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CHAPTER 1

Introduction

Lattices and groups are important algebraic structures and they are the most
important related algebraic structures. They often appear in many branches of
algebra, they are clear enough to consider easily, and rich enough to characterize
many types of algebraic properties.

In this dissertation lattices play more important role than groups, this is why

we put lattices in the title.

The reason why we put nvariants in the title is more complex. Traditionally
in mathematics, cf. Wikipedia [Invl]: “ An invariant is something that does
not change under a set of transformations. The property of being an invariant is
invariance. For the laymen, let us say an invariant is some kind of correspondence
between two types of mathematical objects, so that two ‘similar® things correspond
to one and the same object. Invariants are useful in discriminating complicated

objects.

Mathematicians say that a quantity is invariant ”under” a transformation; some

economists say it is invariant "to” a transformation.
Some examples, ...

e The degree of a polynomial, under linear change of variables

e The dimension of a topological object, under homeomorphism

e The number of fixed points of a dynamical system is invariant under many
mathematical operations.

e Euclidean distance is invariant under orthogonal transformations and under
translations.

e The cross-ratio is invariant under projective transformations.

e The determinant and trace of a square matrix are invariant under changes of
basis.

e The singular values of a matrix are invariant under orthogonal transforma-
tions.

e Lebesgue measure is invariant under translations.
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e The variance of a probability distribution is invariant under translations of
the real line; hence the variance of a random variable is unchanged by the addition

of a constant to it.”

See also [Inv 2]. Invariants have frequently been in the centre of mathematical
investigations. For example ”Klein’s synthesis of geometry as the study of the prop-
erties of a space that are invariant under a given group of transformations, known as
the Erlanger Programme (1872), profoundly influenced mathematical development.

...The Erlanger Programme gave a unified approach to geometry which is now
the standard accepted view.” (Quotation is from [Inv3].) See also [Inv4].

However, beside its strict meaning outlined above, the word ’'invariant’ has also
a more general meaning in universal algebra. We obtain this meaning by replacing
transformation, which is a selfmap A — A of a set A by the notion of algebraic
operations. Thus we arrive at the notion of an invariant relation p with respect to
an operation f : A" — A. In other words, p is one of the invariants of f, cf. e.g.
[PK].

The present dissertation uses the word 'invariant’ in both meanings. The reader
will find invariance groups as well as invariant (preserved) relations, namely: con-

gruences and tolerances.

Lattices and invariants proceed along the whole dissertation, but their ratio is

varying chapter by chapter.

In Chapter 2 we start with the invariance groups of threshold functions which

are a special kind of Boolean functions.

In Chapter 3 we extend our investigation to functions on a finite set. In order
to give entirely new proofs for primality theorems, we make use of the operation-
relation duality which is established by the preservation of relations by functions.
Here not only invariant relations, but also lattices (i.e. the lattice of clones) come

into picture, although they play no essential role in the investigation.

All the other chapters are much more connected with lattices consisting of
invariants, which will be congruences (= preserved equivalences) and tolerances
(= preserved symmetric and reflexive relations). In Chapter 4 we analyze dia-
grammatic statements concerning congruences and tolerances. Motivated by these

diagrammatic statements, in Chapter 5 we carry out lattice theoretic investigation
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on the shift of a lattice identity. In Chapter 6 tolerances are in the centre, and some
lattice theoretic points of interest appear. Finally, Chapter 7 brings an essential
contribution to the 34 year old open problem: which congruence lattice identities

can be characterized by Maltsev condition?



CHAPTER 2

Invariance groups of threshold functions

There are many parts of informatics where Boolean functions, i.e.
{0,13" —{0,1}
mappings are important. The main questions practice raised are the following:

1) How can we represent a Boolean function in the simplest or in the most

economical way?

2) Which Boolean functions can be given as superposition of a given set of

Boolean functions?

A threshold function is a Boolean function, i.e. a mapping {0,1}" — {0, 1},

with the following property: There exist real numbers wy, ..., w,, t such that

n
flxy,. .. zy) = 1iff Zwixi > t,
i=1
where w; is called the weight of x; for i =1,2,...,n, and t is a constant called the
threshold value.

There is a geometrical interpretation of threshold functions. The set {0,1}"
can be considered to span a hypercube in the Euclidean space R". A Boolean
function is defined by assigning either 0 or 1 to the 2" vertices of the hypercube
{0,1}". In the n-dimensional space R™ the set of vertices where the value of the
function is 1 can be separated by a hyperplane from those vertices where the value
is 0. This is why threshold functions are also called linearly separable functions
([Sh]).

Threshold functions are useful to study because they are not only models of
neurons for example, but also it is easy and relatively cheap to realize them by
electrical network ([Sh], [Mu]).

From algebraic point of view, up to now, the main result is the characterization

of threshold functions by fundamental ideals of group rings ([ABGG]). However, new
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investigations in the direction of constraints and taking minors are very promising

([Pip], [CF]).
Surprisingly enough, the number of the n-variable threshold functions is still

not known ([Sh], [Mu]).

In many branches of mathematics, symmetry properties of the investigated
objects are useful if discovered. Permutations of variables leaving a given Boolean
function f(z1,...,x,) invariant form a group, which we call the invariance group
G of the function. Barbara Wnuk has published in a paper ([Wn]) written in Polish
that every permutation group is representable as the invariance group of a Boolean
function.

In this chapter we are going to prove that the invariance group of threshold

functions is isomorphic to a direct product of symmetric groups.

We can suppose without loss of generality (see [ABGG] and [YT]) that
W <wy < ...<Wp.

We use the notation: (X) = (z1,...,2,); W = (w1,...,wp); W(X) = >0, wz;.

If 0 € Sy, then let 0(X) = ((zo(1),- -+ To(n)), and for P = (p1,p2,...,pn) €
10,1} let o(P) = (Po(1)s Po(2)s - - - » Po(n)) € 10,1}
Consider a partition C on the set n = {1,2,...,n}. As usual, we shall denote

the class of C' that contains i € n by 7. We call C' convex if i < j < k and i = k
together imply 7 = j. For any convex partition C' of n, the ordering < of n induces
an ordering of the set of blocks of n in a natural way: i < j iff i < j.

We say that a permutation m € S,, preserves a subset n’ of n if for each 7 € n’,
7(i) € n’ holds. We say that a permutation o € S, leaves a Boolean function
invariant, if f(o(P)) = f(P) for all P € {0,1}"™. Permutations leaving f invariant

constitute the invariance group of the Boolean function.

THEOREM 2.1 ([Hol]). For every n-ary threshold function f there exists a
partition Cy of n such that the invariance group G of f consists exactly of those
permutations of S,, which preserve each block of C'y. Conversely, for every partition
C of n there exists a threshold function fc such that the invariance group G of f¢o

consists exactly of those permutations of S,, that preserve each block of C.

Proof. The proof of Theorem 2.1 requires several subsidiary statements. First,

consider an arbitrary n-ary threshold function f. Let us define the relation ~ on
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the set n as follows: i ~ j iff i = j or the transposition (i j) leaves f invariant.

Clearly, this relation is reflexive, and symmetric. Moreover, it is transitive because
(¢ ) k)@ j) = (@ k).
Hence ~ is an equivalence relation.
Claim 2.1. The partition Cy defined by ~ is convex.

Proof. If it is not so, then there exist ¢ < 7 < k, i ~ k, 7 ¢ j, hence there
exists a Boolean vector (dy,...,d,) € {0,1}" such that

d+wid; +w;id; +wpdy, <t, (1)

d+ wid; + wjdj + widp > t, (2)

where d = 3", ¢qdg. Now (1) and (2) together with w; < w; imply d; = 0 and
d; =1 because 0 < (2) — (1) = (w; —w;)(d; — d;). Since i ~ k, from (1) and (2) we

infer:

d + widy, + wi, = d + widy, + w;d; + wid; < t, (3)

d+ w;dy + wj = d+ w;dg + wjdj + wrd; > t. (4)

Now w; >t —d — w;dy, > wy, a contradiction.

Claim 2.1 is proved.

For the reason of convexity, the blocks of ~ can be given this way:

Cy={1,....i1},
Co={iy+1,...,i1 + i}

Cr={i1+is+...+4_1+1,...001+... 49}

Every permutation that is a product of some “permitted” transpositions pre-
serves the blocks of C'y, and belongs to G. We show that if a permutation does not
preserve each blocks of C¢ defined by ~, then it cannot belong to G.
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Claim 2.2. Let v = (j1 j2 .. Jk—1 Uk ---Jm) € Sp be a cycle of length m + 1
with jo € Cp, 1 <s<m,leCy, p#q. Theny &G.

Proof. Let us confine our attention to the following:

(Ugr—1)(J1 Jo - Jr=1 U - Jm) = (41 J2 - - - Gm) (),

SO

(L jk—1) = (J1 G2 Jm)(G1 J2 - Goe1lit - - Jim) "

If v were an element of G, then (I jx—1) would be also an element of G which
contradicts the definition of ~.
Claim 2.2. is proved.

O

Lemma 2.1 ([Hol]). If a cycle 8 € S,, has entries from at least two blocks
of Cy, then B ¢ G.

Proof. Given the convex partition Cy of (n; <), for any cycle 3 of length k we
construct a sequence of cycles of increasing length, called the downward sequence
of (8 (the reason of this name is that the new entry of each member of the sequence
will always correspond to the smallest weight), as follows: Let p be the greatest
entry of # and let ¢ be the greatest entry of # which is not in p. We cancel some
entries of J in such a way that we keep all entries in p, and we keep ¢, and we delete
all the remaining entries of [.

This results in the initial cycle of the downward sequence 5() of length r; r > 2.
We do not need to define members of the downward sequence with superscripts less
then r. If we have constructed 89, we obtain the next member SU+1) of the
downward sequence by taking back the greatest cancelled (and not yet restored)
entry of 3 to its original place. Thus, the final member of the downward sequence
is 8) = 3. Let us denote by m(i) (i > r), the “new” entry of (). If i < r, then

we do not have to define m(i). As an illustration take the following (let n = 8):

Cy, ={1, 2},
Cy ={3,4},
C5 ={5,6,7},
Cy ={8},
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and

B=(45173)=(17345).

The downward sequence is:

B = (745),
AW =(7345), m4) =3,
BO(=p)=(17345), m(5)=1.

It is obvious from the construction of the downward sequence that the weight
corresponding to an arbitrary entry of 8() is greater than the weight corresponding
to m(i+1). By Claim 2.2, the initial cycle of the downward sequence (in our
example $®)) is not in G. Hence there exist A" = (agr), .. .,ag)) and B(" =
@7, .. b0y with AM, B™ € {0,1}" and f(A™) £ f(BM). We can assume
without loss of generality that f(A() =0 and f(B()) = 1, for otherwise we can
work with 37! instead of §3.

In order to prove that 3 ¢ G it suffices to construct A® and B® for
i =r+1,r4+2, ..., ksuchthat f(A®D) =0and f(B®) =1and 3 (AD) = B,

It is enough to (and we are able to) show that if for ¢ > r there ex-

ist A = (agi),...,ag)) and B®) = (bg"),...,bﬁf)) with AW BO) ¢ {0,1}"
such that f(A®) = 0 and f(B®W) = 1 and W (A®) = B then we are
able to construct AT = (@™ of™) and BOHD = @UFY L plT)

with ACHD - BO+D) ¢ 10 1}" satisfying f(ACtY) = 0 and f(BUHY) = 1 and
D (AG+HD)) = BO+D | Let us denote by I(j) and r(j) the left and the right neigh-
bour of m(j) in the cycle 3\9), respectively. (For the sake of clarity: 1(5) = 5 and
r(5) = 7. We shall use this notation for the corresponding components of a concrete
Boolean vector as well: al(g.), aﬁi)(j) and aﬁ’i(?i)’ e.g.: if A® =(1,0,0,1,0,1,0,1), then

(@) _ (@ _ @ _
a5y = 0, Uy (5) = 1, ) = 0.

We have three possibilities for A(:

(4) _ @)
Case 1. Cpa(i41) = Cp(it1)”

(@) _ (4) _
Case 2. Cp(i41) = 1, piv1) = 0.

(@) _ (4) _
Case 3. (i) = 0, pliv1) = 1.



We show that in the first two cases A® is appropriate for At In Case 3

the only thing we have to do is to transpose two components of A® in order to get
a suitable AG+1),

Case 1. Let agi)(iﬂ) =

Remember that

() _ i+1) — AG
i1y = Y- Put AGHD = A0,

ﬁ(l):(l(2+1) T(i+1)...)

and

By = (- A+ 1) m@E+1) r(i+1)...).

Even though () does not contain m(i+1), ST (A®) = ) (A@)) holds because
a&rl) = aii()i+1). If AGTD = A®) | then 0D (A1) = 3)(A®) = BO) So let
us choose BUHY) = BO) Thus f(AGHD) =0, f(BEHD) =1 and g0+ (AG+D) =

B+ are satisfied. We present this here in a tabular form as well:

Li(i41) L (i+1) Lr(i+1)
A® Y Y av("i()i—kl)
B bz(2+1) y Y
AGHD) y y aii()i+1)
B+ bz(z:rlf) Y Y
Case 2. aff@)(iH) =1, a7(~i(1:+1) =0.

Now, A is appropriate for AU+ but that is not the case for B(*) and BU+D,
Let AGH) = A®) and BO+HD = gG+D(AG+)) We can get the Boolean vector

B+ from B if we transpose b, . and b\

1(i+1) m(i41) 1€

b““)) — 1, and b°TY  — o,

1(i+1 m(i+1) —
while

(@ _ (4) _ 1.

byiipry = 0, and by gy = 15

furthermore, all the other components of B+ and B® are identical. Since m(i41)

corresponds to the smallest weight in 30+ we get

Dby <D b,
j=1 i=1
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which means that f(BU*Y) = 1. Moreover, f(A+t1)) = 0 and B0+D (AG+D) =

BU+D are satisfied. We again display this in a tabular form:

Li(i41) L (i+1) Lr(i41)
AW 0 1 a7(~i()¢+1]
B Al 1 0
AGHD) 0 1 ali
Bl+1) bgﬁi—)l)} 0 1

(2) (2) -1
m(i+1) . r(i+1) — N
Let us construct AGTY from A® as follows: Put

Case 3. a =0,a

(i+1)  _q

_ (i+1) _
Crnit1) = 0

Grir1y = Y

(i+1) _ (6 . (i+1) (i+1)
a; = a; if a; =+ (i 1)
(%) (4)
m(i+1) and @ (it1 A
components unchanged) to get AG*+1).) Since m(i + 1) corresponds to the smallest

agH_l) # CL(H-l)

or r(it1)

(Transpose a ) in the Boolean vector A®) (and keep all of its other

weight in B0t we get

n n

(i+1) (@),
E w;a; < E w;a;”;
j=1 j=1

hence f(AGTD) = 0. Let BO+D = g0+ (A6 With this choice BOTD = BO),
hence f(BU+1) = 1. In the tabular form:

Ti(i+1) Tm(i+1) Lr(i4+1)
AW 1 0 av("i()i—kl)
B by | O 1
Ao
R NI 1

Lemma 2.1. is proved.
O

Every permutation that is a product of disjoint cycles each one of which pre-

serves every block of C'y belongs to the invariance group G of f. We have to show
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that if not all of the factors have this property, then the permutation does not leave
the threshold function f invariant.
For any permutation 7 of X, the moving set of m, denoted by M (m), consists

of all elements x of X satisfying 7(x) # x.

Lemma 2.2 ([Hol]). Let m € Sx be of the form m = mamy, where w1, T3 € Sx,
with M (m) N M(m2) =0 and m € G. Then 7w ¢ G.

Proof. Suppose that it is not so, i.e. ® € G. Now m; ¢ G means that
there exist Xo, X7 € {0,1}"™ with f(Xo) # f(X1). First we assume that f(Xo) =
0,f(X1) = 1 and m(Xo) = Xi1. Let Xo = m(Xy), ie. Xo = 7w(Xp). Since
m € G, we infer f(X3) = 0. Let X3 = m1(X2). As M(m1) N M(m2) = 0, we have
myme = momy. Therefore X3 = w(X;). The assumption 7 € G implies f(X3) = 1.

Looking at the infinite series of Boolean vectors
Xo, X1,y Xyevs

we can establish in the same way that f(X;) = 0 if ¢ is even and f(X;) = 11if i is
odd. On the other hand,

W(X) =S(X)M +5(X)P 4 5(x)1,

where

S(X)[l] = Z WwjTj,

zj€M(m1)
SOP = 3" wjay,
zjEM(m2)
S(X)[3] = Z wjxj.
zj €M ()

With this notation: S(Xo)M < (X)), S(X0)? = 5(Xx)B, §(X0)B = §(x7)Bl.
For the series of S(X;)M:

(5) S(Xo) < s(x M = §(x)M < 5(X3) M = 5(x )M < ...

Indeed, applying 75 changes only S(X;)!?; moreover, f(Xo,) = 0 and f(Xops1) = 1
imply W (Xax) < W(Xag11), hence S(Xo)M < S(Xop41)1. On the other hand, if
z is the order of 71, then S(Xo)M = S(X5.)!!, which contradicts (5).
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The case f(Xo) = 1, f(X7) = 0 is quite similar, for X;;; will play the role of
Xi.
Lemma 2.2. is proved.
O

Claim 2.3. For 7 € Sx, let @ = 1 ...7, where the ~; are disjoint cycles. If
there exists a y; with 1 < j <r and 7; € G, then 7 ¢ G.

Proof. Since disjoint cycles commute, we can assume that v ¢ G. Then
T=7(y2...7) € G follows from Lemma 2.2.
Claim 2.3 is proved.
O

Now we are in the position to prove the first part of Theorem 2.1. Suppose 7 is
a permutation that preserves each block of C'y. Decompose 7 to a product of disjoint
cycles: m =1 ...7.. Then all the ; (1 < i <) preserve each block of C. For a
fixed i (1 <1i <), ~,; is of the form (ki, ko, ..., ks). Clearly, ky ~ ko ~ ... ~ kg,
whence all the transpositions (k1 k2), (k1 k3),..., (k1 ks) preserve f. Therefore so
does v; = (k1 ko ...ks) = (k1 ka2)(k1 k3) ... (k1 ks), implying m € G.

Now suppose that 7 fails to preserve the blocks of C'y. Then so does at least
one of the v; (1 <i <r), and 7 € G comes from Claim 2.3.

In order to prove the converse statement, i.e., the second part of Theorem 2.1,
we show first that for any n there exist an n-ary threshold function which is rigid in
the sense that its invariance group has only one element (the identity permutation).

Suppose n is odd. With n = 2k + 1, consider the following weights:

w1 w2 e | W WEk+1 Wk+2 |- - Wk Wok+1
—k |-k+1|... |—1| 0 1 o k=1 k (6)

Let t = 0. We prove that for any transposition 7 of form (z;x;_1) where 2 < j <n
there exists a Boolean vector U = (uq,...,u,) € {0,1}" such that f(U) = 1 and
f(r(U))=0. For a fixed jlet uj =1, upt1—; =1, u; =0if i #j, i #n+1—-j. It
is obvious that f(U) = 1; however, f(7(U)) = 0. Hence C; is the trivial partition.
By the first part of Theorem 1.1, f is rigid.

Now let n be even. With n = 2k, consider the following weights:

wi W2 s | WE—1 | Wg | WE41 | WE42 |- -« | W2kp—1 | Wk
—k|-k+1]...] =2 |-1 1 2 k=11 k (7)
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Let t = 0. The method is almost the same as before, i.e. consider the following
U= (u1,...,un): If j # k+1thenlet u; =1, upt1—; =1, u; = 0if i # j,—3.
If j =k+1thenlet up41 =1 and u;, =0ifi # k+ 1. If 7 = (z;2,-1), where
2 < j<m,then f(U)=1 while f(r(U)) = 0.

Now, we construct a threshold function g for an arbitrary partition C' of an
arbitrary ordered set X of variables. Denote now by ~* the equivalence relation on
X defined by C. First, suppose that C'is convex. Let i1, ...,%; denote the number of
elements of the blocks of C, respectively. Consider the rigid function f of [ variables
that is defined by (6) or (7), depending on the parity of [. Take the weight w; iy
times, the weight w9 75 times and so on in order to define a threshold function g of
n =1y +io + ...+ 4 variables. Variables of g with the same weight are permutable.
However, transpositions o of form (x;x;_1), where 2 < j < n and j #* j — 1,
are “forbidden” for g because if we consider the corresponding U and construct a
Boolean vector V' of dimension n from U by rewriting it in the following way: instead
of Uy, (m=1,...,1), write 0 i, times, whenever wu,, = 0; and write 1 (once) then
0 %,, — 1 times otherwise; then we shall get a Boolean vector V' of dimension n, for
which ¢g(V) = 1 while g(c(V)) = 0. If C' is not convex, the only thing we have to do
is to reindex the variables in order to get a convex partition. After constructing a
threshold function for the rearranged variables with the procedure described above,
put the original indexes back and the desired threshold function is ready.
Theorem 2.1 is proved.

O

Corollary 2.1 ([Hol]). The invariance group of any threshold function is

isomorphic to a direct product of symmetric groups.

Proof. Let the blocks of Cy be the following (see the first part of Theorem
2.1):

Cy =A{1,...,i1},
Cy ={ir +1,...,41 + i}

Cr={ir+ic+...+ii1+1,...,01+...+14}
If m preserves Cy, then m = mymy ... m where M (m;) C C;. So the map
Ty ... — (M1, T2, ..., 7)
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is clearly an isomorphism.
Corollary 2.1 is proved.
g

The invariance group G g of an arbitrary Boolean function is not necessarily of

the form
(8) G%SZ XXS”

For example, let h be the following: h(zi,...,x,) = 1 iff there exists i such that
r; =1, ;g1 = 1, x; = 0if j # 4,7 + 1 where @ means addition mod n. The
invariance group of h contains the cycle (1 2..., n) and its powers but it does
not contain transposition at all. If ¢ were an isomorphism into a direct product of
symmetric groups, then the order of (1 2..., n) is also n, but such direct products
contain permutation of order two, which should be the image of some transposition
under ¢, a contradiction.

However, there exist Boolean functions with invariance groups of the form (8)

which are not threshold functions. Probably the simplest example:
f(z1, 2, 23) = 17273 V 71 T273.

Permutable variables of a threshold function do not necessarily mean equal
weights. Here is an example: h(x) = zi1x9x4 V x324. This is a threshold function

with the following weights, and threshold value:

wy |wy |w3g |wyg |t
1 2 3 4

The transposition (z1x2) is “permitted”, but the others are not.
But the weights can always be chosen to be identical for variables belonging to

the same equivalence class. If the j-th class
Ci={i1+io+...+41+1,...,01+...+ 1},

then let
Wiy 4ig+..dij q+1 T oo T Wiy iy

Wi = i

Replace

Wiy tigt..c4ij_1+1s -+ o5 WigH... 44,
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by wy;). Since
xi1—|—i2—|—...—|—ij_1—|—17 sty :E1,1+—|—7,J

are from the same equivalence class, for fixed

L1y ooy Ligtoijg
and
Ly oij+ly - Lig4.dps

the fact that W(X) exceeds ¢ (or not) depends only on the number r of 1-s among

the coordinates

Ly tiot.dijo1+1y -+ o Tigt. . +i55
moreover, W(X) has a maximum (minimum) if we put all our 1-s to places with
the greatest (smallest) weights possible. Obviously

Wiy iy 41 T oo T Wiy iy 14
r

< w3
moreover,

wy) < Wiyt ij—r T oo T Wiyt i .

T
Hence

Wiy g q41 T+ oo Wi iy 14r S TWG] S Wiy gy—r oo+ Wit

Consequently, after replacing Wiy tin+..dij g+l -y Wigt. +i; by wij], we still have

the same threshold function.

There are many natural areas for algebraists to investigate concerning threshold

functions.

1) It would be interesting and useful to survey, which clones of the Post diagram
are generated by threshold functions (or more generally, which threshold functions

preserve a given relation, and which threshold functions do not.)([Czl1], [Sz]).

2) Boolean functions are very closely related to lattices ([Cz]); we expect, that
many interesting lattice theoretic results can be obtained by investigating threshold
functions, since many partially ordered sets can be discovered while dealing with
some practical questions about threshold functions. (In the literature I could only
read about the lattice of threshold functions of at most 5 variables [Mu]). Lattice

theoretic results might take us closer to the number of threshold functions.

3) What can be said about the behaviour of cellular automata where the local
rule is a threshold function ([Kal, [Wo])?
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CHAPTER 3

Proving primality by the operation-relation duality

In this chapter a method is presented for proving primality and functional
completeness theorems. This method makes use of the operation-relation duality,
or in other words, the invariant relations of an algebra. By a theorem of Sierpinski
we have to investigate relations generated by the two-element subsets of A* only. We
show how the method applies for proving Stupecki’s classical theorem by generating

diagonal relations from each pair of k-tuples.

An algebra A = (A, F), with a finite support A, is called primal if all possible
operations on A are term operations of A. Establishing primality is often facilitated
by theorems asserting that if F' contains operations with some properties, then A
is primal. A natural way to prove such theorems is to construct all operations on A
as compositions of those in F'. Another way is provided by the operation-relation
duality exhibited by Bodnarcuk, Kaluznin, Kotov, Romov ([BKKR]), and Geiger
([Gei]). First, we outline their theory in a few sentences.

Let A be a set and B a subset of A¥. We say that an operation f preserves
a relation R C AF if R is a subuniverse of the algebra (A, f)*. We say that F
preserves R C A, or in other words R is invariant with respect to F if every
f € F preserves R ([Cs2]). The set of all relations preserved by F' is called the
set of invariant relations of A = (A, F). A set of operations on a fixed base set
is called a clone if it contains all projections and is closed under superposition. A
non-empty set of relations is called a closed class of relations, or in other words a
relational clone if it is closed under direct products, projections onto arbitrary sets
of its variables and diagonalizations.

It is well known (cf. [Cs2]) that preservation establishes a Galois connection
between the set of operations and the set of relations on A. On one side, the Galois-
closed subsets of the set of all operations are exactly the clones of operations. On
the other side, the relational clones are exactly the Galois closed subsets of the set

of all relations on A. More precisely, if F' is a set of operations, then
Inv(F) :={p: pis a relation on A that is preserved by all f € F'}
is a relational clone on A. If R is a set of relations, then

Pol(R) := {f : f is an operation on A that preserves all p € R}
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is a clone on A. Moreover, F — Inv(F) is a dual lattice isomorphism from the
complete (in fact, algebraic and dually algebraic) lattice of all operation clones on
A to the lattice of all relational clones on A. The inverse dual lattice isomorphism
is given by R — Pol(R). To summarize, operation clones and relational clones
mutually determine each other.

If we apply this result only for the clone of all operations, we conclude that
(A, F') is primal iff F' preserves exactly the relations on A constituting the least
closed class of relations; this is also a consequence of another more general fact
on quasiprimal algebras due to P. H. Krauss ([Krl], [Kr2]). More and detailed
information concerning this topic can be found in [I], [PK], [Sz], [Wel]. Related

ideas were used, e. g., in [BP].

First, we need some definitions. We consider a k-ary relation as a set of unary
functions : k — A, k ={1,2,...,k}. We say that a k-ary relation D is diagonal,

if there exists an equivalence relation p, on k such that
D={rk — A|lru) =r)ifup,v, u,v ek }.

All the diagonal relations on A form the minimal closed class of relations on A.
Notice that a diagonal relation and the corresponding equivalence relation mutu-
ally define each other, so we may use the denotation D, for the diagonal relation
determined by an equivalence relation p on k. Moreover, to each r € A*, we assign

an equivalence relation p, on the set k as follows:
UPrv iff  r(u) =r).

Evidently, for any diagonal relation D, we have p, = (),.cp pr.- Now let R C AF.
By [R] we mean the underlying set of the subalgebra of A* generated by R.

The following statement comes straight from definitions.

Proposition 3.1 (Bodnaréuk—Kaluznin—Kotov—Romov [BKKR],
Geiger [Gei], Krauss [Krl],[Kr2]). A finite algebra A = (A, F) is primal,

iff every relation preserved by all operations in F' is diagonal.

The following Lemma 3.1 is a reformulation of the well known fact that the
clone O4 of all operations defined on a finite set A can be generated by binary

operations (Sierpinski [Si]).

Lemma 3.1 ([Ho2]). Given an algebra A = (A, F), the following two

conditions are equivalent:
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(i) For each R C AF, the relation [R] is diagonal.
(i) For each x,y € A¥, the relation [z, ] is diagonal.

Proof. By virtue of Sierpinski’s result and Proposition 3.1 it suffices to show
that (ii) implies that [F], the clone generated by F, contains all binary operations.
Let g : A2 — A be a binary operation, and let (z1,¥1), (x2,¥2),... (7, yx) be an
enumeration of A?. Here k = |A|? and(w;,y;) # (zj,y;) for 1 < i < j < k.
Take * = (v1,...,2%) and y = (y1,...,yx), and let Ry = {x,y} C A*. Then
Pley] = Pz NPy = pu, the smallest equivalence on k. This and (ii) yield [z,y] = AF.
Take z = (g(x1,v1), ..., 9(xr, ys)) € AF. Since z = [z, y], there is a binary term h,
i.e. a binary h € [F], such that z = h(z,y). This means g(z;,y;) = z; = h(x;, ;)
fori=1,...,k, whence g = h € [F].

Lemma 3.1. is proved.
g

For equivalences 1 and p on k if 4 C p then D, C D,. Hence the smallest
diagonal relation containing x,y € A* is D,, where n = p,Np,. (The particular case
when p = w has already occured in the above proof.) Since [z,y] C D,, [z,y] = D,

is clearly equivalent to the condition
p2n — D, Clz,yl.
This allows us to extract the following statement from the previous ones, (ii) of

which avoids the use of the notion of diagonal relation.

Lemma 3.1' ([Ho2]). The following three conditions are equivalent:
(i) The algebra A = (A, F') is primal.

(i) For each x,vy,z € A*, we have z € [x,y] whenever

(Vu,v € k )(z(u) = z(v) Ay(u) = y(v) = 2(u) = 2(v))).
(iii) For each k > 1 x,y € A, and for any equivalence p on k if p 2 p, N py,
then D, C [z, y].

By Lemma 3.1 the problem of proving a primality theorem simplifies to the
investigation of some suitably chosen matrices. We demonstrate our method on the

Stupecki Criterion in detail. We cannot avoid using the Yablonski Lemma.

Lemma 3.2 (Yablonski [JL]). Let f = f(x1,...,z,) be an at least binary

operation on A depending on x1 and x5 such that the range of f contains at least
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three elements. Then there exist a, b, as, ..., an,bs,...b, € A such that the elements
c1 = f(a,ag,...a,), co = f(byas,...,a,), and cs = f(a,bs,...,b,) are pairwise
different.

We call an operation essential, if it is surjective and at least binary.

THEOREM 3.1 (Stupecki [Sl]). Let A be a finite set with |A| > 2. If F' contains
an essential operation f and all the unary operations, then the algebra A = (A, F)

is primal.

Proof. We shall show that (iii) of Lemma 3.1 holds. This will be done via
induction on the number t of the blocks of p. However, first we summarize some

early observations for later reference.

(a) If py C pa then D,, C D, ;

P11
(b) For any 2z € A*¥, D, = [2].
(¢) The inclusion p D p, implies D, C [z].

(d) If 2,y € A* such that, for all i,j € k, z(i) = x(j) implies y(i) = y(j), then
y € [z].

Here (a) is obvious by definition, (b) follows easily by using unary functions,
and (c) is evident by (a) and (b). Finally, the premise of (d) means p, C py, so
y€y]=D,, CD,, =lz]follows by (b) and (a).

Now, if ¢ = 1, then p D p, implies D, C [z] C [z,y] by (c). Hence the first step
of the induction is trivial.

The case t = 2 ramifies.

The first subcase is when p and p, N p, have a common block C'. To simplify
the notations (i.e., to avoid double subscripts) we may assume that C' = {1, 2, ..., s}.
(The general case, C' = {iy,12,...,is}, would be similar.) So p has two blocks: C
and {s+1,...,k}. If p D p, then D, C [z] C [z,y] by (c) and there is nothing to
prove. Hence we assume that p 2 p, and, similarly, p 2 p,. Hence there are u,v € k
with (u,v) € p, and (u,v) € p. Since p has only two blocks, u = 1 and v > s can be
assumed. Similarly, there is a w > s with (1, w) € p,. Since C ={1,2, ..., s} is also
a block of p, M p,, v is necessarly distinct from w. Hence, without loss of generality,
we may assume that the p, -block resp. p,-block of 1is {1,...,s,s+1,...,5+1}
resp. {1,...,s,s+1+1,...,s+1+m} where |,m > 1.
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Now choose elements a, b, as, ..., a,,bs,...,b, € A according to the Yablonski
Lemma. Here n is the arity of f, and ¢; = f(a,aq9,...,a,), ca = f(b,as,...,a,)
and cg = f(a,bs, ..., b,) are three distinct elements of A. Let ¢4 = f(b, b, ..., by,).

If ¢4 # ¢ then consider the (n X k) size matrix

a ... a a ... a b ... b b ... b
as ... Qo bQ bQ as ... Qo bQ bQ
an .. Gp bp, ... bn an, ... ap, b, ... by,

where there are s+1 a-s and k— (s+1) b-s in the first row, s+m a;-s and k— (s+m)
b;-s in the others (2 < i < n), and this defines the set of rows. Now (d) yields that
the first row of this matrix is in [z] while the rest of its rows are in [y]. So all the

rows belong to [x,y]. Applying f to these rows componentwise, we obtain that
z=1(C1,...,C1,C3,...C3,C...C2,Cq,...,Cq) E [T,Y].
Since ¢1 # ¢4, p» C p. Hence, because of (a) and (b), we conclude that
D, € Dp. =[] C [z,y],

indeed.

If ¢; = ¢4 then we consider another (n x k) matrix:

a ... a a ... a b ... b b ... b
bQ bg a9 ... QA9 bQ bg a9 oo QA9
b, ... b, an, ... a, b, ... b, a, ... an

where the first row is the same as before. Now, with the same argument, we arrive

at
2 =(c3,...,03,C1,...,C1,Cqy..,C4,C2,...,C2) € [x,9].
Since p, C p again, D, C [z, y] follows the same way as before.
The second subcase is when the blocks of p are unions of j; resp. j2 blocks of
pz N py. We handle this situation via induction on j = min{ji, jo}. Notice that

j =1 is just the previous subcase.

To perform the induction step, assume that 7 > 1. Let

{017027~"7Cj7Cj+17"'7Cs}
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be the set of (p, N py)-blocks such that C' = CyU...UC; and C = Ciy1U...UC;
are the two blocks of p. We define two new equivalences p’ and p” that correspond

to the respective partitions
{Clu...UCj_l, CjUCj+1UCj+2U...UCS}

and

{CQU...UC]', 01U0j+1UCj+2U...UCS}.

This makes sense, for 2 < j.

By the induction hypothesis on j, D, C [z,y] and D, C [z,y]. Since p’ has
only two blocks and |A| > 2 (in fact |A| > 3), there exists an 2’ € A¥ such that
p' = py. Similarly, there exists an y’ € A* with and p” = p,,. Using (b) we obtain

&
I
-
I

Dp’ C [.’L‘,y],

and

whence [2/, '] C [z, y].
Now p has only two blocks, p 2 p’ N p”, Cj41 U...UC; is a common block of
p and

par O py = p' N p".

Therefore the previously settled case (i.e. our first subcase) gives D, C [z,1/].
Combining the previous displayed formulas, we conclude D, C [z, y], as requested.

Now we handle the case 3 < t < |A|. For simplicity, to avoid complicated
subscripts, we assume without loss of generality that 1, 2 and 3 are pairwise in-
congruent modulo p. As in a previous stage of our proof, we will use the elements
a,b,as, ..., an,ba,... by, c1,co, c3 supplied by the Yablonski Lemma. Choose addi-
tional elements cy,...,cr € A such that, for 1 <i < j <k, ¢; = ¢; iff (4,7) € p.
This is possible, for p has t blocks and ¢t < |A|. Notice that for z = (¢1,¢2,..., k)

we have

P =Pz

The surjectivity of f allows us to find appropriate elements d; ;, 1 < i < n and
4 < j <k, such that ¢; = f(dij,...,dp;) for 4 < j < k. Moreover, we assume

that the new elements, the d;;, are different from any previous arguments of f only
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if this is necessary; this further condition on the d;; will be specified later. Now

consider the matrix

a b a d14 . dlk
as a2 bg d24 e dgk
n  Qp bp dpa ... dpg,

the rows of which belong to A*. If we apply f to the rows of this matrix, then we
obtain z = (c¢1,...,c). So, to conclude z € [z, y], it suffices to show that each row
of this matrix is in [z, y].

Now the extra condition on the d;j-s we promised reads as follows: for any
1 <i<j<kife¢ = c; (or equivalently, if (i,j) € p) then the i-th and the j-th
columns of the matrix coincide. Now let w = (uy,us,...,ux) be an arbitrary row
of the matrix. The condition above gives p C p,,. Since p,, collapses at least two of
1, 2 and 3, we have p C p,, and therefore p, has less blocks then p, i.e. less than ¢
blocks. By the induction hypothesis and (b) we have u € [u] = D,, C [z,y]. Hence
all rows of the matrix and z belong to [z,y]. Hence, making use of (b) and p = p,,
we conclude D, = D, = [z] C [z,y]. This settles the induction step to 3 <t < |A.

Now let t > |A|, and take an arbitraty z € D,. Since p, O p by definitions and
p 2 pz N py by the assumption, p, 2 p, N p,. Since z has at most |A| components,
p- has at most |A| blocks. Now the induction hypothesis yields D,, C [z,y]. This
and (b) imply z € [2] = D,_ C [z,y]. Thus D, C [z, y].
Theorem 3.2. is proved.

g

There is an improvement of the Stupecki Criterion by Yablonskii ([JL]): if we
omit the injective unary operations from F', then (A, F) is still primal. Even though
every one of the previous steps needs some reconsideration, this case can also be

completed by the method facilitated by Proposition 3.1 and Lemma 3.1.

An algebra A = (A, F) is called functionally complete if all possible operations
on the base set A are polynomials of A. Proving functional completeness for (A, F')
is the same as proving primality for the algebra (A, F'U Fy) where Fp is the set of
all constant operations on A. The above type matrices can be analyzed easily not
only in the case of the Stupecki Criterion, but also in cases of other primality and
functional completeness results. We proved e.g. the functional completeness of the
ternary discriminator ([Sz|), the dual discriminator (for |A| > 3) ([FP]), the n-ary
(n > 3) near-projections ([Csl]) as well as the primality theorem of Foster ([F]) this

way.
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CHAPTER 4

Diagrammatic schemes

4.1. From triangular schemes to Maltsev conditions, a short overview

Motivated by Gumm’s Shifting Lemma ([Gul]), which asserts that congruence
modular varieties satisfy a nice rectangular congruence scheme, Chajda ([ChH1],
Subdivision 4.2) investigated a triangular scheme, which is a consequence of con-
gruence distributivity. Congruence distributive varieties satisfy this scheme not only
for arbitrary three congruences, but also for one tolerance and two congruences; i.e.,
the analogue of Gumm’s Shifting Principle is valid.

The investigations went on in different directions. First, while the triangu-
lar scheme is not known to characterize congruence distributivity, an appropriate
generalization called trapezoid scheme does ([CCH2|, Subdivision 4.3). Secondly,
the underlying reason for congruence schemes is that certain lattice indentities are
equivalent with appropriate Horn sentences, called the shift of the lattice identity;
however, not every lattice identity has a shift ([CCH1|, Chapter 5). The third and
surely the most important direction that grew out from the topic is the question if
it is possible to put tolerances (reflexive, symmetric, compatible binary relations)
in place of all three congruences. The answer is yes ([CzH2], Subdivision 6.1). As

a special case, we obtain that in a congruence modular variety,
rne*C(I'nd)”

holds for any two tolerances R and S. As Radeleczki and Kearnes pointed out,
this can easily be turned into a much more useful property, the so-called Tolerance

Intersection Property, TIP for short, of congruence modular varieties:
rnoe*=Tnao)".

TIP has some applications. It is known that Tol L, the lattice of tolerances

of a lattice L, has several nice properties discovered by Bandelt ([B]). Using TIP,
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these properties (some of them in a weaker form) can be extended to congruence dis-
tributive or congruence modular varieties, or varieties with a majority term ([CHR],
Subdivision 6.2). For example, if an algebra A has a majority term, then Tol L is
0-modular, i.e. Tol A \ {0} contains no pentagon; the proof now is even simpler
than Bandelt’s original one for lattices. Another application of TIP is about Malt-
sev conditions. Using TIP we could prove that if p < ¢ is a lattice identity strong
enough to imply modularity, then p < ¢ has a Maltsev condition ([CzH3|, Chapter
7). This Maltsev condition is simply the conjunction of Day’s condition and the
Wille-Pixley’s characterization of ps C ¢. Here p3 is the {A, o} term which we
obtain from p by replacing joins by three-fold relation product throughout. In case
p < q has a previously known Maltsev condition, the Maltsev conditon extracted
form p3 C ¢ is not as good as the known one, because it contains terms with too
many variables. Much better Maltsev condition would come from ps C ¢q instead of
ps C q; the latest development is that this is possible ([CHL], Chapter 7).

4.2. Triangular schemes for congruence distributivity

The story started with the book of H. Peter Gumm entitled ”Geometrical
methods in congruence modular algebras”. In this book he introduced the so called
Shifting Lemma, and Shifting Principle.

An algebra A is said to satisfy the Shifting Lemma (in other words Rectangular
Lemma ) if for any «, 5,7 € Con A if aN B C v, (z,u), (y,v) € a, (z,y), (u,v) € B
and (u,v) € v, then (x,y) € v, cf. [Gul]. Pictorially, the Rectangular Lemma is
the condition given by Figure 1.

X a. u X a. u
®
anpBCry
B Blvy — By Blv
o o
e
y v y v
Figure 1
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The corresponding condition called Shifting (or Rectangular) Principle (cf.
[Gul]), is defined similarly, the only difference is that « should be replaced by
®, which stands for an arbitrary tolerance (i.e. compatible, reflexive and symmetric
binary relation) of A. Gumm shows that for congruence modular algebras the Shift-
ing Lemma holds (the converse of this implication is not true). Moreover, for whole
varieties, rather than a single algebra, both Shifting Lemma and Shifting Principle
are equivalent to modularity. These innocuous looking diagrammatic schemes lead
to a simple geometric development of commutator theory for arbitrary congruences,
as one can follow through Gumm’s previously mentioned book.

We report here how the story continues for congruence distributivity. Following
Gumm’s style of [Gul; Corollary 4.6], schemes for congruences will be called lemmas
although they are just conditions, and we keep the word principle for schemes
where tolerances also occur. The schemes defined by triangles (and in the following

subdivision trapezes) are in the centre of interest now.

Definition 4.1. An algebra A = (A, F) satisfies the Triangular Lemma if for
any z,y,z € A and every «a, 3,7 € Con A with anN @ C v the following implication
holds:

if (z,y) €7, (z,2) € a, (2,y) € B then (y,2) € 7.

The Triangular Lemma can be visualized as shown in Figure 2.

Figure 2

We quote here Chajda’s theorems (Theorem 4.1, Theorem 4.2) without their

proofs:
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THEOREM 4.1 (Chajda [ChH1]). Every congruence distributive algebra sat-

isfies the 'ITriangular Lemma.

For A congruence permutable the converse assertion also holds, cf. Corollary
4.2 later.

Now let us introduce the following concept:

Definition 4.2. Given n € N and an algebra A = (A, F), we say that
A satisfies the Weak Triangular Principle for n if for any x,y,z € A and every
a,3,v7 € Con A with anNnf C~yand A, =yoao~vyo...(n factors) the following

implication holds:

if (x,y) € a, (z,y) € B, (z,y) € A, then (z,y) € .

If A satisfies the Weak Triangular principle for all n € N, then we simply say
that A satisfies the Weak Triangular Principle.

The Weak Triangular Principle can be visualized as shown in Figure 3.

Figure 3

THEOREM 4.2 (Chajda [ChH1]). An algebra A satisfies the Weak Triangular
Principle if and only if Con A is distributive.

The distributivity of Con A is (by Theorem 4.2) equivalent to the implication
depicted in Figure 4.
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Figure 4

In the case of k-permutable algebra A we need not require the satisfaction
of the Weak Triangular Principle for each n € N, but Theorem 4.2 yields almost

immediately the following;:

Corollary 4.1 ([ChH1]). Let A be a k- permutable algebra. Then Con A is
distributive if and only if A satisfies the Weak Triangular Principle for n = k — 1.

When k£ = 2, Corollary 4.1 yields the following assertion.

Corollary 4.2 ([ChH1]). Let A be a congruence permutable algebra. Then

A is congruence distributive if and only if A satisfies the Triangular Lemma.

Remark 4.1. Ivan Chajda in ([ChH1]) gave an example of algebra A sat-
isfying the Triangular Scheme, but not the Weak Triangular Principle, i.e. whose

congruence lattice is not distributive.

Under the name Shifting Principle Gumm ([Gul]) considers a condition in
which not only congruences but tolerances also occur. Now we introduce the ”con-

gruence distributive counterpart” of this condition.

Definition 4.3. An algebra A = (A, F) satisfies the Triangular Principle

if for each tolerance ® and congruences 3, v the implication depicted in Figure 5
holds.

THEOREM 4.3 ([ChH1]). In congruence distributive varieties (i. e. in the

algebras of such varieties) the Triangular Principle holds.
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Figure 5

Proof. Let V be a congruence distributive variety. Then we have Joénsson
terms to(x,y, 2) ...ty (z,y, z) such that
to(z,y,2) =z, ty(x,y,2) =z
ti(z,y,z) =z for all i,
ti(z,x,y) = tiv1(z, x,y) for i even, and

ti<x7 Y, y) = t’i—f—l(x?yvy) for 7 odd.

Let 8,7 € ConA and ® € TolA, A € V, a,b,c € A and suppose that
® NG C v, and we have the situation according to Figure 6.

Figure 6

Consider the elements d; := t;(a,b,c), (i = 0,1,...,n). Now dy = a, d,, =
c. If i is even, then d; = t;(a,b,c)yti(a,a,c) = tiz1(a,a,c)ytiv1(a,b,c) = ditq,
consequently, for ¢ even, d;vd;+1. If ¢ is odd, then we have to work a little bit
more: first of all d; = t;(a,b,c)®t;(a,c,c), and on the other hand, since d; =
ti(a,b,c)Bti(a,b,a) = a = t;(a,a,a)st;(a,c,c), we have (d;, t;(a,c,c)) € PNG C ~. If
we put i+1 instead of 7, then in the same way we have (d;41, t;+1(a,c,c)) € NG C ~.
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But in this case d;vt;(a,c,c) = tiy1(a,c, c)yd;+1, and by the transitivity of v, we
get that d;yd; 1 holds. Hence, for all i, d; v d;11, so (a,c) = (do,dy,) € 7, i. e. the
Triangular Principle holds.

Theorem 4.3 is proved.

4.3. Trapezoid schemes for congruence distributivity

While the previous schemes seem to be just technical conditions, the Trapezoid
Principle is an essential step towards

1) proving that the distributive resp. modular law holds in congruence dis-
tributive resp. congruence modular varieties even for tolerance relations;

2) showing that for an arbitrary lattice identity implying modularity (or at
least congruence modularity) a Maltsev condition can be given such that the identity
holds in congruence lattices of algebras of a variety if and only if the variety satisfies
the corresponding Maltsev condition.

Now we introduce a new condition under the name Trapezoid Lemma as follows:
for any «, 3,7 € Con A (where A = (A, F) is an algebra) if anNg C 7, (z,u), (y,v) €
a, (z,y) € B and (u,v) € 7, then (z,y) € 7. The Trapezoid Lemma is depicted in
Figure 7.

X o u
anp Cy
= By Y
o
y 14
Figure 7

The corresponding condition called Trapezoid Principle is defined similarly,
the only difference is that a should be replaced by ®, which stands for an arbitrary

tolerance (i.e., compatible, reflexive and symmetric binary relation) of A.
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Our figures follow the tradition that parallel edges have the same label. Some-
times we do not require the above-defined conditions for all triplets (a, 3,) just

for a single triplet («v, 50, 70); in this case we will say so.

Given a direct product A = A; X Aq, a congruence v € Con A is called di-
rectly decomposable if v = ;1 X 7o for appropriate v; € Con A; and 5 € Con As.
One of the motivations for introducing the Trapezoid Lemma is revealed by the

following statement.

Proposition 4.1 ([CCH1]). Let v € Con (A1 X Az) and let 7; denote the
kernel of the projection Ay X Ay — A;, (x1,x2) — x;, i = 1,2. Then the following
three conditions are equivalent:

(a) v is directly decomposable;

(b) the Trapezoid Lemma holds for (w1, m,7) and (mwa, 71,7);

(c) both the Rectangular Lemma and the Triangular Lemma hold for (71, 72, y)

and (7o, 71,7).

Proof. The equivalence of (a) and (b), in a slightly different formulation, is
proved by Fraser and Horn ([FH1 Thm. 1 (1),(3)], cf. also the trapezes in [CG,
Figure 31, page 128]). The implication (b) = (c) is evident; this will also be
clear from the forthcoming Proposition 4.2. Proving (¢) = (b) is obvious, too: if
(z,u),(y,v) € 71, (z,y) € m2 and (u,v) € 7 then with w := (y1,u2) = (v1,us)
the Triangular Lemma gives (u,w) € 7, whence the Rectangular Lemma yields
(,y) € 7.

Proposition 4.1 is proved.
g

The following statement presents some connections among our conditions in

case of a single algebra; for varieties of algebras we will soon state more.

Proposition 4.2 ([CCH1]). Let A be an algebra.

(1) If A satisfies the Trapezoid Lemma resp. the Trapezoid Principle, then it
satisfies the Rectangular Lemma and the Triangular Lemma resp. the Rectangu-
lar Principle and the Triangular Principle. Moreover, each of the three principles
implies the corresponding lemma.

(2) If Con A is distributive, then A satisfies the Trapezoid Lemma (and there-

fore the other two lemmas as well).
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(3) If A satisfies the Trapezoid Principle, then Con A is distributive.

(4) If A satisfies the Rectangular Principle, then Con A is modular (cf. [Gu2),
Lemma 4.2).

(5) If A is congruence permutable, then Con A is distributive if and only if A
satisfies the Triangular Lemma (cf. [CzH1], Cor. 2).

Proof. (1) is trivial. (2) comes easily from the fact that a lattice is distributive

iff it satisfies the Horn sentence
aNB <y = BN aVy) <7, (*)

which we prove in the next chapter. Hence only (3) needs a proof. Suppose A is
an algebra satisfying the Trapezoid Principle and «, 8,7 € Con A with a A (G < 7.
According to (x) it suffices to show SA(aVy) < 7. Borrowing the idea from the
proof of Lemma 4.2 in Gumm ([Gul]), define tolerances &9 = « and @, =
®,, oyoa, n € N. Via induction on n we want to show that 3N ®,, C ~. For
n = 0 this is clear. Now suppose 5N ®,, C v and let (z,y) be an arbitrary pair
in 5N ®,41. Then (z,y) € NP1 =N (Pr,0oy0a) C N (Py0y0P,), so
there are u,v € A such that (z,u), (y,v) € ®,, (z,y) € 0 and (u,v) € 7. Hence the
induction hypothesis 3N ®,, C v and the Trapezoid Principle gives (z,y) € . This
shows BN ®,, 11 C v, completing the induction. Finally,

ﬁ/\(a\/’)/):ﬁm U (pn: U(ﬁm(Pn) g’)/v
n=0 n=0

proving (%) and (3).
Proposition 4.2 is proved.
O

We do not know if the implication in (1), (2), (3) and (4) of Proposition 4.2
can be reversed, but we guess the answer is negative in each case. However, for
varieties rather than single algebras much more can be said. Of course, a condition
is said to hold in a variety if it holds in all algebras of the variety. Part (a) <= (c)
of the following theorem was announced by Duda ([Dul]).

THEOREM 4.4 ([CCHL1]). Let V be a variety of algebras. Then the following

five conditions are equivalent.

(a) V is congruence distributive;
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(b) the Trapezoid Principle holds in V;
(c) the Trapezoid Lemma holds in V;
(d) the Rectangular Lemma and the Triangular Lemma hold in V;
(e) there is a positive integer n and there are quaternary terms dg,dq,...,d,
such that the identities
(el) do(z,y,u,v) =z, dn(z,y,u,v) =1y,
(e2) di(x,y,z,y) = diy1(x,y,x,y) for i even,
(e3) di(x,y, z,z) = diy1(z,y, 2, 2) for i odd, and
(e4) di(x,z,y,z) = x for all i
hold in V.

Remark 4.2. Congruence distributivity and congruence modularity of va-
rieties are characterized by classical Maltsev conditions, namely by the Jénsson
terms, cf. [J1], and the Day terms, cf. [Dal]. Since distributivity implies modu-
larity, one would expect that Jonsson terms trivially produce Day terms, but this
is not the case. To fulfil this wish (and also to reduce the number of variables)
Gumm ([Gul], [Gu2]) characterizes congruence modularity with another Maltsev
condition, the Gumm terms, and he points out that Jénsson terms trivially produce
Gumm terms. Now (e) of Theorem 4.4 gives an alternative way to meet the men-
tioned expectation. Namely, Day terms are quaternary terms satisfying (el), (e2),
(e3) and

(ed’) di(z, x,y,y) = x for all i,
so our terms in (e) clearly produce (and in fact, constitute) Day terms. Notice that
(e) is a byproduct of studying the Trapezoid Lemma; indeed, the proof of Theorem
4.4. is easier with (e) than with Jénsson terms. To reveal the connection between
(e) and Jénsson terms we mention that the p;(x,y,2) = d;(z, z,y, z) are Jénsson

terms provided the d; are (e) terms.

Remark 4.3. Theorem 4.4 and Proposition 4.2 clearly imply Theorem 4.3,

which says that congruence distributive varieties satisfy the Triangular Principle.

Proof of Theorem 4.4. (a) = (e) follows in the standard way of deriving
Maltsev conditions if we consider the the principal congruences § = con(u,v) and
v = con(x,y), and the congruence o = con(z,u) V con(y,v) of the free algebra

Fy(z,y,u,v).

(¢) = (b): Assuming that (e) holds in V, let A € V, let ® be a toler-
ance relation of A, let 3,7 € Con A with ® NG C ~, let x,y,u,v € A and
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suppose (z,u), (y,v) € @, (z,y) € [ and (u,v) € 7. We have to show that
(z,y) € . Consider the elements h; = d;(z,y,u,v), ¢ = 0,...,n, where the
terms d; are provided by (e). Then for i odd, h; = d;(z,y,u,v) v di(x,y,u,u) =
div1(z,y,u,u) v diy1(x,y,u,v) = hiyq, ie., (hy,hiy1) € v for i odd. For i even
we have to work a bit more. We start with h; = d;(x,y,u,v) ® d;(x,y,x,y)
and h; = d;(z,y,u,v) Bdi(z,x,u,v) = v = di(z,z,z,x) B di(z,y,z,y). Hence
(hi, di(z,y,x, y)) € dN G C ~. We obtain (hi+1, div1(z,y, x, y)) € v similarly. But
di(z,y,z,y) = diy1(x,y,x,y), whence the transitivity of v gives (h;, h;y1) € ~y for
i even. Now (h;, hi41) € v for all 4, and we conclude (z,y) = (ho, hy) € v. Le., V
satisfies (b).

Observe that (b) = (c) and (c) = (d) are evident (or follow from Propo-
sition 4.2).

(d) = (a): Let V be a variety satisfying the Rectangular Lemma and the
Triangular Lemma. The Rectangular Lemma in itself implies that V is congruence
modular according to Gumm ([Gul Cor. 4.6]). Now, by way of contradiction, as-
sume that V is not congruence distributive. Then there is an algebra A € )V and
there are congruences «, (3,7 € Con A generating a five-element nondistributive
sublattice M3 = {a, 3,v,w,t} of Con A withw < a <, w < f<irand w <7y < ¢.
The theory of modular commutator says, cf. [Gul, Cor. 8.9] or Freese and McKen-
zie,[FM Lemma 13.1], that any two elements of this Mg permute. Since 3 Z ~, we
can pick a pair (y,z) € f\ 7. Since (y,z) € 8 C ¢t =yVa = yo«, there is an
element x with (y,x) € v and (z,2) € a, cf. the left hand side of Figure 2. Now
anNpf =w C 7, so the Triangular Lemma yields (y, z) € 7, a contradiction. This
proves that V is congruence distributive.

Theorem 4.4 is proved.

Several parts of this subdivision are in close connection with former results
of J. Duda. He also introduced the Trapezoid Lemma (under the name Upright
Principle) and announced that conditions (a) and (c) of Theorem 4.4 are equivalent,
cf. [Dul], and they are equivalent to the conjunction of congruence modularity
and the Triangular Lemma, cf. [Du2]. (In virtue of Gumm’s classical result, this
conjunction is clearly equivalent to (d) of Theorem 4.4.) Duda ([Dul]) also gave
a Maltsev condition to characterize the Trapezoid Lemma; his Maltsev condition

consists of 6-ary terms.
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4.4. Schemes for congruence semidistributivity

The previous subdivisions (and [CR], [CTS]) show that instead of identities
in congruence lattices, certain diagrammatic statements are reasonable to consider.
The aim of the present subdivision is to show that this phenomenon can be extended
to lattice Horn sentences as well. We emphasize that the subsequent statements do
not yet have any continuation, so they seem to be much less important (and they

are definitely much less elegant, although not trivial) then the previous ones.

Definition 4.4. A lattice L is A-semidistributive if it satisfies the following
implication for all a, 3, € L:

aANfB=aNy = aA(BVy)=aAp.

The A-semidistributive law above is often denoted by SD,. More general (in
fact, weaker) Horn sentences have been investigated by Geyer ([Gey]) and Czédli
([Cz3]). Forn > 2 put n = {0,1,...,n — 1} and let P»(n) denote the set {S: S C
n and |S| > 2}.

Definition 4.5. For ) # H C Py(n) we define the generalized meet semidis-
tributive law SDa(n, H) for lattices as follows: for all «, By, ..., Bn_1

alNfPo=aANfi=...=aAP,1 = aAfyg=al /\ \/ﬁi.
I€H i€l
As a particular case, when H = {S : S Cn and |S| = 2}, SDx(n, H) is denoted
by SDx(n,2). Notice that SD,(n,2) is the following lattice Horn sentence:

ahfo=arBi=-=aAfir = ar N (BiVB)=aArp,
0<i<j<n

which was originally studied by Geyer ([Gey]), and SDx(2,2) is the A-
semidistributivity law defined in Definition 4.4. Czédli ([Cz3]) noticed that
SDn(n,2) is strictly weakening in n, i. e. SDa(n,2) implies SDx(n + 1,2), but
not conversely.

Our goal is to study SDx(n, H) in congruence lattices of single algebras. Al-
though it is usual to consider lattice identities and Horn sentences in congruence

lattices of all algebras of a variety, this is not our case. The reason is that, for an
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arbitrary variety V, if SD,(n, H) holds in {Con A : A € V} then so does SD.
(This was proved by Czédli ([Cz3]) and an anonymous referee of [Cz3] who pointed
out that both Kearnes and Szendrei ([KSz]) and Lipparini ([L1]) contain implicitly
the statement that if a lattice Horn sentence A\ can be characterized by a weak
Maltsev condition and, for each nontrivial module variety M, A fails in Con M for
some M € M, then for an arbitrary variety V if A holds in {Con A : A € V},
then so does SD,, cf. the last paragraph in [Cz3].) In particular, for any variety V
and any n > 2, SDx(n,2) and SDx are equivalent for the class {Con A : A € V}.

Hence SDx(n,2) does not deserve a separate study for varieties.
First, we consider congruence permutable algebras.

THEOREM 4.5 ([ChH2]). Let A be a congruence permutable algebra. Then

Con A satisfies SDa(n,2) if and only if A satisfies the scheme depicted in Figure

8 for a, By, ..., Pn_1 € Con A and xq, ..., Tk, Y,z € A where k = W—l and 0

stands for Bo N B NN Gh_1.

Figure 8

Proof. Suppose SDx(n,2) holds. Using the premise of SD,(n,2) we obtain
aNBo=(aNpBo)N---N(aNBp1)=an(BoN-NpBp-1) 9,
whence Con A satisfies the Horn sentence

anfo=-=anNf,1 = an [] BiVE) <6

0<i<j<n

35



This implies the scheme, for the situation on the left hand side in Figure 8 then

gives

(wz)ean (] BioB)Can [ (B:VE) <o

0<i<ji<n 0<i<ji<n

To show the converse suppose that the scheme given by Figure 8 holds,

a,Boy...,Bn1 € ConA with anNpgy = --- = an B,_-1, and suppose that
(y,z2) € aﬂﬂ0<i<j<n(ﬁi V ;). Since 3; V B; = B; 0 B; by congruence permutability,
there exist zg,x1,...,2r of A such that for each j (1 < j < k) there exist u, v

such that (z,z;) € 8, and (z;,y) € B, (according to the left hand side of Figure
8). Then the scheme applies and we conclude (y, z) € 4. Since 6 C [y, (y,2) € Po.
Hence (y,z) € aN By. This proves the ”<” part of SDx(n,2). The reverse part is
simpler and does not need the scheme: o O aNBy and B;VE; 2 B; 2 aNB; = aNfy
clearly give
an (] (BiVB)2anp,
0<i<j<n
proving the theorem.

Theorem 4.5 is proved.

In the particular case when n = 2 we trivially conclude the following assertion:

THEOREM 4.6 ([ChH2]). Let A be a congruence permutable algebra. Then
Con A is A-semidistributive if and only if A satisfies the scheme in Figure 9 for

any o, 3,7 € Con A and x,y,z € A.

Figure 9
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Proof. If Con A is A-semidistributive, then the premise of the scheme gives
(y,z) € SN~y C~ by Theorem 4.5. Conversely, if the scheme holds for A then its
premise, after interchanging the role of 5 and ~, implies (y, z) € BN~, so SDA(2,2),
which is the usual A-semidistributivity, holds in Con A according to Theorem 4.5.

Theorem 4.6. is proved.
g

One may observe that this scheme in Theorem 4.6. implies Corollary 4.2 char-
acterizing congruence distributivity in the congruence permutable case. This implies
that: in presence of congruence permutability congruence A-semidistributivity is
equivalent to congruence distributivity.

This follows also from another direction. Let A be congruence permutable
and satisfying SDx. In this case A is congruence distributive since otherwise its
congruence lattice, being modular due to congruence permutability, contains M3y
but with the choice «, 3,7 on Figure 10 we see that SD, fails.

(0)

Figure 10

Remark 4.4. For SDx(n, H), a similar scheme can be derived as in Theorem
4.5.

Without congruence permutability, for the case SDx(2,2) = SD,, the follow-

ing theorem can be stated:
THEOREM 4.7 ([ChH2]). Let A be an algebra. The congruence lattice Con A

is A-semidistributive if and only if for each n, A satisfies the scheme in Figure 11

for a,, B,y € Con A and x,y,z € A, where Ag = 3 and A, 11 = A,y 0oy o .
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Figure 11

Proof. Suppose that Con A is A-semidistributive and «, 3,7 € Con A with
anf=an~y. Let z,y,z € A and let (x,y) € v, (y,2) € @ and (z,z) € A,,. Then

(y,2) ean(Apoy) Can(fVy)=anf=any

due to the A-semidistributivity. Thus (y, z) € «, proving the validity of the scheme.

Conversely, let A satisfy the scheme for each n € aNg, let a, 3,7 € Con A
with aN B = an-~. Suppose (z,y) € aN (B V). Then there exists n € aN( such
that (z,y) € an(A,0v) and hence (z,y) € v and (y, z) € a and (z, 2) € A,, for some
x € A. Due to the scheme, we conclude (z,y) € anvy, i.e. anN(BVy) C any C ang.
The converse inclusion is trivial, thus Con A is A-semidistibutive.

Theorem 4.7. is proved.
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CHAPTER 5

Shifting lattice identities

The motivation for this chapter is the following question: what is the purely lat-
tice theoretic connection between the Shifting Lemma resp. the Triangular Lemma
and modularity resp. distributivity?

Let

Ao oplxy,..xp) < gz, ..., x0)

be a lattice identity. (Notice that by a lattice identity we always mean an inequality,
i.e. we use < but never =.) If y is a variable, then let S(\,y) denote the Horn
sentence

qxy,..., ) <y = p(a1,...,2,) <.

If y ¢ {z1,...,2,}, then X is clearly equivalent to S(\,y). However, we are inter-
ested in the case when y € {z1,...,2,}, say y = x; (1 <i<n). Then S(\, z;) is a
consequence of \. When S(A, z;) happens to be equivalent to A, then S(A,z;) will
be called a shift of A. If S(\, x;) is equivalent to A only within a lattice variety V,
then we say that S(\, x;) is a shift of X in V.

As it will soon become clear, not every lattice identity has a shift. If an identity
A can be characterized by excluded (partial) sublattices, then it is usually much
easier to decide whether \ has a shift, but we also handle identities, n-distributivity
and Fano identity, without such characterization.

First consider the distributive law

dist:  Bla+7) < Ba+ B7.

In this chapter there are some lattice terms with high complexity; hence the lattice
operations are denoted by sum and product instead of V and A. Then S(dist:, ) is
Ba+ By < v = B(a+) <, which is clearly equivalent to saying that

aB <y = fBla+y) <y (1)

is a shift of dist. Indeed, replacing v with a5+, (1) implies the identity S(a+~) <
aff + v, whence B(a + ) < B(af + ). Using this second identity twice we obtain

Bla+7v) < BlaB +7) < Ba+ B,

39



the distributive law.

Although S(dist, ) and, rather, (1) are not lattice identities, they have two
conspicuous advantages over distributivity. Firstly, if we want to test the distribu-
tivity of an n-element lattice in the most straightforward way, then we have to
evaluate both sides of B(a + ) < Ba + By for n? triplets. But to test S(dist, )
resp. (1) we have to evaluate 3(a+y) for those triplets for which Sa+ 37 resp. af
is below 7. Secondly, S(dist,~) or (1) makes it clear that the Triangular Scheme
holds when the congruence lattice is distributive. (In fact, the Triangular Scheme
is equivalent to congruence distributivity provided the algebra in question has per-

mutable congruences.)

Practically the same is true for the modular law
mod: «a(f+ ay) < af + ay.
Now S(mod,v): af + ay < v = «a(f8 + av) <, which is clearly equivalent to
af <y = a(f+ay) <. (2)

To show that (2) implies modularity it suffices to observe that (2) fails in the
pentagon (five element nonmodular lattice) when 5 || v < a || 5. Again, S(mod, )
and (2) are easier to test from a computational point of view, they evidently imply
the Shifting Lemma, and, in fact, the satisfaction of (2) is equivalent to the Shifting

Lemma provided the algebra has 3-permutable congruences.

The examples above show the advantage of shifts of lattice identities: they
are easier to test and they give rise to congruence diagrammatic-statements which
could be quite useful. In the rest of the chapter we consider some concrete lattice

identities, and we give their shifts or show that no shift exists.

Following Huhn ([Hul]) and ([Hu2]), a lattice L is said to be n-distributive
(n > 1) if the identity

dist,, : ﬁiaigi I} Z o
i=0 j=0

i€{0,....,n}\{j}

holds in L. (Notice that in his earlier papers Huhn assumed modularity in the
definition but later he dropped this assumption.) Clearly, dist; is the usual dis-
tributivity.
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THEOREM 5.1 ([CCH2]). S(disty, ) is a shift of dist,, in the variety of mod-
ular lattices. However, if n > 2, then dist, has no shift (in the variety of all
lattices).

Figure 12

Proof. Let L be a modular lattice such that dist,, fails in L. Then, by Huhn
([Hul]) and ([Hu2]), L contains an n-diamond (This is the current terminology.
Huhn called an equivalent notion an (n — 1)-diamond.), i.e. there are pairwise
distinct elements u,v,ag,...,a,+1 in L such that for any n-element subset H C
{0,1,...,n+1}and k € {0,...,n+ 1} \ H we have

akg a; =u and ak—I—g a; = .

1€H icH

Notice that these equations mean that any n + 1 elements of {aq,...,a,4+1} are
the atoms of a Boolean sublattice with bottom w and top v. Now the substitution
a; =a;, 1=0,...,n, and [ = a,41 shows that S(dist,, ag) fails in L.

Now let n > 2. We define a lattice L such that dist,, fails, but all the ”shift
candidates” S(dist,, 3), S(dist,,ag), ..., S(dist,,a,) hold in L. Take the finite
Boolean lattice with n + 2 atoms, pick an atom v, let u be the complement of v and
insert a new element w in the prime interval [u, 1]. This way we obtain L, which is
depicted in Figure 12 when n = 2. Letting {ay, . . ., a,, } be the set of covers of v and
B = w we see that dist,, fails in L. Clearly, S(dist,,, ) holds in any lattice. Now,
by way of contradiction, assume that S(dist,,, o) fails for some 3, g, ..., a, € L.

Then we have

p<q q<ay p¥%aop, (3)
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(Vi) 8 £ i, (4)

Do £ Y, o (5)
i€{0,....,n}\{j}

w € {8, ap,...,an} (6)

Indeed, (5) follows from (3), and (6) follows from (3) and the fact that p < ¢
in the Boolean lattice L \{w}. If w = aj, 0 < k < n, then either the interval
[v,1] contains some «a; and 1 = «aj + «; contradicts (5) (this is where n > 2 is
used) or all the «; belong to [0, w] = [0, ax], which contradicts (5) again. Hence (6)
yields g = w. In what follows, =4 will refer to distributivity applied for elements
of the sublattice L \{w}. If > ;.o 3o # 1 then, for any H C {0,...,n},
B icH @ = U ;o i, and using the above-mentioned distributivity clearly gives

p = q, contradicting (3). Hence Zie{o =1 and p = 8 = w. Since

q= Z B Z o >

j€{0,...,n} i€{0,...,n}\{s}

Zu Z ai:duZaj:u

j€{0,...n} i€f{0,...n\{j} j€{0,...,n}

and ¢ < p £ q, we have ¢ = u. Then (3) gives avg = u and (5) gives a contradiction
again, either because [v,1] contains some «; and ag + «; = 1 or because [0, )]
contains all the «;.

Theorem 5.1. is proved.

Now, to show once again how a shift leads to a diagrammatic statement, we
visualize disto. The following statement clearly follows from the preceding part of
the chapter. It is worth mentioning that when congruence lattices of all algebras
of a given variety are considered then each of dist,, is equivalent to the usual dis-
tributivity by Nation ([N]); hence the following statement is totally uninteresting

for varieties instead of single algebras.

Corollary 5.1 ([CCH2]). (A) Let A be an algebra with modular congruence
lattice Con A. If Con A is 2-distributive then the diagrammatic statement depicted
in Figure 13 holds in A.

(B) If A is congruence permutable, then Con A is 2-distributive if and only if
the diagrammatic statement depicted in Figure 13 holds in A.
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{ oy z X %y z
Blag + aq)
P (XO +B(ao + az) B ao OC()
+0(a1 + az) < g
y u y u
Figure 13

The next group of lattice identities we consider is taken from McKenzie [Mc]|.

These identities are as follows:

Co: (e+ylz+ay)(z+ay) <y+ (z+ 22 +y)(y +2),
G oz(zy+z(w+2yz) <zy+ (2 4+w)(z+ w(z + 2)),
G (F+y)(z+z) <z+(z+y)(z+2)(y+2),

G (x4y2)(z+2y) < z(x+yz) + x(z+ zy),and

G yEryletyz) <z+(z+y)z+a(y+2)).

Notice that (3 is Gedeonovd’s p-modularity ([Gedl]).

THEOREM 5.2 ([CCH2]). S(Co,vy), S(¢1,y), S(C2, ), and S((3,y) are shifts of
Co, (1, (2 and (3, respectively. On the other hand, (4 has no shift.

Qo @1
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Q4

Proof. Consider the lattices Qo, ..., Q4 given by their Hasse diagram. For
i =0,...,4 McKenzie ([Mc]) proved that Q; is a projective splitting lattice with
conjugate identity (;. As a consequence, for an arbitrary lattice L, ¢; holds in L if
and only if @; is not (isomorphic to) a sublattice of L; for ¢ = 3 this was previously
proved by Gedeonova ([Gedl]).

(Since it is not so easy to extract this well-known consequence from [Mc],
perhaps a short hint is helpful. By definitions, for any lattice variety ) either (; holds
in V or Q; € V. Now suppose that (; fails in a lattice L. Then @; € HSP{L} =
P.HSP,{L}. Splitting lattices are subdirectly irreducible, so @Q; € HSP,{L}.
Since @); is projective, Q; € SP,{L}, i.e. @); can be embedded into an ultrapower
of L. But Q); is finite, its embeddability can be expressed by a first order formula,
so applying Lo$’ theorem we conclude that @; is embeddable into L.)
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Now if the shift of (;, 0 < i < 3, (i.e. S({2,x) for i = 2 and S((;,y) for
2 # ¢ < 3) held, but (; failed in a lattice L then @; would be a sublattice of L and
the elements x, y, . .. indicated in the diagram of ); would refute the satisfaction of
the shift of (; in L.

It follows from definitions (or by substituting (z,y, z) = (a,b, c)) that (4 fails
in Q4. So, to prove that (4 : py < g4 has no shift, it suffices to show that all the
"shift candidates” S((4,x), S((4,y) and S((4, 2z) hold in Q4. If z,y,z € Q4 with
{z,y,z} # {a,b,c} then the sublattice [z,vy, 2] is distinct from @4, so it has no
sublattice isomorphic to @4, hence (4 and therefore the shift candidates hold in
[x,y, z]. Hence it suffices to test substitutions with {x,y, z} = {a, b, ¢}; six cases. It
turns out that (z,y,2) = (a, b, c) is the only case when py £ g4, so it is quite easy
to see that all the shift candidates hold in Q4.

Theorem 5.2 is proved.
O

Theorem 5.2 raises the problem of characterizing splitting lattices whose con-
jugate identities have shifts.

All the previous lattice identities have known characterizations by excluded
(partial) sublattices (at least in the variety of modular lattices) and, except for dis-
tributivity, our proofs were based on these characterizations. (Even in the second
half of the proof of Theorem 5.1 the construction was motivated by Huhn’ charac-
terization for the modular case.) It would be interesting but probably difficult to

avoid the use of excluded sublattices. The Fano identity (cf. e.g. Herrmann and
Huhn ([HH])):

xX2: (+y)z+t) <(x+2)y+t)+(x+t)(y+2)

has no similar known characterization; yet, we have the following statement.

THEOREM 5.3 ([CCH2]). The Fano identity has no shift — not even in the

variety of modular lattices.

Proof. Suppose that x5 has a shift in the variety of modular lattices. Since

the role of its variables is symmetric, we can assume that this shift is
S(x2,z): (z+2)y+t)+ (@ +t)y+2)<z= (z+y)(z+1t) <=z

Let L be the subspace lattice of the real projective plane. Then L is a modular

lattice with length 3. It contains 0 = 0y, = (), the atoms are the projective points
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Z

Figure 14

(as singleton subspaces), the coatoms are the projective lines, and the full plane is
1 =1y. It follows from Herrmann and Huhn ([HH]) that xo fails in L. We intend
to show that S(x2,x) holds in L and this will imply our theorem. We will use the

modular law in its classical form
r<z= (z+tyz=z+yz

and also in the form of shearing identity

w(y+2) =s w(y(z+2) +2) = 2(y(r + 2) + 2(x +y)).
First we show that y2 and therefore S(x2,z) hold for z,y,z,t € L when
{z,y, z,t} is not an antichain. By symmetry, it is enough to treat two cases.

Case 1: = <y, then

(z+y)(z+t)=ylz+1t) =5 yly+t) +tly+2) <z(y+1t) +tly+2) <
(+ziy+)+@+tly+2)=(@+2)(y+t)+ (@ +t)(y+2).

Case 2: = < z, then

E+y)t+t)=r+y(z+t)=s v +yQly+t) +ty+2) <
zy+t)+z+tly+z2)=(+2)(y+t)+ (z+1t)(y+ 2).

Let {x,y, z,t} be an antichain in L. Thus each of z,y, z and ¢ is a point or a
line.

If z is a line then we infer z + z = 1 from z € = and the premise of S(x2,x)
gives x > (x +2)(y+t) = y+t > y, a contradiction. Therefore x is a point.
If z is a line then = + z = 1 again and we can derive the same contradiction.
Hence z is a point and, by z—t symmetry, so is ¢. Similarly, if y is a line then
x> (x+2)(y+1t) =x+ 2> z, therefore y is a point.
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We have seen that z, y, z and t are pairwise distinct points. Let us consider the
"triangle” xzt, cf. Figure 14. The premise of S(x2,x) says (z+ z)(y +t) < z, which
is possible only when y < x + ¢ (i.e., y is on the line through x and t¢). Similarly,
(x+t)(y+2) < x forces y <z + 2. Hence y < (x +t)(z + 2) = z, a contradiction.

Theorem 5.3 is proved.
g
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CHAPTER 6

Tolerances and tolerance lattices

6.1. The inequalities mod(tol,tol,tol) and dist(tol,tol,tol) in case of con-

gruence modularity and distributivity

Let dist(x,y, z) resp. mod(z, y, z) denote the distributive law
cA(yVz)<(xAy)V(xAz)
resp. the modular law
zA(yV(zAz)<(zAy)V(zAz).

For an algebra A, the set of tolerances and the lattice of congruences of A will
be denoted by Tol A and Con A, respectively. We say that dist(tol,tol,tol) holds
in AifTA(@VYEY) C (T APV (I AY) is valid for any I', &, ¥ € Tol A, where
the meet resp. the join is the intersection resp. the transitive closure of the union.
Denoting the transitive closure by *, ® V¥ = (d U ¥)* = &* V U* (the second join
is from Con A) for any tolerances ® and W in the present subdivision throughout.
The meaning of mod(tol,tol,tol) is analogous. We should emphasize here that ® Vv ¥

is not the join in Tol A, the lattice of tolerance relations of A.

THEOREM 6.1 ([CzH2]). If V is a congruence distributive resp. congruence
modular variety, then dist(tol,tol,tol) resp. mod(tol,tol,tol) holds in all algebras of
V.

Proof. Suppose V is congruence distributive. Then we have Jénsson terms, cf.
Jénsson ([J1]), i.e. ternary V-terms to,...,t, for some even n € Ny = {0,1,2,...}
such that V satisfies the identities to(z,y,2) = =z, t,(z,y,2) = 2z, ti(z,x,y) =
tit1(x,z,y) for i even, t;(x,y,y) = tiv1(z,y,y) for i odd, and ¢;(x,y,x) = x for all
i. Nowlet Ae V, I',®, ¥ € Tol A and (a,b) € I' A (@ vV ¥). Then there is an even
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k, and there are elements ¢y = a,cy,...,cx—1,c, = b such that (¢;,c;41) € ® for i
even, (¢;, ci+1) € ¥ for i odd and (a,b) = (co,c) € I'. Since

ti(a7 U, b) = t’L(t’L(av v, a)a u, t’L(bv v, b)) r t’L(t’L(av v, b)a u, ti(a7 v, b)) - ti(a7 v, b)a
for all 4 and any u,v € A we have
(ti(a,u,b),t;(a,v,b)) € T. (1)

Now we define a sequence from a to b as follows:

a =tg(a,co,b) =t1(a,co,b) ® t1(a,c1,b) ¥ t1(a,co,b) @ t1(a,cs,b)
U ... .Pt(a,ck-1,b) ¥ t1(a,ck,b) = ti1(a,b,b) = t2(a,b,b) =
ta(a,ck,b) W ta(a, cp—1,b) @ ta(a,cr_2,b) U ... ® ta(a,co,b) =
ta(a,a,b) = ts(a,a,b) ¢ ts(a,ci,b)Vts(a,co,b) ... U
ts(a,ck,b) = ty(a, cr,b) ¥ ty(a,cr—1,0) ® ... P
tn-1(a,cp—1,b) ¥ t,_1(a,ck,b) =t,—1(a,b,b) =t,(a,b,b) =b.

It follows from (1) that any two consecutive members of this series are in
CN®)U(CNT)C(TCAP)V(TVD).

Thus (a,b) € ([ A ®) VvV (I' N V), whence dist(tol,tol,tol) holds in V.
Now let V be congruence modular. Then we have Day terms, i.e. quaternary

V-terms mg, my, ..., my for some 0 < k € Ny such that V satisfies the identities

mO(xayvuv,U):xa mk(xayvuvv):y
mi(%y’%y) = mz’+1($7y,l’,y) for ¢ evel,
m;i(z,y, z,2) = mit1(x,y, 2, z) for i odd, and

m;(x,z,y,y) = x for all 7,
cf. Day ([Dal]). First we show that, for any A € V and I, ®, ¥ € Tol A,
TN (@o(TN¥)od)C(CNB)V(CND). (2)

Let (a,b) e ’'N(®o (I'N W) o ®). Then there are ¢,d € A with (a,c),(d,b) € P,
(¢,d) € I'NV and, of course, (a,b) € T'. Consider the elements d; = m;(a, b, ¢, d) for
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i=0,1,...,k, e, =m;(a,b,c,c) = m;i1(a,b,c,c) for i odd, and e; = m;(a,b,a,b) =
mit1(a,b,a,b) for i even. Then dy = a, d, = b, and (d;, €;), (e;,d;i+1) € LN for ¢
odd.

For i even we have (d;, e;), (e;,diy1) € @,

d; = m;(a,b,c,d) = m;(m;(a,b,c,d),m;(a,b,c,d),a,a) T

m;(m;(a,a,c,c),m;(b,b,d,d),a,b) =m;(a,b,a,b) =e;,

ie. (d;,e;) € 'N®. Similarly, (e;,d;41) € ' N O.

Now (a,b) € (I A @)V (I' A U) follows from transitivity and from the fact that
all the (d;,e;) and (e;,d;41) belong to (I' A ®) vV (I' A ). This shows (2).

Now define &y = ® and ¢,,11 = ¢, 0 ('N V) 0o P, for n > 1. Notice that all
the ®,, belong to Tol A. We claim that for all n € Ny,

rne, C(Tnd)vTrnw). (3)

This is evident for n = 0. Assuming (3) for an arbitrary n and applying (2) we obtain
'ne®,; =I'n(®,o('N¥)od,,) C (I'nd,)v(nv) C (I'n®)v(Cne)v('nv) =
(I'n®) Vv (I'NW),ie. (3) holds for n+ 1. Thus (3) holds for all n and we obtain
CA@VIAY)=TNU{P, :neNg}=U{I'N®,:neNy} C (I'Nnd)v(NY).
Theorem 6.1 is proved.

g

Corollary 6.1 (Gumm [Gul]). IfV is a congruence modular variety, then it
satisfies Gumm’s Shifting Principle, i.e. for any A€ V, a,v € Con A and ® € Tol A
if (z,y), (u,v) € a, (z,u),(y,v) € ®, (u,v) €y and a NP C ~, then (z,y) € .

Proof. (z,y) can(®V(aAy) C(aA®)V(aAy)CyVy=r.
Corollary 6.1 is proved.
g

Notice that Theorem 6.1 also implies the Triangular Principle and the Trape-
zoid Principle for congruence distributive varieties, cf. [ChH1] and [CCH2].

Now we give an example. Consider the monounary algebra B = ({0, 1,2}, —)
where —0 = 0, —1 = 2 and —2 = 1. Then « with the associated partition
{{0}, {1, 2}} is the only nontrivial congruence of B, so Con A is distributive. Notice
that

¢ ={(0,1),(1,0),(0,2),(2,0),(0,0), (1,1),(2,2)}
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is a tolerance and aN®* Z (aeN ®)*. Hence the following statement indicates that

Theorem 6.1 cannot be extended for single algebras.

Proposition 6.1 ([CzHZ2]). If mod(tol,tol,tol) or dist(tol,tol,tol) holds in an
algebra A, then I'N®* C (I'N ®)* for any I', ® € Tol A.

Proof. Apply mod(T', ®,0) or dist(T", @, 0).

Proposition 6.1 is proved.

6.2. Tolerance lattices of algebras in congruence modular varieties

The tolerances and the congruences of an algebra A form algebraic lattices
denoted by Tol A = ( Tol A, A,UJ) and Con A= ( Con A, A, V), respectively. The
congrence lattice Con A of an algebra A is an algebraic lattice, but (according to
the Grétzer—Schmidt theorem, cf. [GS]) it has no further special properties. The
same is true for the tolerance lattice Tol A by [CC] (for an alternative proof cf.
also Theorem 2 with p being the identical map plus checking the construction for
reflexivity in Gréatzer and Lampe ([GL]). As a contrast to the general case, the
tolarence lattice Tol L of an arbitrary lattice L has many nice properties by [RS]
and Bandelt ([B]). Bandelt [B] is also a good source to convince the reader about
the importance of tolerances of lattices.

The purpose of the present subdivision is to extend known results on tolerance
lattices of lattices to tolerance lattices of more general algebras. Some results will
be extended ”only” for algebras with a majority term while some others for algebras
in a congruence modular variety. Surprisingly enough, the proof of our generalized
statement on O-modularity, to be stated in the last theorem here, is considerably
simpler than Bandelt’s original approach and seems to be the right way to reveal
what is behind the scene in [B]. In spite of the present achievments, we are not
able to generalize all properties of lattice tolerances, for example, there is still no
generalization of [Cz4].

For & € Tol A, the transitive closure of ® will be denoted by ®*. Clearly, ®*

is a congruence of A. For any ®, ¥ € Tol A the least congruence containing both
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® and ¥ will be denoted here by ® vV W. Obviously, we have ® V¥ = (& U ¥)* =
®* v U*. We recall from the previous subdivision that we say that dist(tol,tol,tol)
respectively mod(tol,tol,tol) holds in A, if TA(®VW¥) < (I'AP)V(I'AT) respectively
CA(PVIATY)<(TA®P)V(I'AYP)is valid for all ', &, ¥ € Tol A.

In the previous subdivision we proved that if V is a congruence modular resp.
congruence distributive variety, then for each algebra A € )V, mod(tol,tol,tol) resp.
dist(tol,tol,tol) holds in A. We also proved that ® A U* < (& A W)* for all &,V €
Tol A and A € V, and pointed out that it is essential to consider a whole variety,
not just a single algebra.

It is known that the variety of all lattices is congruence distributive. The
afore-mentioned results of Bandelt ([B]) state that for any lattice L, TolL is a
pseudocomplemented and 0-modular lattice. The pseudocomplement ®# of any
® € Tol A is a congruence by [RS]. Now the above-mentioned results of [CzH2]
provide us with the main tool to prove, for instance, that if A belongs to a congru-
ence modular variety, then Con A is a homomorphic image of Tol A; if A belongs
to a congruence distributive variety, then Tol A is 0-1 modular and pseudocomple-

mented lattice and for any ® € Tol A ®# is a congruence.

A lattice L with 0 is called 0-modular, cf. Stern ([St]), if there is no N5 sublattice
of L including 0. A bounded lattice L is called 0-1 modular if no N5 of L includes
both 0 and 1. Clearly, this is equivalent to the condition that none of the elements
of L has comparable complements. A complete lattice L is called upper continuous,
cf. Schmidt ([Sch]), if any directed family of elements {as | d € D} C L and any
a € L satisfies a A (\/{as | 6 € D}) = \/{aAas |0 € D}. Tt is well-known that any
algebraic lattice is upper continuous.

For a,b € L set SC (a/b) ={x € L | a Az <b}. If L is an upper continuous
lattice, then the set SC (a/b) contains at least one maximal element [CrD], which
is called a weak pseudocomplement of a relative to b and it is denoted by a,b. It
is easy to see that a,b is not necessarily unique and for any = € SC (a/b) there
exists at least one a,b such that x < a,b. If 0 € L, then a,0 is called a weak
pseudocomplement of a and it is denoted by a™. If a" is unique, i.e. if a¥ is
the greatest element of SC (a/0), then it is called the pseudocomplement of a and
usually it is denoted by a#. L is called a pseudocomplemented lattice if for each
a € L there exists a” € L. In other words, L is pseudocomplemented if for any
a € L there exists an a# € L such that for anyr € L, x Na=0& 1z < a?. Tt

is known that any algebraic distributive lattice is pseudocomplemented. If L is a
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pseudocomplemented lattice, then (L, A,V,#,0,1) is called a p-algebra . We will
use A and V for the equality relation and the total relation on A, respectively. The
algebra A is called tolerance-simple, cf. e.g. Chajda [Ch], if Tol A = {A,V}.

The following lemma will be useful in our proofs:

Lemma 6.1 ([CHR]). Let A be an arbitrary algebra and ®,,®, € Tol A.
Then @1 LJ (I)Q =V 1mplles (I)l @) q)g = (I)Q 9] @1 = V.

Proof. Since (@1 o ®3) N (P2 0 ®q) is clearly a tolerance of A, cf. e.g. [RRS],
and it includes ®; and ®9, we obtain V = &1 U ®y C (P71 0 §3) N (P2 0 $y). Hence
P00y =P50P; = V.

Lemma 6.1 is proved.
O

Lemma 6.2 ([CHR]). Let A be a congruence modular (congruence distribu-
tive) algebra. Then the following statements are equivalent:

(i) For any § € Con A and any ® € Tol A we have ®,,0 € Con A.

(i) ®* A U* = (® A D)*, for all B, T € Tol A.

(iii) The map h: Tol A — Con A, & — ®* is a surjective lattice homomor-
phism.

(iv) mod(tol,tol,tol) (dist(tol,tol,tol)) holds in A.

Proof. (i) =(ii). Let ®,¥ € Tol A and consider § = (& A ¥)* € Con A.
Then ® A ¥ < . As Tol A is an algebraic lattice, there exists a ®,,0 such that
¥ < @,,0. Since by the assumption of (i) ¢,,0 € Con A, we obtain ¥* < ®,,0, and
this implies ® A U* < (& A U)*. As this relation is valid for any pair of tolerances,
we obtain

PNV < (PAT) < ((PAY)" )" =(DAD)".
Since (& A U)* < &* A U*, we obtain ®* A U* = (& A W)™,
(ii)=-(iii). Since for any § € Con A we have h() = 60, the map

h:TolA — Con A

is surjective. Take ®,¥ € TolA. Then A(®PU V) = (U V)" = " v U* =
h(®) V h(¥), moreover (ii) implies h(PAY) = (PAV)* = (P A V)" = h(P) Ah(D).

Thus h is a homomorphism.
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(iii)=(iv). Take I', ®, ¥ € Tol A. Then we have
CA@VTAD) ST A(Q*V(IAD)") <T*A (" V(I ATY)).

If Con A is a modular lattice, then we obtain I'* A (&* V (I' v U*)) < (I'™ A ®*) V
(I A U*). Since h(®) = ®* is a homomorphism, we have (I' A ®)* = I'* A ®* and
(T AW)* =T* AU*. Thus we obtain ' A (& V (I'AW)) < (T A®*) vV (T AT*) =
(TA®)*V(TAY)"=(T'A®)V (I’ A¥), and so mod(tol,tol,tol) holds in A.

The case when Con A is distributive is similar:

TA(®VT) <A (D VI*) = (0 A D%V (TF AT =
(CA®)*V(CAD)* = (CAD)V(DAD),

and this proves that dist(tol,tol,tol) holds in A.

(iv)=(i). Clearly, dist(tol,tol,tol) implies mod(tol,tol,tol) and the latter, ac-
cording to [CzeHor2| or substituting 0 for the "third tol”, implies T A®* < (I' A ®)*
for all I';® € Tol A. Take any § € Con A and ® € Tol A. Then ® A &,0 < 6
implies ® A (9,60)* < (& A P,0)* < 6° = 0, ie. (P,0)° € SC (P/0). As
®,0 is a maximal element of SC (®/f) and since ®,0 < (®,0)*, we obtain
$,0 = ($,0)* € Con A.

Lemma 6.2 is proved.
g

Proposition 6.2 ([CHR]). Let A be an algebra in a congruence modular
variety V. Then the following two statements hold:

(i) For any ® € Tol A each ®¥ € Con A.

(ii) If ® and ¥ are complements of each other in Tol A, then they are weak

pseudocomplements of each other and form a factor congruence pair of A.

Proof. (i) Since V is congruence modular, mod(tol,tol,tol) holds in A accord-
ing to [CzH2]. As ¥ = &,,0, applying Lemma 6.2 we infer (i).

(ii) Let ® and ¥ be complements of each other in Tol A. Then, by Lemma
6.1, LY =V implies oW =Vod =V. As DAV = A, there is a ®* such that
U < &%, We have to prove ¥ = ¢ ie. & < U,

Take any (x,y) € ®*. Since (z,y) € ® o U, there exists a z € A such that
(r,2) € ® and (z,y) € V. However ¥ < ®" implies (z,y) € ®*. As & € Con A,
we obtain (z,2) € Y AP = A, i.e. x = z. Therefore we obtain (z,y) € ¥ proving
®* < W. Thus, we conclude that ¥ = ®* € Con A. Interchanging the role of ®
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and ¥ we obtain ® = V" € ConA. As PAV =Aand Po¥V =Vod =V, ® and
U are factor congruences of A.
Proposition 6.2 is proved.

O

Definition 6.1. The lattice L with 0 satisfies the general disjointness property
(GD)ifaAb=0and (aVb)Ac=0imply aA (bVc)=0. (See [S] or [St].)

It is easy to check that any pseudocomplemented lattice has the (GD) property.
It was proved in [S] that any 0-modular lattice satisfies the (GD) property, too.

THEOREM 6.2 [(CHR)]. Let A be an algebra in a congruence modular variety
V. Then the following statements hold:

(i) The map h: Tol A — Con A, & — ®* is a surjective lattice homomorphism
and Tol A is a 0-1 modular lattice having the (GD) property.
(ii) Tol A is pseudocomplemented if and only if Con A is pseudocomple-

mented.

Proof. (i) Since V is a congruence modular variety and A € V, by [CzH1]
mod(tol,tol,tol) holds in A. Therefore by applying Lemma 6.2 we obtain the re-
quired homomorphism.

Now, by way of contradiction, suppose that Tol A is not 0-1 modular. Then
an N5 sublattice of Tol A includes A and V. Hence each element of this N5 has a
complement in Tol A. Since complements are weak pseudocomplements as well, we
conclude from Proposition 6.2(ii) that N5 C Con A. Hence the homorphism A acts
identically on N5 and we infer that N5, as a homomorphic image, is a sublattice of
Tol A, contradicting congruence modularity.

Finally, take I, ®, ¥ € Tol A and assume that 'A® = A and (TU®)ATY = A.
Applying the homomorphism A to these two equations we obtain h(I') A h(®) =
h(A) = A and (h(T) V h(®)) A h(¥) = A. Since Con A is a modular lattice, it
has the (GD) property as well, and this gives T A (P U V) < (T A (PU T)) =
h(T') A (h(®) V R(¥)) = A. Thus Tol A has the (GD) property.

(ii) Assume that Tol A is a pseudocomplemented lattice. Since now for any
6 € Con A, 6% is its (unique) weak pseudocomplement in Tol A, Proposition 6.2(i)
gives 07 € Con A. As any ( € Con A is also a tolerance, we have O A ( = A &
¢ < 0%. Hence 67 is the pseudocomplement of @ in the lattice Con A as well. Thus

Con A is pseudocomplemented.
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Conversely, assume that Con A is pseudocomplemented and denote by 6%
the pseudocomplement of a § € Tol A. We prove that for each & € Tol A the
congruence ((®)*)# is the pseudocomplement of ® in Tol A.

Let ¥ € Tol A, ¥ < (®*)#. Then ®A¥ < &*A(®*)# = A. Takea ¥ € Tol A
with @ AW = A. Then, in view of Lemma 6.2(ii), we have ®* AU* = (DA V)" = A,
Thus we obtain ¥* < (®*)# and so ¥ < (®*)#. Hence PAVY =0 < ¥ < (*)#
and this proves that Tol A is pseudocomplemented and the pseudocomplement ®#
of ® in Tol A is the same as (®*)7.

Theorem 6.2 is proved.
(|

Remark 6.1. Observe that the following is implicit in the proof of Theorem
6.2(ii): The pseudocomplement in Con A of a © € Con A is the same as its pseu-
docomplement in Tol A. As a consequence, the pseudocomplementation operation
will be denoted by the same symbol ”#” in both of the lattices Tol A and Con A.. It
is also clear that in this case (Con A, A, ) is a subalgebra of (Tol A, A,# ). Notice
that in the proof of the Theorem 6.2(ii) it was also deduced that ®# = (®*)#.

Proposition 6.3 ([CHR]). Let V be a congruence distributive variety and
let A € V. Then the following statements hold:

(i) Tol A is a pseudocomplemented 0-1 modular lattice and for any ® € Tol A
we have ®# € Con A.

(ii) The map h: Tol A — Con A, ® — ®*, is a homomorphism of the p-algebra
(Tol A, A, LL# A\, V) onto the p-algebra (Con A, A, V,# | A\, V).

Proof. Now Con A, as an algebraic distributive lattice, is pseudocomple-
mented as well. Therefore (i) is an obvious consequence of Theorem 6.2 and Propo-
sition 6.2(i).

(ii) In view of Theorem 6.2(i) h is a lattice homomorphism and & is surjective.
We have also h(A) = A and (V) = V. Since ®# € Con A, h(®#) = ®#. On the
other hand, we have (h(®))* = (®*)# = ®¥ according to Remark 6.1. Thus we
obtain h(®#) = (h(®))#, and hence h is a homomorphism of p-algebras.

Proposition 6.3 is proved.

Corollary 6.2 ([CHR]). Let A be an algebra of a variety V.
(i) If V is congruence modular and Tol A is a simple or complemented lattice,
then Tol A = Con A.
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(ii) If V is congruence distributive and the lattice Tol A is simple, then the

algebra A itself is tolerance-simple.

Proof. We may assume that |A| > 2.
(i) If Tol A is complemented, then Proposition 6.2(ii) gives Tol A = Con A.
If Tol A is simple, then the congruence ©® C Tol A x Tol A defined by

(@1,@2) €0 <:>(b>'1< = q);

is either the identity relation or the total relation on Tol A. The latter case can be
excluded, as A* = A # V = V*. Since we have (®, ®*) € O, we obtain & = ®* for
all ® €Tol A, i.e. Tol A = Con A.

(i) We have Tol A = Con A, according to the above (i). As now Con A
is a simple distributive lattice, it is a two-element chain. Hence Tol A is also a
two-element chain, i.e. A is tolerance-simple.
Corollary 6.2 is proved.

g

A term function m(z,y,z) of an algebra A is called a majority term if
m(x,z,y) = m(z,y,x) = m(y,z,x) = x holds for all z,y € A. For instance,

any lattice (L, A, V) admits a majority term; namely:

m(z,y,z) =(xAy)V(zAz)V(yAz).

It is well-known that the variety V(A) generated by an algebra A with a majority
term is congruence distributive.

Now let A be an arbitrary algebra and I', ® € Tol A. By an (I", ®)-circle we
mean a quadruplet (a, b, c,d) € A* such that (a,b), (c,d) € T and (b, c), (d,a) € ®.

Lemma 6.3 ([CHR]). Let A be an algebra with a majority term m, and let
I, ®cTolA withT A® = A.
(i) If (a,b,c,d) € A* is an (T, ®)-circle, then

m(a,b,c) =b, m(b,c,d) = ¢, m(c,d,a) =d, m(d,a,b) = a. (1)
(ii) We have T U® = (T o ®)N (P oT).

Proof. (i) Because of symmetry, it suffices to prove the first equality. Since
we have (m(a,b,c),m(b,b,c)) € I, ((m(a,b,c),m(a,b,b)) € ® and m(b,b,c) =
m(a,b,b) = b, the first equality comes from I' A & = A.
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(ii) As it was pointed out in the argument of Lemma 6.1, we have (I' o &) N
(Pol') € TolA and TUP C (To®)N(Pol'). Now let ¥ be a tolerance with
I' < ¥ and & < ¥ and take any a,c € A with (a,c) € ('o®) N (P oTI). Then
there exist b,d € A such that (a,b) € T, (b,c) € ® and (a,d) € ®, (d,c) € T.
Then (a,b,c,d) is an (I', ®)-circle. Therefore (1) gives m(d,a,b) = a. On the
other hand, (d,c), (b,c) € ¥ implies (m(d,a,b),m(c,a,c)) € ¥. As m(c,a,c) = ¢,
we obtain (a,c) € ¥. Thus we conclude (I'o &) N (P oI') < ¥ and this proves
(To®)N(®ol) =T L.

Lemma 6.3 is proved.
g

THEOREM 6.3 ([CHR]). Let A be an algebra. If A has a majority term, then:

(i) Tol A is a O-modular pseudocomplemented lattice.
(ii) The tolerances I', ® are complements of each other in Tol A if and only if

they form a factor congruence pair of A.

Proof. (i) Since the variety V(.A) is congruence distributive, in view of Propo-
sition 6.3, Tol A is pseudocomplemented.

In order to prove that Tol A is O-modular, by way of contradiction let us assume
that {A,T', @, %, Q} is an N5 sublattice in TolA with A < T <X < Q, A <P <
and TUP=XUP=Q T'A®P=3AP=A. Take any a,c € A with (a,c) € X. As
by Lemma 6.3(ii) we have Q =T U® = (To®)N(PoT') and since 3 < 2, we obtain
(a,c) € (To®)N(Pol). Then there exist ¢,d € A such that (a,b) € I, (b,c) € ®
and (a,d) € @, (d,c) € I, i.e. such that (a,b,c,d) is an (I', ®)-circle.

iFrom (a,c) € ¥ and (1) we obtain b = m(a,b,c) ¥ m(c,b,c¢) = c¢. Thus we
obtain (b,c) € X AP = A, i.e. b = c. Hence we conclude (a,c) = (a,b) € T'. We
have shown ¥ < T', a contradiction. Therefore Tol A is 0-modular.

(ii) If T" and ® are complements of each other, then they form a factor congru-
ence pair in virtue of Proposition 6.2(ii). Conversely, suppose that I', ® € Con A
form a factor congruence pair. Then 'o® = ®ol'=V and ' A® = A, whence we
conclude from Lemma 6.3 (ii) that TU® = (To®)N(Pol') = V. Thus I' and ¢
are complements of each other in Tol A.

Theorem 6.3 is proved.
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CHAPTER 7

Maltsev conditions for congruence lattice identities in mod-
ular varieties

It is an old problem if all congruence lattice identities are equivalent to Maltsev
conditions. In other words, we say that a lattice identity A can be characterized by
a Maltsev condition if there exists a Maltsev condition M such that, for any variety
V), A holds in congruence lattices of all algebras in V if and only if M holds in V; and
the problem is if all lattice identities can be characterized this way. This problem
was raised first in Grétzer ([Grl]), where the notion of a Maltsev condition was
defined. A strong Maltsev condition for varieties is a condition of the form ”there
exist terms hy, ..., hy satisfying a set ¥ of identities” where k is fixed and the form
of ¥ is independent of the type of algebras considered. By a Maltsev condition
we mean a condition of the form ”there exists a natural number n such that P,
holds” where the P, are strong Maltsev conditions and P,, implies P, for every

n. The condition ” P, implies P, 1"

is usually expressed by saying that a Maltsev
condition must be weakening in its parameter. (For a more precise definition of
Maltsev conditions cf. [T].) The problem was repeatedly asked by several authors,
including Taylor ([T]), Jénsson ([J2]) and Freese and McKenzie ([FM]).

Certain lattice identities have known characterizations by Maltsev conditions.
The first two results of this kind are Jénsson’s characterization of (congruence)
distributivity by the existence of Jénsson terms, cf. Jénsson ([J1]), and Day’s char-
acterization of (congruence) modularity by the existence of Day terms, cf. Day
([D1]). Since Day’s result will be needed in the sequel, we formulate it now. For

n > 2 let (D,,) denote the strong Maltsev condition ”there are quaternary terms

mo, - . ., My, satisfying the identities
mO(xvyvz7u):x7 mn(xvyvzvu):ua
mi(z,y,y,x) =z fori=0,1,...,n,
mi(z,z,y,y) = mip1(z,x,y,y) fori=0,1,....,n, 1 even,

mi(x,y,y,2) =mijy1(z,y,y,2) fori=0,1,...,n, iodd”.

Now Day’s celebrated result says that a variety V is congruence modular iff the
Maltsev condition ”(3n)(D,,)” holds in V.
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Joénsson terms and Day terms were soon followed by some similar character-
izations for other lattice identities, given for example by Gedeonovéd ([Ge2]) and
Mederly ([Me]), but Nation ([N]) and Day ([Da2]) showed that these Maltsev con-
ditions are equivalent to the existence of Day terms or Jénsson terms; the reader is
referred to Jénsson ([Jo2]) and Freese and McKenzie ([FM]) for more details.

The next milestone is Chapter XIII in Freese and McKenzie’s book ([FM]). Let

us call a lattice identity \ in n?

variables a frame identity if A implies modularity
and A holds in a modular lattice iff it holds for the elements of every (von Neumann)
n-frame of the lattice. Freese and McKenzie showed that frame identities can be
characterized by Maltsev conditions. Although that time there was a hope that
their method combined with [HC] gives a Maltsev condition for each A that implies

modularity, cf. [FM], Pélfy and Szab6 ([PSz]) destroyed this expectation.

The goal of the present chapter is to prove that each lattice identity implying
modularity is equivalent to a Maltsev condition. Moreover, this Maltsev condition
is very easy to construct. In order to formulate a slightly stronger statement, some
definitions come first.

A lattice identity A is said to imply modularity in congruence varieties, in
notation A =, mod if for any variety V if all the congruence lattices Con A, A € V,
satisfy A, then all these lattices are modular. If A implies modularity in the usual
lattice theoretic sense, then of course A =, mod as well. However, it was a great
surprise by Nation ([N]) that A =, mod is possible even when A does not imply
modularity in the usual sense. Jonsson ([J2]) gives an overview of similar results.
We mention that there is an algorithm to test if A =, mod, cf. [CzF], which is based
on Day and Freese ([DF]).

Given a lattice term p and k > 2, we define p; via induction as follows. If p is
a variable, then let pr, = p. If p =1 A s, then let px = ri N sg. Finally, if p =1V s,
then let pp = ri o sg org o s o... with k factors on the right. When congruences
or, more generally, reflexive compatible relations are substituted for the variables
of pi, then the operations N and o will be interpreted as intersection and relational
product, respectively. By a lattice identity A we mean an inequality p < q where p
and ¢ are lattice terms. This does not hurt generality because p < q is equivalent to
an appropriate identity » = s modulo lattice theory and vice versa. If A : p < ¢ is a
lattice identity and m,n > 2, then we can consider the inclusion p,, C q,. If A is
an algebra, then p,, and ¢,, do not give congruences in general when their variables
are substituted by congruences of A. However, it makes sense to say that p,, C g,

holds or fails for congruences of A. Now Wille ([Wi]) and Pixley ([Pix]) give an

60



easy algorithm to construct a strong Maltsev condition M (p,, C ¢,) such that, for
any variety V, p,, C ¢, holds for congruences of all algebras in V if and only if
M (pm C ¢p) holds in V. (Notice that the construction of M (p,, C g,) is outlined
in Freese and McKenzie ([FM]), and, with the notation U(G,,(p) < G,(q)), it is
detailed in [CzD].) Wille and Pixley showed also that p,, C ¢ holds for congruences
of algebras in V if and only if V satisfies the Maltsev condition ”there is an n such
that M (pm C ¢,,) holds”; this will be needed in our proof. Now we can formulate

the main result.

THEOREM 7.1 ([CzH3]). Let A : p < q be a lattice identity such that \ =,

modularity. Then for any variety V the following two conditions are equivalent.

(a) For all A € V, X\ holds in the congruence lattice of A.
(b) V satisfies the Maltsev condition ”there is an n > 2 such that M (ps C qp,)
and (D,,) hold”.

This chapter will not detail the construction of M (ps C g, ), but we mention
that if we consider A : (z A (y V (x A 2)) < (z Ay)V (z A z), the modular law,
then Day’s characterization of congruence modularity becomes a particular case of
Theorem 1.

Before proving Theorem 7.1 we give some definitions and remarks. The set
of tolerances of A will be denoted by Tol A. The transitive closure of a tolerance
® € Tol A will be denoted by

o* = U((I)oq)o(I)o...) (n factors).

n=1

Note that & * always belongs to Con A, the congruence lattice of A, and
aVp=(aUp)” (1)

holds for any «,3 € Con A. Our interest in tolerances started with generalizing
the Shifting Principle from Gumm ([Gul]) for congruence distributive varieties,
cf. [ChH1] and [CCH1], see also Chapter 4. It appeared soon that formulas give
stronger generalizations than diagrams both for the congruence distributive and for
the congruence modular case, and we proved in [CzH2| (and in Chapter 6) that if
V is a congruence modular variety, A € V and I', , ¥ € Tol A, then

rn@une)*Cc('nd)u(('nw))*. (2)

61



Notice that formally, according to (1), (2) is a variant of the modular law. Substi-
tuting 0 for ¥ in (2) we obtained, cf. Proposition 1 in [CzH2] (Proposition 6.1 in
Chapter 6), that

rnd*c(Irno)™. (3)

Notice that it is essential to consider varieties here, for [CzH2| presents a single
algebra with modular congruence lattice, a tolerance ® and a congruence I' of this
algebra such that ' N ®* C (I' N ®) * fails. As the next step towards Theorem
7.1 , Radeleczki ([CHR]) and later, independently, Kearnes [Kel] noticed that (3)
trivially implies a more useful statement: if A belongs to a congruence modular
variety and I', ® € Tol A, then

T*Nd* = No)*. (4)

Indeed, applying (3) for I'* and ®, and then for ® and I' we obtain the nontrivial
inclusion part of (4). Here we will give a direct proof of (3), which is of course a

special (and therefore a bit shorter) case of the proof of (2).

Proof of Theorem 7.1. First we prove (3). Let V be a congruence modular
variety with Day-terms mg, ..., m,. Let I' and ® be tolerances of an algebra A in
V. First we show that

'N(®od®)C(I'nd)*". (5)

Suppose (a,b) € ' N (P o ). Then there is an element ¢ € A with (a,c), (¢, b) € P,
and of course, (a,b) € I'. Now we define further elements. Let d; = m;(a, ¢, c,b) for
i=0,...,n and let ¢, = m;(a,a,b,b) for i even, i = 0,...,n. Notice that d; = d; 1
for i odd. Let j denote an arbitrary even index. Then (d;,e;) € ® is clear. Since
d; =mj(m;(a,c,c,b),a,a mj(a,crcb) I mj(m;(a,cc a),a,b m;b,c,c,b))
=mj(a,a,b,b) = e;,
we obtain (d;,e;) € I' N ®. Since e; = mj(a,a,b,b) = mjyi(a,a,b,b), we conclude
(dj41,€5) € I' N ® exactly the same way. Since any two neighbouring members of

the sequence
a =doy, ey, di =da2, €2, d3 =da, €4, ds =dg, ..., dy =Db

are in the relation I' N @, we infer (a,b) € (I' N @) *. This proves (5).
Now let &y = ® and ®,,4; = ®,, o &, these are tolerances again. We claim
that, for all n,
rne, C(r'nd)*. (6)
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This is evident for n = 0. If (6) holds for some n, then applying (5) for I' and ®,,

and using the induction hypothesis, we have
rne,., 1 =rrn(®,0c®,) C('nd,)"C(I'nd)*)*=(TnNo)™.

Hence (6) holds for all n. Therefore we obtain

IrNé*=In [j@n: G(rmpn)g G(rmp)*:(rmcb)*
n=0 n=0 n=0

This proves (3) for any tolerances I' and ®.
Applying (3) first for I'* and ® and then for ® and I' we obtain

T*N®*C(I*Nd)*=(@NT*)*C (@ND)*)* = (T Nd)*

ie. '*N®* C (I'n®)*. Since forming transitive closure is a monotone operation,

the reverse inclusion is evident. This proves (4).

For tolerances ® and W it is easy to see that ® o U o ® is again a tolerance. It

follows from reflexivity that

(PoVod)* =0 "VI™ (7)
where the join is taken in Con A. An easy induction shows that if r = r(z1, ..., zk)
is a lattice term and P4, ..., P are tolerances or, as a particular case, congruences
of an algebra A, then r3(®q,...,Py) is a tolerance again.

Now let V be a variety and assume (a). Let p and ¢ be, say, k-ary lattice terms.
Since an easy induction shows that, for any A € V and any congruences aq, ..., g
of A we have p3(ai,...,ar) C p(a,...,ax), we conclude that ps C ¢ holds for
congruences of any A € V. Hence the afore-mentioned result of Wille and Pixley
yields that M (ps C ¢p,) holds in V for some n;. Since A\ =, mod, there is an ng
such that D,,, holds in V. Now let n be the maximum of n; and ns. Since Maltsev

conditions are weakening in their parameter, we obtain that V satisfies (b).

Now, to show the reverse implication, assume that (b) holds. By Day’s result,
V is congruence modular, whence (4) holds as well. The afore-mentioned result
of Wille and Pixley gives that ps C ¢ holds for congruences in V. So for any

congruences aq,...,a of A € V, we have ps(aq,...,axr) € q(aq,...,ar). Hence

pg(&l,...,ak)*QQ(Oél,...,Oék)*- (8)

63



Since ¢(a,...,ax) is a congruence, it equals its transitive closure. On the other
hand, a trivial induction based on (4) and (7) gives that ps(aq,...,ar)* =
plaa™,...,ar*) =p(ag,...,ax). This way (8) turns into

p(a17"'7ak) g Q(Odl,...,()ék),

proving that A holds in Con A for all A € V. Thus (a) holds.
Theorem 7.1 is proved.
g

Now it was proved in theorem 7.1 that if A |=. modularity, then A can be
characterized by a Maltsev condition. The proof of this fact is relatively elementary
and easy, but the Maltsev conditions obtained are far from being optimal in most
of those cases where Maltsev conditions were previously known.

Next we improve Theorem 7.1 by giving the simplest (and in this sense hope-

fully the best) Maltsev condition associated with A when A =, modularity.

We recall now that a very important condition appeared in (4). From now
on we will call this condition tolerance intersection property, TIP for short. More
precisely, an algebra A is said to satisfy the tolerance intersection property if for
any two tolerances (i.e. reflexive symmetric compatible relations) I' and ® of A we

have
rne*=TCnNno)"

where * stands for transitive closure. In the proof of Theorem 7.1 we already proved

the following statement:

THEOREM 7.2 ([CHL]). Every algebra in a congruence modular variety satis-
fies TIP.

Given an algebra A, the set Rel,(A) of all reflexive and compatible relations

on A (in other words, all subalgebras of A2 including the diagonal subalgebra) has

—1 *

the operations intersection N, inverse ~—*, composition o, transitive closure * and
join V as usual: for @ and 3 in Rel,.(A), (z,y) € o ! iff (y,2) € , (z,y) € a0
iff there exists a z € A with (z,2) € a and (z,y) € , and a V (3 is the transitive

closure of aU 3. Notice that for tolerances «, 3 € Rel ,.(A) we have

aVp=(aVvp) " =a*Vi " =(aof)*=(a*VE")".
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Sometimes we write A instead of N. When we speak of terms in these operations,
the motivating idea is substituting the variables by reflexive compatible relations
later.

For a term p = p(x1,...,x) in the binary operations N, V,o, in short for a
{N, V,o}-term, and for n > 2 we define two kinds of derived {N, o}-terms, p,, and
p2,2 via induction as follows. (When p happens to be a lattice term then p,, will be
the same as before.) If p is a variable, then let p,, = po o = p. If p=7rnN's, then let
Pn = Tn NSy and pa o = 122 M S29. Similarly, if p = r o s, then let p,, =7, 0s, and
P22 = (r220822)N(s220722). Finally, if p =1V s, then let p, =r, 05, 0--- with
n factors on the right and ps o = (12,2 052,2) N (s2,2 072,2). The tool to exploit TIP
is provided by the following lemma; notice that part (D) was previously proved by
Kearnes ([Ke2]) in a different way.

Lemma 7.1 ([CHL]). Let A be an algebra satisfying TIP, let p =
p(z1,...,x2,) be a {N,V,o}-term, let ¢ = q(x1,...,z,) be a lattice term (i.e. a
{N,V}-term), and let o, ..., ax € Con A. Then

(A) pao(aa,...,ar) C pa(ag,...,ar) C pla,...,qr) (even without assuming
TIP);

(B) pa2(aq,...,ar)* =pa(ar,...,ar)* =pla,..., o) ";

(C) g2(01,...;00) " = qao(ar,...,ar)* =qlaq,...,a); and

(D) Con A is modular.

Proof. Since the operations N, V, and o are monotone, an easy induction on the
length of p shows part (A). Since * is isotone, p2 o(a1, ..., %) * C pa(ay,...,ax) " C
plaa,...,ax)* follows from (A). Hence, to prove (B), it suffices to show that

*

(1) poea(ar,...,ap) " Dplag,...,ar)".

This will be done via induction on the length of p.

First of all notice that ps 2(au, ..., o) is always a tolerance of A; this follows
via induction on the length of p. Now (1) is evident when p is a variable. Suppose
that p = rNs (and (1) holds for r and s). Then, with the notation & = (a1, ..., ax)
and using TIP (indicated by T;P) and the induction hypothesis (indicated by D;nq)

we have

p2,2(@) % = (r2,2(@) N s2,2(a)) *

) a
(r2,2(@)* Ns22(@)*) * Dina (r(@)* Ns(@)*)* 2



indeed. Now suppose that p = r os. Then

p22(@) " = ((r22(@) 0 52,2(@) N (32,2(8) 0 722()) )~
(r2,2(Q) Us2,2(d)) " = 12,2(@) " V 52,2(@) * Dina
r(d) "V s(d@) " = (r(@)os(d)” =p@)",
indeed. Finally, if p = r Vs, then
p22(d)” = ((7’2 2(@) 0 52,2(@)) N (52,2(@) 0 7’2,2(&))) "2
(r2,2(@) U s2,2(Q)) ™ = 12,2(@) " V 52,2(&) * Dina
r(a@)* Vv s(d)” ( (@) Vv s(a)) *=p(a)”.

This proves (1) and part (B) of the lemma.

)

Since ¢(aq,...,ak) is a congruence, it equals its transitive closure and (C)
becomes a particular case of (B).

Now, to prove (D), let «, 3,7 € Con A with a C v and consider the lattice
terms p(aq,as,a3) = (a1 V az) A ag and q(ag,az,a3) = a1 V (as A ag). We
have to show that p(a, 3,7v) C q(a, B,7). Let (z,y) € pa(a, B3,7v) = (o ) NA.
Then (z,y) € v and there is a z € A such that (z,z) € «, (z,y) € f. Since
a C 7, (x,2) € v and (z,y) € v by transitivity. So (z,y) € N~ and we obtain
(z,y) € ao (fN7y) = qg2(a,B,7). This shows that ps(a, 3,7) C g2(a, 3,7). Hence

(C) applies and we conclude p(c, 8,7) = p2(a, 3,7)* C q2(, 5,7)* = q(a, B,7),
the modular law.

Lemma 7.1 is proved.
g

Part (D) of Lemma 7.1, first proved by Kearnes [Ke2|, says that TIP is a
stronger property than congruence modularity. It is properly stronger, for [CzH2],
right before Proposition 1, gives an example of a three element (therefore congruence
modular) monounary algebra which fails TIP. However, part (D) of Lemma 7.1
together with Theorem 7.2 imply the following statement, which is worth separate

formulating even if it has been known for a while.

THEOREM 7.3 ([CHR], [CzH3], [Ke2], [CHL]). Let V be a variety of al-
gebras. Then V satisfies the tolerance intersection property if and only if V is

congruence modular.

The way we proved part (D) of Lemma 7.1 leads to the following more general

statement, which we formulate for later reference.
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Corollary 7.1 ([CHL]). Let A be an algebra satisfying TIP, let p =
p(x1,...,2x) be a{N,V,o}-term and let ¢ = q(x1,...,x) be a lattice term. Then
the following conditions are equivalent.

(a) p C q holds for congruences of A,

(b) p2 C q holds for congruences of A,

(c) p2,2 € ¢ holds for congruences of A.

Proof. According to Lemma 7.1 (A), (a) implies (b) and (b) implies (c). Now

suppose (c). Then, in virtue of Lemma 7.1(B) we obtain

This shows that (c) implies (a).
Corollary 7.1 is proved.
O

Given two {N, V, o}-terms, p = p(x1,...,xx) and ¢ = q(x1, ..., xk), we say that
the congruence inclusion formula p C ¢ holds in a variety V (or, in other words,
p C q holds for congruences of V) if for any algebra A € V and for any congruences
aq,...,a of A we have p(aq,...,ar) C g(aq,...,a) in Rel ,(A). When both p
and ¢ are join-free, i.e. they are {N, o}-terms, then Wille ([Wi]) and Pixley ([Pix])
gives an algorithm to construct a strong Maltsev condition M (p C ¢) such that,
for any variety V, the congruence inclusion formula p C ¢ holds in V if and only if
M (p C q) holds in V. We do not give the details of the Wille-Pixley algorithm here,
for it is also available from several secondary sources; for example from [HC] or from
Chapter XIII of Freese and McKenzie ([FM]). Notice that for an arbitrary lattice
identity p < ¢ Wille and Pixley show that this identity holds in all congruence
lattices of V iff V satisfies the weak Maltsev condition (Vm > 2) (3n > n) (M (pm, C

Qn))'

Now we formulate one of our main results.

THEOREM 7.4 ([CHL]). Let p C g be a congruence inclusion formula with
q being o-free. (Le. p is a {N,V,o}-term and q is a lattice term.) Then for any

congruence modular variety V the following conditions are equivalent.

(i) p C q holds for congruences of V,
(ii) po C q holds for congruences of V,
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(iii) p2.2 C q holds for congruences of V,
(iv) the Maltsev condition

(3 >2)(M(p2 S qogo-0q2))
(where g3 0 g3 0 - - - 0 g2 denotes a product of n factors) holds in V.

Proof. In virtue of Theorem 7.3 the algebras in V satisfy TIP. Hence the
equivalence of (i), (ii) and (iii) follows from Corollary 7.1.

If (iv) holds, then applying Wille and Pixley’s result to the strong Maltsev
condition M(p2 C gz 0 g2 0 -+ 0 qy) we obtain that po C gy 0 g2 0 -+ 0 ¢y (with
n factors) holds for congruences of V for some n. But, using Lemma 7.1 (C),
G20q20---0qs C g2* = q, so the congruence inclusion formula ps C ¢ holds in V.
This shows that (iv) implies (ii).

Now let (ii) hold and suppose the reader has some basic idea how Wille and
Pixley’s proof works for lattice identities. What we have to know from their proof
is the following. Associated with p, we construct a finitely generated free algebra
F in V with distinguished free generators xy and z;. Also, we construct finitely
generated congruences ag,...,a, of F such that (zg,x1) € pa(aq,...,ax). Let &
stand for (aq, ..., ). Since po(d@) C q(d), (zo,x1) € q(d). Now q(a@) = ¢2(a) * by
Lemma 7.1 (C), so there is an integer n > 2 such that (xg,z1) € g2(d) o - - - 0 go(@)
(with n factors). And this is the formula from which Wille and Pixley conclude
that M(p2 C gz 0g2 0---0¢y) holds in V. We have shown that (ii) implies (iv).
Theorem 7.4 is proved.

The following corollary is worth formulating:

Corollary 7.2 ([CHL]). Let p < q be a lattice identity which implies mod-
ularity in congruence varieties. Then, for an arbitrary variety V, p < q holds for
congruences of V iff M (ps C gy 0qa0---0¢qz) holds in V for some n > 2 and V has

Day terms.

Now we recall a nice result from Lipparini ([CHL]). Given a lattice term g,
let g[q stand for its “disjunctive normal form”, which is computed by distributing
meets over joins everywhere as if we were in a distributive lattice, so gjq) is a join of
meets of variables. The precise formal definition and the simultaneous proof that

q[q) is a join of meets of variables go via induction on the length of ¢ as follows.
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Let qq) = q when ¢ is a variable. If ¢ = r V s, then let qiqy = 74 V 8[q- Finally, if
q=rANs, then rig =\/,.;a; and spg = vjeJ b; with the a; and b; being meets of
variables, and we let qa = V;cr jes(ai Ab;). Now Lipparini ([CHL]) proved that

(i) of Theorem 7.4 is equivalent to

(v) the Maltsev condition

(In>2) (M(p2 C g0 °qapz°q2))
(where qg)2 © - - - © qjqj2 denotes a product of n — 1 factors) holds in V.

We conclude this chapter and the dissertation with the following remarks. The
spirit of Wille and Pixley’s theorem says that part (iv) of Theorem 7.4 can be
replaced with the Maltsev condition (3n > 2) (M (p2 C ¢,)). However, (iv) and (v)
are simpler conditions. In fact, no known Maltsev conditions for lattice identities
are simpler than those supplied by (iv) and/or (v). Sometimes (iii) is the best to
use: indeed, p2 o C py indicates that, for a given variety V, it is easier to show (iii)
than (ii).
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SUMMARY

1. Introduction

Lattices are very important related algebraic structures. They often appear in
many branches of algebra, they are clear enough to consider easily, and rich enough
to characterize many types of algebraic properties. Here lattices occur in connection
with diagrammatic schemes and Maltsev conditions. Moreover, we carry out lattice
theoretic investigations on the shift of a lattice identity.

Traditionally in mathematics: “ An invariant is something that does not
change under a set of transformations. The property of being an invariant is in-
variance. ”(Wikipedia [Inv1].)

However, beside its strict meaning outlined above, the word ’invariant’ has also
a more general meaning in universal algebra. We obtain this meaning by replacing
transformation, which is a selfmap A — A of a set A by the notion of algebraic

operations. Thus we arrive at the notion of an invariant relation ([PK]).

2. Invariance groups of threshold functions

A threshold function is a Boolean function, i.e. a mapping {0,1}" — {0,1}

with the following property: There exist real numbers w, ..., w,, t such that

flxy,...,z,) =1iff Zwixi >t,
i=1
where w; is called the weight of x; for i =1,2,...,n, and t is a constant called the
threshold value.

THEOREM 2.1 ([Hol]). For every n-ary threshold function f there exists a
partition Cy of n such that the invariance group G of f consists exactly of those
permutations of S,, which preserve each block of C'y. Conversely, for every partition
C of n there exists a threshold function fc such that the invariance group G of fco

consists exactly of those permutations of S,, that preserve each block of C.

The proof contains only elementary considerations.

Corollary 2.1([Hol]). The invariance group of any threshold function is
isomorphic to a direct product of symmetric groups.
3. Proving primality by the operation-relation duality

We consider a k-ary relation as a set of unary functions r: k — A, k =
{1,2,...,k}. We say that a k-ary relation D is diagonal, if there exists an equiva-

lence relation p, on k such that

D={rk — Al r(u) =r() ifup,v, u,vek}.
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The collection of all diagonal relations on A forms the minimal closed class of
relations on A.

The following Proposition 3.1 and Lemma 3.1 and Lemma 3.1’ enable us to
new proofs for primality theorems. This will be demonstrated in case of Stupecki’s
theorem.

Proposition 3.1 (Bodnaréuk—Kaluznin—-Kotov—Romov [BKKR],
Geiger [Gei], Krauss [Krl],[Kr2]). A finite algebra A = (A, F) is primal,
iff every relation preserved by all operations in F' is diagonal.

Lemma 3.1 ([Ho2]). Given an algebra A = (A, F), the following two
conditions are equivalent:

(i) For each R C A*, the relation [R) is diagonal.

(ii) For each x,y € A*, the relation [x,y] is diagonal.

Lemma 3.1’ ([Ho2]).The following three conditions are equivalent:

(i) The algebra A = (A, F) is primal.

(i) For each x,vy,z € A*, we have z € [x,y] whenever

((Vu,v € k) ((u) = z(v) Ay(u) = y(v) = 2(u) = 2(v))).

(iii) For each k > 1 z,y,z € A*, and for any equivalence p on k if p D p, N Pys
then D, C [z, y].

4. Diagrammatic schemes

Motivated by Gumm’s Shifting Lemma ([Gul]), which asserts that congruence
modular varieties satisfy a nice rectangular congruence scheme, Chajda ([ChH1],
Subdivision 4.2) investigated a triangular scheme, which is a consequence of con-
gruence distributivity. Congruence distributive varieties satisfy this scheme not only
for arbitrary three congruences, but also for one tolerance and two congruences; i.e.,
the analogue of Gumm’s Shifting Principle is valid. While the triangular scheme is
not known to characterize congruence distributivity, an appropriate generalization
called trapezoid scheme does ([CCH2], Subdivision 4.3). These examples show that
instead of identities in congruence lattices, diagrammatic statements are reasonable

to consider. This phenomenon can be extended to lattice Horn sentences as well.

5. Shifting lattice identities
Let
Aoooplxy,..xp) < gz, ..., x0)

be a lattice identity. (Notice that by a lattice identity we always mean an inequality,

i.e. we use < but never =.) If y is a variable, then let S(\,y) denote the Horn

7



sentence
Q(xl,---,l“n) Sy:>p(x1,...,a;n) <.

Ify ¢ {z1,...,2,}, then X is clearly equivalent to S(\,y). However, we are inter-
ested in the case when y € {z1,...,2z,},say y =z; (1 <i<n). Then S(\,z;) is a
consequence of \. When S(\, z;) happens to be equivalent to A, then S(\, z;) will
be called a shift of \. If S(\, x;) is equivalent to A only within a lattice variety V,
then we say that S(A\, z;) is a shift of A in V. In this chapter some known lattice

identities will be shown to have a shift while some others have no shift.

6. Tolerances and tolerance lattices

Let dist(x,y,z) resp. mod(zx,y, z) denote the distributive law = A (y V z) <
(x Ay) V (z A z) resp. the modular law 2z A (y V (z A 2)) < (z Ay)V (A 2).
For an algebra A, the set of tolerances and the lattice of congruences of A will be
denoted by Tol A and Con A, respectively. We say that dist(tol,tol,tol) holds in
AfTAN(@VT)C(I'AP)V(IAY) is valid for any I', &, ¥ € Tol A, where the
meet resp. the join is the intersection resp. the transitive closure of the union. The
meaning of mod(tol,tol,tol) is analogous. We should emphasize here that ® vV VU is
not the join in Tol A, the lattice of tolerance relations of A. With the help of

Jénsson terms ([J1]) we proved the next theorem:

THEOREM 6.1 ([CzH2]). If V is a congruence distributive resp. congruence
modular variety, then dist(tol,tol,tol) resp. mod(tol,tol,tol) holds in all algebras of
V.

Two important consequences are formulated in Corollary 6.1 and Proposition
6.1.

Corollary 6.1 (Gumm [Gul]). IfV is a congruence modular variety, then it
satisfies Gumm’s Shifting Principle, i.e. for any A€ V, a,v € Con A and ® € Tol A
if (z,y), (u,v) € a, (z,u),(y,v) € ®, (u,v) €y and a NP C ~, then (z,y) € .

Denoting the transitive closure by *, the following proposition is an essential
step towards the Maltsev conditions in Chapter 7:

Proposition 6.1 ([CzH2]). If mod(tol,tol,tol) or dist(tol,tol,tol) holds in an
algebra A, then T'N®* C (I'N®)* for any I', & € Tol A.

A lattice L with 0 is called 0-modular, cf. Stern ([St]), if there is no N5 sublattice
of L including 0. The lattice L with 0 satisfies the general disjointness property (GD)
ifaAnb=0and (aVvVb)Ac=01imply aA (bVc) = 0. If for each a € L the set
{z € L : a Ax = 0} has greatest element, then L is called a pseudocomplemented

lattice.
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The following Theorem 6.2 and 6.3 are the main results about tolerance lattices

in congruence modular varieties.

THEOREM 6.2 ([CHR]). Let A be an algebra in a congruence modular variety
V. Then the following statements hold:

(i) The map h: Tol A — Con A, & — ®* is a surjective lattice homomorphism
and Tol A is a 0-1 modular lattice having the (GD) property.
(ii) Tol A is pseudocomplemented if and only if Con A is pseudocomple-

mented.
THEOREM 6.3 ([CHR]). Let A be an algebra. If A has a majority term, then:

(i) Tol A is a 0-modular pseudocomplemented lattice.
(ii) The tolerances I, ® are complements of each other in Tol A if and only if

they form a factor congruence pair of A.

7. Maltsev conditions for congruence lattice identities in modular vari-

eties

A strong Maltsev condition for varieties is a condition of the form ”there exist
terms hyg, . .., hy satisfying a set X of identities” where k£ is fixed and the form of X
is independent of the type of algebras considered. By a Maltsev condition we mean
a condition of the form ”there exists a natural number n such that P,, holds” where
the P, are strong Maltsev conditions and P,, implies P, for every n.

A celebrated result says that a variety V is congruence modular iff the Maltsev
condition due to Day ([Dal]) ”(3n)(D,,)” holds in V.

A lattice identity A is said to imply modularity in congruence varieties, in
notation A =, mod if for any variety V if all the congruence lattices Con A, A € V,
satisfy A, then all these lattices are modular. For example this is always the case
when A implies modularity in the usual lattice theoretic sense.

Given a lattice term p and k > 2, we define p; via induction as follows. If p is
a variable, then let pr, = p. If p =1r A s, then let px = rip N s. Finally, if p =1V s,
then let pp = ri o sg org o s o... with k factors on the right. When congruences
or, more generally, reflexive compatible relations are substituted for the variables
of pi, then the operations N and o will be interpreted as intersection and relational
product, respectively.

Our first result about Maltsev conditions is Theorem 7.1.

THEOREM 7.1 ([CzH3]). Let A : p < q be a lattice identity such that \ =,

modularity. Then for any variety V the following two conditions are equivalent.
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(a) For all A €V, X\ holds in the congruence lattice of A.

(b) V satisfies the Maltsev condition ”there is an n > 2 such that M (ps C qp,)
and (D,,) hold”.

Next we improve Theorem 7.1 by giving the simplest (and in this sense hope-
fully the best) Maltsev condition associated with A when A =, modularity.

For a term p = p(x1,...,xx) in the binary operations N, V,o, in short for a
{N,V, o}-term, and for n > 2 we define two kinds of derived {N, o}-terms, p,, and
p2,2 via induction as follows. (When p happens to be a lattice term then p,, will be
the same as before.) If p is a variable, then let p,, = pa 2 =p. If p=1rnNs, then let
DPn =1Tn N8y and pa o = 192 N 52 2. Similarly, if p = r o s, then let p,, = r, 0 s,, and
P22 = (r2,20822)N(s2,20722). Finally, if p = rVs, then let p,, = r,08,0r,08,0- -

with n factors on the right and ps o = (12,2 0 82.2) N (S22 072.2).

THEOREM 7.4 ([CHL]). Let p C g be a congruence inclusion formula with
q being o-free. (Le. p is a {N,V,o}-term and q is a lattice term.) Then for any

congruence modular variety V the following conditions are equivalent.

(i) p € q holds for congruences of V,

(ii) po C q holds for congruences of V,
(iii) p2.2 C q holds for congruences of V,
(iv) the Maltsev condition

(3n>2) (M(ps Cgzogzo---0ga))

(where g3 0 g3 0 - - - 0 g denotes a product of n factors) holds in V.

As a corollary, we obtain the desired improvement of Theorem 7.1:

Corollary 7.2 ([CHL]). Let A : p < q be a lattice identity such that \ =,
modularity. Then for any variety V the following three conditions are equivalent.

(a) For all A €V, X\ holds in the congruence lattice of A.

(b’) V satisfies the Maltsev condition "there is an n > 2 such that M (ps C ¢y,)
and (D,,) hold”.

(c) V satisfies the Maltsev condition “there is an m > 2 such that M (py C
G202 0--+0qy) (with n factors) and and (D,,) hold”.
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OSSZEFOGLALO

1. Bevezetés

A halok nagyon fontos kiséréstrukturak. Gyakran bukkannak fel az algebra
kiilonboz6 dgaiban. Egyszertien attekinthetok, de elég gazdagok ahhoz, hogy sokféle
algebrai tulajdonsigot jellemezzenek. Itt a halék diagrammsémakkal és Malcev-
feltételekkel kapcsolatban 1épnek fel. Emellett haléelméleti vizsgalatokat folytatunk
a haléazonossagok shiftjével kapcsolatban.

A matematikaban hagyoméanyosan az “invarians valami olyan, ami valtozat-
lan marad transzforméaciok bizonyos halmazéara nézve. Az ’invaridnsnak lenni’ tu-
lajdonsagot invariancidnak nevezziik.” (Wikipedia [Inv1].)

Az univerzalis algebraban ezen szoros értelemben vett jelentésen tilmenden az
‘invarians’ szé altalanosabb jelentéssel is bir. Helyettesitsiik a fent emlitett transz-
formaciot (amely egy A — A leképezés, ahol A tetszéleges halmaz) az algebrai
miivelet fogalmaval. Ily mdédon az invarians relacié fogalmahoz érkezhetiink
([PK]).

2. Kiiszobfiiggvények invarianciacsoportja

Egy Boole-fliggvényt kiszobfiggvénynek neveziink, ha alkalmas wq, ..., w,, t

val6s szamokra
n
f(x1,...,z,) =1 akkor és csak akkor, haz w;x; > t.
i=1
Itt wy-t az x; valtozd sulydnak (i = 1,2,...,n), a t-t pedig kiszobértéknek nevezziik.
2.1. TETEL ([Hol]). Bérmely n valtozés f kiiszobfiiggvényhez létezik n=
{1,2,...,n}-nek olyan Cy osztdlyozasa, hogy f invarianciacsoportja pontosan Sy
azon permutacioibdl all, amely Cy minden blokkjat megorzi. Megforditva: n
barmely C osztélyozasahoz létezik olyan fc kiiszobfiiggvény, hogy C' = Cy,,.
A bizonyitas csak elemi megfontolasokat tartalmaz.
2.1. Korolldrium ([Hol]). Bdrmely kiiszobfiiggvény invarianciacsoportja
szimmetrikus csoportok direkt szorzataval izomorf.
3. Teljességi tételek bizonyitasa fiuiggvény-relacié dualitas segitségével
Tekintstik a k véltozos relaciokat egyvaltozés r: k — A (k = {1,2,...,k})

fliggvények halmazanak. Azt mondjuk, hogy egy k véltozds D relacid diagondlis,

ha létezik egy olyan p, ekvivalenciarelacié k-n, hogy
D={rk — A|r(u)=r(v), haup,v, u,v ek }.
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Az A-n definidlhaté diagonalis relaciok Osszessége alkotja a minimalis relacioklént.

A kovetkezo 3.1 Alh’tés, valamint a 3.1 és a 3.1 Lemmak segitségével 1j bi-
zonyitasok adhatok ismert teljességi tételekre. Ezt Stupecki tételének 1j bizonyitasa-
val szemléltetjiik.

3.1. Allitds (Bodnaréuk—Kaluznin-Kotov—Romov [BKKR], Geiger
[Gei], Krauss [Kr1],[Kr2]). Egy A = (A, F) algebra pontosan akkor primdl, ha
minden olyan relacié diagonalis, amelyet minden F'-beli relacié megoriz.

3.1. Lemma ([Ho2]). Adott A = (A, F) algebra esetén a kivetkezs két
feltétel ekvivalens:

(i) Barmely R C A¥ esetén az [R] reldcié diagonalis.

(ii) Barmely x,y € A* esetén az [x,y] reldcié diagonalis.

3.1’. Lemma ([Ho2]). A kévetkezs hdrom dllitds ekvivalens:

(i) Az A = (A, F) algebra primal.

(ii) Barmely x,y, z € A¥ esetén z € [z,y], ha

(Vu, v € k )(2(u) = z(v) Ay(u) = y(v) = 2(u) = 2(v))).

(iii) Barmely k > 1 x,y, z € A*, és a k-n definidlt barmely p ekvivalenciarelacié

esetén ha p D p, N py, akkor D, C [z,y].

4. Diagrammsémak

Gumm Shifting Lemmaja ([Gul]) azt allitja, hogy kongruenciamoduléris va-
rietasok szép, téglalap alakban felrajzolhaté diagrammsémat elégitenek ki. Ennek
hatdsara Chajda ([ChH1], 4.2. Alfejezet) egy olyan haromszogsémat vizsgdlt, amely
a kongruenciadisztributivitas kdvetkezménye. A kongruenciadisztributiv varietdsok
nemcsak harom tetszoleges kongruencidra, hanem egy toleranciara és két kongruen-
ciara is kielégitik ezt a sémat, azaz Gumm Shifting Elvének analdgidja érvényes.
Mig a haromszogsémardl nem ismert, hogy jellemzi-e a kongruenciadisztributi-
vitast, egy trapézsémanak nevezett megfelel6 altalanositasrél megmutattuk, hogy
igen ([CCH2], 4.3. Alfejezet). Ezek a példak mutatjik, hogy kongruenciahédlébeli
azonossagok, sot Horn formulék helyett idonként érdemes diagrammsémékban gon-

dolkodni.

5. Haléazonossagok shiftje
Legyen

A oplxy,..xp) < gz, ..., x0)
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haléazonossag. (Megjegyezziik, hogy haldéazonossdgon mindig egyenlStlenséget

értlink, azaz <-t haszndlunk = helyett.) Ha y valtozo, akkor jelolje S(A,y) a

g1, xn) <y =p(x1,...,2n) <y
formulat. Ha y ¢ {z1,...,2,}, akkor X\ nyilvdnvaléan ekvivalens S(\,y)-nal. Sz&-
munkra az az eset a legfontosabb, amikor y € {z1,...,2,}, azaz y = z; (1 <i < n).

Ekkor S(A, z;) kovetkezménye A-nak. Ha S(A, z;) ekvivalens A-val, akkor S(A, z;)-t
A shiftiének nevezziikk. Ha S(A, z;) ekvivalens A-val egy V varietdson beliil, akkor
azt mondjuk, hogy S(\,z;) egy shiftje A\-nak V-ben. Ebben a fejezetben néhény
ismert héldéazonossagréol megmutatjuk, hogy van shiftje, néhany tovabbirdl pedig

azt, hogy nincs.

6. Toleranciak és toleranciahaldk

Jelolje dist(z,y, z) a disztributiv azonossagot: z A (yV z) < (z Ay) V (z A 2),
mod(z, y, z) pedig a modularis azonossagot: z A (yV (x A z2)) < (z Ay)V (z A 2).
Jelolje Tol A az A algebra tolerancidinak halmazadt, Con A pedig az A algebra
kongruencidinak hdldjat. Azt mondjuk, hogy dist(tol,tol,tol) teljesiil A-ban, ha

CA(PVY)C(T'AD) V(DAY

fenndll barmely I', ®, ¥ € Tol A esetén, ahol a A koz0s rész képzést, V pedig az
unié tranzitiv lezartjat jeloli. Analég médon értelmezziik mod(tol,tol,tol)-t. Hang-
silyozzuk, hogy ® V ¥ nem a Tol A halébeli egyesitést jelenti. Jonsson kifejezések
([J1]) segitségével bizonyitottuk a kovetkezd tételt:

6.1. TETEL ([CzH2]). Ha V kongruenciadisztributiv (kongruenciamoduldris)
varietas, akkor V minden algebrdjaban teljestil dist(tol,tol,tol) (mod(tol,tol,tol)).

Két fontos kovetkezmény:

6.1. Korolldirium (Gumm [Gul]). Ha V kongruenciamoduldris varietds,
akkor teljesiil a Gummtdl szarmazo Shifting Elv, azaz barmely A€ V-re, a,y €
Con A and ® € Tol A ha (z,y), (u,v) € «, (x,u), (y,v) € ®, (u,v) € yésand C v,
akkor (z,y) € 7.

Jeloljiik *-gal a tranzitiv lezartat. A kovetkezo allitas lényeges 1épés a 7. Fe-
jezetben taldlhaté Malcev-feltételek felé:

6.1. Allitas ([CzH2]). Ha mod(tol tol,tol) vagy dist(tol,tol,tol) teljesiil egy
A algebraban, akkor I' N @* C (I' N ®)* barmely I', ® € Tol A esetén.

Egy 0-elemes L hél6t 0-moduldrisnak nevezink ([St]), ha nincs Ns-tel izomorf,
0z-et tartalmazoé részhaldja. Egy 0-val rendelkezd L halo teljesiti az dltaldnos disz-

Junktsagi tulajdonsdgot (GD), ha az a Ab =0 és az (a V b) A ¢ = 0 egyenléségekbdl
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kovetkezik az a A (b V ¢) = 0. Ha barmely a € L esetén {x € L: a A x = 0}-nak van
legnagyobb eleme, akkor L-et pszeudokomplementumos halonak nevezziik.

A most kovetkezo 6.2. és 6.3. Tételek tartalmazzdk legfontosabb eredményein-
ket a kongruenciamodularis varietasbeli toleranciahalokrol.
6.2. TETEL ([CHR]). Legyen A a V kongruenciamoduldris varietds egy al-
gebraja. Ekkor fennallnak a kovetkezOk:

(i) A h: TolA — Con A, & — ®* leképezés sziirjektiv halohomomorfizmus,
és Tol A 0-1 moduldris hal6, amely rendelkezik a (GD) tulajdonsdggal.

(ii) Tol A pontosan akkor pszeudokomplementumos, ha Con A pszeudokom-
plementumos.
6.3. TETEL ([CHR]). Legyen A tetszbleges algebra. Ha A-n van tobbségi
fiiggvény, akkor:

(i) Tol A 0-moduléris pszeudokomplementumos halo.

(ii) A T és a ® pontosan akkor komplementumai egymdsnak Tol A-ban, ha

faktorkongruencia part alkotnak A-ban.

7. Kongruenciahalé azonossagok Malcev-feltételei modularis varietasok-

ban

Varietasra vonatkozo6 erds Malcev-feltételnek a kovetkezo alaku feltételt nevez-
zik: "léteznek hg, ..., h; olyan kifejezések, amelyek kielégitik azonossagok egy X
halmazat”, ahol k rogzitett, és X fiiggetlen a tekintett algebrak tipusatol. Malcev-
feltétel alatt ”1étezik olyan n természetes szam, hogy P, teljesiil” alaku feltételt
értiink, ahol a P,-ek er6és Malcev-feltételek és P,-bol koévetkezik P,,y1 béarmely
n-re. Day ismert eredménye szerint ) pontosan akkor kongruenciamodularis, ha
7 (3n)(Dy,)” teljesiil V-ben.

Azt mondjuk, hogy a A hdloazonossdgbol kovetkezik a modularitas kongruen-
ciavarietdsokban,azaz A =, mod, ha barmely V varietds esetén ha minden Con A
kongruenciahdléban (A € V) teljesiil A, akkor minden ilyen kongruenciahdlé mo-
dularis. Példaul mindig ez a helyzet, ha A-bdl kovetkezik a modularitas haléelméleti
értelemben.

Legyen adott a p haldkifejezés és legyen k > 2. Definidljuk a pj kifejezéseket
indukcioval a kovetkezoképpen. H p valtozo, akkor legyen pr = p. Ha p = r A s,
akkor legyen pr = ri N si. Végil ha p = r V s, akkor legyen pr = rp o sgorg o
Sk o ..., amely k-tényezos szorzat. Ha kongruencidkat, vagy még altaldnosabban,
reflexiv kompatibilis reldciékat helyettesitiink py valtozéi helyére, akkor a N koézos
rész képzésként és a o relaciészorzasként interpretalandé.

A Malcev-feltételekkel kapcsolatos els6 eredménytink a 7.1. Tétel.
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7.1. TETEL ([CzH3]). Legyen X : p < q olyan hdléazonossdg, hogy \ |=.
modularitas. Ekkor barmely V varietasra a kovetkezo két feltétel ekvivalens:

(a) Barmely A €V algebra esetén X teljesiil A kongruenciahéléjdban.

(b) V kielégiti a kévetkezb Malcev-feltételt: ”1étezik n > 2 tgy, hogy M (ps C qp,
és (D,,) teljestil”.

A kovetkezoekben javitjuk a 7.1. Tételt oly modon, hogy megadjuk a M-t
jellemzé legegyszertibb (és ebben az értelemben remélhetéleg a legjobb) Malcev-
feltételt, amennyiben A =, modularitas.

Tetszbleges, a N, V, o miiveleti jelekb6l és valtozokbdl felépiils p = p(xq, .. ., xx),

kifejezére, roviden {N, Vv, o}-kifejezésre, és n > 2-re definidljuk a p,, és a pa o {N, 0}-
kifejezéseket indukcid segitségével a kovetkezo mdédon. Ha p valtozo, akkor legyen
Pn = p22 = p. Ha p = rnNs, akkor legyen p, = 7, NS, és poo = 122 M S29.
Hasonléan, ha p = ros, akkor legyen p,, = 1,08, éspa o = (r2,2052,2)N(S2,2072.2).
Végiil, ha p = r V s, akkor legyen p,, =1, 05, 07, 05, 0+ - amely n szorzoétényezot
tartalmaz a jobb oldalon, és legyen ps o = (12,2 0 S22) N (s2,20722).
7.4. TETEL ([CHL]). Legyen p C q egy (kongruencidkra vonatkozd) tartal-
mazdsi formula, ahol q o-mentes. (Azaz a p egy {N,V, o}-kifejezés és q pedig halo-
kifejezés.) Ekkor barmely V kongruenciamoduldris varietasra a kovetkez6 feltételek
ekvivalensek:

(i) p C q teljesiil V kongruencidira,

(ii) p2 C q teljesiil V kongruencidira,

(iii) p2 2 C q teljesiil V kongruencidira,

(iv) A

(n>2) (M(p2 Cg2ogzo---0q2))

Malcev-feltétel (ahol g2 0 gz 0 - - - 0 qo egy n-tényezds szorzatot jeldl ) teljesiil V-ben.
Korollariumként mondjuk ki a 7.1. Tétel javitasat:
7.2. Korolldrium ([CHL]). Legyen \ : p < q olyan hdléazonossag, hogy A
. modularitas. Ekkor barmely V varietdsra a kévetkez6 harom feltétel ekvivalens:
(a) Barmely A €V algebra esetén X teljesiil A kongruenciahéléjdban.
(b”) V kielégiti a kovetkez§ Malcev-feltételt: ”1étezik n > 2 gy, hogy M (p2 C
qn) és (D,,) teljesil”.
(c) V kielégiti a kovetkezé Malcev-feltételt: "1étezik n > 2 gy, hogy M (py C
G2 0q20---0qs) ( n szorzétényezd) és (D,,) teljesiil”.
7.4. TETEL ([CHL]). Legyen p C q egy (kongruencidkra vonatkozd) tartal-

mazdsi formula, ahol q o-mentes. (Azaz a p egy {N,V, o}-kifejezés és q pedig halo-
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kifejezés.) Ekkor barmely V kongruenciamoduldris varietasra a kovetkez feltételek
ekvivalensek:
(i) p C q teljesiil V kongruencidira,
(ii) p2 C q teljesiil V kongruencidira,
(iii) p2 2 C q teljesiil V kongruencidira,
(iv) A
(In>2) (M(pa Cgaogao---0g2))

Malcev-feltétel (ahol g2 0 gz 0 - - - 0 qo egy n-tényezds szorzatot jeldl ) teljesiil V-ben.
Korollariumként mondjuk ki a 7.1. Tétel javitasat:
7.2. Korolldrium ([CHL]). Legyen \ : p < q olyan hdléazonossag, hogy A
=. modularitas. Ekkor barmely V varietdsra a kévetkez6 harom feltétel ekvivalens:
(a) Barmely A €V algebra esetén A teljesiil A kongruenciahéléjaban.
(b”) V kielégiti a kovetkez§ Malcev-feltételt: ”1étezik n > 2 gy, hogy M (p2 C
qn) és (D,,) teljesil”.
(c) V kielégiti a kovetkez& Malcev-feltételt: ”1étezik n > 2 gy, hogy M (pa C

g2 02 0---0qs) ( n szorzétényezd) és (D,,) teljesiil”.
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