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Introduction 

Transmembrane Proteins 

Transmembrane proteins share a common property: part of their structure is embedded 

in a lipid bilayer. Therefore, being located at an interface, it is almost inevitable that they 

mediate communication between both sides of the membrane; receptors, pores and channels 

are all signal transducers. In their lipid-embedded domain, only two types of secondary 

structure have been observed – β-strands and α-helices. β-strands are found in outer 

membranes of Gram-negative bacteria, mitochondria and chloroplasts, forming rigid pores 

known as β-barrels. Single and bundled transmembrane α-helices have a broader range of 

functionalities and complexities. In some instances, extensive extramembrane domains 

complement the TM ones, and some membrane proteins consist of huge multisubunit 

complexes (e.g. cytochrome c oxidase, which contains up to 13 subunits in mammals). 

Integral membrane proteins represent an important class of proteins which are 

employed in a wide range of cellular roles. The fact that these proteins are found in a lipid 

environment means that atomic resolution experimental structures for these proteins are few. 

To date only about 50 unique high-resolution integral membrane protein structures have been 

solved, whereas several dozens of thousands structures for globular proteins are known. 

In the presented work we have focused on the structures of two distinct membrane 

proteins, the major coat protein of the bacteriophage M13 and the representative(s) of the 

cytochrome b561 redox protein family. Our group dedicated substantial effort to experimental 

studies of these proteins in a membrane-bound form. However, for none of these proteins was 

an atomic structure of the native, membrane-bound form available. Our task was, therefore, to 

build and analyze molecular models of these proteins on the basis of the relevant 

experimentally and in silico obtained information, in order to stimulate and design new 

experiments and also to verify available data.  

 

Aims 
In the presented work various molecular modeling techniques (quantum chemical 

calculations, molecular mechanics optimizations, conformational searches, homology 

modeling; sequence database searches and alignments, transmembrane and lipid-facing 

propensities prediction etc) were applied to model and study selected transmembrane proteins, 
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namely the Major Coat Protein of the M13 Bacteriophage M13 and 2 representatives (plant 

and mammalian) from the cytochrome b561 family. The aims of these studies were as follows: 

Major Coat Protein of the Bacteriophage M13 

• To test the bundle of distinct M13 MCP structures, refined in detergent micelles, against 

experimental constraints obtained from the protein embedded in a phospholipid bilayer in 

order to identify those structures that are most compatible with a lipid membrane 

environment; 

• To test and refine earlier proposed indicator of the local packing density (the f-parameter), 

which is readily calculated from the coordinates of the optimized protein–lipid structural 

model; 

• To investigate structural reasons for the increased outer hyperfine splitting (2Amax) values, 

observed in earlier EPR experiments from the spin-labeled residues 25 and 36; 

 

Cytochrome b561 family 

• To perform comprehensive sequence analysis on the representatives of the family, 

predict transmembrane and lipid-facing propensities of the TM helices; 

• To identify new structural similarities in the cytochrome b561 family and to build 3-

dimensional atomic models for representative plant and mammalian cytochrome b561 

proteins. 

 

Detailed molecular models should aid the understanding of the available experimental 

data on these proteins and in the design of new experiments. 

 

Materials and Methods 

M13 MCP structures 

Three-dimensional structures of the M13 MCP were taken from the Brookhaven 

Protein Data Bank in PDB format. The PDB IDs were 2CPB and 2CPS for structures 

determined in dodecylphosphocholine (DodPC) and sodium dodecyl sulfate (SDS) micelles, 

respectively, by various high-resolution NMR techniques. 
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Experimental data 

EPR outer hyperfine splittings (given in parenthesis after the each mutant name) and membrane 

topology data for the viable single cysteine mutants A25C, V31C, T36C, G38C and T46C of 

the M13 major coat protein reconstituted in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) 

bilayers were taken from (Stopar et al., 1997a).  

Molecular modeling of M13 MCP 

Quantum chemistry and molecular mechanics package Spartan v.5.0.4 with MMFF94 

force field, and the interactive molecular mechanics package Sculpt v.2.1, were used for 

building and optimization of structures. Specifically, Spartan was used to generate the spin-

labeled cysteine residue (validated by semi-empirical quantum chemical methods) and the 

phospholipid structure, and for reoptimization of the protein structure after single-residue 

replacement by spin-labeled cysteine. Additionally, Spartan was used for single-point energy 

calculations to obtain atomic charges. Adjustment of the phospholipid chain configuration and 

constrained molecular mechanics optimization of the protein–lipid assemblies were performed 

in Sculpt. MOLMOL was used for producing single-residue substitutions, construction of the 

lipid shell, and preparing the system for optimization by molecular mechanics. Insight II was 

used for visualization and presentation of structures. All modeling work was performed on a 

Silicon Graphics Origin 2000 server and O2 workstations. 

Molecular modeling of cytochromes b561 

Related sequences were identified from 26 different tissues and organisms via PSI-

BLAST database searches with default settings using Artb561-1, Artb561-4 and Hosb561-1 

as queries. The sequences were aligned using MULTICLUSTAL. Lipid facing propensities of 

the predicted TM regions have been analyzed by means of kPROT. 3-dimensional structures 

were built using Biopolymer and Homology modules in InsightII.  

 

Results and Discussion 

Major Coat Protein of the Bacteriophage M13 

 In the final optimized model, residues Y24 and F45 are located in the 

somewhat diffuse regions of the lipid phosphates on either side of the bilayer membrane (cf. 

A25 and T46 in the original experimental paper). Our prediction of the shift in approximately 
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1 residue of the TM part of the M13 MCP, relative to the membrane normal towards the N-

terminus, has been supported later experimentally. 

Formation of H-bonds between the ε-amino groups of K43 and K44 and the carbonyl 

oxygens of the lipid fatty acid chains is suggested by the model. At the opposite side of the 

bilayer, the model places W26 in a position where it can function as a membrane-anchoring 

residue. In the mutated structure, the ε-amino group of K40 interacts with oxygens of the 

maleimide ring for the spin label attached to C36. This interaction reduces the overall 

potential energy of the system by 20 kcal/mol (evaluated in Sculpt ). As we see it now, this 

may be the only reason for the increased outer hyperfine splitting at C36 reported earlier. 

Putative H-bonds between the N–H group of the indole ring and the carbonyl oxygens 

of the fatty acid chains in adjacent lipid molecules possibly contribute to immobilization of 

the spin label on C25 in the mutated structure.  

The N-terminal helix of the final structure is oriented parallel to the membrane 

surface, in accordance with later, independent experimental findings. 

 

Cytochromes b561 

The created sequence alignment including plant and animal members of the 

cytochrome b561 family supports the main conclusions on the conservation of functional 

elements from recent analyses on a smaller subset of the cytochrome b561 family. Together 

with the 2- and 3-dimensional structures built, this alignment sheds light on more structural 

details and raises a number of questions. Our observations provide evidence that the 

functionally relevant and structurally most conserved region in the cytochrome b561 family is 

the TMH2 to -5 4-helix core with an amino acid composition that is very well conserved in 

the inner surface and somewhat less conserved in the outer surface of the core. The two 

terminal helices (TMH1 and TMH6) are less conserved. They together with the interhelix 

loops and terminal regions are the main source of the variability in the family and may 

therefore define the specific subcellular location, physiological functions of the proteins they 

encode, and possibly their interactions with other proteins. 

The high conservation of the motifs at 175–179 and 114–122, i.e., the putative MDA 

and Asc binding sites, respectively, is a further strong feature of the cytochrome b561 family. 

This suggests a key functional role for these putative binding sites in transmembrane electron 

transfer common to this protein family. There are several highly conserved residues located 

favorably between the two pairs of heme ligating histidine residues. Of these, the aromatic 

residues could indeed constitute the putative transmembrane electron transport pathway. In 
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addition, there are a few additional (nonconserved) aromatic residues in many sequences that 

could also contribute to such a pathway. 

The high structural similarity between the plant and animal cytochrome b561 proteins, 

both at the sequence and protein structural level, suggests that the conserved machinery of 

transmembrane electron transfer mediated by these proteins serves diverse, yet to be explored 

physiological processes in eukaryotic cells.  

Conclusions 

M13 Major Coat Protein of the Bacteriophage M13 Model 

 

• Relatively coarse-grained site-directed spin-label measurements have provided 

sufficient experimental constraints to select a single structural subclass from the 

family of high resolution NMR structures in micelles as being that most 

appropriate to the M13 MCP in lipid bilayer membranes.  

• General configuration and topology of the selected structural subclass agrees with 

new, independent findings. 

• A relatively simple indicator of the local packing density (the f-parameter), which is 

readily calculated from the coordinates of the optimized protein–lipid structural model, 

was found to be adequate for this purpose and has been further tested and developed. 

• Extension of the approach to sparse experimental data on site-directed mutagenesis of 

other membrane proteins should be possible in the future.  

• In our protein–lipid model, Y24 on one side of the membrane, and K43 and K44 on the 

other side, interact preferentially with the lipid head groups. The model indicates a 

hydrophobic mismatch of 3.5 Å or less (the protein is slightly shorter) between the 

unperturbed phospholipid bilayer and the intramembranous α-helix of the protein.  

• Spin-labeled C25 is buried inside the hinge region, whereas C46 points towards the 

aqueous phase, in agreement with their strong and weak motional restriction, respectively.  

• Shift in approximately 1 residue of the TM helix along the membrane normal towards the 

N-terminus is predicted: Y24 – F45 from previous experimental A25 – T46. The result 

has also been justified with independent, new data. 

• Spin-label at C36 is restricted solely by involvement of its maleimide carbonyl oxygens in 

hydrogen bonding with K40.  
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• The model proves useful for the interpretation of future experimental data on membrane–

M13 MCP systems. It became good starting point for full-scale molecular dynamics 

simulations and for the design of further site-specific spectroscopic experiments.  

 

Cytochrome b561  Model 

 

• The most detailed and extensive sequence alignment and analysis to date for the 

representatives of the cytochrome b561 family was performed. 

• Transmembrane regions and lipophilic properties of the sequences have been obtained. 

• 2 possible topological models of 2-D TMH arrangement were proposed and discussed. 

• 3-D atomic models of the 4-TMH core of the mammalian and plant sequences were built 

for both 2-D topologies, representing transmembrane electron transfer machinery. 

• The present 3-D structures provide useful working models for designing combined point 

mutation and biophysical experiments targeting heme ligation and putative electron 

transport pathways. 

• The present models will be further refined as new structural data emerge in the future. 
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