresponds to the smallest weight in β(i+1), we get

n
∑

j=1

wjb
(i)
j ≤

n
∑

j=1

wjb
(i+1)
j ,
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which means that f(B(i+1)) = 1. Moreover, f(A(i+1)) = 0 and β(i+1)(A(i+1)) =

B(i+1) are satisfied. We again display this in a tabular form:

xl(i+1) xm(i+1) xr(i+1)

A(i) 0 1 a
(i)
r(i+1]

B(i) a
(i)
l(i+1] 1 0

A(i+1) 0 1 a
(i+1)
r(i+1)

B(i+1) b
[r(i+1)]
(i+1) 0 1

Case 3. a
(i)
m(i+1) = 0, a

(i)
r(i+1) = 1.

Let us construct A(i+1) from A(i) as follows: Put

a
(i+1)
m(i+1) = 1, a

(i+1)
r(i+1) = 0,

a
(i+1)
j = a

(i)
j if a

(i+1)
j 6= a

(i+1)
m(i+1) or a

(i+1)
j 6= a

(i+1)
r(i+1).

(Transpose a
(i)
m(i+1) and a

(i)
r(i+1) in the Boolean vector A(i) (and keep all of its other

components unchanged) to get A(i+1).) Since m(i + 1) corresponds to the smallest

weight in β(i+1), we get

n
∑

j=1

wja
(i+1)
j ≤

n
∑

j=1

wja
(i)
j ;

hence f(A(i+1)) = 0. Let B(i+1) = β(i+1)(A(i+1)). With this choice B(i+1) = B(i),

hence f(B(i+1)) = 1. In the tabular form:

xl(i+1) xm(i+1) xr(i+1)

A(i) 1 0 a
(i)
r(i+1)

B(i) b
(i)
l(i+1) 0 1

A(i+1) 0 1 a
(i+1)
r(i+1)

B(i+1) b
(i+1)
r(i+1) 0 1

Lemma 2.1. is proved.

tu

Every permutation that is a product of disjoint cycles each one of which pre-

serves every block of Cf belongs to the invariance group G of f . We have to show
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that if not all of the factors have this property, then the permutation does not leave

the threshold function f invariant.

For any permutation π of X, the moving set of π, denoted by M(π), consists

of all elements x of X satisfying π(x) 6= x.

Lemma 2.2 ([Ho1]). Let π ∈ SX be of the form π = π2π1, where π1, π2 ∈ SX ,

with M(π1) ∩ M(π2) = ∅ and π1 6∈ G. Then π 6∈ G.

Proof. Suppose that it is not so, i.e. π ∈ G. Now π1 6∈ G means that

there exist X0, X1 ∈ {0, 1}n with f(X0) 6= f(X1). First we assume that f(X0) =

0, f(X1) = 1 and π1(X0) = X1. Let X2 = π2(X1), i.e. X2 = π(X0). Since

π ∈ G, we infer f(X2) = 0. Let X3 = π1(X2). As M(π1) ∩ M(π2) = ∅, we have

π1π2 = π2π1. Therefore X3 = π(X1). The assumption π ∈ G implies f(X3) = 1.

Looking at the infinite series of Boolean vectors

X0, X1, . . . , Xn, . . .

we can establish in the same way that f(Xi) = 0 if i is even and f(Xi) = 1 if i is

odd. On the other hand,

W (X) = S(X)[1] + S(X)[2] + S(X)[3],

where

S(X)[1] =
∑

xj∈M(π1)

wjxj ,

S(X)[2] =
∑

xj∈M(π2)

wjxj ,

S(X)[3] =
∑

xj 6∈M(π)

wjxj .

With this notation: S(X0)[1] < S(X1)[1], S(X0)[2] = S(X1)[2], S(X0)[3] = S(X1)[3].

For the series of S(Xi)
[1]:

(5) S(X0)[1] < S(X1)[1] = S(X2)[1] < S(X3)[1] = S(X4)[1] < . . . .

Indeed, applying π2 changes only S(Xi)
[2]; moreover, f(X2k) = 0 and f(X2k+1) = 1

imply W (X2k) < W (X2k+1), hence S(X2k)[1] < S(X2k+1)[1]. On the other hand, if

z is the order of π1, then S(X0)[1] = S(X2z)[1], which contradicts (5).
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The case f(X0) = 1, f(X1) = 0 is quite similar, for Xi+1 will play the role of

Xi.

Lemma 2.2. is proved.

tu

Claim 2.3. For π ∈ SX , let π = γ1 . . . γr where the γi are disjoint cycles. If

there exists a γj with 1 ≤ j ≤ r and γj 6∈ G, then π 6∈ G.

Proof. Since disjoint cycles commute, we can assume that γ 6∈ G. Then

π = γ1(γ2 . . . γr) ∈ G follows from Lemma 2.2.

Claim 2.3 is proved.

tu

Now we are in the position to prove the first part of Theorem 2.1. Suppose π is

a permutation that preserves each block of Cf . Decompose π to a product of disjoint

cycles: π = γ1 . . . γr. Then all the γi (1 ≤ i ≤ r) preserve each block of Cf . For a

fixed i (1 ≤ i ≤ r), γi is of the form (k1, k2, . . . , ks). Clearly, k1 ∼ k2 ∼ . . . ∼ ks,

whence all the transpositions (k1 k2), (k1 k3), . . . , (k1 ks) preserve f . Therefore so

does γi = (k1 k2 . . . ks) = (k1 k2)(k1 k3) . . . (k1 ks), implying π ∈ G.

Now suppose that π fails to preserve the blocks of Cf . Then so does at least

one of the γi (1 ≤ i ≤ r), and π 6∈ G comes from Claim 2.3.

In order to prove the converse statement, i.e., the second part of Theorem 2.1,

we show first that for any n there exist an n-ary threshold function which is rigid in

the sense that its invariance group has only one element (the identity permutation).

Suppose n is odd. With n = 2k + 1, consider the following weights:

w1 w2 . . . wk wk+1 wk+2 . . . w2k w2k+1

−k −k + 1 . . . −1 0 1 . . . k − 1 k (6)

Let t = 0. We prove that for any transposition τ of form (xjxj−1) where 2 ≤ j ≤ n

there exists a Boolean vector U = (u1, . . . , un) ∈ {0, 1}n such that f(U) = 1 and

f(τ(U)) = 0. For a fixed j let uj = 1, un+1−j = 1, ui = 0 if i 6= j, i 6= n + 1 − j. It

is obvious that f(U) = 1; however, f(τ(U)) = 0. Hence Cf is the trivial partition.

By the first part of Theorem 1.1, f is rigid.

Now let n be even. With n = 2k, consider the following weights:

w1 w2 . . . wk−1 wk wk+1 wk+2 . . . w2k−1 w2k

−k −k + 1 . . . −2 −1 1 2 . . . k − 1 k (7)
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Let t = 0. The method is almost the same as before, i.e. consider the following

U = (u1, . . . , un): If j 6= k + 1 then let uj = 1, un+1−j = 1, ui = 0 if i 6= j,−j.

If j = k + 1 then let uk+1 = 1 and ui = 0 if i 6= k + 1. If τ = (xjxj−1), where

2 ≤ j ≤ n, then f(U) = 1 while f(τ(U)) = 0.

Now, we construct a threshold function gC for an arbitrary partition C of an

arbitrary ordered set X of variables. Denote now by ∼∗ the equivalence relation on

X defined by C. First, suppose that C is convex. Let i1, . . . , il denote the number of

elements of the blocks of C, respectively. Consider the rigid function f of l variables

that is defined by (6) or (7), depending on the parity of l. Take the weight w1 i1

times, the weight w2 i2 times and so on in order to define a threshold function g of

n = i1 + i2 + . . .+ il variables. Variables of g with the same weight are permutable.

However, transpositions σ of form (xjxj−1), where 2 ≤ j ≤ n and j 6∼∗ j − 1,

are “forbidden” for g because if we consider the corresponding U and construct a

Boolean vector V of dimension n from U by rewriting it in the following way: instead

of um (m = 1, . . . , l), write 0 im times, whenever um = 0; and write 1 (once) then

0 im − 1 times otherwise; then we shall get a Boolean vector V of dimension n, for

which g(V ) = 1 while g(σ(V )) = 0. If C is not convex, the only thing we have to do

is to reindex the variables in order to get a convex partition. After constructing a

threshold function for the rearranged variables with the procedure described above,

put the original indexes back and the desired threshold function is ready.

Theorem 2.1 is proved.

tu

Corollary 2.1 ([Ho1]). The invariance group of any threshold function is

isomorphic to a direct product of symmetric groups.

Proof. Let the blocks of Cf be the following (see the first part of Theorem

2.1):

C1 = {1, . . . , i1},

C2 = {i1 + 1, . . . , i1 + i2}

...

Cl = {i1 + i2 + . . . + il−1 + 1, . . . , i1 + . . . + il}

If π preserves Cf , then π = π1π2 . . . πl where M(πi) ⊆ Ci. So the map

π1π2 . . . πl → (π1, π2, . . . , πl)
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is clearly an isomorphism.

Corollary 2.1 is proved.

tu

The invariance group GB of an arbitrary Boolean function is not necessarily of

the form

(8) G ∼= Si1 × . . . × Sil
.

For example, let h be the following: h(x1, . . . , xn) = 1 iff there exists i such that

xi = 1, xi⊕1 = 1, xj = 0 if j 6= i, i + 1 where ⊕ means addition mod n. The

invariance group of h contains the cycle (1 2 . . . , n) and its powers but it does

not contain transposition at all. If ϕ were an isomorphism into a direct product of

symmetric groups, then the order of ϕ(1 2 . . . , n) is also n, but such direct products

contain permutation of order two, which should be the image of some transposition

under ϕ, a contradiction.

However, there exist Boolean functions with invariance groups of the form (8)

which are not threshold functions. Probably the simplest example:

f(x1, x2, x3) = x1x2x3 ∨ x1x2x3.

Permutable variables of a threshold function do not necessarily mean equal

weights. Here is an example: h(x) = x1x2x4 ∨ x3x4. This is a threshold function

with the following weights, and threshold value:

w1 w2 w3 w4 t
1 2 3 4 7

The transposition (x1x2) is “permitted”, but the others are not.

But the weights can always be chosen to be identical for variables belonging to

the same equivalence class. If the j-th class

Cj = {i1 + i2 + . . . + ij−1 + 1, . . . , i1 + . . . + ij},

then let

w[j] =
wi1+i2+...+ij−1+1 + . . . + wi1+...+ij

ij
.

Replace

wi1+i2+...+ij−1+1, . . . , wi1+...+ij

14



by w[j]. Since

xi1+i2+...+ij−1+1, . . . , xi1+...+ij

are from the same equivalence class, for fixed

x1, . . . , xi1+...ij−1

and

xi1+...ij+1, . . . xi1+...il
,

the fact that W (X) exceeds t (or not) depends only on the number r of 1-s among

the coordinates

xi1+i2+...+ij−1+1, . . . , xi1+...+ij
;

moreover, W (X) has a maximum (minimum) if we put all our 1-s to places with

the greatest (smallest) weights possible. Obviously

wi1+...ir−1+1 + . . . + wi1+...ij−1+1+r

r
≤ w[j];

moreover,

w[j] ≤
wi1+...ij−r + . . . + wi1+...ij

r
.

Hence

wi1+...ir−1+1 + . . . + wi1+...ij−1+1+r ≤ rw[j] ≤ wi1+...ij−r + . . . + wi1+...ij
.

Consequently, after replacing wi1+i2+...+ij−1+1, . . . , wi1+...+ij
by w[j], we still have

the same threshold function.

There are many natural areas for algebraists to investigate concerning threshold

functions.

1) It would be interesting and useful to survey, which clones of the Post diagram

are generated by threshold functions (or more generally, which threshold functions

preserve a given relation, and which threshold functions do not.)([Cz1], [Sz]).

2) Boolean functions are very closely related to lattices ([Cz]); we expect, that

many interesting lattice theoretic results can be obtained by investigating threshold

functions, since many partially ordered sets can be discovered while dealing with

some practical questions about threshold functions. (In the literature I could only

read about the lattice of threshold functions of at most 5 variables [Mu]). Lattice

theoretic results might take us closer to the number of threshold functions.

3) What can be said about the behaviour of cellular automata where the local

rule is a threshold function ([Ka], [Wo])?
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CHAPTER 3

Proving primality by the operation-relation duality

In this chapter a method is presented for proving primality and functional

completeness theorems. This method makes use of the operation–relation duality,

or in other words, the invariant relations of an algebra. By a theorem of Sierpiński

we have to investigate relations generated by the two-element subsets of Ak only. We

show how the method applies for proving S lupecki’s classical theorem by generating

diagonal relations from each pair of k-tuples.

An algebra A = (A, F ), with a finite support A, is called primal if all possible

operations on A are term operations of A. Establishing primality is often facilitated

by theorems asserting that if F contains operations with some properties, then A

is primal. A natural way to prove such theorems is to construct all operations on A

as compositions of those in F . Another way is provided by the operation–relation

duality exhibited by Bodnarčuk, Kalužnin, Kotov, Romov ([BKKR]), and Geiger

([Gei]). First, we outline their theory in a few sentences.

Let A be a set and B a subset of Ak. We say that an operation f preserves

a relation R ⊆ Ak if R is a subuniverse of the algebra (A, f)k. We say that F

preserves R ⊆ Ak, or in other words R is invariant with respect to F if every

f ∈ F preserves R ([Cs2]). The set of all relations preserved by F is called the

set of invariant relations of A = (A, F ). A set of operations on a fixed base set

is called a clone if it contains all projections and is closed under superposition. A

non-empty set of relations is called a closed class of relations, or in other words a

relational clone if it is closed under direct products, projections onto arbitrary sets

of its variables and diagonalizations.

It is well known (cf. [Cs2]) that preservation establishes a Galois connection

between the set of operations and the set of relations on A. On one side, the Galois-

closed subsets of the set of all operations are exactly the clones of operations. On

the other side, the relational clones are exactly the Galois closed subsets of the set

of all relations on A. More precisely, if F is a set of operations, then

Inv(F ) := {ρ : ρ is a relation on A that is preserved by all f ∈ F}

is a relational clone on A. If R is a set of relations, then

Pol(R) := {f : f is an operation on A that preserves all ρ ∈ R}
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is a clone on A. Moreover, F → Inv(F ) is a dual lattice isomorphism from the

complete (in fact, algebraic and dually algebraic) lattice of all operation clones on

A to the lattice of all relational clones on A. The inverse dual lattice isomorphism

is given by R → Pol(R). To summarize, operation clones and relational clones

mutually determine each other.

If we apply this result only for the clone of all operations, we conclude that

(A, F ) is primal iff F preserves exactly the relations on A constituting the least

closed class of relations; this is also a consequence of another more general fact

on quasiprimal algebras due to P. H. Krauss ([Kr1], [Kr2]). More and detailed

information concerning this topic can be found in [I], [PK], [Sz], [We1]. Related

ideas were used, e. g., in [BP].

First, we need some definitions. We consider a k-ary relation as a set of unary

functions r: k → A, k = {1, 2, . . . , k}. We say that a k-ary relation D is diagonal,

if there exists an equivalence relation ρ
D

on k such that

D = {r: k → A| r(u) = r(v) if uρ
D

v, u, v ∈ k } .

All the diagonal relations on A form the minimal closed class of relations on A.

Notice that a diagonal relation and the corresponding equivalence relation mutu-

ally define each other, so we may use the denotation Dρ for the diagonal relation

determined by an equivalence relation ρ on k. Moreover, to each r ∈ Ak, we assign

an equivalence relation ρr on the set k as follows:

uρrv iff r(u) = r(v).

Evidently, for any diagonal relation D, we have ρ
D

=
⋂

r∈D ρr. Now let R ⊆ Ak.

By [R] we mean the underlying set of the subalgebra of Ak generated by R.

The following statement comes straight from definitions.

Proposition 3.1 (Bodnarčuk–Kalužnin–Kotov–Romov [BKKR],

Geiger [Gei], Krauss [Kr1],[Kr2]). A finite algebra A = (A, F ) is primal,

iff every relation preserved by all operations in F is diagonal.

The following Lemma 3.1 is a reformulation of the well known fact that the

clone OA of all operations defined on a finite set A can be generated by binary

operations (Sierpiński [Si]).

Lemma 3.1 ([Ho2]). Given an algebra A = (A, F ), the following two

conditions are equivalent:
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(i) For each R ⊆ Ak, the relation [R] is diagonal.

(ii) For each x, y ∈ Ak, the relation [x, y] is diagonal.

Proof. By virtue of Sierpiński’s result and Proposition 3.1 it suffices to show

that (ii) implies that [F ], the clone generated by F , contains all binary operations.

Let g : A2 → A be a binary operation, and let (x1, y1), (x2, y2), . . . (xk, yk) be an

enumeration of A2. Here k = |A|2 and(xi, yi) 6= (xj , yj) for 1 ≤ i < j ≤ k.

Take x = (x1, . . . , xk) and y = (y1, . . . , yk), and let R2 = {x, y} ⊆ Ak. Then

ρ[x,y] = ρx ∩ ρy = ρω, the smallest equivalence on k. This and (ii) yield [x, y] = Ak.

Take z = (g(x1, y1), . . . , g(xk, yk)) ∈ Ak. Since z = [x, y], there is a binary term h,

i.e. a binary h ∈ [F ], such that z = h(x, y). This means g(xi, yi) = zi = h(xi, yi)

for i = 1, . . . , k, whence g = h ∈ [F ].

Lemma 3.1. is proved.

tu

For equivalences µ and ρ on k if µ ⊆ ρ then Dρ ⊆ Dµ. Hence the smallest

diagonal relation containing x, y ∈ Ak is Dη where η = ρx∩ρy. (The particular case

when ρ = ω has already occured in the above proof.) Since [x, y] ⊆ Dη, [x, y] = Dη

is clearly equivalent to the condition

ρ ⊇ η → Dρ ⊆ [x, y].

This allows us to extract the following statement from the previous ones, (ii) of

which avoids the use of the notion of diagonal relation.

Lemma 3.1′ ([Ho2]). The following three conditions are equivalent:

(i) The algebra A = (A, F ) is primal.

(ii) For each x, y, z ∈ Ak, we have z ∈ [x, y] whenever

((∀u, v ∈ k )(x(u) = x(v) ∧ y(u) = y(v) → z(u) = z(v))).

(iii) For each k ≥ 1 x, y ∈ Ak, and for any equivalence ρ on k if ρ ⊇ ρx ∩ ρy,

then Dρ ⊆ [x, y].

By Lemma 3.1 the problem of proving a primality theorem simplifies to the

investigation of some suitably chosen matrices. We demonstrate our method on the

S lupecki Criterion in detail. We cannot avoid using the Yablonski Lemma.

Lemma 3.2 (Yablonski [JL]). Let f = f(x1, . . . , xn) be an at least binary

operation on A depending on x1 and x2 such that the range of f contains at least
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three elements. Then there exist a, b, a2, . . . , an, b2, . . . bn ∈ A such that the elements

c1 = f(a, a2, . . . an), c2 = f(b, a2, . . . , an), and c3 = f(a, b2, . . . , bn) are pairwise

different.

We call an operation essential, if it is surjective and at least binary.

THEOREM 3.1 (S lupecki [Sl]). Let A be a finite set with |A| > 2. If F contains

an essential operation f and all the unary operations, then the algebra A = (A, F )

is primal.

Proof. We shall show that (iii) of Lemma 3.1’ holds. This will be done via

induction on the number t of the blocks of ρ. However, first we summarize some

early observations for later reference.

(a) If ρ1 ⊆ ρ2 then Dρ2
⊆ Dρ1

;

(b) For any z ∈ Ak, Dρz
= [z].

(c) The inclusion ρ ⊇ ρz implies Dρ ⊆ [z].

(d) If x, y ∈ Ak such that, for all i, j ∈ k, x(i) = x(j) implies y(i) = y(j), then

y ∈ [x].

Here (a) is obvious by definition, (b) follows easily by using unary functions,

and (c) is evident by (a) and (b). Finally, the premise of (d) means ρx ⊆ ρy, so

y ∈ [y] = Dρy
⊆ Dρx

= [x] follows by (b) and (a).

Now, if t = 1, then ρ ⊇ ρx implies Dρ ⊆ [x] ⊆ [x, y] by (c). Hence the first step

of the induction is trivial.

The case t = 2 ramifies.

The first subcase is when ρ and ρx ∩ ρy have a common block C. To simplify

the notations (i.e., to avoid double subscripts) we may assume that C = {1, 2, ..., s}.

(The general case, C = {i1, i2, . . . , is}, would be similar.) So ρ has two blocks: C

and {s + 1, . . . , k}. If ρ ⊇ ρx then Dρ ⊆ [x] ⊆ [x, y] by (c) and there is nothing to

prove. Hence we assume that ρ 6⊇ ρx and, similarly, ρ 6⊇ ρy. Hence there are u, v ∈ k

with (u, v) ∈ ρx and (u, v) 6∈ ρ. Since ρ has only two blocks, u = 1 and v > s can be

assumed. Similarly, there is a w > s with (1, w) ∈ ρy. Since C = {1, 2, ..., s} is also

a block of ρx∩ρy, v is necessarly distinct from w. Hence, without loss of generality,

we may assume that the ρx -block resp. ρy-block of 1 is {1, . . . , s, s + 1, . . . , s + l}

resp. {1, . . . , s, s + l + 1, . . . , s + l + m} where l, m ≥ 1.
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Now choose elements a, b, a2, . . . , an, b2, . . . , bn ∈ A according to the Yablonski

Lemma. Here n is the arity of f , and c1 = f(a, a2, . . . , an), c2 = f(b, a2, . . . , an)

and c3 = f(a, b2, . . . , bn) are three distinct elements of A. Let c4 = f(b, b2, . . . , bn).

If c4 6= c1 then consider the (n × k) size matrix

a . . . a a . . . a b . . . b b . . . b
a2 . . . a2 b2 . . . b2 a2 . . . a2 b2 . . . b2
...

an . . . an bn . . . bn an . . . an bn . . . bn

where there are s+ l a-s and k−(s+ l) b-s in the first row, s+m ai-s and k−(s+m)

bi-s in the others (2 ≤ i ≤ n), and this defines the set of rows. Now (d) yields that

the first row of this matrix is in [x] while the rest of its rows are in [y]. So all the

rows belong to [x, y]. Applying f to these rows componentwise, we obtain that

z = (c1, . . . , c1, c3, . . . c3, c2 . . . c2, c4, . . . , c4) ∈ [x, y].

Since c1 6= c4, ρz ⊆ ρ. Hence, because of (a) and (b), we conclude that

Dρ ⊆ Dρz = [z] ⊆ [x, y],

indeed.

If c1 = c4 then we consider another (n × k) matrix:

a . . . a a . . . a b . . . b b . . . b
b2 . . . b2 a2 . . . a2 b2 . . . b2 a2 . . . a2
...

bn . . . bn an . . . an bn . . . bn an . . . an

where the first row is the same as before. Now, with the same argument, we arrive

at

z′ = (c3, . . . , c3, c1, . . . , c1, c4, . . . , c4, c2, . . . , c2) ∈ [x, y].

Since ρz′ ⊆ ρ again, Dρ ⊆ [x, y] follows the same way as before.

The second subcase is when the blocks of ρ are unions of j1 resp. j2 blocks of

ρx ∩ ρy. We handle this situation via induction on j = min{j1, j2}. Notice that

j = 1 is just the previous subcase.

To perform the induction step, assume that j > 1. Let

{C1, C2, . . . , Cj, Cj+1, . . . , Cs}
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be the set of (ρx ∩ ρy)-blocks such that C = C1 ∪ . . .∪ Cj and C = Cj+1 ∪ . . .∪ Cs

are the two blocks of ρ. We define two new equivalences ρ′ and ρ′′ that correspond

to the respective partitions

{C1 ∪ . . . ∪ Cj−1, Cj ∪ Cj+1 ∪ Cj+2 ∪ . . . ∪ Cs}

and

{C2 ∪ . . . ∪ Cj , C1 ∪ Cj+1 ∪ Cj+2 ∪ . . . ∪ Cs}.

This makes sense, for 2 ≤ j.

By the induction hypothesis on j, Dρ′ ⊆ [x, y] and Dρ′′ ⊆ [x, y]. Since ρ′ has

only two blocks and |A| ≥ 2 (in fact |A| ≥ 3), there exists an x′ ∈ Ak such that

ρ′ = ρx′ . Similarly, there exists an y′ ∈ Ak with and ρ′′ = ρy′ . Using (b) we obtain

[x′] = Dρx′
= Dρ′ ⊆ [x, y],

and

[y′] = Dρy′
= Dρ′′ ⊆ [x, y],

whence [x′, y′] ⊆ [x, y].

Now ρ has only two blocks, ρ ⊇ ρ′ ∩ ρ′′, Cj+1 ∪ . . . ∪ Cs is a common block of

ρ and

ρx′ ∩ ρy′ = ρ′ ∩ ρ′′.

Therefore the previously settled case (i.e. our first subcase) gives Dρ ⊆ [x′, y′].

Combining the previous displayed formulas, we conclude Dρ ⊆ [x, y], as requested.

Now we handle the case 3 ≤ t ≤ |A|. For simplicity, to avoid complicated

subscripts, we assume without loss of generality that 1, 2 and 3 are pairwise in-

congruent modulo ρ. As in a previous stage of our proof, we will use the elements

a, b, a2, . . . , an, b2, . . . , bn, c1, c2, c3 supplied by the Yablonski Lemma. Choose addi-

tional elements c4, . . . , ck ∈ A such that, for 1 ≤ i < j ≤ k, ci = cj iff (i, j) ∈ ρ.

This is possible, for ρ has t blocks and t ≤ |A|. Notice that for z = (c1, c2, . . . , ck)

we have

ρ = ρz.

The surjectivity of f allows us to find appropriate elements di,j , 1 ≤ i ≤ n and

4 ≤ j ≤ k, such that cj = f(d1j, . . . , dnj) for 4 ≤ j ≤ k. Moreover, we assume

that the new elements, the dij , are different from any previous arguments of f only
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if this is necessary; this further condition on the dij will be specified later. Now

consider the matrix
a b a d14 . . . d1k

a2 a2 b2 d24 . . . d2k
...

...
...

...
...

an an bn dn4 . . . dn,k,

the rows of which belong to Ak. If we apply f to the rows of this matrix, then we

obtain z = (c1, . . . , ck). So, to conclude z ∈ [x, y], it suffices to show that each row

of this matrix is in [x, y].

Now the extra condition on the dij-s we promised reads as follows: for any

1 ≤ i ≤ j ≤ k if ci = cj (or equivalently, if (i, j) ∈ ρ) then the i-th and the j-th

columns of the matrix coincide. Now let u = (u1, u2, . . . , uk) be an arbitrary row

of the matrix. The condition above gives ρ ⊆ ρu. Since ρu collapses at least two of

1, 2 and 3, we have ρ ⊂ ρu, and therefore ρu has less blocks then ρ, i.e. less than t

blocks. By the induction hypothesis and (b) we have u ∈ [u] = Dρu
⊆ [x, y]. Hence

all rows of the matrix and z belong to [x, y]. Hence, making use of (b) and ρ = ρz,

we conclude Dρ = Dρz
= [z] ⊆ [x, y]. This settles the induction step to 3 ≤ t ≤ |A|.

Now let t > |A|, and take an arbitraty z ∈ Dρ. Since ρz ⊇ ρ by definitions and

ρ ⊇ ρx ∩ ρy by the assumption, ρz ⊇ ρx ∩ ρy. Since z has at most |A| components,

ρz has at most |A| blocks. Now the induction hypothesis yields Dρz
⊆ [x, y]. This

and (b) imply z ∈ [z] = Dρz
⊆ [x, y]. Thus Dρ ⊆ [x, y].

Theorem 3.2. is proved.

tu

There is an improvement of the S lupecki Criterion by Yablonskii ([JL]): if we

omit the injective unary operations from F , then (A, F ) is still primal. Even though

every one of the previous steps needs some reconsideration, this case can also be

completed by the method facilitated by Proposition 3.1 and Lemma 3.1.

An algebra A = (A, F ) is called functionally complete if all possible operations

on the base set A are polynomials of A. Proving functional completeness for (A, F )

is the same as proving primality for the algebra (A, F ∪ F0) where F0 is the set of

all constant operations on A. The above type matrices can be analyzed easily not

only in the case of the S lupecki Criterion, but also in cases of other primality and

functional completeness results. We proved e.g. the functional completeness of the

ternary discriminator ([Sz]), the dual discriminator (for |A| ≥ 3) ([FP]), the n-ary

(n ≥ 3) near-projections ([Cs1]) as well as the primality theorem of Foster ([F]) this

way.
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CHAPTER 4

Diagrammatic schemes

4.1. From triangular schemes to Maltsev conditions, a short overview

Motivated by Gumm’s Shifting Lemma ([Gu1]), which asserts that congruence

modular varieties satisfy a nice rectangular congruence scheme, Chajda ([ChH1],

Subdivision 4.2) investigated a triangular scheme, which is a consequence of con-

gruence distributivity. Congruence distributive varieties satisfy this scheme not only

for arbitrary three congruences, but also for one tolerance and two congruences; i.e.,

the analogue of Gumm’s Shifting Principle is valid.

The investigations went on in different directions. First, while the triangu-

lar scheme is not known to characterize congruence distributivity, an appropriate

generalization called trapezoid scheme does ([CCH2], Subdivision 4.3). Secondly,

the underlying reason for congruence schemes is that certain lattice indentities are

equivalent with appropriate Horn sentences, called the shift of the lattice identity;

however, not every lattice identity has a shift ([CCH1], Chapter 5). The third and

surely the most important direction that grew out from the topic is the question if

it is possible to put tolerances (reflexive, symmetric, compatible binary relations)

in place of all three congruences. The answer is yes ([CzH2], Subdivision 6.1). As

a special case, we obtain that in a congruence modular variety,

Γ ∩ Φ∗ ⊆ (Γ ∩ Φ)∗

holds for any two tolerances R and S. As Radeleczki and Kearnes pointed out,

this can easily be turned into a much more useful property, the so-called Tolerance

Intersection Property, TIP for short, of congruence modular varieties:

Γ∗ ∩ Φ∗ = (Γ ∩ Φ)∗.

TIP has some applications. It is known that Tol L, the lattice of tolerances

of a lattice L, has several nice properties discovered by Bandelt ([B]). Using TIP,
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these properties (some of them in a weaker form) can be extended to congruence dis-

tributive or congruence modular varieties, or varieties with a majority term ([CHR],

Subdivision 6.2). For example, if an algebra A has a majority term, then Tol L is

0-modular, i.e. Tol A \ {0} contains no pentagon; the proof now is even simpler

than Bandelt’s original one for lattices. Another application of TIP is about Malt-

sev conditions. Using TIP we could prove that if p ≤ q is a lattice identity strong

enough to imply modularity, then p ≤ q has a Maltsev condition ([CzH3], Chapter

7). This Maltsev condition is simply the conjunction of Day’s condition and the

Wille–Pixley’s characterization of p3 ⊆ q. Here p3 is the {∧, ◦} term which we

obtain from p by replacing joins by three-fold relation product throughout. In case

p ≤ q has a previously known Maltsev condition, the Maltsev conditon extracted

form p3 ⊆ q is not as good as the known one, because it contains terms with too

many variables. Much better Maltsev condition would come from p2 ⊆ q instead of

p3 ⊆ q; the latest development is that this is possible ([CHL], Chapter 7).

4.2. Triangular schemes for congruence distributivity

The story started with the book of H. Peter Gumm entitled ”Geometrical

methods in congruence modular algebras”. In this book he introduced the so called

Shifting Lemma, and Shifting Principle.

An algebra A is said to satisfy the Shifting Lemma (in other words Rectangular

Lemma ) if for any α, β, γ ∈ Con A if α ∩ β ⊆ γ, (x, u), (y, v) ∈ α, (x, y), (u, v) ∈ β

and (u, v) ∈ γ, then (x, y) ∈ γ, cf. [Gu1]. Pictorially, the Rectangular Lemma is

the condition given by Figure 1.

α ∩ β ⊆ γ
=⇒

Figure 1
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The corresponding condition called Shifting (or Rectangular) Principle (cf.

[Gu1]), is defined similarly, the only difference is that α should be replaced by

Φ, which stands for an arbitrary tolerance (i.e. compatible, reflexive and symmetric

binary relation) of A. Gumm shows that for congruence modular algebras the Shift-

ing Lemma holds (the converse of this implication is not true). Moreover, for whole

varieties, rather than a single algebra, both Shifting Lemma and Shifting Principle

are equivalent to modularity. These innocuous looking diagrammatic schemes lead

to a simple geometric development of commutator theory for arbitrary congruences,

as one can follow through Gumm’s previously mentioned book.

We report here how the story continues for congruence distributivity. Following

Gumm’s style of [Gu1; Corollary 4.6], schemes for congruences will be called lemmas

although they are just conditions, and we keep the word principle for schemes

where tolerances also occur. The schemes defined by triangles (and in the following

subdivision trapezes) are in the centre of interest now.

Definition 4.1. An algebra A = (A, F ) satisfies the Triangular Lemma if for

any x, y, z ∈ A and every α, β, γ ∈ Con A with α∩β ⊆ γ the following implication

holds:

if 〈x, y) ∈ γ, 〈x, z) ∈ α, 〈z, y) ∈ β then 〈y, z) ∈ γ.

The Triangular Lemma can be visualized as shown in Figure 2.

α ∩ β ⊆ γ
=⇒

Figure 2

We quote here Chajda’s theorems (Theorem 4.1, Theorem 4.2) without their

proofs:
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THEOREM 4.1 (Chajda [ChH1]). Every congruence distributive algebra sat-

isfies the Triangular Lemma.

For A congruence permutable the converse assertion also holds, cf. Corollary

4.2 later.

Now let us introduce the following concept:

Definition 4.2. Given n ∈ N and an algebra A = (A, F ), we say that

A satisfies the Weak Triangular Principle for n if for any x, y, z ∈ A and every

α, β, γ ∈ Con A with α ∩ β ⊆ γ and Λn = γ ◦ α ◦ γ ◦ . . . (n factors) the following

implication holds:

if 〈x, y) ∈ α, 〈z, y) ∈ β, 〈x, y) ∈ Λn then 〈z, y) ∈ γ.

If A satisfies the Weak Triangular principle for all n ∈ N, then we simply say

that A satisfies the Weak Triangular Principle.

The Weak Triangular Principle can be visualized as shown in Figure 3.

α ∩ β ⊆ γ
=⇒

Figure 3

THEOREM 4.2 (Chajda [ChH1]). An algebra A satisfies the Weak Triangular

Principle if and only if Con A is distributive.

The distributivity of Con A is (by Theorem 4.2) equivalent to the implication

depicted in Figure 4.
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α ∩ β ⊆ γ
=⇒

Figure 4

In the case of k-permutable algebra A we need not require the satisfaction

of the Weak Triangular Principle for each n ∈ N, but Theorem 4.2 yields almost

immediately the following:

Corollary 4.1 ([ChH1]). Let A be a k- permutable algebra. Then Con A is

distributive if and only if A satisfies the Weak Triangular Principle for n = k − 1.

When k = 2, Corollary 4.1 yields the following assertion.

Corollary 4.2 ([ChH1]). Let A be a congruence permutable algebra. Then

A is congruence distributive if and only if A satisfies the Triangular Lemma.

Remark 4.1. Ivan Chajda in ([ChH1]) gave an example of algebra A sat-

isfying the Triangular Scheme, but not the Weak Triangular Principle, i.e. whose

congruence lattice is not distributive.

Under the name Shifting Principle Gumm ([Gu1]) considers a condition in

which not only congruences but tolerances also occur. Now we introduce the ”con-

gruence distributive counterpart” of this condition.

Definition 4.3. An algebra A = (A, F ) satisfies the Triangular Principle

if for each tolerance Φ and congruences β, γ the implication depicted in Figure 5

holds.

THEOREM 4.3 ([ChH1]). In congruence distributive varieties (i. e. in the

algebras of such varieties) the Triangular Principle holds.
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Φ ∩ β ⊆ γ
=⇒

Figure 5

Proof. Let V be a congruence distributive variety. Then we have Jónsson

terms t0(x, y, z) . . . tn(x, y, z) such that

t0(x, y, z) = x, tn(x, y, z) = z,

ti(x, y, x) = x for all i,

ti(x, x, y) = ti+1(x, x, y) for i even, and

ti(x, y, y) = ti+1(x, y, y) for i odd.

Let β, γ ∈ Con A and Φ ∈ Tol A, A ∈ V, a, b, c ∈ A and suppose that

Φ ∩ β ⊆ γ, and we have the situation according to Figure 6.

Figure 6

Consider the elements di := ti(a, b, c), (i = 0, 1, . . . , n). Now d0 = a, dn =

c. If i is even, then di = ti(a, b, c)γti(a, a, c) = ti+1(a, a, c)γti+1(a, b, c) = di+1,

consequently, for i even, diγdi+1. If i is odd, then we have to work a little bit

more: first of all di = ti(a, b, c)Φti(a, c, c), and on the other hand, since di =

ti(a, b, c)βti(a, b, a) = a = ti(a, a, a)βti(a, c, c), we have (di, ti(a, c, c)) ∈ Φ∩β ⊆ γ. If

we put i+1 instead of i, then in the same way we have (di+1, ti+1(a, c, c)) ∈ Φ∩β ⊆ γ.
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But in this case diγti(a, c, c) = ti+1(a, c, c)γdi+1, and by the transitivity of γ, we

get that diγdi+1 holds. Hence, for all i, di γ di+1, so (a, c) = (d0, dn) ∈ γ, i. e. the

Triangular Principle holds.

Theorem 4.3 is proved.

tu

4.3. Trapezoid schemes for congruence distributivity

While the previous schemes seem to be just technical conditions, the Trapezoid

Principle is an essential step towards

1) proving that the distributive resp. modular law holds in congruence dis-

tributive resp. congruence modular varieties even for tolerance relations;

2) showing that for an arbitrary lattice identity implying modularity (or at

least congruence modularity) a Maltsev condition can be given such that the identity

holds in congruence lattices of algebras of a variety if and only if the variety satisfies

the corresponding Maltsev condition.

Now we introduce a new condition under the name Trapezoid Lemma as follows:

for any α, β, γ ∈ Con A (where A = (A, F ) is an algebra) if α∩β ⊆ γ, (x, u), (y, v) ∈

α, (x, y) ∈ β and (u, v) ∈ γ, then (x, y) ∈ γ. The Trapezoid Lemma is depicted in

Figure 7.

α ∩ β ⊆ γ
=⇒

Figure 7

The corresponding condition called Trapezoid Principle is defined similarly,

the only difference is that α should be replaced by Φ, which stands for an arbitrary

tolerance (i.e., compatible, reflexive and symmetric binary relation) of A.
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Our figures follow the tradition that parallel edges have the same label. Some-

times we do not require the above-defined conditions for all triplets (α, β, γ) just

for a single triplet (α0, β0, γ0); in this case we will say so.

Given a direct product A = A1 × A2, a congruence γ ∈ Con A is called di-

rectly decomposable if γ = γ1 × γ2 for appropriate γ1 ∈ Con A1 and γ2 ∈ Con A2.

One of the motivations for introducing the Trapezoid Lemma is revealed by the

following statement.

Proposition 4.1 ([CCH1]). Let γ ∈ Con (A1 × A2) and let πi denote the

kernel of the projection A1 × A2 → Ai, (x1, x2) 7→ xi, i = 1, 2. Then the following

three conditions are equivalent:

(a) γ is directly decomposable;

(b) the Trapezoid Lemma holds for (π1, π2, γ) and (π2, π1, γ);

(c) both the Rectangular Lemma and the Triangular Lemma hold for (π1, π2, γ)

and (π2, π1, γ).

Proof. The equivalence of (a) and (b), in a slightly different formulation, is

proved by Fraser and Horn ([FH1 Thm. 1 (1),(3)], cf. also the trapezes in [CG,

Figure 31, page 128]). The implication (b) =⇒ (c) is evident; this will also be

clear from the forthcoming Proposition 4.2. Proving (c) =⇒ (b) is obvious, too: if

(x, u), (y, v) ∈ π1, (x, y) ∈ π2 and (u, v) ∈ γ then with w := (y1, u2) = (v1, u2)

the Triangular Lemma gives (u, w) ∈ γ, whence the Rectangular Lemma yields

(x, y) ∈ γ.

Proposition 4.1 is proved.

tu

The following statement presents some connections among our conditions in

case of a single algebra; for varieties of algebras we will soon state more.

Proposition 4.2 ([CCH1]). Let A be an algebra.

(1) If A satisfies the Trapezoid Lemma resp. the Trapezoid Principle, then it

satisfies the Rectangular Lemma and the Triangular Lemma resp. the Rectangu-

lar Principle and the Triangular Principle. Moreover, each of the three principles

implies the corresponding lemma.

(2) If Con A is distributive, then A satisfies the Trapezoid Lemma (and there-

fore the other two lemmas as well).
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(3) If A satisfies the Trapezoid Principle, then Con A is distributive.

(4) If A satisfies the Rectangular Principle, then Con A is modular (cf. [Gu2],

Lemma 4.2).

(5) If A is congruence permutable, then Con A is distributive if and only if A

satisfies the Triangular Lemma (cf. [CzH1], Cor. 2).

Proof. (1) is trivial. (2) comes easily from the fact that a lattice is distributive

iff it satisfies the Horn sentence

α∧ β ≤ γ =⇒ β ∧(α∨ γ) ≤ γ, (∗)

which we prove in the next chapter. Hence only (3) needs a proof. Suppose A is

an algebra satisfying the Trapezoid Principle and α, β, γ ∈ Con A with α∧ β ≤ γ.

According to (∗) it suffices to show β ∧(α∨ γ) ≤ γ. Borrowing the idea from the

proof of Lemma 4.2 in Gumm ([Gu1]), define tolerances Φ0 = α and Φn+1 =

Φn ◦ γ ◦ α, n ∈ N. Via induction on n we want to show that β ∩ Φn ⊆ γ. For

n = 0 this is clear. Now suppose β ∩ Φn ⊆ γ and let (x, y) be an arbitrary pair

in β ∩ Φn+1. Then (x, y) ∈ β ∩ Φn+1 = β ∩ (Φn ◦ γ ◦ α) ⊆ β ∩ (Φn ◦ γ ◦ Φn), so

there are u, v ∈ A such that (x, u), (y, v) ∈ Φn, (x, y) ∈ β and (u, v) ∈ γ. Hence the

induction hypothesis β ∩Φn ⊆ γ and the Trapezoid Principle gives (x, y) ∈ γ. This

shows β ∩ Φn+1 ⊆ γ, completing the induction. Finally,

β ∧(α∨ γ) = β ∩
∞
⋃

n=0

Φn =
∞
⋃

n=0

(β ∩ Φn) ⊆ γ,

proving (∗) and (3).

Proposition 4.2 is proved.

tu

We do not know if the implication in (1), (2), (3) and (4) of Proposition 4.2

can be reversed, but we guess the answer is negative in each case. However, for

varieties rather than single algebras much more can be said. Of course, a condition

is said to hold in a variety if it holds in all algebras of the variety. Part (a) ⇐⇒ (c)

of the following theorem was announced by Duda ([Du1]).

THEOREM 4.4 ([CCH1]). Let V be a variety of algebras. Then the following

five conditions are equivalent.

(a) V is congruence distributive;
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(b) the Trapezoid Principle holds in V;

(c) the Trapezoid Lemma holds in V;

(d) the Rectangular Lemma and the Triangular Lemma hold in V;

(e) there is a positive integer n and there are quaternary terms d0, d1, . . . , dn

such that the identities

(e1) d0(x, y, u, v) = x, dn(x, y, u, v) = y,

(e2) di(x, y, x, y) = di+1(x, y, x, y) for i even,

(e3) di(x, y, z, z) = di+1(x, y, z, z) for i odd, and

(e4) di(x, x, y, z) = x for all i

hold in V.

Remark 4.2. Congruence distributivity and congruence modularity of va-

rieties are characterized by classical Maltsev conditions, namely by the Jónsson

terms, cf. [J1], and the Day terms, cf. [Da1]. Since distributivity implies modu-

larity, one would expect that Jónsson terms trivially produce Day terms, but this

is not the case. To fulfil this wish (and also to reduce the number of variables)

Gumm ([Gu1], [Gu2]) characterizes congruence modularity with another Maltsev

condition, the Gumm terms, and he points out that Jónsson terms trivially produce

Gumm terms. Now (e) of Theorem 4.4 gives an alternative way to meet the men-

tioned expectation. Namely, Day terms are quaternary terms satisfying (e1), (e2),

(e3) and

(e4’) di(x, x, y, y) = x for all i,

so our terms in (e) clearly produce (and in fact, constitute) Day terms. Notice that

(e) is a byproduct of studying the Trapezoid Lemma; indeed, the proof of Theorem

4.4. is easier with (e) than with Jónsson terms. To reveal the connection between

(e) and Jónsson terms we mention that the pi(x, y, z) = di(x, z, y, z) are Jónsson

terms provided the di are (e) terms.

Remark 4.3. Theorem 4.4 and Proposition 4.2 clearly imply Theorem 4.3,

which says that congruence distributive varieties satisfy the Triangular Principle.

Proof of Theorem 4.4. (a) =⇒ (e) follows in the standard way of deriving

Maltsev conditions if we consider the the principal congruences β = con(u, v) and

γ = con(x, y), and the congruence α = con(x, u)∨ con(y, v) of the free algebra

FV(x, y, u, v).

(e) =⇒ (b): Assuming that (e) holds in V, let A ∈ V, let Φ be a toler-

ance relation of A, let β, γ ∈ Con A with Φ ∩ β ⊆ γ, let x, y, u, v ∈ A and
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suppose (x, u), (y, v) ∈ Φ, (x, y) ∈ β and (u, v) ∈ γ. We have to show that

(x, y) ∈ γ. Consider the elements hi = di(x, y, u, v), i = 0, . . . , n, where the

terms di are provided by (e). Then for i odd, hi = di(x, y, u, v) γ di(x, y, u, u) =

di+1(x, y, u, u) γ di+1(x, y, u, v) = hi+1, i.e., (hi, hi+1) ∈ γ for i odd. For i even

we have to work a bit more. We start with hi = di(x, y, u, v) Φ di(x, y, x, y)

and hi = di(x, y, u, v) β di(x, x, u, v) = x = di(x, x, x, x) β di(x, y, x, y). Hence
(

hi, di(x, y, x, y)
)

∈ Φ ∩ β ⊆ γ. We obtain
(

hi+1, di+1(x, y, x, y)
)

∈ γ similarly. But

di(x, y, x, y) = di+1(x, y, x, y), whence the transitivity of γ gives (hi, hi+1) ∈ γ for

i even. Now (hi, hi+1) ∈ γ for all i, and we conclude (x, y) = (h0, hn) ∈ γ. I.e., V

satisfies (b).

Observe that (b) =⇒ (c) and (c) =⇒ (d) are evident (or follow from Propo-

sition 4.2).

(d) =⇒ (a): Let V be a variety satisfying the Rectangular Lemma and the

Triangular Lemma. The Rectangular Lemma in itself implies that V is congruence

modular according to Gumm ([Gu1 Cor. 4.6]). Now, by way of contradiction, as-

sume that V is not congruence distributive. Then there is an algebra A ∈ V and

there are congruences α, β, γ ∈ Con A generating a five-element nondistributive

sublattice M3 = {α, β, γ, ω, ι} of Con A with ω < α < ι, ω < β < ι and ω < γ < ι.

The theory of modular commutator says, cf. [Gu1, Cor. 8.9] or Freese and McKen-

zie,[FM Lemma 13.1], that any two elements of this M3 permute. Since β 6⊆ γ, we

can pick a pair (y, z) ∈ β \ γ. Since (y, z) ∈ β ⊆ ι = γ ∨α = γ ◦ α, there is an

element x with (y, x) ∈ γ and (x, z) ∈ α, cf. the left hand side of Figure 2. Now

α ∩ β = ω ⊆ γ, so the Triangular Lemma yields (y, z) ∈ γ, a contradiction. This

proves that V is congruence distributive.

Theorem 4.4 is proved.

tu

Several parts of this subdivision are in close connection with former results

of J. Duda. He also introduced the Trapezoid Lemma (under the name Upright

Principle) and announced that conditions (a) and (c) of Theorem 4.4 are equivalent,

cf. [Du1], and they are equivalent to the conjunction of congruence modularity

and the Triangular Lemma, cf. [Du2]. (In virtue of Gumm’s classical result, this

conjunction is clearly equivalent to (d) of Theorem 4.4.) Duda ([Du1]) also gave

a Maltsev condition to characterize the Trapezoid Lemma; his Maltsev condition

consists of 6-ary terms.
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4.4. Schemes for congruence semidistributivity

The previous subdivisions (and [CR], [CTS]) show that instead of identities

in congruence lattices, certain diagrammatic statements are reasonable to consider.

The aim of the present subdivision is to show that this phenomenon can be extended

to lattice Horn sentences as well. We emphasize that the subsequent statements do

not yet have any continuation, so they seem to be much less important (and they

are definitely much less elegant, although not trivial) then the previous ones.

Definition 4.4. A lattice L is ∧-semidistributive if it satisfies the following

implication for all α, β, γ ∈ L:

α ∧ β = α ∧ γ ⇒ α ∧ (β ∨ γ) = α ∧ β.

The ∧-semidistributive law above is often denoted by SD∧. More general (in

fact, weaker) Horn sentences have been investigated by Geyer ([Gey]) and Czédli

([Cz3]). For n ≥ 2 put n = {0, 1, . . . , n − 1} and let P2(n) denote the set {S : S ⊆

n and |S| ≥ 2}.

Definition 4.5. For ∅ 6= H ⊆ P2(n) we define the generalized meet semidis-

tributive law SD∧(n, H) for lattices as follows: for all α, β0, . . . , βn−1

α ∧ β0 = α ∧ β1 = . . . = α ∧ βn−1 ⇒ α ∧ β0 = α ∧
∧

I∈H

∨

i∈I

βi.

As a particular case, when H = {S : S ⊆ n and |S| = 2}, SD∧(n, H) is denoted

by SD∧(n, 2). Notice that SD∧(n, 2) is the following lattice Horn sentence:

α ∧ β0 = α ∧ β1 = · · · = α ∧ βn−1 ⇒ α ∧
∧

0≤i<j<n

(βi ∨ βj) = α ∧ β0,

which was originally studied by Geyer ([Gey]), and SD∧(2, 2) is the ∧-

semidistributivity law defined in Definition 4.4. Czédli ([Cz3]) noticed that

SD∧(n, 2) is strictly weakening in n, i. e. SD∧(n, 2) implies SD∧(n + 1, 2), but

not conversely.

Our goal is to study SD∧(n, H) in congruence lattices of single algebras. Al-

though it is usual to consider lattice identities and Horn sentences in congruence

lattices of all algebras of a variety, this is not our case. The reason is that, for an
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arbitrary variety V, if SD∧(n, H) holds in {Con A : A ∈ V} then so does SD∧.

(This was proved by Czédli ([Cz3]) and an anonymous referee of [Cz3] who pointed

out that both Kearnes and Szendrei ([KSz]) and Lipparini ([L1]) contain implicitly

the statement that if a lattice Horn sentence λ can be characterized by a weak

Maltsev condition and, for each nontrivial module variety M, λ fails in Con M for

some M ∈ M, then for an arbitrary variety V if λ holds in {Con A : A ∈ V},

then so does SD∧, cf. the last paragraph in [Cz3].) In particular, for any variety V

and any n ≥ 2, SD∧(n, 2) and SD∧ are equivalent for the class {Con A : A ∈ V}.

Hence SD∧(n, 2) does not deserve a separate study for varieties.

First, we consider congruence permutable algebras.

THEOREM 4.5 ([ChH2]). Let A be a congruence permutable algebra. Then

Con A satisfies SD∧(n, 2) if and only if A satisfies the scheme depicted in Figure

8 for α, β0, . . . , βn−1 ∈ Con A and x0, . . . , xk, y, z ∈ A where k = n(n−1)
2 − 1 and δ

stands for β0 ∩ β1 ∩ · · · ∩ βn−1.

α ∩ β0 = · · · = α ∩ βn−1

=⇒

Figure 8

Proof. Suppose SD∧(n, 2) holds. Using the premise of SD∧(n, 2) we obtain

α ∩ β0 = (α ∩ β0) ∩ · · · ∩ (α ∩ βn−1) = α ∩ (β0 ∩ · · · ∩ βn−1) ⊆ δ,

whence Con A satisfies the Horn sentence

α ∩ β0 = · · · = α ∩ βn−1 ⇒ α ∩
⋂

0≤i<j<n

(βi ∨ βj) ≤ δ.
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This implies the scheme, for the situation on the left hand side in Figure 8 then

gives

(y, z) ∈ α ∩
⋂

0≤i<j<n

(βi ◦ βj) ⊆ α ∩
⋂

0≤i<j<n

(βi ∨ βj) ⊆ δ.

To show the converse suppose that the scheme given by Figure 8 holds,

α, β0, . . . , βn−1 ∈ Con A with α ∩ β0 = · · · = α ∩ βn−1, and suppose that

(y, z) ∈ α∩
⋂

0≤i<j<n(βi ∨βj). Since βi ∨βj = βi ◦βj by congruence permutability,

there exist x0, x1, . . . , xk of A such that for each j (1 ≤ j ≤ k) there exist u, v

such that (z, xj) ∈ βu and (xj , y) ∈ βv (according to the left hand side of Figure

8). Then the scheme applies and we conclude (y, z) ∈ δ. Since δ ⊆ β0, (y, z) ∈ β0.

Hence (y, z) ∈ α ∩ β0. This proves the ”≤” part of SD∧(n, 2). The reverse part is

simpler and does not need the scheme: α ⊇ α∩β0 and βi∨βj ⊇ βi ⊇ α∩βi = α∩β0

clearly give

α ∩
⋂

0≤i<j<n

(βi ∨ βj) ⊇ α ∩ β0,

proving the theorem.

Theorem 4.5 is proved.

tu

In the particular case when n = 2 we trivially conclude the following assertion:

THEOREM 4.6 ([ChH2]). Let A be a congruence permutable algebra. Then

Con A is ∧-semidistributive if and only if A satisfies the scheme in Figure 9 for

any α, β, γ ∈ Con A and x, y, z ∈ A.

α ∩ β = α ∩ γ
=⇒

Figure 9
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Proof. If Con A is ∧-semidistributive, then the premise of the scheme gives

(y, z) ∈ β ∩ γ ⊆ γ by Theorem 4.5. Conversely, if the scheme holds for A then its

premise, after interchanging the role of β and γ, implies (y, z) ∈ β∩γ, so SD∧(2, 2),

which is the usual ∧-semidistributivity, holds in Con A according to Theorem 4.5.

Theorem 4.6. is proved.

tu

One may observe that this scheme in Theorem 4.6. implies Corollary 4.2 char-

acterizing congruence distributivity in the congruence permutable case. This implies

that: in presence of congruence permutability congruence ∧-semidistributivity is

equivalent to congruence distributivity.

This follows also from another direction. Let A be congruence permutable

and satisfying SD∧. In this case A is congruence distributive since otherwise its

congruence lattice, being modular due to congruence permutability, contains M3

but with the choice α, β, γ on Figure 10 we see that SD∧ fails.

Figure 10

Remark 4.4. For SD∧(n, H), a similar scheme can be derived as in Theorem

4.5.

Without congruence permutability, for the case SD∧(2, 2) = SD∧, the follow-

ing theorem can be stated:

THEOREM 4.7 ([ChH2]). Let A be an algebra. The congruence lattice Con A

is ∧-semidistributive if and only if for each n, A satisfies the scheme in Figure 11

for α, β, γ ∈ Con A and x, y, z ∈ A, where Λ0 = β and Λm+1 = Λm ◦ γ ◦ β.
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α ∩ β = α ∩ γ
=⇒

Figure 11

Proof. Suppose that Con A is ∧-semidistributive and α, β, γ ∈ Con A with

α ∩ β = α ∩ γ. Let x, y, z ∈ A and let (x, y) ∈ γ, (y, z) ∈ α and (x, z) ∈ Λn. Then

(y, z) ∈ α ∩ (Λn ◦ γ) ⊆ α ∩ (β ∨ γ) = α ∩ β = α ∩ γ

due to the ∧-semidistributivity. Thus (y, z) ∈ γ, proving the validity of the scheme.

Conversely, let A satisfy the scheme for each n ∈ αN 0, let α, β, γ ∈ Con A

with α ∩ β = α ∩ γ. Suppose (z, y) ∈ α ∩ (β ∨ γ). Then there exists n ∈ αN 0 such

that (z, y) ∈ α∩(Λn◦γ) and hence (x, y) ∈ γ and (y, z) ∈ α and (x, z) ∈ Λn for some

x ∈ A. Due to the scheme, we conclude (x, y) ∈ α∩γ, i.e. α∩(β∨γ) ⊆ α∩γ ⊆ α∩β.

The converse inclusion is trivial, thus Con A is ∧-semidistibutive.

Theorem 4.7. is proved.

tu

38



CHAPTER 5

Shifting lattice identities

The motivation for this chapter is the following question: what is the purely lat-

tice theoretic connection between the Shifting Lemma resp. the Triangular Lemma

and modularity resp. distributivity?

Let

λ : p(x1, . . . , xn) ≤ q(x1, . . . , xn)

be a lattice identity. (Notice that by a lattice identity we always mean an inequality,

i.e. we use ≤ but never =.) If y is a variable, then let S(λ, y) denote the Horn

sentence

q(x1, . . . , xn) ≤ y =⇒ p(x1, . . . , xn) ≤ y.

If y /∈ {x1, . . . , xn}, then λ is clearly equivalent to S(λ, y). However, we are inter-

ested in the case when y ∈ {x1, . . . , xn}, say y = xi (1 ≤ i ≤ n). Then S(λ, xi) is a

consequence of λ. When S(λ, xi) happens to be equivalent to λ, then S(λ, xi) will

be called a shift of λ. If S(λ, xi) is equivalent to λ only within a lattice variety V,

then we say that S(λ, xi) is a shift of λ in V.

As it will soon become clear, not every lattice identity has a shift. If an identity

λ can be characterized by excluded (partial) sublattices, then it is usually much

easier to decide whether λ has a shift, but we also handle identities, n-distributivity

and Fano identity, without such characterization.

First consider the distributive law

dist: β(α + γ) ≤ βα + βγ.

In this chapter there are some lattice terms with high complexity; hence the lattice

operations are denoted by sum and product instead of ∨ and ∧. Then S(dist:, γ) is

βα + βγ ≤ γ =⇒ β(α + γ) ≤ γ, which is clearly equivalent to saying that

αβ ≤ γ =⇒ β(α + γ) ≤ γ (1)

is a shift of dist. Indeed, replacing γ with αβ+γ, (1) implies the identity β(α+γ) ≤

αβ + γ, whence β(α + γ) ≤ β(αβ + γ). Using this second identity twice we obtain

β(α + γ) ≤ β(αβ + γ) ≤ βα + βγ,
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the distributive law.

Although S(dist, γ) and, rather, (1) are not lattice identities, they have two

conspicuous advantages over distributivity. Firstly, if we want to test the distribu-

tivity of an n-element lattice in the most straightforward way, then we have to

evaluate both sides of β(α + γ) ≤ βα + βγ for n3 triplets. But to test S(dist, γ)

resp. (1) we have to evaluate β(α+γ) for those triplets for which βα+βγ resp. αβ

is below γ. Secondly, S(dist, γ) or (1) makes it clear that the Triangular Scheme

holds when the congruence lattice is distributive. (In fact, the Triangular Scheme

is equivalent to congruence distributivity provided the algebra in question has per-

mutable congruences.)

Practically the same is true for the modular law

mod: α(β + αγ) ≤ αβ + αγ.

Now S(mod, γ): αβ + αγ ≤ γ =⇒ α(β + αγ) ≤ γ, which is clearly equivalent to

αβ ≤ γ =⇒ α(β + αγ) ≤ γ. (2)

To show that (2) implies modularity it suffices to observe that (2) fails in the

pentagon (five element nonmodular lattice) when β ‖ γ < α ‖ β. Again, S(mod, γ)

and (2) are easier to test from a computational point of view, they evidently imply

the Shifting Lemma, and, in fact, the satisfaction of (2) is equivalent to the Shifting

Lemma provided the algebra has 3-permutable congruences.

The examples above show the advantage of shifts of lattice identities: they

are easier to test and they give rise to congruence diagrammatic-statements which

could be quite useful. In the rest of the chapter we consider some concrete lattice

identities, and we give their shifts or show that no shift exists.

Following Huhn ([Hu1]) and ([Hu2]), a lattice L is said to be n-distributive

(n ≥ 1) if the identity

distn : β
n

∑

i=0

αi ≤
n

∑

j=0



β
∑

i∈{0,...,n}\{j}

αi





holds in L. (Notice that in his earlier papers Huhn assumed modularity in the

definition but later he dropped this assumption.) Clearly, dist1 is the usual dis-

tributivity.
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THEOREM 5.1 ([CCH2]). S(distn, α0) is a shift of distn in the variety of mod-

ular lattices. However, if n ≥ 2, then distn has no shift (in the variety of all

lattices).

Figure 12

Proof. Let L be a modular lattice such that distn fails in L. Then, by Huhn

([Hu1]) and ([Hu2]), L contains an n-diamond (This is the current terminology.

Huhn called an equivalent notion an (n − 1)-diamond.), i.e. there are pairwise

distinct elements u, v, a0, . . . , an+1 in L such that for any n-element subset H ⊆

{0, 1, . . . , n + 1} and k ∈ {0, . . . , n + 1} \ H we have

ak

∑

i∈H

ai = u and ak +
∑

i∈H

ai = v.

Notice that these equations mean that any n + 1 elements of {a0, . . . , an+1} are

the atoms of a Boolean sublattice with bottom u and top v. Now the substitution

αi = ai, i = 0, . . . , n, and β = an+1 shows that S(distn, α0) fails in L.

Now let n ≥ 2. We define a lattice L such that distn fails, but all the ”shift

candidates” S(distn, β), S(distn, α0), . . ., S(distn, αn) hold in L. Take the finite

Boolean lattice with n+ 2 atoms, pick an atom v, let u be the complement of v and

insert a new element w in the prime interval [u, 1]. This way we obtain L, which is

depicted in Figure 12 when n = 2. Letting {α0, . . . , αn} be the set of covers of v and

β = w we see that distn fails in L. Clearly, S(distn, β) holds in any lattice. Now,

by way of contradiction, assume that S(distn, α0) fails for some β, α0, . . . , αn ∈ L.

Then we have

p 6≤ q, q ≤ α0, p 6≤ α0, (3)
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(∀i) β 6≤ αi, (4)

(∀j) αj 6≤
∑

i∈{0,...,n}\{j}

αi, (5)

w ∈ {β, α0, . . . , αn}. (6)

Indeed, (5) follows from (3), and (6) follows from (3) and the fact that p ≤ q

in the Boolean lattice L \{w}. If w = αk, 0 ≤ k ≤ n, then either the interval

[v, 1] contains some αi and 1 = αk + αi contradicts (5) (this is where n ≥ 2 is

used) or all the αi belong to [0, w] = [0, αk], which contradicts (5) again. Hence (6)

yields β = w. In what follows, =d will refer to distributivity applied for elements

of the sublattice L \{w}. If
∑

i∈{0,...,n} αi 6= 1 then, for any H ⊆ {0, . . . , n},

β
∑

i∈H αi = u
∑

i∈H αi, and using the above-mentioned distributivity clearly gives

p = q, contradicting (3). Hence
∑

i∈{0,...,n} αi = 1 and p = β = w. Since

q =
∑

j∈{0,...,n}

β
∑

i∈{0,...,n}\{j}

αi ≥

∑

j∈{0,...,n}

u
∑

i∈{0,...,n}\{j}

αi =d u
∑

j∈{0,...,n}

αj = u

and q ≤ p 6≤ q, we have q = u. Then (3) gives α0 = u and (5) gives a contradiction

again, either because [v, 1] contains some αi and α0 + αi = 1 or because [0, α0]

contains all the αi.

Theorem 5.1. is proved.

tu

Now, to show once again how a shift leads to a diagrammatic statement, we

visualize dist2. The following statement clearly follows from the preceding part of

the chapter. It is worth mentioning that when congruence lattices of all algebras

of a given variety are considered then each of distn is equivalent to the usual dis-

tributivity by Nation ([N]); hence the following statement is totally uninteresting

for varieties instead of single algebras.

Corollary 5.1 ([CCH2]). (A) Let A be an algebra with modular congruence

lattice Con A. If Con A is 2-distributive then the diagrammatic statement depicted

in Figure 13 holds in A.

(B) If A is congruence permutable, then Con A is 2-distributive if and only if

the diagrammatic statement depicted in Figure 13 holds in A.
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β(α0 + α1)
+β(α0 + α2)

+β(α1 + α2) ≤ α0

=⇒

Figure 13

The next group of lattice identities we consider is taken from McKenzie [Mc].

These identities are as follows:

ζ0 : (x + y(z + xy))(z + xy) ≤ y + (x + z(x + y))(y + z),

ζ1 : x(xy + z(w + xyz)) ≤ xy + (z + w)(x + w(x + z)),

ζ2 : (x + y)(x + z) ≤ x + (x + y)(x + z)(y + z),

ζ3 : (x + yz)(z + xy) ≤ z(x + yz) + x(z + xy), and

ζ4 : y(z + y(x + yz)) ≤ x + (x + y)(z + x(y + z)).

Notice that ζ3 is Gedeonová’s p-modularity ([Ged1]).

THEOREM 5.2 ([CCH2]). S(ζ0, y), S(ζ1, y), S(ζ2, x), and S(ζ3, y) are shifts of

ζ0, ζ1, ζ2 and ζ3, respectively. On the other hand, ζ4 has no shift.

Q0 Q1
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Q2 Q3

Q4

Proof. Consider the lattices Q0, . . . , Q4 given by their Hasse diagram. For

i = 0, . . . , 4 McKenzie ([Mc]) proved that Qi is a projective splitting lattice with

conjugate identity ζi. As a consequence, for an arbitrary lattice L, ζi holds in L if

and only if Qi is not (isomorphic to) a sublattice of L; for i = 3 this was previously

proved by Gedeonová ([Ged1]).

(Since it is not so easy to extract this well-known consequence from [Mc],

perhaps a short hint is helpful. By definitions, for any lattice variety V either ζi holds

in V or Qi ∈ V. Now suppose that ζi fails in a lattice L. Then Qi ∈ HSP{L} =

PsHSPu{L}. Splitting lattices are subdirectly irreducible, so Qi ∈ HSPu{L}.

Since Qi is projective, Qi ∈ SPu{L}, i.e. Qi can be embedded into an ultrapower

of L. But Qi is finite, its embeddability can be expressed by a first order formula,

so applying Loś’ theorem we conclude that Qi is embeddable into L.)
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Now if the shift of ζi, 0 ≤ i ≤ 3, (i.e. S(ζ2, x) for i = 2 and S(ζi, y) for

2 6= i ≤ 3) held, but ζi failed in a lattice L then Qi would be a sublattice of L and

the elements x, y, . . . indicated in the diagram of Qi would refute the satisfaction of

the shift of ζi in L.

It follows from definitions (or by substituting (x, y, z) = (a, b, c)) that ζ4 fails

in Q4. So, to prove that ζ4 : p4 ≤ q4 has no shift, it suffices to show that all the

”shift candidates” S(ζ4, x), S(ζ4, y) and S(ζ4, z) hold in Q4. If x, y, z ∈ Q4 with

{x, y, z} 6= {a, b, c} then the sublattice [x, y, z] is distinct from Q4, so it has no

sublattice isomorphic to Q4, hence ζ4 and therefore the shift candidates hold in

[x, y, z]. Hence it suffices to test substitutions with {x, y, z} = {a, b, c}; six cases. It

turns out that (x, y, z) = (a, b, c) is the only case when p4 6≤ q4, so it is quite easy

to see that all the shift candidates hold in Q4.

Theorem 5.2 is proved.

tu

Theorem 5.2 raises the problem of characterizing splitting lattices whose con-

jugate identities have shifts.

All the previous lattice identities have known characterizations by excluded

(partial) sublattices (at least in the variety of modular lattices) and, except for dis-

tributivity, our proofs were based on these characterizations. (Even in the second

half of the proof of Theorem 5.1 the construction was motivated by Huhn’ charac-

terization for the modular case.) It would be interesting but probably difficult to

avoid the use of excluded sublattices. The Fano identity (cf. e.g. Herrmann and

Huhn ([HH])):

χ2 : (x + y)(z + t) ≤ (x + z)(y + t) + (x + t)(y + z)

has no similar known characterization; yet, we have the following statement.

THEOREM 5.3 ([CCH2]). The Fano identity has no shift — not even in the

variety of modular lattices.

Proof. Suppose that χ2 has a shift in the variety of modular lattices. Since

the role of its variables is symmetric, we can assume that this shift is

S(χ2, x) : (x + z)(y + t) + (x + t)(y + z) ≤ x =⇒ (x + y)(z + t) ≤ x.

Let L be the subspace lattice of the real projective plane. Then L is a modular

lattice with length 3. It contains 0 = 0L = ∅, the atoms are the projective points
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Figure 14

(as singleton subspaces), the coatoms are the projective lines, and the full plane is

1 = 1L. It follows from Herrmann and Huhn ([HH]) that χ2 fails in L. We intend

to show that S(χ2, x) holds in L and this will imply our theorem. We will use the

modular law in its classical form

x ≤ z =⇒ (x + y)z = x + yz

and also in the form of shearing identity

x(y + z) =s x(y(x + z) + z) = x(y(x + z) + z(x + y)).

First we show that χ2 and therefore S(χ2, x) hold for x, y, z, t ∈ L when

{x, y, z, t} is not an antichain. By symmetry, it is enough to treat two cases.

Case 1: x ≤ y, then

(x + y)(z + t) = y(z + t) =s y(z(y + t) + t(y + z)) ≤ z(y + t) + t(y + z) ≤

(x + z(y + t)) + (x + t(y + z)) = (x + z)(y + t) + (x + t)(y + z).

Case 2: x ≤ z, then

(x + y)(z + t) = x + y(z + t) =s x + y(z(y + t) + t(y + z)) ≤

z(y + t) + x + t(y + z) = (x + z)(y + t) + (x + t)(y + z).

Let {x, y, z, t} be an antichain in L. Thus each of x, y, z and t is a point or a

line.

If x is a line then we infer x + z = 1 from z 6≤ x and the premise of S(χ2, x)

gives x ≥ (x + z)(y + t) = y + t ≥ y, a contradiction. Therefore x is a point.

If z is a line then x + z = 1 again and we can derive the same contradiction.

Hence z is a point and, by z–t symmetry, so is t. Similarly, if y is a line then

x ≥ (x + z)(y + t) = x + z ≥ z, therefore y is a point.
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We have seen that x, y, z and t are pairwise distinct points. Let us consider the

”triangle” xzt, cf. Figure 14. The premise of S(χ2, x) says (x+ z)(y + t) ≤ x, which

is possible only when y ≤ x + t (i.e., y is on the line through x and t). Similarly,

(x + t)(y + z) ≤ x forces y ≤ x + z. Hence y ≤ (x + t)(x + z) = x, a contradiction.

Theorem 5.3 is proved.

tu
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CHAPTER 6

Tolerances and tolerance lattices

6.1. The inequalities mod(tol,tol,tol) and dist(tol,tol,tol) in case of con-

gruence modularity and distributivity

Let dist(x, y, z) resp. mod(x, y, z) denote the distributive law

x ∧ (y ∨ z) ≤ (x ∧ y) ∨ (x ∧ z)

resp. the modular law

x ∧ (y ∨ (x ∧ z)) ≤ (x ∧ y) ∨ (x ∧ z).

For an algebra A, the set of tolerances and the lattice of congruences of A will

be denoted by Tol A and Con A, respectively. We say that dist(tol,tol,tol) holds

in A if Γ ∧ (Φ ∨ Ψ) ⊆ (Γ ∧ Φ) ∨ (Γ ∧ Ψ) is valid for any Γ, Φ, Ψ ∈ Tol A, where

the meet resp. the join is the intersection resp. the transitive closure of the union.

Denoting the transitive closure by ∗, Φ ∨ Ψ = (Φ ∪ Ψ)∗ = Φ∗ ∨ Ψ∗ (the second join

is from Con A) for any tolerances Φ and Ψ in the present subdivision throughout.

The meaning of mod(tol,tol,tol) is analogous. We should emphasize here that Φ∨Ψ

is not the join in Tol A, the lattice of tolerance relations of A.

THEOREM 6.1 ([CzH2]). If V is a congruence distributive resp. congruence

modular variety, then dist(tol,tol,tol) resp. mod(tol,tol,tol) holds in all algebras of

V.

Proof. Suppose V is congruence distributive. Then we have Jónsson terms, cf.

Jónsson ([J1]), i.e. ternary V-terms t0, . . . , tn for some even n ∈ N0 = {0, 1, 2, . . .}

such that V satisfies the identities t0(x, y, z) = x, tn(x, y, z) = z, ti(x, x, y) =

ti+1(x, x, y) for i even, ti(x, y, y) = ti+1(x, y, y) for i odd, and ti(x, y, x) = x for all

i. Now let A ∈ V, Γ, Φ, Ψ ∈ Tol A and (a, b) ∈ Γ ∧ (Φ ∨ Ψ). Then there is an even
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k, and there are elements c0 = a, c1, . . . , ck−1, ck = b such that (ci, ci+1) ∈ Φ for i

even, (ci, ci+1) ∈ Ψ for i odd and (a, b) = (c0, ck) ∈ Γ. Since

ti(a, u, b) = ti(ti(a, v, a), u, ti(b, v, b)) Γ ti(ti(a, v, b), u, ti(a, v, b)) = ti(a, v, b),

for all i and any u, v ∈ A we have

(ti(a, u, b), ti(a, v, b)) ∈ Γ. (1)

Now we define a sequence from a to b as follows:

a = t0(a, c0, b) = t1(a, c0, b) Φ t1(a, c1, b) Ψ t1(a, c2, b) Φ t1(a, c3, b)

Ψ . . .Φ t1(a, ck−1, b) Ψ t1(a, ck, b) = t1(a, b, b) = t2(a, b, b) =

t2(a, ck, b) Ψ t2(a, ck−1, b) Φ t2(a, ck−2, b) Ψ . . . Φ t2(a, c0, b) =

t2(a, a, b) = t3(a, a, b) Φ t3(a, c1, b)Ψt3(a, c2, b) Φ . . . Ψ

t3(a, ck, b) = t4(a, ck, b) Ψ t4(a, ck−1, b) Φ . . . Φ

tn−1(a, ck−1, b) Ψ tn−1(a, ck, b) = tn−1(a, b, b) = tn(a, b, b) = b.

It follows from (1) that any two consecutive members of this series are in

(Γ ∩ Φ) ∪ (Γ ∩ Ψ) ⊆ (Γ ∧ Φ) ∨ (Γ ∨ Ψ).

Thus (a, b) ∈ (Γ ∧ Φ) ∨ (Γ ∩ Ψ), whence dist(tol,tol,tol) holds in V.

Now let V be congruence modular. Then we have Day terms, i.e. quaternary

V-terms m0, m1, . . . , mk for some 0 < k ∈ N0 such that V satisfies the identities

m0(x, y, u, v) = x, mk(x, y, u, v) = y

mi(x, y, x, y) = mi+1(x, y, x, y) for i even,

mi(x, y, z, z) = mi+1(x, y, z, z) for i odd, and

mi(x, x, y, y) = x for all i,

cf. Day ([Da1]). First we show that, for any A ∈ V and Γ, Φ, Ψ ∈ Tol A,

Γ ∩ (Φ ◦ (Γ ∩ Ψ) ◦ Φ) ⊆ (Γ ∩ Φ) ∨ (Γ ∩ Ψ). (2)

Let (a, b) ∈ Γ ∩ (Φ ◦ (Γ ∩ Ψ) ◦ Φ). Then there are c, d ∈ A with (a, c), (d, b) ∈ Φ,

(c, d) ∈ Γ∩Ψ and, of course, (a, b) ∈ Γ. Consider the elements di = mi(a, b, c, d) for
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i = 0, 1, . . . , k, ei = mi(a, b, c, c) = mi+1(a, b, c, c) for i odd, and ei = mi(a, b, a, b) =

mi+1(a, b, a, b) for i even. Then d0 = a, dk = b, and (di, ei), (ei, di+1) ∈ Γ ∩ Ψ for i

odd.

For i even we have (di, ei), (ei, di+1) ∈ Φ,

di = mi(a, b, c, d) = mi(mi(a, b, c, d), mi(a, b, c, d), a, a) Γ

mi(mi(a, a, c, c), mi(b, b, d, d), a, b) = mi(a, b, a, b) = ei,

i.e. (di, ei) ∈ Γ ∩ Φ. Similarly, (ei, di+1) ∈ Γ ∩ Φ.

Now (a, b) ∈ (Γ ∧ Φ) ∨ (Γ ∧ Ψ) follows from transitivity and from the fact that

all the (di, ei) and (ei, di+1) belong to (Γ ∧ Φ) ∨ (Γ ∧ Ψ). This shows (2).

Now define Φ0 = Φ and Φn+1 = Φn ◦ (Γ ∩ Ψ) ◦ Φn for n ≥ 1. Notice that all

the Φn belong to Tol A. We claim that for all n ∈ N0,

Γ ∩ Φn ⊆ (Γ ∩ Φ) ∨ (Γ ∩ Ψ). (3)

This is evident for n = 0. Assuming (3) for an arbitrary n and applying (2) we obtain

Γ∩Φn+1 = Γ∩(Φn ◦(Γ∩Ψ)◦Φn) ⊆ (Γ∩Φn)∨(Γ∩Ψ) ⊆ (Γ∩Φ)∨(Γ∩Ψ)∨(Γ∩Ψ) =

(Γ ∩ Φ) ∨ (Γ ∩ Ψ), i.e. (3) holds for n + 1. Thus (3) holds for all n and we obtain

Γ∧ (Φ∨ (Γ∧Ψ)) = Γ∩
⋃

{Φn : n ∈ N0} =
⋃

{Γ∩Φn : n ∈ N0} ⊆ (Γ∩Φ)∨ (Γ∩Ψ).

Theorem 6.1 is proved.

tu

Corollary 6.1 (Gumm [Gu1]). If V is a congruence modular variety, then it

satisfies Gumm’s Shifting Principle, i.e. for any A∈ V, α, γ ∈ Con A and Φ ∈ Tol A

if (x, y), (u, v) ∈ α, (x, u), (y, v) ∈ Φ, (u, v) ∈ γ and α ∩ Φ ⊆ γ, then (x, y) ∈ γ.

Proof. (x, y) ∈ α ∩ (Φ ∨ (α ∧ γ)) ⊆ (α ∧ Φ) ∨ (α ∧ γ) ⊆ γ ∨ γ = γ.

Corollary 6.1 is proved.

tu

Notice that Theorem 6.1 also implies the Triangular Principle and the Trape-

zoid Principle for congruence distributive varieties, cf. [ChH1] and [CCH2].

Now we give an example. Consider the monounary algebra B = ({0, 1, 2},−)

where −0 = 0, −1 = 2 and −2 = 1. Then α with the associated partition

{{0}, {1, 2}} is the only nontrivial congruence of B, so Con A is distributive. Notice

that

Φ = {(0, 1), (1, 0), (0, 2), (2, 0), (0, 0), (1, 1), (2, 2)}
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is a tolerance and α ∩ Φ∗ 6⊆ (α ∩ Φ)∗. Hence the following statement indicates that

Theorem 6.1 cannot be extended for single algebras.

Proposition 6.1 ([CzH2]). If mod(tol,tol,tol) or dist(tol,tol,tol) holds in an

algebra A, then Γ ∩ Φ∗ ⊆ (Γ ∩ Φ)∗ for any Γ, Φ ∈ Tol A.

Proof. Apply mod(Γ, Φ, 0) or dist(Γ, Φ, 0).

Proposition 6.1 is proved.

tu

6.2. Tolerance lattices of algebras in congruence modular varieties

The tolerances and the congruences of an algebra A form algebraic lattices

denoted by Tol A = ( Tol A,∧,t) and Con A= ( Con A,∧,∨), respectively. The

congrence lattice Con A of an algebra A is an algebraic lattice, but (according to

the Grätzer–Schmidt theorem, cf. [GS]) it has no further special properties. The

same is true for the tolerance lattice Tol A by [CC] (for an alternative proof cf.

also Theorem 2 with ρ being the identical map plus checking the construction for

reflexivity in Grätzer and Lampe ([GL]). As a contrast to the general case, the

tolarence lattice Tol L of an arbitrary lattice L has many nice properties by [RS]

and Bandelt ([B]). Bandelt [B] is also a good source to convince the reader about

the importance of tolerances of lattices.

The purpose of the present subdivision is to extend known results on tolerance

lattices of lattices to tolerance lattices of more general algebras. Some results will

be extended ”only” for algebras with a majority term while some others for algebras

in a congruence modular variety. Surprisingly enough, the proof of our generalized

statement on 0-modularity, to be stated in the last theorem here, is considerably

simpler than Bandelt’s original approach and seems to be the right way to reveal

what is behind the scene in [B]. In spite of the present achievments, we are not

able to generalize all properties of lattice tolerances, for example, there is still no

generalization of [Cz4].

For Φ ∈ Tol A, the transitive closure of Φ will be denoted by Φ∗. Clearly, Φ∗

is a congruence of A. For any Φ, Ψ ∈ Tol A the least congruence containing both
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Φ and Ψ will be denoted here by Φ ∨ Ψ. Obviously, we have Φ ∨ Ψ = (Φ t Ψ)∗ =

Φ∗ ∨ Ψ∗. We recall from the previous subdivision that we say that dist(tol,tol,tol)

respectively mod(tol,tol,tol) holds in A, if Γ∧(Φ∨Ψ) ≤ (Γ∧Φ)∨(Γ∧Ψ) respectively

Γ ∧ (Φ ∨ (Γ ∧ Ψ)) ≤ (Γ ∧ Φ) ∨ (Γ ∧ Ψ) is valid for all Γ, Φ, Ψ ∈ Tol A.

In the previous subdivision we proved that if V is a congruence modular resp.

congruence distributive variety, then for each algebra A ∈ V, mod(tol,tol,tol) resp.

dist(tol,tol,tol) holds in A. We also proved that Φ ∧ Ψ∗ ≤ (Φ ∧ Ψ)∗ for all Φ, Ψ ∈

Tol A and A ∈ V, and pointed out that it is essential to consider a whole variety,

not just a single algebra.

It is known that the variety of all lattices is congruence distributive. The

afore-mentioned results of Bandelt ([B]) state that for any lattice L, Tol L is a

pseudocomplemented and 0-modular lattice. The pseudocomplement Φ# of any

Φ ∈ Tol A is a congruence by [RS]. Now the above-mentioned results of [CzH2]

provide us with the main tool to prove, for instance, that if A belongs to a congru-

ence modular variety, then Con A is a homomorphic image of Tol A; if A belongs

to a congruence distributive variety, then Tol A is 0-1 modular and pseudocomple-

mented lattice and for any Φ ∈ Tol A Φ# is a congruence.

A lattice L with 0 is called 0-modular, cf. Stern ([St]), if there is no N5 sublattice

of L including 0. A bounded lattice L is called 0-1 modular if no N5 of L includes

both 0 and 1. Clearly, this is equivalent to the condition that none of the elements

of L has comparable complements. A complete lattice L is called upper continuous,

cf. Schmidt ([Sch]), if any directed family of elements {aδ | δ ∈ D} ⊆ L and any

a ∈ L satisfies a ∧ (
∨

{aδ | δ ∈ D}) =
∨

{a ∧ aδ | δ ∈ D}. It is well-known that any

algebraic lattice is upper continuous.

For a, b ∈ L set SC (a/b) = {x ∈ L | a ∧ x ≤ b}. If L is an upper continuous

lattice, then the set SC (a/b) contains at least one maximal element [CrD], which

is called a weak pseudocomplement of a relative to b and it is denoted by awb. It

is easy to see that awb is not necessarily unique and for any x ∈ SC (a/b) there

exists at least one awb such that x ≤ awb. If 0 ∈ L, then aw0 is called a weak

pseudocomplement of a and it is denoted by aw. If aw is unique, i.e. if aw is

the greatest element of SC (a/0), then it is called the pseudocomplement of a and

usually it is denoted by a#. L is called a pseudocomplemented lattice if for each

a ∈ L there exists a# ∈ L. In other words, L is pseudocomplemented if for any

a ∈ L there exists an a# ∈ L such that for any x ∈ L, x ∧ a = 0 ⇔ x ≤ a#. It

is known that any algebraic distributive lattice is pseudocomplemented. If L is a
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pseudocomplemented lattice, then (L,∧,∨,# , 0, 1) is called a p-algebra . We will

use 4 and ∇ for the equality relation and the total relation on A, respectively. The

algebra A is called tolerance-simple, cf. e.g. Chajda [Ch], if Tol A = {4,∇}.

The following lemma will be useful in our proofs:

Lemma 6.1 ([CHR]). Let A be an arbitrary algebra and Φ1, Φ2 ∈ Tol A.

Then Φ1 t Φ2 = ∇ implies Φ1 ◦ Φ2 = Φ2 ◦ Φ1 = ∇.

Proof. Since (Φ1 ◦ Φ2) ∩ (Φ2 ◦ Φ1) is clearly a tolerance of A, cf. e.g. [RRS],

and it includes Φ1 and Φ2, we obtain ∇ = Φ1 t Φ2 ⊆ (Φ1 ◦ Φ2) ∩ (Φ2 ◦ Φ1). Hence

Φ1 ◦ Φ2 = Φ2 ◦ Φ1 = ∇.

Lemma 6.1 is proved.

tu

Lemma 6.2 ([CHR]). Let A be a congruence modular (congruence distribu-

tive) algebra. Then the following statements are equivalent:

(i) For any θ ∈ Con A and any Φ ∈ Tol A we have Φwθ ∈ Con A.

(ii) Φ∗ ∧ Ψ∗ = (Φ ∧ Ψ)∗, for all Φ, Ψ ∈ Tol A.

(iii) The map h: Tol A → Con A, Φ 7→ Φ∗, is a surjective lattice homomor-

phism.

(iv) mod(tol,tol,tol) (dist(tol,tol,tol)) holds in A.

Proof. (i) ⇒(ii). Let Φ, Ψ ∈ Tol A and consider θ = (Φ ∧ Ψ)∗ ∈ Con A.

Then Φ ∧ Ψ ≤ θ. As Tol A is an algebraic lattice, there exists a Φwθ such that

Ψ ≤ Φwθ. Since by the assumption of (i) Φwθ ∈ Con A, we obtain Ψ∗ ≤ Φwθ, and

this implies Φ ∧ Ψ∗ ≤ (Φ ∧ Ψ)∗. As this relation is valid for any pair of tolerances,

we obtain

Φ∗ ∧ Ψ∗ ≤ (Φ∗ ∧ Ψ)∗ ≤ ((Φ ∧ Ψ)∗)∗ = (Φ ∧ Ψ)∗.

Since (Φ ∧ Ψ)∗ ≤ Φ∗ ∧ Ψ∗, we obtain Φ∗ ∧ Ψ∗ = (Φ ∧ Ψ)∗.

(ii)⇒(iii). Since for any θ ∈ Con A we have h(θ) = θ, the map

h : Tol A → Con A

is surjective. Take Φ, Ψ ∈ Tol A. Then h(Φ t Ψ) = (Φ t Ψ)∗ = Φ∗ ∨ Ψ∗ =

h(Φ)∨ h(Ψ), moreover (ii) implies h(Φ∧Ψ) = (Φ∧Ψ)∗ = (Φ∧Ψ)∗ = h(Φ)∧ h(Ψ).

Thus h is a homomorphism.
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(iii)⇒(iv). Take Γ, Φ, Ψ ∈ Tol A. Then we have

Γ ∧ (Φ ∨ (Γ ∧ Ψ)) ≤ Γ∗ ∧ (Φ∗ ∨ (Γ ∧ Ψ)∗) ≤ Γ∗ ∧ (Φ∗ ∨ (Γ∗ ∧ Ψ∗)).

If Con A is a modular lattice, then we obtain Γ∗ ∧ (Φ∗ ∨ (Γ∗ ∨ Ψ∗)) ≤ (Γ∗ ∧ Φ∗) ∨

(Γ∗ ∧ Ψ∗). Since h(Φ) = Φ∗ is a homomorphism, we have (Γ ∧ Φ)∗ = Γ∗ ∧ Φ∗ and

(Γ ∧ Ψ)∗ = Γ∗ ∧ Ψ∗. Thus we obtain Γ ∧ (Φ ∨ (Γ ∧ Ψ)) ≤ (Γ∗ ∧ Φ∗) ∨ (Γ∗ ∧ Ψ∗) =

(Γ ∧ Φ)∗ ∨ (Γ ∧ Ψ)∗ = (Γ ∧ Φ) ∨ (Γ ∧ Ψ), and so mod(tol,tol,tol) holds in A.

The case when Con A is distributive is similar:

Γ ∧ (Φ ∨ Ψ) ≤ Γ∗ ∧ (Φ∗ ∨ Ψ∗) = (Γ∗ ∧ Φ∗) ∨ (Γ∗ ∧ Ψ∗) =

(Γ ∧ Φ)∗ ∨ (Γ ∧ Ψ)∗ = (Γ ∧ Φ) ∨ (Γ ∧ Ψ),

and this proves that dist(tol,tol,tol) holds in A.

(iv)⇒(i). Clearly, dist(tol,tol,tol) implies mod(tol,tol,tol) and the latter, ac-

cording to [CzeHor2] or substituting 0 for the ”third tol”, implies Γ∧Φ∗ ≤ (Γ∧Φ)∗

for all Γ, Φ ∈ Tol A. Take any θ ∈ Con A and Φ ∈ Tol A. Then Φ ∧ Φwθ ≤ θ

implies Φ ∧ (Φwθ)∗ ≤ (Φ ∧ Φwθ)∗ ≤ θ∗ = θ, i.e. (Φwθ)∗ ∈ SC (Φ/θ). As

Φwθ is a maximal element of SC (Φ/θ) and since Φwθ ≤ (Φwθ)∗, we obtain

Φwθ = (Φwθ)∗ ∈ Con A.

Lemma 6.2 is proved.

tu

Proposition 6.2 ([CHR]). Let A be an algebra in a congruence modular

variety V. Then the following two statements hold:

(i) For any Φ ∈ Tol A each Φw ∈ Con A.

(ii) If Φ and Ψ are complements of each other in Tol A, then they are weak

pseudocomplements of each other and form a factor congruence pair of A.

Proof. (i) Since V is congruence modular, mod(tol,tol,tol) holds in A accord-

ing to [CzH2]. As Φw = Φw0, applying Lemma 6.2 we infer (i).

(ii) Let Φ and Ψ be complements of each other in Tol A. Then, by Lemma

6.1, ΦtΨ = ∇ implies Φ ◦Ψ = Ψ ◦Φ = ∇. As Φ∧Ψ = 4, there is a Φw such that

Ψ ≤ Φw. We have to prove Ψ = Φw, i.e. Φw ≤ Ψ.

Take any (x, y) ∈ Φw. Since (x, y) ∈ Φ ◦ Ψ, there exists a z ∈ A such that

(x, z) ∈ Φ and (z, y) ∈ Ψ. However Ψ ≤ Φw implies (z, y) ∈ Φw. As Φw ∈ Con A,

we obtain (x, z) ∈ Φw ∧ Φ = 4, i.e. x = z. Therefore we obtain (x, y) ∈ Ψ proving

Φw ≤ Ψ. Thus, we conclude that Ψ = Φw ∈ Con A. Interchanging the role of Φ
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and Ψ we obtain Φ = Ψw ∈ Con A. As Φ ∧Ψ = 4 and Φ ◦Ψ = Ψ ◦Φ = ∇, Φ and

Ψ are factor congruences of A.

Proposition 6.2 is proved.

tu

Definition 6.1. The lattice L with 0 satisfies the general disjointness property

(GD) if a ∧ b = 0 and (a ∨ b) ∧ c = 0 imply a ∧ (b ∨ c) = 0. (See [S] or [St].)

It is easy to check that any pseudocomplemented lattice has the (GD) property.

It was proved in [S] that any 0-modular lattice satisfies the (GD) property, too.

THEOREM 6.2 [(CHR)]. Let A be an algebra in a congruence modular variety

V. Then the following statements hold:

(i) The map h: Tol A → Con A, Φ 7→ Φ∗, is a surjective lattice homomorphism

and Tol A is a 0-1 modular lattice having the (GD) property.

(ii) Tol A is pseudocomplemented if and only if Con A is pseudocomple-

mented.

Proof. (i) Since V is a congruence modular variety and A ∈ V, by [CzH1]

mod(tol,tol,tol) holds in A. Therefore by applying Lemma 6.2 we obtain the re-

quired homomorphism.

Now, by way of contradiction, suppose that Tol A is not 0-1 modular. Then

an N5 sublattice of Tol A includes ∆ and ∇. Hence each element of this N5 has a

complement in Tol A. Since complements are weak pseudocomplements as well, we

conclude from Proposition 6.2(ii) that N5 ⊆ Con A. Hence the homorphism h acts

identically on N5 and we infer that N5, as a homomorphic image, is a sublattice of

Tol A, contradicting congruence modularity.

Finally, take Γ, Φ, Ψ ∈ Tol A and assume that Γ∧Φ = 4 and (ΓtΦ)∧Ψ = 4.

Applying the homomorphism h to these two equations we obtain h(Γ) ∧ h(Φ) =

h(4) = 4 and (h(Γ) ∨ h(Φ)) ∧ h(Ψ) = 4. Since Con A is a modular lattice, it

has the (GD) property as well, and this gives Γ ∧ (Φ t Ψ) ≤ h(Γ ∧ (Φ t Ψ)) =

h(Γ) ∧ (h(Φ) ∨ h(Ψ)) = 4. Thus Tol A has the (GD) property.

(ii) Assume that Tol A is a pseudocomplemented lattice. Since now for any

θ ∈ Con A, θ# is its (unique) weak pseudocomplement in Tol A, Proposition 6.2(i)

gives θ# ∈ Con A. As any ζ ∈ Con A is also a tolerance, we have θ ∧ ζ = 4 ⇔

ζ ≤ θ#. Hence θ# is the pseudocomplement of θ in the lattice Con A as well. Thus

Con A is pseudocomplemented.
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Conversely, assume that Con A is pseudocomplemented and denote by θ#

the pseudocomplement of a θ ∈ Tol A. We prove that for each Φ ∈ Tol A the

congruence ((Φ)∗)# is the pseudocomplement of Φ in Tol A.

Let Ψ ∈ Tol A, Ψ ≤ (Φ∗)#. Then Φ∧Ψ ≤ Φ∗∧(Φ∗)# = 4. Take a Ψ ∈ Tol A

with Φ∧Ψ = 4. Then, in view of Lemma 6.2(ii), we have Φ∗∧Ψ∗ = (Φ∧Ψ)∗ = 4.

Thus we obtain Ψ∗ ≤ (Φ∗)# and so Ψ ≤ (Φ∗)#. Hence Φ ∧ Ψ = 0 ⇔ Ψ ≤ (Φ∗)#

and this proves that Tol A is pseudocomplemented and the pseudocomplement Φ#

of Φ in Tol A is the same as (Φ∗)#.

Theorem 6.2 is proved.

tu

Remark 6.1. Observe that the following is implicit in the proof of Theorem

6.2(ii): The pseudocomplement in Con A of a Θ ∈ Con A is the same as its pseu-

docomplement in Tol A. As a consequence, the pseudocomplementation operation

will be denoted by the same symbol ”#” in both of the lattices Tol A and Con A. It

is also clear that in this case (Con A,∧,# ) is a subalgebra of (Tol A,∧,# ). Notice

that in the proof of the Theorem 6.2(ii) it was also deduced that Φ# = (Φ∗)#.

Proposition 6.3 ([CHR]). Let V be a congruence distributive variety and

let A ∈ V. Then the following statements hold:

(i) Tol A is a pseudocomplemented 0-1 modular lattice and for any Φ ∈ Tol A

we have Φ# ∈ Con A.

(ii) The map h : Tol A → Con A, Φ 7→ Φ∗, is a homomorphism of the p-algebra

(Tol A,∧,t,# ,4,∇) onto the p-algebra (Con A,∧,∨,# ,4,∇).

Proof. Now Con A, as an algebraic distributive lattice, is pseudocomple-

mented as well. Therefore (i) is an obvious consequence of Theorem 6.2 and Propo-

sition 6.2(i).

(ii) In view of Theorem 6.2(i) h is a lattice homomorphism and h is surjective.

We have also h(4) = 4 and h(∇) = ∇. Since Φ# ∈ Con A, h(Φ#) = Φ#. On the

other hand, we have (h(Φ))# = (Φ∗)# = Φ#, according to Remark 6.1. Thus we

obtain h(Φ#) = (h(Φ))#, and hence h is a homomorphism of p-algebras.

Proposition 6.3 is proved.

tu

Corollary 6.2 ([CHR]). Let A be an algebra of a variety V.

(i) If V is congruence modular and Tol A is a simple or complemented lattice,

then Tol A = Con A.
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(ii) If V is congruence distributive and the lattice Tol A is simple, then the

algebra A itself is tolerance-simple.

Proof. We may assume that |A| ≥ 2.

(i) If Tol A is complemented, then Proposition 6.2(ii) gives Tol A = Con A.

If Tol A is simple, then the congruence Θ ⊆ Tol A × Tol A defined by

(Φ1, Φ2) ∈ Θ ⇔ Φ∗
1 = Φ∗

2

is either the identity relation or the total relation on Tol A. The latter case can be

excluded, as 4∗ = 4 6= ∇ = ∇∗. Since we have (Φ, Φ∗) ∈ Θ, we obtain Φ = Φ∗ for

all Φ ∈Tol A, i.e. Tol A = Con A.

(ii) We have Tol A = Con A, according to the above (i). As now Con A

is a simple distributive lattice, it is a two-element chain. Hence Tol A is also a

two-element chain, i.e. A is tolerance-simple.

Corollary 6.2 is proved.

tu

A term function m(x, y, z) of an algebra A is called a majority term if

m(x, x, y) = m(x, y, x) = m(y, x, x) = x holds for all x, y ∈ A. For instance,

any lattice (L,∧,∨) admits a majority term; namely:

m(x, y, z) = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z).

It is well-known that the variety V(A) generated by an algebra A with a majority

term is congruence distributive.

Now let A be an arbitrary algebra and Γ, Φ ∈ Tol A. By an (Γ, Φ)-circle we

mean a quadruplet (a, b, c, d) ∈ A4 such that (a, b), (c, d) ∈ Γ and (b, c), (d, a) ∈ Φ.

Lemma 6.3 ([CHR]). Let A be an algebra with a majority term m, and let

Γ, Φ ∈ Tol A with Γ ∧ Φ = 4.

(i) If (a, b, c, d) ∈ A4 is an (Γ, Φ)-circle, then

m(a, b, c) = b, m(b, c, d) = c, m(c, d, a) = d, m(d, a, b) = a. (1)

(ii) We have Γ t Φ = (Γ ◦ Φ) ∩ (Φ ◦ Γ).

Proof. (i) Because of symmetry, it suffices to prove the first equality. Since

we have (m(a, b, c), m(b, b, c)) ∈ Γ, ((m(a, b, c), m(a, b, b)) ∈ Φ and m(b, b, c) =

m(a, b, b) = b, the first equality comes from Γ ∧ Φ = 4.
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(ii) As it was pointed out in the argument of Lemma 6.1, we have (Γ ◦ Φ) ∩

(Φ ◦ Γ) ∈ Tol A and Γ t Φ ⊆ (Γ ◦ Φ) ∩ (Φ ◦ Γ). Now let Ψ be a tolerance with

Γ ≤ Ψ and Φ ≤ Ψ and take any a, c ∈ A with (a, c) ∈ (Γ ◦ Φ) ∩ (Φ ◦ Γ). Then

there exist b, d ∈ A such that (a, b) ∈ Γ, (b, c) ∈ Φ and (a, d) ∈ Φ, (d, c) ∈ Γ.

Then (a, b, c, d) is an (Γ, Φ)-circle. Therefore (1) gives m(d, a, b) = a. On the

other hand, (d, c), (b, c) ∈ Ψ implies (m(d, a, b), m(c, a, c)) ∈ Ψ. As m(c, a, c) = c,

we obtain (a, c) ∈ Ψ. Thus we conclude (Γ ◦ Φ) ∩ (Φ ◦ Γ) ≤ Ψ and this proves

(Γ ◦ Φ) ∩ (Φ ◦ Γ) = Γ t Φ.

Lemma 6.3 is proved.

tu

THEOREM 6.3 ([CHR]). Let A be an algebra. If A has a majority term, then:

(i) Tol A is a 0-modular pseudocomplemented lattice.

(ii) The tolerances Γ, Φ are complements of each other in Tol A if and only if

they form a factor congruence pair of A.

Proof. (i) Since the variety V(A) is congruence distributive, in view of Propo-

sition 6.3, Tol A is pseudocomplemented.

In order to prove that Tol A is 0-modular, by way of contradiction let us assume

that {4, Γ, Φ, Σ, Ω} is an N5 sublattice in TolA with 4 < Γ < Σ < Ω, 4 < Φ < Ω

and ΓtΦ = ΣtΦ = Ω, Γ∧Φ = Σ∧Φ = 4. Take any a, c ∈ A with (a, c) ∈ Σ. As

by Lemma 6.3(ii) we have Ω = ΓtΦ = (Γ◦Φ)∩ (Φ◦Γ) and since Σ < Ω, we obtain

(a, c) ∈ (Γ ◦ Φ) ∩ (Φ ◦ Γ). Then there exist c, d ∈ A such that (a, b) ∈ Γ, (b, c) ∈ Φ

and (a, d) ∈ Φ, (d, c) ∈ Γ, i.e. such that (a, b, c, d) is an (Γ, Φ)-circle.

¿From (a, c) ∈ Σ and (1) we obtain b = m(a, b, c) Σ m(c, b, c) = c. Thus we

obtain (b, c) ∈ Σ ∧ Φ = 4, i.e. b = c. Hence we conclude (a, c) = (a, b) ∈ Γ. We

have shown Σ ≤ Γ, a contradiction. Therefore Tol A is 0-modular.

(ii) If Γ and Φ are complements of each other, then they form a factor congru-

ence pair in virtue of Proposition 6.2(ii). Conversely, suppose that Γ, Φ ∈ Con A

form a factor congruence pair. Then Γ ◦Φ = Φ ◦Γ = ∇ and Γ∧Φ = 4, whence we

conclude from Lemma 6.3 (ii) that Γ t Φ = (Γ ◦ Φ) ∩ (Φ ◦ Γ) = ∇. Thus Γ and Φ

are complements of each other in Tol A.

Theorem 6.3 is proved.

tu
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CHAPTER 7

Maltsev conditions for congruence lattice identities in mod-
ular varieties

It is an old problem if all congruence lattice identities are equivalent to Maltsev

conditions. In other words, we say that a lattice identity λ can be characterized by

a Maltsev condition if there exists a Maltsev condition M such that, for any variety

V, λ holds in congruence lattices of all algebras in V if and only if M holds in V; and

the problem is if all lattice identities can be characterized this way. This problem

was raised first in Grätzer ([Gr1]), where the notion of a Maltsev condition was

defined. A strong Maltsev condition for varieties is a condition of the form ”there

exist terms h0, . . . , hk satisfying a set Σ of identities” where k is fixed and the form

of Σ is independent of the type of algebras considered. By a Maltsev condition

we mean a condition of the form ”there exists a natural number n such that Pn

holds” where the Pn are strong Maltsev conditions and Pn implies Pn+1 for every

n. The condition ”Pn implies Pn+1” is usually expressed by saying that a Maltsev

condition must be weakening in its parameter. (For a more precise definition of

Maltsev conditions cf. [T].) The problem was repeatedly asked by several authors,

including Taylor ([T]), Jónsson ([J2]) and Freese and McKenzie ([FM]).

Certain lattice identities have known characterizations by Maltsev conditions.

The first two results of this kind are Jónsson’s characterization of (congruence)

distributivity by the existence of Jónsson terms, cf. Jónsson ([J1]), and Day’s char-

acterization of (congruence) modularity by the existence of Day terms, cf. Day

([D1]). Since Day’s result will be needed in the sequel, we formulate it now. For

n ≥ 2 let (Dn) denote the strong Maltsev condition ”there are quaternary terms

m0, . . . , mn satisfying the identities

m0(x, y, z, u) = x, mn(x, y, z, u) = u,

mi(x, y, y, x) = x for i = 0, 1, . . . , n,

mi(x, x, y, y) = mi+1(x, x, y, y) for i = 0, 1, . . . , n, i even,

mi(x, y, y, z) = mi+1(x, y, y, z) for i = 0, 1, . . . , n, i odd”.

Now Day’s celebrated result says that a variety V is congruence modular iff the

Maltsev condition ”(∃n)(Dn)” holds in V.
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Jónsson terms and Day terms were soon followed by some similar character-

izations for other lattice identities, given for example by Gedeonová ([Ge2]) and

Mederly ([Me]), but Nation ([N]) and Day ([Da2]) showed that these Maltsev con-

ditions are equivalent to the existence of Day terms or Jónsson terms; the reader is

referred to Jónsson ([Jo2]) and Freese and McKenzie ([FM]) for more details.

The next milestone is Chapter XIII in Freese and McKenzie’s book ([FM]). Let

us call a lattice identity λ in n2 variables a frame identity if λ implies modularity

and λ holds in a modular lattice iff it holds for the elements of every (von Neumann)

n-frame of the lattice. Freese and McKenzie showed that frame identities can be

characterized by Maltsev conditions. Although that time there was a hope that

their method combined with [HC] gives a Maltsev condition for each λ that implies

modularity, cf. [FM], Pálfy and Szabó ([PSz]) destroyed this expectation.

The goal of the present chapter is to prove that each lattice identity implying

modularity is equivalent to a Maltsev condition. Moreover, this Maltsev condition

is very easy to construct. In order to formulate a slightly stronger statement, some

definitions come first.

A lattice identity λ is said to imply modularity in congruence varieties, in

notation λ |=c mod if for any variety V if all the congruence lattices Con A, A ∈ V,

satisfy λ, then all these lattices are modular. If λ implies modularity in the usual

lattice theoretic sense, then of course λ |=c mod as well. However, it was a great

surprise by Nation ([N]) that λ |=c mod is possible even when λ does not imply

modularity in the usual sense. Jónsson ([J2]) gives an overview of similar results.

We mention that there is an algorithm to test if λ |=c mod, cf. [CzF], which is based

on Day and Freese ([DF]).

Given a lattice term p and k ≥ 2, we define pk via induction as follows. If p is

a variable, then let pk = p. If p = r ∧ s, then let pk = rk ∩ sk. Finally, if p = r ∨ s,

then let pk = rk ◦ sk ◦ rk ◦ sk ◦ . . . with k factors on the right. When congruences

or, more generally, reflexive compatible relations are substituted for the variables

of pk, then the operations ∩ and ◦ will be interpreted as intersection and relational

product, respectively. By a lattice identity λ we mean an inequality p ≤ q where p

and q are lattice terms. This does not hurt generality because p ≤ q is equivalent to

an appropriate identity r = s modulo lattice theory and vice versa. If λ : p ≤ q is a

lattice identity and m, n ≥ 2, then we can consider the inclusion pm ⊆ qn. If A is

an algebra, then pm and qn do not give congruences in general when their variables

are substituted by congruences of A. However, it makes sense to say that pm ⊆ qn

holds or fails for congruences of A. Now Wille ([Wi]) and Pixley ([Pix]) give an
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easy algorithm to construct a strong Maltsev condition M(pm ⊆ qn) such that, for

any variety V, pm ⊆ qn holds for congruences of all algebras in V if and only if

M(pm ⊆ qn) holds in V. (Notice that the construction of M(pm ⊆ qn) is outlined

in Freese and McKenzie ([FM]), and, with the notation U(Gm(p) ≤ Gn(q)), it is

detailed in [CzD].) Wille and Pixley showed also that pm ⊆ q holds for congruences

of algebras in V if and only if V satisfies the Maltsev condition ”there is an n such

that M(pm ⊆ qn) holds”; this will be needed in our proof. Now we can formulate

the main result.

THEOREM 7.1 ([CzH3]). Let λ : p ≤ q be a lattice identity such that λ |=c

modularity. Then for any variety V the following two conditions are equivalent.

(a) For all A ∈ V, λ holds in the congruence lattice of A.

(b) V satisfies the Maltsev condition ”there is an n ≥ 2 such that M(p3 ⊆ qn)

and (Dn) hold”.

This chapter will not detail the construction of M(p3 ⊆ qn), but we mention

that if we consider λ : (x ∧ (y ∨ (x ∧ z)) ≤ (x ∧ y) ∨ (x ∧ z), the modular law,

then Day’s characterization of congruence modularity becomes a particular case of

Theorem 1.

Before proving Theorem 7.1 we give some definitions and remarks. The set

of tolerances of A will be denoted by Tol A. The transitive closure of a tolerance

Φ ∈ Tol A will be denoted by

Φ ∗ =

∞
⋃

n=1

(Φ ◦ Φ ◦ Φ ◦ . . .) (n factors).

Note that Φ ∗ always belongs to Con A, the congruence lattice of A, and

α ∨ β = (α ∪ β) ∗ (1)

holds for any α, β ∈ Con A. Our interest in tolerances started with generalizing

the Shifting Principle from Gumm ([Gu1]) for congruence distributive varieties,

cf. [ChH1] and [CCH1], see also Chapter 4. It appeared soon that formulas give

stronger generalizations than diagrams both for the congruence distributive and for

the congruence modular case, and we proved in [CzH2] (and in Chapter 6) that if

V is a congruence modular variety, A ∈ V and Γ, Φ, Ψ ∈ Tol A, then

Γ ∩ (Φ ∪ (Γ ∩ Ψ)) ∗ ⊆ ((Γ ∩ Φ) ∪ (Γ ∩ Ψ)) ∗. (2)
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Notice that formally, according to (1), (2) is a variant of the modular law. Substi-

tuting 0 for Ψ in (2) we obtained, cf. Proposition 1 in [CzH2] (Proposition 6.1 in

Chapter 6), that

Γ ∩ Φ ∗ ⊆ (Γ ∩ Φ) ∗. (3)

Notice that it is essential to consider varieties here, for [CzH2] presents a single

algebra with modular congruence lattice, a tolerance Φ and a congruence Γ of this

algebra such that Γ ∩ Φ ∗ ⊆ (Γ ∩ Φ) ∗ fails. As the next step towards Theorem

7.1 , Radeleczki ([CHR]) and later, independently, Kearnes [Ke1] noticed that (3)

trivially implies a more useful statement: if A belongs to a congruence modular

variety and Γ, Φ ∈ Tol A, then

Γ ∗ ∩ Φ ∗ = (Γ ∩ Φ) ∗. (4)

Indeed, applying (3) for Γ ∗ and Φ, and then for Φ and Γ we obtain the nontrivial

inclusion part of (4). Here we will give a direct proof of (3), which is of course a

special (and therefore a bit shorter) case of the proof of (2).

Proof of Theorem 7.1. First we prove (3). Let V be a congruence modular

variety with Day-terms m0, . . . , mn. Let Γ and Φ be tolerances of an algebra A in

V. First we show that

Γ ∩ (Φ ◦ Φ) ⊆ (Γ ∩ Φ) ∗. (5)

Suppose (a, b) ∈ Γ ∩ (Φ ◦ Φ). Then there is an element c ∈ A with (a, c), (c, b) ∈ Φ,

and of course, (a, b) ∈ Γ. Now we define further elements. Let di = mi(a, c, c, b) for

i = 0, . . . , n and let ei = mi(a, a, b, b) for i even, i = 0, . . . , n. Notice that di = di+1

for i odd. Let j denote an arbitrary even index. Then (dj , ej) ∈ Φ is clear. Since

dj =mj(mj(a, c, c, b), a, a, mj(a, c, c, b)) Γ mj(mj(a, c, c, a), a, b, mj(b, c, c, b))

=mj(a, a, b, b) = ej ,

we obtain (dj, ej) ∈ Γ ∩ Φ. Since ej = mj(a, a, b, b) = mj+1(a, a, b, b), we conclude

(dj+1, ej) ∈ Γ ∩ Φ exactly the same way. Since any two neighbouring members of

the sequence

a = d0, e0, d1 = d2, e2, d3 = d4, e4, d5 = d6, . . . , dn = b

are in the relation Γ ∩ Φ, we infer (a, b) ∈ (Γ ∩ Φ) ∗. This proves (5).

Now let Φ0 = Φ and Φn+1 = Φn ◦ Φn, these are tolerances again. We claim

that, for all n,

Γ ∩ Φn ⊆ (Γ ∩ Φ) ∗. (6)
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This is evident for n = 0. If (6) holds for some n, then applying (5) for Γ and Φn

and using the induction hypothesis, we have

Γ ∩ Φn+1 = Γ ∩ (Φn ◦ Φn) ⊆ (Γ ∩ Φn) ∗ ⊆ ((Γ ∩ Φ) ∗) ∗ = (Γ ∩ Φ) ∗.

Hence (6) holds for all n. Therefore we obtain

Γ ∩ Φ ∗ = Γ ∩
∞
⋃

n=0

Φn =
∞
⋃

n=0

(Γ ∩ Φn) ⊆
∞
⋃

n=0

(Γ ∩ Φ) ∗ = (Γ ∩ Φ) ∗

This proves (3) for any tolerances Γ and Φ.

Applying (3) first for Γ ∗ and Φ and then for Φ and Γ we obtain

Γ ∗ ∩ Φ ∗ ⊆ (Γ ∗ ∩ Φ) ∗ = (Φ ∩ Γ ∗) ∗ ⊆ ((Φ ∩ Γ) ∗) ∗ = (Γ ∩ Φ) ∗,

i.e. Γ ∗ ∩ Φ ∗ ⊆ (Γ ∩ Φ) ∗. Since forming transitive closure is a monotone operation,

the reverse inclusion is evident. This proves (4).

For tolerances Φ and Ψ it is easy to see that Φ ◦ Ψ ◦ Φ is again a tolerance. It

follows from reflexivity that

(Φ ◦ Ψ ◦ Φ) ∗ = Φ ∗ ∨ Ψ ∗, (7)

where the join is taken in Con A. An easy induction shows that if r = r(x1, . . . , xk)

is a lattice term and Φ1, . . . , Φk are tolerances or, as a particular case, congruences

of an algebra A, then r3(Φ1, . . . , Φk) is a tolerance again.

Now let V be a variety and assume (a). Let p and q be, say, k-ary lattice terms.

Since an easy induction shows that, for any A ∈ V and any congruences α1, . . . , αk

of A we have p3(α1, . . . , αk) ⊆ p(α1, . . . , αk), we conclude that p3 ⊆ q holds for

congruences of any A ∈ V. Hence the afore-mentioned result of Wille and Pixley

yields that M(p3 ⊆ qn1
) holds in V for some n1. Since λ |=c mod, there is an n2

such that Dn2
holds in V. Now let n be the maximum of n1 and n2. Since Maltsev

conditions are weakening in their parameter, we obtain that V satisfies (b).

Now, to show the reverse implication, assume that (b) holds. By Day’s result,

V is congruence modular, whence (4) holds as well. The afore-mentioned result

of Wille and Pixley gives that p3 ⊆ q holds for congruences in V. So for any

congruences α1, . . . , αk of A ∈ V, we have p3(α1, . . . , αk) ⊆ q(α1, . . . , αk). Hence

p3(α1, . . . , αk) ∗ ⊆ q(α1, . . . , αk) ∗. (8)
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Since q(α1, . . . , αk) is a congruence, it equals its transitive closure. On the other

hand, a trivial induction based on (4) and (7) gives that p3(α1, . . . , αk) ∗ =

p(α1
∗, . . . , αk

∗) = p(α1, . . . , αk). This way (8) turns into

p(α1, . . . , αk) ⊆ q(α1, . . . , αk),

proving that λ holds in Con A for all A ∈ V. Thus (a) holds.

Theorem 7.1 is proved.

tu

Now it was proved in theorem 7.1 that if λ |=c modularity, then λ can be

characterized by a Maltsev condition. The proof of this fact is relatively elementary

and easy, but the Maltsev conditions obtained are far from being optimal in most

of those cases where Maltsev conditions were previously known.

Next we improve Theorem 7.1 by giving the simplest (and in this sense hope-

fully the best) Maltsev condition associated with λ when λ |=c modularity.

We recall now that a very important condition appeared in (4). From now

on we will call this condition tolerance intersection property , TIP for short. More

precisely, an algebra A is said to satisfy the tolerance intersection property if for

any two tolerances (i.e. reflexive symmetric compatible relations) Γ and Φ of A we

have

Γ ∗ ∩ Φ ∗ = (Γ ∩ Φ) ∗

where ∗ stands for transitive closure. In the proof of Theorem 7.1 we already proved

the following statement:

THEOREM 7.2 ([CHL]). Every algebra in a congruence modular variety satis-

fies TIP.

Given an algebra A, the set Relr(A) of all reflexive and compatible relations

on A (in other words, all subalgebras of A2 including the diagonal subalgebra) has

the operations intersection ∩, inverse −1, composition ◦, transitive closure ∗ and

join ∨ as usual: for α and β in Relr(A), (x, y) ∈ α−1 iff (y, x) ∈ α, (x, y) ∈ α ◦ β

iff there exists a z ∈ A with (x, z) ∈ α and (z, y) ∈ β, and α ∨ β is the transitive

closure of α ∪ β. Notice that for tolerances α, β ∈ Rel r(A) we have

α ∨ β = (α ∨ β) ∗ = α ∗ ∨ β ∗ = (α ◦ β) ∗ = (α ∗ ∨ β ∗) ∗.
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Sometimes we write ∧ instead of ∩. When we speak of terms in these operations,

the motivating idea is substituting the variables by reflexive compatible relations

later.

For a term p = p(x1, . . . , xk) in the binary operations ∩,∨, ◦, in short for a

{∩,∨, ◦}-term, and for n ≥ 2 we define two kinds of derived {∩, ◦}-terms, pn and

p2,2 via induction as follows. (When p happens to be a lattice term then pn will be

the same as before.) If p is a variable, then let pn = p2,2 = p. If p = r ∩ s, then let

pn = rn ∩ sn and p2,2 = r2,2 ∩ s2,2. Similarly, if p = r ◦ s, then let pn = rn ◦ sn and

p2,2 = (r2,2 ◦ s2,2)∩ (s2,2 ◦ r2,2). Finally, if p = r ∨ s, then let pn = rn ◦ sn ◦ · · · with

n factors on the right and p2,2 = (r2,2 ◦ s2,2)∩ (s2,2 ◦ r2,2). The tool to exploit TIP

is provided by the following lemma; notice that part (D) was previously proved by

Kearnes ([Ke2]) in a different way.

Lemma 7.1 ([CHL]). Let A be an algebra satisfying TIP, let p =

p(x1, . . . , xk) be a {∩,∨, ◦}-term, let q = q(x1, . . . , xk) be a lattice term (i.e. a

{∩,∨}-term), and let α1, . . ., αk ∈ Con A. Then

(A) p2,2(α1, . . . , αk) ⊆ p2(α1, . . . , αk) ⊆ p(α1, . . . , αk) (even without assuming

TIP);

(B) p2,2(α1, . . . , αk) ∗ = p2(α1, . . . , αk) ∗ = p(α1, . . . , αk) ∗;

(C) q2(α1, . . . , αk) ∗ = q2,2(α1, . . . , αk) ∗ = q(α1, . . . , αk); and

(D) Con A is modular.

Proof. Since the operations ∩,∨, and ◦ are monotone, an easy induction on the

length of p shows part (A). Since ∗ is isotone, p2,2(α1, . . . , αk) ∗ ⊆ p2(α1, . . . , αk) ∗ ⊆

p(α1, . . . , αk) ∗ follows from (A). Hence, to prove (B), it suffices to show that

(1) p2,2(α1, . . . , αk) ∗ ⊇ p(α1, . . . , αk) ∗.

This will be done via induction on the length of p.

First of all notice that p2,2(α1, . . . , αk) is always a tolerance of A; this follows

via induction on the length of p. Now (1) is evident when p is a variable. Suppose

that p = r∩s (and (1) holds for r and s). Then, with the notation ~α = (α1, . . . , αk)

and using TIP (indicated by
TIP
= ) and the induction hypothesis (indicated by ⊇ind)

we have

p2,2(~α) ∗ =
(

r2,2(~α) ∩ s2,2(~α)
)

∗ =
(

r2,2(~α) ∩ s2,2(~α)
)

∗ ∗ TIP
=

(

r2,2(~α) ∗ ∩ s2,2(~α) ∗
)

∗ ⊇ind

(

r(~α) ∗ ∩ s(~α) ∗
)

∗ ⊇
(

r(~α) ∩ s(~α)
)

∗ = p(~α) ∗,
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indeed. Now suppose that p = r ◦ s. Then

p2,2(~α) ∗ =
(

(

r2,2(~α) ◦ s2,2(~α)
)

∩
(

s2,2(~α) ◦ r2,2(~α)
)

)

∗ ⊇
(

r2,2(~α) ∪ s2,2(~α)
)

∗ = r2,2(~α) ∗ ∨ s2,2(~α) ∗ ⊇ind

r(~α) ∗ ∨ s(~α) ∗ =
(

r(~α) ◦ s(~α)
)

∗ = p(~α) ∗,

indeed. Finally, if p = r ∨ s, then

p2,2(~α) ∗ =
(

(

r2,2(~α) ◦ s2,2(~α)
)

∩
(

s2,2(~α) ◦ r2,2(~α)
)

)

∗ ⊇
(

r2,2(~α) ∪ s2,2(~α)
)

∗ = r2,2(~α) ∗ ∨ s2,2(~α) ∗ ⊇ind

r(~α) ∗ ∨ s(~α) ∗ =
(

r(~α) ∨ s(~α)
)

∗ = p(~α) ∗.

This proves (1) and part (B) of the lemma.

Since q(α1, . . . , αk) is a congruence, it equals its transitive closure and (C)

becomes a particular case of (B).

Now, to prove (D), let α, β, γ ∈ Con A with α ⊆ γ and consider the lattice

terms p(α1, α2, α3) = (α1 ∨ α2) ∧ α3 and q(α1, α2, α3) = α1 ∨ (α2 ∧ α3). We

have to show that p(α, β, γ) ⊆ q(α, β, γ). Let (x, y) ∈ p2(α, β, γ) = (α ◦ β) ∩ γ.

Then (x, y) ∈ γ and there is a z ∈ A such that (x, z) ∈ α, (z, y) ∈ β. Since

α ⊆ γ, (x, z) ∈ γ and (z, y) ∈ γ by transitivity. So (z, y) ∈ β ∩ γ and we obtain

(x, y) ∈ α ◦ (β ∩ γ) = q2(α, β, γ). This shows that p2(α, β, γ) ⊆ q2(α, β, γ). Hence

(C) applies and we conclude p(α, β, γ) = p2(α, β, γ) ∗ ⊆ q2(α, β, γ) ∗ = q(α, β, γ),

the modular law.

Lemma 7.1 is proved.

tu

Part (D) of Lemma 7.1, first proved by Kearnes [Ke2], says that TIP is a

stronger property than congruence modularity. It is properly stronger, for [CzH2],

right before Proposition 1, gives an example of a three element (therefore congruence

modular) monounary algebra which fails TIP. However, part (D) of Lemma 7.1

together with Theorem 7.2 imply the following statement, which is worth separate

formulating even if it has been known for a while.

THEOREM 7.3 ([CHR], [CzH3], [Ke2], [CHL]). Let V be a variety of al-

gebras. Then V satisfies the tolerance intersection property if and only if V is

congruence modular.

The way we proved part (D) of Lemma 7.1 leads to the following more general

statement, which we formulate for later reference.
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Corollary 7.1 ([CHL]). Let A be an algebra satisfying TIP, let p =

p(x1, . . . , xk) be a {∩,∨, ◦}-term and let q = q(x1, . . . , xk) be a lattice term. Then

the following conditions are equivalent.

(a) p ⊆ q holds for congruences of A,

(b) p2 ⊆ q holds for congruences of A,

(c) p2,2 ⊆ q holds for congruences of A.

Proof. According to Lemma 7.1 (A), (a) implies (b) and (b) implies (c). Now

suppose (c). Then, in virtue of Lemma 7.1(B) we obtain

q(~α) = q(~α) ∗ ⊇ p2,2(~α) ∗ = p(~α) ∗ ⊇ p(~α).

This shows that (c) implies (a).

Corollary 7.1 is proved.

tu

Given two {∩,∨, ◦}-terms, p = p(x1, . . . , xk) and q = q(x1, . . . , xk), we say that

the congruence inclusion formula p ⊆ q holds in a variety V (or, in other words,

p ⊆ q holds for congruences of V) if for any algebra A ∈ V and for any congruences

α1, . . . , αk of A we have p(α1, . . . , αk) ⊆ q(α1, . . . , αk) in Rel r(A). When both p

and q are join-free, i.e. they are {∩, ◦}-terms, then Wille ([Wi]) and Pixley ([Pix])

gives an algorithm to construct a strong Maltsev condition M(p ⊆ q) such that,

for any variety V, the congruence inclusion formula p ⊆ q holds in V if and only if

M(p ⊆ q) holds in V. We do not give the details of the Wille–Pixley algorithm here,

for it is also available from several secondary sources; for example from [HC] or from

Chapter XIII of Freese and McKenzie ([FM]). Notice that for an arbitrary lattice

identity p ≤ q Wille and Pixley show that this identity holds in all congruence

lattices of V iff V satisfies the weak Maltsev condition (∀m ≥ 2) (∃n ≥ n)
(

M(pm ⊆

qn)
)

.

Now we formulate one of our main results.

THEOREM 7.4 ([CHL]). Let p ⊆ q be a congruence inclusion formula with

q being ◦-free. (I.e. p is a {∩,∨, ◦}-term and q is a lattice term.) Then for any

congruence modular variety V the following conditions are equivalent.

(i) p ⊆ q holds for congruences of V,

(ii) p2 ⊆ q holds for congruences of V,

67



(iii) p2,2 ⊆ q holds for congruences of V,

(iv) the Maltsev condition

(∃n ≥ 2)
(

M(p2 ⊆ q2 ◦ q2 ◦ · · · ◦ q2)
)

(where q2 ◦ q2 ◦ · · · ◦ q2 denotes a product of n factors) holds in V.

Proof. In virtue of Theorem 7.3 the algebras in V satisfy TIP. Hence the

equivalence of (i), (ii) and (iii) follows from Corollary 7.1.

If (iv) holds, then applying Wille and Pixley’s result to the strong Maltsev

condition M(p2 ⊆ q2 ◦ q2 ◦ · · · ◦ q2) we obtain that p2 ⊆ q2 ◦ q2 ◦ · · · ◦ q2 (with

n factors) holds for congruences of V for some n. But, using Lemma 7.1 (C),

q2 ◦ q2 ◦ · · · ◦ q2 ⊆ q2
∗ = q, so the congruence inclusion formula p2 ⊆ q holds in V.

This shows that (iv) implies (ii).

Now let (ii) hold and suppose the reader has some basic idea how Wille and

Pixley’s proof works for lattice identities. What we have to know from their proof

is the following. Associated with p2 we construct a finitely generated free algebra

F in V with distinguished free generators x0 and x1. Also, we construct finitely

generated congruences α1, . . . , αk of F such that (x0, x1) ∈ p2(α1, . . . , αk). Let ~α

stand for (α1, . . . , αk). Since p2(~α) ⊆ q(~α), (x0, x1) ∈ q(~α). Now q(~α) = q2(~α) ∗ by

Lemma 7.1 (C), so there is an integer n ≥ 2 such that (x0, x1) ∈ q2(~α) ◦ · · · ◦ q2(~α)

(with n factors). And this is the formula from which Wille and Pixley conclude

that M(p2 ⊆ q2 ◦ q2 ◦ · · · ◦ q2) holds in V. We have shown that (ii) implies (iv).

Theorem 7.4 is proved.

tu

The following corollary is worth formulating:

Corollary 7.2 ([CHL]). Let p ≤ q be a lattice identity which implies mod-

ularity in congruence varieties. Then, for an arbitrary variety V, p ≤ q holds for

congruences of V iff M(p2 ⊆ q2 ◦ q2 ◦ · · · ◦ q2) holds in V for some n ≥ 2 and V has

Day terms.

Now we recall a nice result from Lipparini ([CHL]). Given a lattice term q,

let q[d] stand for its “disjunctive normal form”, which is computed by distributing

meets over joins everywhere as if we were in a distributive lattice, so q[d] is a join of

meets of variables. The precise formal definition and the simultaneous proof that

q[d] is a join of meets of variables go via induction on the length of q as follows.
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Let q[d] = q when q is a variable. If q = r ∨ s, then let q[d] = r[d] ∨ s[d]. Finally, if

q = r ∧ s, then r[d] =
∨

i∈I ai and s[d] =
∨

j∈J bj with the ai and bj being meets of

variables, and we let q[d] =
∨

i∈I, j∈J(ai ∧ bj). Now Lipparini ([CHL]) proved that

(i) of Theorem 7.4 is equivalent to

(v) the Maltsev condition

(∃n ≥ 2)
(

M(p2 ⊆ q[d]2 ◦ · · · ◦ q[d]2 ◦ q2)
)

(where q[d]2 ◦ · · · ◦ q[d]2 denotes a product of n − 1 factors) holds in V.

We conclude this chapter and the dissertation with the following remarks. The

spirit of Wille and Pixley’s theorem says that part (iv) of Theorem 7.4 can be

replaced with the Maltsev condition (∃n ≥ 2)
(

M(p2 ⊆ qn)
)

. However, (iv) and (v)

are simpler conditions. In fact, no known Maltsev conditions for lattice identities

are simpler than those supplied by (iv) and/or (v). Sometimes (iii) is the best to

use: indeed, p2,2 ⊆ p2 indicates that, for a given variety V, it is easier to show (iii)

than (ii).
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[CzH2] G. Czédli, E. K. Horváth: Congruence distributivity and modularity permit tol-

erances, Acta Univ. Palacki. Olomouc., Fac.rer.nat., Mathematica, 41 (2002),

39–42.
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74



[T] W. Taylor: Characterizing Mal’cev conditions, Algebra Universalis, 3 (1973),

351–397.

[Wer1] H. Werner: Discriminator–Algebras, Akademie–Verlag, Berlin, 1978.

[Wer2] H. Werner: Eine Characterisierung funktional vollstandiger Algebren, Arch.

Math. (Basel), 21 (1970), 381–385.

[Wi] R. Wille: Kongruenzklassengeometrien, Springer–Verlag, Berlin-New York,

1970.

[Wo] S. Wolfram: Theory and applications of cellular automata, World Scientific,

Singapore, 1986.

[Wn] B. Wnuk: On symmetry groups of algebraic operations. (Polish. English

summary.), Zeszty Nauk. Wyz. Szkoly. Ped. w Opolu Mat., 21 (1980).

[YI] S. Yajima and T. Ibaraki,: A lower bound of the number of threshold functions,

Trans. IEE, EC-14 , 6 (1965), 926-929..

[Inv1] http://en.wikipedia.org/wiki/Invariants

[Inv2] http://en.wikipedia.org/wiki/Invariant theory

[Inv3] http://www-gap.dcs.st-and.ac.uk/ history/Mathematicians/Klein.html

[Inv4] http://www-gap.dcs.st-and.ac.uk/ history/HistTop

75



SUMMARY

1. Introduction

Lattices are very important related algebraic structures. They often appear in

many branches of algebra, they are clear enough to consider easily, and rich enough

to characterize many types of algebraic properties. Here lattices occur in connection

with diagrammatic schemes and Maltsev conditions. Moreover, we carry out lattice

theoretic investigations on the shift of a lattice identity.

Traditionally in mathematics: “ An invariant is something that does not

change under a set of transformations. The property of being an invariant is in-

variance. ”(Wikipedia [Inv1].)

However, beside its strict meaning outlined above, the word ’invariant’ has also

a more general meaning in universal algebra. We obtain this meaning by replacing

transformation, which is a selfmap A → A of a set A by the notion of algebraic

operations. Thus we arrive at the notion of an invariant relation ([PK]).

2. Invariance groups of threshold functions

A threshold function is a Boolean function, i.e. a mapping {0, 1}n → {0, 1}

with the following property: There exist real numbers w1, ..., wn, t such that

f(x1, . . ., xn) = 1 iff
n

∑

i=1

wixi ≥ t,

where wi is called the weight of xi for i = 1, 2, . . . , n, and t is a constant called the

threshold value.

THEOREM 2.1 ([Ho1]). For every n-ary threshold function f there exists a

partition Cf of n such that the invariance group G of f consists exactly of those

permutations of Sn which preserve each block of Cf . Conversely, for every partition

C of n there exists a threshold function fC such that the invariance group G of fC

consists exactly of those permutations of Sn that preserve each block of C.

The proof contains only elementary considerations.

Corollary 2.1([Ho1]). The invariance group of any threshold function is

isomorphic to a direct product of symmetric groups.

3. Proving primality by the operation-relation duality

We consider a k-ary relation as a set of unary functions r: k → A, k =

{1, 2, . . . , k}. We say that a k-ary relation D is diagonal, if there exists an equiva-

lence relation ρ
D

on k such that

D = {r: k → A| r(u) = r(v) if uρ
D

v, u, v ∈ k } .
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The collection of all diagonal relations on A forms the minimal closed class of

relations on A.

The following Proposition 3.1 and Lemma 3.1 and Lemma 3.1’ enable us to

new proofs for primality theorems. This will be demonstrated in case of S lupecki’s

theorem.

Proposition 3.1 (Bodnarčuk–Kalužnin–Kotov–Romov [BKKR],

Geiger [Gei], Krauss [Kr1],[Kr2]). A finite algebra A = (A, F ) is primal,

iff every relation preserved by all operations in F is diagonal.

Lemma 3.1 ([Ho2]). Given an algebra A = (A, F ), the following two

conditions are equivalent:

(i) For each R ⊆ Ak, the relation [R] is diagonal.

(ii) For each x, y ∈ Ak, the relation [x, y] is diagonal.

Lemma 3.1′ ([Ho2]).The following three conditions are equivalent:

(i) The algebra A = (A, F ) is primal.

(ii) For each x, y, z ∈ Ak, we have z ∈ [x, y] whenever

((∀u, v ∈ k )(x(u) = x(v) ∧ y(u) = y(v) → z(u) = z(v))).

(iii) For each k ≥ 1 x, y, z ∈ Ak, and for any equivalence ρ on k if ρ ⊇ ρx ∩ ρy,

then Dρ ⊆ [x, y].

4. Diagrammatic schemes

Motivated by Gumm’s Shifting Lemma ([Gu1]), which asserts that congruence

modular varieties satisfy a nice rectangular congruence scheme, Chajda ([ChH1],

Subdivision 4.2) investigated a triangular scheme, which is a consequence of con-

gruence distributivity. Congruence distributive varieties satisfy this scheme not only

for arbitrary three congruences, but also for one tolerance and two congruences; i.e.,

the analogue of Gumm’s Shifting Principle is valid. While the triangular scheme is

not known to characterize congruence distributivity, an appropriate generalization

called trapezoid scheme does ([CCH2], Subdivision 4.3). These examples show that

instead of identities in congruence lattices, diagrammatic statements are reasonable

to consider. This phenomenon can be extended to lattice Horn sentences as well.

5. Shifting lattice identities

Let

λ : p(x1, . . . , xn) ≤ q(x1, . . . , xn)

be a lattice identity. (Notice that by a lattice identity we always mean an inequality,

i.e. we use ≤ but never =.) If y is a variable, then let S(λ, y) denote the Horn
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sentence

q(x1, . . . , xn) ≤ y =⇒ p(x1, . . . , xn) ≤ y.

If y /∈ {x1, . . . , xn}, then λ is clearly equivalent to S(λ, y). However, we are inter-

ested in the case when y ∈ {x1, . . . , xn}, say y = xi (1 ≤ i ≤ n). Then S(λ, xi) is a

consequence of λ. When S(λ, xi) happens to be equivalent to λ, then S(λ, xi) will

be called a shift of λ. If S(λ, xi) is equivalent to λ only within a lattice variety V,

then we say that S(λ, xi) is a shift of λ in V. In this chapter some known lattice

identities will be shown to have a shift while some others have no shift.

6. Tolerances and tolerance lattices

Let dist(x, y, z) resp. mod(x, y, z) denote the distributive law x ∧ (y ∨ z) ≤

(x ∧ y) ∨ (x ∧ z) resp. the modular law x ∧ (y ∨ (x ∧ z)) ≤ (x ∧ y) ∨ (x ∧ z).

For an algebra A, the set of tolerances and the lattice of congruences of A will be

denoted by Tol A and Con A, respectively. We say that dist(tol,tol,tol) holds in

A if Γ ∧ (Φ ∨ Ψ) ⊆ (Γ ∧ Φ) ∨ (Γ ∧ Ψ) is valid for any Γ, Φ, Ψ ∈ Tol A, where the

meet resp. the join is the intersection resp. the transitive closure of the union. The

meaning of mod(tol,tol,tol) is analogous. We should emphasize here that Φ ∨ Ψ is

not the join in Tol A, the lattice of tolerance relations of A. With the help of

Jónsson terms ([J1]) we proved the next theorem:

THEOREM 6.1 ([CzH2]). If V is a congruence distributive resp. congruence

modular variety, then dist(tol,tol,tol) resp. mod(tol,tol,tol) holds in all algebras of

V.

Two important consequences are formulated in Corollary 6.1 and Proposition

6.1.

Corollary 6.1 (Gumm [Gu1]). If V is a congruence modular variety, then it

satisfies Gumm’s Shifting Principle, i.e. for any A∈ V, α, γ ∈ Con A and Φ ∈ Tol A

if (x, y), (u, v) ∈ α, (x, u), (y, v) ∈ Φ, (u, v) ∈ γ and α ∩ Φ ⊆ γ, then (x, y) ∈ γ.

Denoting the transitive closure by ∗, the following proposition is an essential

step towards the Maltsev conditions in Chapter 7:

Proposition 6.1 ([CzH2]). If mod(tol,tol,tol) or dist(tol,tol,tol) holds in an

algebra A, then Γ ∩ Φ∗ ⊆ (Γ ∩ Φ)∗ for any Γ, Φ ∈ Tol A.

A lattice L with 0 is called 0-modular, cf. Stern ([St]), if there is no N5 sublattice

of L including 0. The lattice L with 0 satisfies the general disjointness property (GD)

if a ∧ b = 0 and (a ∨ b) ∧ c = 0 imply a ∧ (b ∨ c) = 0. If for each a ∈ L the set

{x ∈ L : a ∧ x = 0} has greatest element, then L is called a pseudocomplemented

lattice.

78



The following Theorem 6.2 and 6.3 are the main results about tolerance lattices

in congruence modular varieties.

THEOREM 6.2 ([CHR]). Let A be an algebra in a congruence modular variety

V. Then the following statements hold:

(i) The map h: Tol A → Con A, Φ 7→ Φ∗, is a surjective lattice homomorphism

and Tol A is a 0-1 modular lattice having the (GD) property.

(ii) Tol A is pseudocomplemented if and only if Con A is pseudocomple-

mented.

THEOREM 6.3 ([CHR]). Let A be an algebra. If A has a majority term, then:

(i) Tol A is a 0-modular pseudocomplemented lattice.

(ii) The tolerances Γ, Φ are complements of each other in Tol A if and only if

they form a factor congruence pair of A.

7. Maltsev conditions for congruence lattice identities in modular vari-

eties

A strong Maltsev condition for varieties is a condition of the form ”there exist

terms h0, . . . , hk satisfying a set Σ of identities” where k is fixed and the form of Σ

is independent of the type of algebras considered. By a Maltsev condition we mean

a condition of the form ”there exists a natural number n such that Pn holds” where

the Pn are strong Maltsev conditions and Pn implies Pn+1 for every n.

A celebrated result says that a variety V is congruence modular iff the Maltsev

condition due to Day ([Da1]) ”(∃n)(Dn)” holds in V.

A lattice identity λ is said to imply modularity in congruence varieties, in

notation λ |=c mod if for any variety V if all the congruence lattices Con A, A ∈ V,

satisfy λ, then all these lattices are modular. For example this is always the case

when λ implies modularity in the usual lattice theoretic sense.

Given a lattice term p and k ≥ 2, we define pk via induction as follows. If p is

a variable, then let pk = p. If p = r ∧ s, then let pk = rk ∩ sk. Finally, if p = r ∨ s,

then let pk = rk ◦ sk ◦ rk ◦ sk ◦ . . . with k factors on the right. When congruences

or, more generally, reflexive compatible relations are substituted for the variables

of pk, then the operations ∩ and ◦ will be interpreted as intersection and relational

product, respectively.

Our first result about Maltsev conditions is Theorem 7.1.

THEOREM 7.1 ([CzH3]). Let λ : p ≤ q be a lattice identity such that λ |=c

modularity. Then for any variety V the following two conditions are equivalent.
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(a) For all A ∈V, λ holds in the congruence lattice of A.

(b) V satisfies the Maltsev condition ”there is an n ≥ 2 such that M(p3 ⊆ qn)

and (Dn) hold”.

Next we improve Theorem 7.1 by giving the simplest (and in this sense hope-

fully the best) Maltsev condition associated with λ when λ |=c modularity.

For a term p = p(x1, . . . , xk) in the binary operations ∩,∨, ◦, in short for a

{∩,∨, ◦}-term, and for n ≥ 2 we define two kinds of derived {∩, ◦}-terms, pn and

p2,2 via induction as follows. (When p happens to be a lattice term then pn will be

the same as before.) If p is a variable, then let pn = p2,2 = p. If p = r ∩ s, then let

pn = rn ∩ sn and p2,2 = r2,2 ∩ s2,2. Similarly, if p = r ◦ s, then let pn = rn ◦ sn and

p2,2 = (r2,2◦s2,2)∩(s2,2◦r2,2). Finally, if p = r∨s, then let pn = rn ◦sn◦rn◦sn◦· · ·

with n factors on the right and p2,2 = (r2,2 ◦ s2,2) ∩ (s2,2 ◦ r2,2).

THEOREM 7.4 ([CHL]). Let p ⊆ q be a congruence inclusion formula with

q being ◦-free. (I.e. p is a {∩,∨, ◦}-term and q is a lattice term.) Then for any

congruence modular variety V the following conditions are equivalent.

(i) p ⊆ q holds for congruences of V,

(ii) p2 ⊆ q holds for congruences of V,

(iii) p2,2 ⊆ q holds for congruences of V,

(iv) the Maltsev condition

(∃n ≥ 2)
(

M(p2 ⊆ q2 ◦ q2 ◦ · · · ◦ q2)
)

(where q2 ◦ q2 ◦ · · · ◦ q2 denotes a product of n factors) holds in V.

As a corollary, we obtain the desired improvement of Theorem 7.1:

Corollary 7.2 ([CHL]). Let λ : p ≤ q be a lattice identity such that λ |=c

modularity. Then for any variety V the following three conditions are equivalent.

(a) For all A ∈V, λ holds in the congruence lattice of A.

(b’) V satisfies the Maltsev condition ”there is an n ≥ 2 such that M(p2 ⊆ qn)

and (Dn) hold”.

(c) V satisfies the Maltsev condition ”there is an n ≥ 2 such that M(p2 ⊆

q2 ◦ q2 ◦ · · · ◦ q2) (with n factors) and and (Dn) hold”.
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ÖSSZEFOGLALÓ

1. Bevezetés

A hálók nagyon fontos ḱısérőstruktúrák. Gyakran bukkannak fel az algebra

különböző ágaiban. Egyszerűen áttekinthetők, de elég gazdagok ahhoz, hogy sokféle

algebrai tulajdonságot jellemezzenek. Itt a hálók diagrammsémákkal és Malcev-

feltételekkel kapcsolatban lépnek fel. Emellett hálóelméleti vizsgálatokat folytatunk

a hálóazonosságok shiftjével kapcsolatban.

A matematikában hagyományosan az “invariáns valami olyan, ami változat-

lan marad transzformációk bizonyos halmazára nézve. Az ’invariánsnak lenni’ tu-

lajdonságot invarianciának nevezzük.”(Wikipedia [Inv1].)

Az univerzális algebrában ezen szoros értelemben vett jelentésen túlmenően az

’invariáns’ szó általánosabb jelentéssel is b́ır. Helyetteśıtsük a fent emĺıtett transz-

formációt (amely egy A → A leképezés, ahol A tetszőleges halmaz) az algebrai

művelet fogalmával. Ily módon az invariáns reláció fogalmához érkezhetünk

([PK]).

2. Küszöbfüggvények invarianciacsoportja

Egy Boole-függvényt küszöbfüggvénynek nevezünk, ha alkalmas w1, ..., wn, t

valós számokra

f(x1, . . ., xn) = 1 akkor és csak akkor, ha
n

∑

i=1

wixi ≥ t.

Itt wi-t az xi változó súlyának (i = 1, 2, . . . , n), a t-t pedig küszöbértéknek nevezzük.

2.1. TÉTEL ([Ho1]). Bármely n változós f küszöbfüggvényhez létezik n=

{1, 2, . . . , n}-nek olyan Cf osztályozása, hogy f invarianciacsoportja pontosan Sn

azon permutációiból áll, amely Cf minden blokkját megőrzi. Megford́ıtva: n

bármely C osztályozásához létezik olyan fC küszöbfüggvény, hogy C = CfC
.

A bizonýıtás csak elemi megfontolásokat tartalmaz.

2.1. Korollárium ([Ho1]). Bármely küszöbfüggvény invarianciacsoportja

szimmetrikus csoportok direkt szorzatával izomorf.

3. Teljességi tételek bizonýıtása függvény-reláció dualitás seǵıtségével

Tekintsük a k változós relációkat egyváltozós r: k → A (k = {1, 2, . . . , k})

függvények halmazának. Azt mondjuk, hogy egy k változós D reláció diagonális,

ha létezik egy olyan ρ
D

ekvivalenciareláció k-n, hogy

D = {r: k → A| r(u) = r(v), ha uρ
D

v, u, v ∈ k } .
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Az A-n definiálható diagonális relációk összessége alkotja a minimális relációklónt.

A következő 3.1 Álĺıtás, valamint a 3.1 és a 3.1’ Lemmák seǵıtségével új bi-

zonýıtások adhatók ismert teljességi tételekre. Ezt S lupecki tételének új bizonýıtásá-

val szemléltetjük.

3.1. Álĺıtás (Bodnarčuk–Kalužnin–Kotov–Romov [BKKR], Geiger

[Gei], Krauss [Kr1],[Kr2]). Egy A = (A, F ) algebra pontosan akkor primál, ha

minden olyan reláció diagonális, amelyet minden F -beli reláció megőriz.

3.1. Lemma ([Ho2]). Adott A = (A, F ) algebra esetén a következő két

feltétel ekvivalens:

(i) Bármely R ⊆ Ak esetén az [R] reláció diagonális.

(ii) Bármely x, y ∈ Ak esetén az [x, y] reláció diagonális.

3.1′. Lemma ([Ho2]). A következő három álĺıtás ekvivalens:

(i) Az A = (A, F ) algebra primál.

(ii) Bármely x, y, z ∈ Ak esetén z ∈ [x, y], ha

((∀u, v ∈ k )(x(u) = x(v) ∧ y(u) = y(v) → z(u) = z(v))).

(iii) Bármely k ≥ 1 x, y, z ∈ Ak, és a k-n definiált bármely ρ ekvivalenciareláció

esetén ha ρ ⊇ ρx ∩ ρy, akkor Dρ ⊆ [x, y].

4. Diagrammsémák

Gumm Shifting Lemmája ([Gu1]) azt álĺıtja, hogy kongruenciamoduláris va-

rietások szép, téglalap alakban felrajzolható diagrammsémát eléǵıtenek ki. Ennek

hatására Chajda ([ChH1], 4.2. Alfejezet) egy olyan háromszögsémát vizsgált, amely

a kongruenciadisztributivitás következménye. A kongruenciadisztribut́ıv varietások

nemcsak három tetszőleges kongruenciára, hanem egy toleranciára és két kongruen-

ciára is kieléǵıtik ezt a sémát, azaz Gumm Shifting Elvének analógiája érvényes.

Mı́g a háromszögsémáról nem ismert, hogy jellemzi-e a kongruenciadisztributi-

vitást, egy trapézsémának nevezett megfelelő általánośıtásról megmutattuk, hogy

igen ([CCH2], 4.3. Alfejezet). Ezek a példák mutatják, hogy kongruenciahálóbeli

azonosságok, sőt Horn formulák helyett időnként érdemes diagrammsémákban gon-

dolkodni.

5. Hálóazonosságok shiftje

Legyen

λ : p(x1, . . . , xn) ≤ q(x1, . . . , xn)
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hálóazonosság. (Megjegyezzük, hogy hálóazonosságon mindig egyenlőtlenséget

értünk, azaz ≤-t használunk = helyett.) Ha y változó, akkor jelölje S(λ, y) a

q(x1, . . . , xn) ≤ y =⇒ p(x1, . . . , xn) ≤ y

formulát. Ha y /∈ {x1, . . . , xn}, akkor λ nyilvánvalóan ekvivalens S(λ, y)-nal. Szá-

munkra az az eset a legfontosabb, amikor y ∈ {x1, . . . , xn}, azaz y = xi (1 ≤ i ≤ n).

Ekkor S(λ, xi) következménye λ-nak. Ha S(λ, xi) ekvivalens λ-val, akkor S(λ, xi)-t

λ shiftjének nevezzük. Ha S(λ, xi) ekvivalens λ-val egy V varietáson belül, akkor

azt mondjuk, hogy S(λ, xi) egy shiftje λ-nak V-ben. Ebben a fejezetben néhány

ismert hálóazonosságról megmutatjuk, hogy van shiftje, néhány továbbiról pedig

azt, hogy nincs.

6. Toleranciák és toleranciahálók

Jelölje dist(x, y, z) a disztribut́ıv azonosságot: x ∧ (y ∨ z) ≤ (x ∧ y) ∨ (x ∧ z),

mod(x, y, z) pedig a moduláris azonosságot: x ∧ (y ∨ (x ∧ z)) ≤ (x ∧ y) ∨ (x ∧ z).

Jelölje Tol A az A algebra toleranciáinak halmazát, Con A pedig az A algebra

kongruenciáinak hálóját. Azt mondjuk, hogy dist(tol,tol,tol) teljesül A-ban, ha

Γ ∧ (Φ ∨ Ψ) ⊆ (Γ ∧ Φ) ∨ (Γ ∧ Ψ)

fennáll bármely Γ, Φ, Ψ ∈ Tol A esetén, ahol a ∧ közös rész képzést, ∨ pedig az

unió tranzit́ıv lezártját jelöli. Analóg módon értelmezzük mod(tol,tol,tol)-t. Hang-

súlyozzuk, hogy Φ∨Ψ nem a Tol A hálóbeli egyeśıtést jelenti. Jónsson kifejezések

([J1]) seǵıtségével bizonýıtottuk a következő tételt:

6.1. TÉTEL ([CzH2]). Ha V kongruenciadisztribut́ıv (kongruenciamoduláris)

varietás, akkor V minden algebrájában teljesül dist(tol,tol,tol) (mod(tol,tol,tol)).

Két fontos következmény:

6.1. Korollárium (Gumm [Gu1]). Ha V kongruenciamoduláris varietás,

akkor teljesül a Gummtól származó Shifting Elv, azaz bármely A∈ V-re, α, γ ∈

Con A and Φ ∈ Tol A ha (x, y), (u, v) ∈ α, (x, u), (y, v) ∈ Φ, (u, v) ∈ γ és α∩Φ ⊆ γ,

akkor (x, y) ∈ γ.

Jelöljük ∗-gal a tranzit́ıv lezártat. A következő álĺıtás lényeges lépés a 7. Fe-

jezetben található Malcev-feltételek felé:

6.1. Álĺıtás ([CzH2]). Ha mod(tol,tol,tol) vagy dist(tol,tol,tol) teljesül egy

A algebrában, akkor Γ ∩ Φ∗ ⊆ (Γ ∩ Φ)∗ bármely Γ, Φ ∈ Tol A esetén.

Egy 0-elemes L hálót 0-modulárisnak nevezünk ([St]), ha nincs N5-tel izomorf,

0L-et tartalmazó részhálója. Egy 0-val rendelkező L háló teljeśıti az általános disz-

junktsági tulajdonságot (GD), ha az a ∧ b = 0 és az (a ∨ b) ∧ c = 0 egyenlőségekből
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következik az a ∧ (b ∨ c) = 0. Ha bármely a ∈ L esetén {x ∈ L: a ∧ x = 0}-nak van

legnagyobb eleme, akkor L-et pszeudokomplementumos hálónak nevezzük.

A most következő 6.2. és 6.3. Tételek tartalmazzák legfontosabb eredményein-

ket a kongruenciamoduláris varietásbeli toleranciahálókról.

6.2. TÉTEL ([CHR]). Legyen A a V kongruenciamoduláris varietás egy al-

gebrája. Ekkor fennállnak a következők:

(i) A h: Tol A → Con A, Φ 7→ Φ∗ leképezés szürjekt́ıv hálóhomomorfizmus,

és Tol A 0-1 moduláris háló, amely rendelkezik a (GD) tulajdonsággal.

(ii) Tol A pontosan akkor pszeudokomplementumos, ha Con A pszeudokom-

plementumos.

6.3. TÉTEL ([CHR]). Legyen A tetszőleges algebra. Ha A-n van többségi

függvény, akkor:

(i) Tol A 0-moduláris pszeudokomplementumos háló.

(ii) A Γ és a Φ pontosan akkor komplementumai egymásnak Tol A-ban, ha

faktorkongruencia párt alkotnak A-ban.

7. Kongruenciaháló azonosságok Malcev-feltételei moduláris varietások-

ban

Varietásra vonatkozó erős Malcev-feltételnek a következő alakú feltételt nevez-

zük: ”léteznek h0, . . . , hk olyan kifejezések, amelyek kieléǵıtik azonosságok egy Σ

halmazát”, ahol k rögźıtett, és Σ független a tekintett algebrák t́ıpusától. Malcev-

feltétel alatt ”létezik olyan n természetes szám, hogy Pn teljesül” alakú feltételt

értünk, ahol a Pn-ek erős Malcev-feltételek és Pn-ből következik Pn+1 bármely

n-re. Day ismert eredménye szerint V pontosan akkor kongruenciamoduláris, ha

” (∃n)(Dn)” teljesül V-ben.

Azt mondjuk, hogy a λ hálóazonosságból következik a modularitás kongruen-

ciavarietásokban,azaz λ |=c mod, ha bármely V varietás esetén ha minden Con A

kongruenciahálóban (A ∈ V) teljesül λ, akkor minden ilyen kongruenciaháló mo-

duláris. Például mindig ez a helyzet, ha λ-ból következik a modularitás hálóelméleti

értelemben.

Legyen adott a p hálókifejezés és legyen k ≥ 2. Definiáljuk a pk kifejezéseket

indukcióval a következőképpen. H p változó, akkor legyen pk = p. Ha p = r ∧ s,

akkor legyen pk = rk ∩ sk. Végül ha p = r ∨ s, akkor legyen pk = rk ◦ sk ◦ rk ◦

sk ◦ . . ., amely k-tényezős szorzat. Ha kongruenciákat, vagy még általánosabban,

reflex́ıv kompatibilis relációkat helyetteśıtünk pk változói helyére, akkor a ∩ közös

rész képzésként és a ◦ relációszorzásként interpretálandó.

A Malcev-feltételekkel kapcsolatos első eredményünk a 7.1. Tétel.
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7.1. TÉTEL ([CzH3]). Legyen λ : p ≤ q olyan hálóazonosság, hogy λ |=c

modularitás. Ekkor bármely V varietásra a következő két feltétel ekvivalens:

(a) Bármely A ∈ V algebra esetén λ teljesül A kongruenciahálójában.

(b) V kieléǵıti a következő Malcev-feltételt: ”létezik n ≥ 2 úgy, hogy M(p3 ⊆ qn

és (Dn) teljesül”.

A következőekben jav́ıtjuk a 7.1. Tételt oly módon, hogy megadjuk a λ-t

jellemző legegyszerűbb (és ebben az értelemben remélhetőleg a legjobb) Malcev-

feltételt, amennyiben λ |=c modularitás.

Tetszőleges, a ∩,∨, ◦ műveleti jelekből és változókból felépülő p = p(x1, . . . , xk),

kifejezére, röviden {∩,∨, ◦}-kifejezésre, és n ≥ 2-re definiáljuk a pn és a p2,2 {∩, ◦}-

kifejezéseket indukció seǵıtségével a következő módon. Ha p változó, akkor legyen

pn = p2,2 = p. Ha p = r ∩ s, akkor legyen pn = rn ∩ sn és p2,2 = r2,2 ∩ s2,2.

Hasonlóan, ha p = r ◦s, akkor legyen pn = rn ◦sn és p2,2 = (r2,2 ◦s2,2)∩ (s2,2 ◦r2,2).

Végül, ha p = r ∨ s, akkor legyen pn = rn ◦ sn ◦ rn ◦ sn ◦ · · · amely n szorzótényezőt

tartalmaz a jobb oldalon, és legyen p2,2 = (r2,2 ◦ s2,2) ∩ (s2,2 ◦ r2,2).

7.4. TÉTEL ([CHL]). Legyen p ⊆ q egy (kongruenciákra vonatkozó) tartal-

mazási formula, ahol q ◦-mentes. (Azaz a p egy {∩,∨, ◦}-kifejezés és q pedig háló-

kifejezés.) Ekkor bármely V kongruenciamoduláris varietásra a következő feltételek

ekvivalensek:

(i) p ⊆ q teljesül V kongruenciáira,

(ii) p2 ⊆ q teljesül V kongruenciáira,

(iii) p2,2 ⊆ q teljesül V kongruenciáira,

(iv) A

(∃n ≥ 2)
(

M(p2 ⊆ q2 ◦ q2 ◦ · · · ◦ q2)
)

Malcev-feltétel (ahol q2 ◦ q2 ◦ · · · ◦ q2 egy n-tényezős szorzatot jelöl ) teljesül V-ben.

Korolláriumként mondjuk ki a 7.1. Tétel jav́ıtását:

7.2. Korollárium ([CHL]). Legyen λ : p ≤ q olyan hálóazonosság, hogy λ

|=c modularitás. Ekkor bármely V varietásra a következő három feltétel ekvivalens:

(a) Bármely A ∈ V algebra esetén λ teljesül A kongruenciahálójában.

(b’) V kieléǵıti a következő Malcev-feltételt: ”létezik n ≥ 2 úgy, hogy M(p2 ⊆

qn) és (Dn) teljesül”.

(c) V kieléǵıti a következő Malcev-feltételt: ”létezik n ≥ 2 úgy, hogy M(p2 ⊆

q2 ◦ q2 ◦ · · · ◦ q2) ( n szorzótényező) és (Dn) teljesül”.

7.4. TÉTEL ([CHL]). Legyen p ⊆ q egy (kongruenciákra vonatkozó) tartal-

mazási formula, ahol q ◦-mentes. (Azaz a p egy {∩,∨, ◦}-kifejezés és q pedig háló-
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kifejezés.) Ekkor bármely V kongruenciamoduláris varietásra a következő feltételek

ekvivalensek:

(i) p ⊆ q teljesül V kongruenciáira,

(ii) p2 ⊆ q teljesül V kongruenciáira,

(iii) p2,2 ⊆ q teljesül V kongruenciáira,

(iv) A

(∃n ≥ 2)
(

M(p2 ⊆ q2 ◦ q2 ◦ · · · ◦ q2)
)

Malcev-feltétel (ahol q2 ◦ q2 ◦ · · · ◦ q2 egy n-tényezős szorzatot jelöl ) teljesül V-ben.

Korolláriumként mondjuk ki a 7.1. Tétel jav́ıtását:

7.2. Korollárium ([CHL]). Legyen λ : p ≤ q olyan hálóazonosság, hogy λ

|=c modularitás. Ekkor bármely V varietásra a következő három feltétel ekvivalens:

(a) Bármely A ∈ V algebra esetén λ teljesül A kongruenciahálójában.

(b’) V kieléǵıti a következő Malcev-feltételt: ”létezik n ≥ 2 úgy, hogy M(p2 ⊆

qn) és (Dn) teljesül”.

(c) V kieléǵıti a következő Malcev-feltételt: ”létezik n ≥ 2 úgy, hogy M(p2 ⊆

q2 ◦ q2 ◦ · · · ◦ q2) ( n szorzótényező) és (Dn) teljesül”.
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