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Abstract

This paper is principally a review, a thesis, ahpipal results obtained from various authoritative
theoretical physicists and mathematicians in soeatoss of theoretical physics and mathematics.
In this paper in theSection 1 we have described some equations concerning taatgm
electrodynamics coupled to quantum gravity. In $®etion 2,we have described some equations
concerning the gravitational contributions to thaming of gauge couplings. In tigection 3 we
have described some equations concerning someuuaitects in the theory of gravitation. In the
Section 4 we have described some equations concerninguppersymmetric Yang-Mills theory
applied in string theory and some lemmas and egustconcerning various gauge fields in any
non-trivial quantum field theory for the pure YaNgHs Lagrangian. Furthermore, in conclusion, in
the Section 5 we have described various possible mathematoralections between the argument
above mentioned and some sectors of Number ThewtyS&ring Theory, principally with some
eguations concerning the Ramanujan’s modular ezpgthat are related to the physical vibrations
of the bosonic strings and of the superstrings,es®amanujan’s identities concerningand the
zeta strings.

1. On some equations concerning the quantum electrodgmics coupled to quantum
gravity. [1]

The key equations that govern the behaviour ofcthepling constants in quantum field theory are
the renormalisation group Callan-Symanzik equatidhsve let g denote a generic coupling
constant, then the value gf at energy scal& , the running coupling constagl(E), is determined
by

= d9(E)

“dE = ﬁ(Ea 9)1 1)
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where ,B(E,g) is the renormalisation grougf-function. Asymptotic freedom is signaled by
9(E) ~ 0 asE - «, requiring 8 <0 in this limit.
With regard the Einstein gravity with a cosmologjicanstant coupled to quantum electrodynamics

in four spacetime dimensions, a standard calculasizows that the effective action to one-loop
order is given by

r(l):%lndetA ~IndetQ,; - Indet(l 9, +eytA, - lm) (2)

The last term (withﬂy the background gauge field) is the result of penfag a functional integral

over the Dirac field. The middle term is the cdmition from the ghost fields required to remove
the unphysical degrees of freedom of the gravity electromagnetic fields. The first term is the

result of integrating over the spacetime metric eledtromagnetic fields. For operatdg the heat
kernel K}(x, x';7) is defined by

a i k 1.
_EK (x,x;7)=A Kj(X,X,T) (3)

with boundary condition K!(x,x;7=0)=4d(x,x). 7 is called the proper time. The Green
function G} (x,x') for the operatody; is

A'kG:( (X, X') = 5}5(X, Xl) . (4)

It follows that the Green function and heat kemrel related by

Gi.(x,x'):szK}(x,x';r). (5)

J
0

The importance of the heat kernel for quantum fitldory arises from the existence of an
asymptotic expansion as—- O:

K!i(xx7)= (4nr)_“/2§ r'E(x) (6)

r=0

where n is the spacetime dimension (chosen as 4 here)tantieat kernel coefficientE,ij (x)

depend only locally on the details of coefficieatdhe differential operatotsij . The divergent part

of the effective action, as well as the Green fiomgtcan be related to the heat kernel coefficients
Formally

1 i
L, :ElndetAj jd xj—trK X, X; r (7)
The one-loop effective action (2) is then given by
r(l) =Ly - 2LQ = 2L g - (8)
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As with the Green function (4) the divergent pdr{®© comes from thea =0 limit of the proper
time integral. The divergent part &f, is

divfr, ) = jd“ { E%rE, + EArE, +trE, In EZ} (9)

The lower limit on the proper time integration daa kept ast = 0Oand the divergent part of the
effective actionL, contains a simple pole &-  diven by

. 1
divp(L,) = To7s j d*xtrE,. (10)
The general form ofY, is
A = (Aaﬁ)jaaaﬁ + (Ba)ijaa + (C)ij (11)

for coefficients (A”ﬂ )J (B")

J

and (C).

; that depend on the spacetime coordinates throbgh t

background field. Normal coordinates are introdueddx' with x* =x*+y# and all of the
coefficients in (11) are expanded abgdt= . This gives

(w2} = () + () vy 02

n=1

with similar expansions fofB? ), and (C), . The Green function is Fourier expanded as usual,

Gi(xx)=] ((p), (13)

1
(272
except that the Fourier coefficieG; (p) can also have a dependence on the origin of thelcmte
systemx 'that is not indicated explicitly. If

Gj(p) =Gy (p)+Gyj(p)+ Gy (p)+-.  (14)

2-r

where G, (p) is of orderp™™ as p - = it is easy to see that to calculate the pole plag; (x, )

asn - 4only terms up to and including,, (p) are needed.
The gravity and gauge field contributions result in

3 1, 3.1 .3 1 1, )\ ) ,
——a)+§a)2+§£—§af+§af—3—2afi+3—2a)2(jF +(12+882 +3v+ V(PN (15)

3
trg =«? =
& (8 4

The overall result for the quadratically diverggatt of the complete one-loop effective action (8)
that involvesF? is



) KEX(3 3 .
I_cgu)ad_ 32772(5_20) _(‘-)2+ E_ af af af( —(L)szJ.d XF <. (16)

W -_1KE(3.3, 5,8, 1.:,8,_1 1 =
rquad 16 2]72 (8 4w+8a)2+8§( 2(‘-f+8(‘-[ 32(4-{("'320]2()'[(1 xF <. (16b)

If ¢ -0, - 0, a1 are taken to obtain the gauge condition indepeneasult, the non-zero
result

is found.
The net result for the divergent part of the effectaction that involvesF?® and therefore
contributes to charge renormalization is

. (1) — K2E2 3K2/\ 2 2
divy @) ( e e NE: —8n2InEC [dxF2. (18)
(1) :i _/(ZEC2 3k°N\ 2 =3
divir®) 16( L ﬂzlnE jjd XF?. (18b)

From this the renormalization group function in (&t governs the running electric charge to be
calculated to be

B(E.e)= 12‘3]72 32]72(E2 gAje. (19)

The first term on the right hand side of (19) iatthbresent in the absence of gravity and results in
the electric charge increasing with the energy. $eeond term on the right hand side of (19)

represents the correction due to quantum gravdypkre gravity with no cosmological constant, or

for small cosmological constamt, the quantum gravity contribution to the renormaiion group

LS -function is negative and therefore tends to rasuisymptotic freedom.

2. On some equations concerning the gravitatal contributions to the running of gauge
couplings [2]

The action of Einstein-Yang-Mills theory is
S=[d*x/~ [ ~g Vﬁ@i%}} (20)

whereR is Ricci scalar and;, is the Yang-Mills fields strengtt#, =0 A, -0O,A —ig[Aﬂ,AVJ.
It is hard to quantize this lagrangian becauseratity-part's non-linearity and minus-dimension
coupling constank =+/1676G . Usually, one expands the metric tensor aroundcadround metric



g, and treats graviton field as quantum fluctuatipp propagating on the background space-time
determined byg,, ,
gpv = g,uv + Kh,uv . (21)

Furthermore, we can rewrite the lagrangian (20) atsfollows:
1
S=[d*xy/- -=g"g”¥3% 92 20b
.[ |:167G 4g g (74 aﬁj| ( )

Let us setg, =7,,, wheren,, is the Minkowski metric.h,, is interpreted as graviton field,
fluctuating in flat space-time. The lagrangian ¢enarranged to different orders bf, or «. The
free part of gravitation is of order unit and gitke graviton propagator

vy LT I vy g 14 g
P2 (k —z[g"g” +9%g” -g"'g”| (21b)

in the harmonic gaug€” =d,h*" —%G”h'j =0. For simplicity, the metricg”” is understood as

n* . The interactions of gauge field and gravity fialé determined by expanding the second term
of the lagrangian (20). We can compute fdunction by evaluating two and three point funoto

of gauge fields. These Green functions are gemiratgent, so counter-terms are needed to cancel
these divergences. The relevant counter-termsetg@tfunction are

— |5bQ'W5 THP = gf ab(\/,uvpal’ Q,uv = q,uqv _ng,uv’

akp

Vq‘é;" =g”(q-k)' +g”(k-p) +g”(p-a)f. (22

The B function is defined as ﬁ(g):gy%(ga}—a’l). With the consistency condition
oo =%gwl X, we obtain for two and three point functions

T = 26°Q™ | x{ Z15(0)+ 21 8(2)+ g2 (3¢ - X (MZ)} (23)

ri e = age o] 2 200+ e -t ) S g7 -9 )

+(g#p - prg IE(m2)|  (24)

from which we can directly read off the two-pointdathree-point counter-termg, and J/
respectively




s =xt—t Imz- Moy sray [ ]| @5
- 16772 ,Us Iusz yw y2 Mcz .

Putting d" and d; in the following equation

B = gu (§5§ —ij, (26)

au\ 2

we obtain the gravitational corrections to the gaggfunction

=2~ M c 1
Aﬁ _gK 1 n_2|:|n 32 1_yw+y0(M2j:| (26b)

c

In general, the totalg function of gauge field theories including the\gtational effects may be
written as follows

P S A 3 _ us

c

The interesting feature of gauge theory interactignthe possible gauge couplings unification at
ultra-high energy scale when the gravitational cffeare absent. Where the running of gauge
coupling in the Model Standard Super Symmetric (M$Svithout gravitational contributions is
known to be

- 1 : - 1 1 M. N gy 3 M
au)=aq, (M)+Erln7' aw(y)—aW(M)+5Tln7, a(p)=ast (M) an o, (28

with experimental input aM,

a*(M,)=5897+ 005; a;'(M,)=2961+ 005, a;*(M,)=847+022 (29)
We note that these values are equal to the follgwalues connected with the aurea ratio:
38,12461180 + 20,56230590 = 58,68691770; 29,1P3®B1 8,49844719.

Indeed, we have:

()" + (q>)7”]><3= (11,09016994+ 1,61803399x 3=12,7082039% 3 13812461180

_(q>)28’7]><3= 6,8541019% 3 [120,5623059Q

(@) + (@) + (qa)‘21’7jx 3=(6,8541019% 2,61803399+ 0,23606793x 3=
= 9,70820394 3 [ 291246118Q

[( D) + ()7 + (CD)_“”+(CD)_63’7]><3:(2,61803399F0,1458980330,055728089
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+ 0,01315561')’>< 3=283281572%3118,49844719

J5+1

As usual,® = — 0161803399 i.e. the value of the aurea ratio.

3. On various equations concerning some quantum effexin the theory of gravitation

[3]

The general spherical static metric is given by
ds’ = —f(r)dt? + h(r)*dr? +r?dQ?, (30)

where f(r) and h(r) are arbitrary functions of the coordinate The angular part of the metric is
diagonal and given by

dQ? = df((dei f ﬁsinzei]. (31)

i=1 j=itl

Consider an interesting classical scalar fiqﬂ(at) living in a spacetime with the metric (30). This
field has an action given by:

5= d"xJ—_g(—ﬂw—iAncd‘j. (32)

The A, are a set of arbitrary coupling constants. Inipaldr, A, =m’ gives the mass of a weakly
coupled excitation of this field. We will expang in the eigenmodes of the free, classical wave
equation such that

(dX) = J' d/jpapwp (X) ’ (33)
0%, =m’g,. (34)

A sufficiently large set of quantum numbepslabel the eigenbasis. The abstract formal expressio
du, simply represents an appropriate measure ovendues under which

.[ du,0, (X, (y) = 3% (x-y),

and

jddxﬁwp (X)ea,(x) = 3, -

Now we want to consider the energy density, of a massless scalar field in a infinitely large

hypercubic blackbody cavity at temperatife Consider a real scalar fielg (x,t), where | is
some kind of p-dimensional polarization index representipginternal degrees of freedom (for

example, in a well-chosen gauge, the transversaripation of an Abelian vector field behaves
essentially like an internal index on a scalardfieiith p=d —2). Further assume that the field is

sufficiently weakly coupled that each polarizatmymponent can be treated as an independent field
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obeying an action similar to eq. (32) with all irtetion coefficients higher thas, = M? set equal
to zero. Then each field component obeys the dalssquation of motion

0%¢ (x) =M2¢ (x). (35)

The solutions to equation (35) may be expressedsasn over modes labelled by a wave ve&tor
obeyingk®=-M?:
q=A sin(kaxa)+ B, cos(kaxa), (36)

for arbitrary real coefficientsp, and B,. We take the state to be labelled by the 1 spatial

components ok, and fix the frequency of each mode yf =k =M? +kk'. We now confine
the field to live in a cubic box of side length by demanding Dirichlet boundary conditions at
x =0,L fori=1.d-1. This demands, = @nd

7
M (37)

where m is a spatial vector whose components are non-ivegaitegers. The total energy in the
hypercube is given by

U :Zp:i i@nm, , (38)

where we understand thaj, is given by

2 772d_1 2
a)K=\/|v| *FZ”" (39)
i=1

The set of integers,,, defining the quantum state must obey the apprgpstatistics for the field

¢ . We have described a pure quantum state of tharythat a finite temperaturd and zero
chemical potential, the system will be in a mix&tesgoverned by the partition function

Q=>e", (40)
(N }

where £ =1/T . This can be evaluated to give
INQ=-p&Y ... Yinfi-&*), (41)
m=0 m_,=0

where é = 1for bosons and = - for fermions. The overall factor gb occurs because the energy
is independent ofp, so each polarization mode contributes equallye Birerage occupation
number of a given momentum mode in the thermag ssathen given by



_\ _109 _p
<nm> _Z<nml> - ,BaCu]( InQ P iy . (42)

The total energy in the hypercube can now be fdyndombining the expressions (38) and (42), or
by

<>=——ﬁ'nQ > @l =Y. iepfl(”“g (43)

m=0 my_,=0 m=0 m_,=0

We should pass from a state labelling in termsuwzEngum numbersn to a labelling in terms of
physical momentek; , with a mode density determined by the differdritrait of equation (37).
The sums ovem then become integrals ovkr as

J-dd 1k( )_d 1eﬁ2@€t’ (44)

where ¢, is understood as,/M? +kk' . The factors of 2 in the denominator of the measuise

because the integrals over tkerun over both positive and negative values, wietham were

only summed over non-negative values. Equation ¢dd)es properly with the volume, so that even
in the infinite volume limit we can define the spat energy density ovek. modes. Using the

spherical symmetry of the infinite volume limit adefining k = \/k k' :|ki|, eg. (44) becomes

) VoI(Sd‘Z)J'wdkkd‘zx/M2+k2
0 £ )

v =p=p (zﬂ)d—l eﬁ\/MZJ'kZ ~

(45)

This defines the spectral energy density over th@nmade of the spatial momentum, via
p= J' dky,(k), as
oK)= Vol(s*?) kM2 +K2
k - (Zﬂ)d_l eﬁ‘/Mz’sz —f '

(46)

Similarly, we can define the spectral energy dgrsier the frequency as

_ vol(s2) a(a? - m2)" "
u,(@)=p P o (47)
wherea runs over[M ,oo].

The total energy density can now be evaluated usitiger eq. (46) or eq. (47) match. Simple
analytic results can be found for the c&d8e= 0, which will also apply whed >>M . In this case,
« =k and equations (46) and (47) match. They give

p= T"VO'(Sd 2)j dx——. (48)



The integral can be evaluated by pulling the exptiakinto the numerator, performing a Taylor

series ine”*, doing the integral, and resumming the TayloreserThe result for the general definite
integral is given by

d-1 (1-¢)/2 -1 ANqa _ ]Nab
X dx:(l_ij 2(d)(d _1)!"2%, (49)

n=0

where {(s) is the Riemann zeta function, which can be defioedeal s>1 as

(9=~ (0

n=1

This series arises in the evaluation of the integrdn the ¢ =1, for bosons. For fermiong =- , 1
the corresponding series is

This series can be evaluated using

Z(s)—fR(s):%+%+6—25+...=2—255(S), (52)
so that
*(s) =(1—§jz(s), (53)

which is the origin of this factor in eq. (49). $a}. (48) becomes

(1-8)/2

2d 2d—2r(d _1}7@—1)/2
2

Furthermore, we can rewrite the eq. (48) also bavis:

0= pT® VO|!Sd_2 )J'w dx x4 _ p(l_ij(l_g)/z Z(d)(d —l)!
d-1 X _ d -
(27T) o e -¢ 2 2d—2r(d 1j]7(d—1)/2
2

T¢. (54b)

Before, we have considered the energy dengityof a massless scalar field in a infinitely large
hypercubic cavity at temperatuffie. We now want to calculate the energy flux, emitted from a
blackbody with this same temperature. For the ftakculation, instead of\/oI(S"‘Z) we will
encounter

[a2a cos(Hd'z)@(l—zT - ed-zj =

10



4 e "o e codor ) lsinlg ) = 20 Z 1 yolls)=
0 0 0 0 D —_

d-1
=vO|(Bd'2)=\/7_T(;_2) It([ofzjjvm(s“), (55)

2

where ©(x) is the step function anB" is the n-dimensional unit ball: the compact subepaf R"

bounded byS"™(for example,B? is the unit 3-ball of volumet7si/3 bounded by the spher®® of
area 4n1). The fact that the expression for the energysifgrbecomes that for the flux when
VoI(Sd‘Z) is replaced bWoI(B“) makes physical sense, sinBé is the projection ofS"onto R".
We are left with the relationship of flux to enerdgnsity as

N
o 2 _vol(B*?) 56)

Jn(d —2)r(OI ;sz “volls™Z )

Thus, the d-dimensional Stefan-Boltzmann law igity

_ 2\ Z(d)(d -1) .
®= p[l—?j — g T 6D
2472(d - 2)F(2jn”

4. On some equations concerning the supersymmetri¢ang-Mills theory applied in string
theory and some lemmas and equations concerning vaus gauge fields in any non-trivial
guantum field theory for the pure Yang-Mills Lagrangian. [4] [5]

The fields of the minimaN = Zupersymmetric Yang-Mills theory are the followiraggauge field
A,, fermions A and A, transforming as (1/201/2) and (01/21/2) under

SU(2), xSU(2), x SU(2),, and a complex scalaB - all in the adjoint representation of the gauge
group. Covariant derivatives are defined by

D,® = (0,, +iA, ), (58)
and the Yang-Mills field strength is
Fan =0nA, =0,A, +[A A ] (59)

The supersymmetry generators transform(44201/2)0(01/21/2); introducing infinitesimal
parametersqj, and7y, furthermoreD = [B,E]. The minimal Lagrangian is

11



L:e—lzjd“xTr(_IlanFm” iA’o™ D X" -D, BD"B - 1[§, B]Z— |
M

ad ~'m ﬁ Eglj [Aﬂ’i ’/Ljr] + I_ Bgij [A_[zi 'A_iﬂ]j

J2
(60)
Here Tr is an invariant quadratic form on the Lie algetwhich for G=SU(N) we can

conveniently take to be the trace in tNedimensional representation.
It is possible to realize a mass term for tNe=1 matter multiplet (which consists dB and

W, =A) by adding to the Lagrangian a term of the fokfw)+{Q,..}, where Q is the charge

corresponding to theo, transformation. FurthermoreQ, is the only essential symmetry. We
obtain:

L=L+1(w)+{Q...}=L —%jd“xTr(m)li/V’2 + m)T;")sz)— ¢ [d'xJ2mmTiBB, (61)
M M
with
— O.mnzch(lgmnkl . (62)

The mass is proportional to the holomorphic twa¥far . The N = 1gauge multiplet, consisting of
the gauge fieldy, and the gluinod, = A, , remains massless.

With regard theA'® -amplitude in the type IIB description, the classiaction for the operatc(lf\)16
in the AdS x S° supergravity action is

16

ol L
SA[J]=82”(95 ] A [ Xodpop St

[ (20303 %, ) — (py5 +o =%,V o (p)] (63)

p=

This result is in agrees with the following expieasobtained in the Yang-Mills calculation:

Gylx,)= g e_z“jﬂ%jd“xodp ijd%dg? 1 (,0017 >+ (x, - 3""’*“)
6\ *p YM Opg |p_:! Ipo J \/— a

(64)
i.e. the correlation function in the super Yang{Mdescription.

The low energy effective action for type IIB supegrgy theory in ten dimensions includes the
interaction (in the string frame)

S=|§fdloxﬁ(i(3)ze’2"’+25(3)5(2)+6Z()2“’+ ~{(6)e* +.. jm (65)

where the ... involve contributions form D-instantons
We consider the perturbative contributions to Bi&R* interaction. The sum of the contributions to
the four graviton amplitude at tree level and a toop in type |l string theory compactified arf
is proportional to

e FErsiarizar(-12u4)
2 rlu+izs/a)rlie1/a)r e 12ur4

) + 27t }724 , (66)

12



whereV, is the volume ofT? in the string framegs,t,u are the Mandelstam variables, ahdis

obtained from the one loop amplitude. The amplitisdthe same for type IIA and type IIB string

theories. Nowl is given by
_r dQ —
| =[~—z.FlQQ) (67)

ygg

where ¥ is the fundamental domain &L(2,Z), andd?Q = dQdQ /2. In the above expression, the
lattice factorZ,_. which depends on the moduli is given by

2

}. (68)

lat

i,
QZUZ

o

Expanding eq. (67) to sixth order in the momentaget that

Zu=V, > exp{—ZﬂT(detA)—
AMat(2x2,Z)

| = %(33 +t%+ ue’)[IAl + fz], (69)

where

5I_J 5 i |n)?(|/1_VZ;Q)m)?(Vl—I/s;Q))?(VZ _VS;Q)a (70)
= 2

and

v -viQff. (1)

We have also that

(47 =] d’Q

s ZeBAfI SR L (72)

where [1,12, and I} are the contributions from the zero orbit, the -degenerate orbits and the

degenerate orbits dL(2,Z) respectively. In the eq. (72), we have used theession

5/2

Ky (2782, Immyle? ™™ (73)

)SLZZ

=20(6)03 + 5 ¢(6)+ VR, >

m #0,m, 20

H(oRo

Thence, we can rewrite the eq. (72) also as follows:

5/2

4 ’ 7im;m
(47) Koyo(2702,Jmm, Je™m: . (74)

4

B3, ¥

2
QZ m, #0,m, #0

The contribution from the zero orbit gives

13



~ d’Q
=V o E(Q Q) =0. (75
The contribution from the non-degenerate orbitegiv

271Tkp—

i2=2v,[" de 2|53(Q QS Ye =

k>j=0,pz0
- 2\/T_2E3(U ,U)qu,z) z

p#0,k#z0

512
% Ke,o (27T, | pK )™ . (76)

Furthermore, the contribution from the degenerab@®ogives

UiP!

1 wdQZ su2z)  0.U, _i 3 377((5) —\sL(2,2)
P=uf e GFeaf 3 o 2 e 22 e 0wy,

|i+pu®

(77)

Now we want to show two lemmas and equations comugrthe gauge fields as described in the
Jormakka’s paper “Solutions to Yang-Mills _equatiod$]”. Thence, in the next Section, we
describe some possible mathematical connectionwebat some equations concerning this
interesting argument and some equations concethmdramanujan’s modular equations that are
related to the physical vibrations of the bosoniings and of the superstrings, and some
Ramanujan’s identities concerning

Lemma 1

Let the gauge field satisfy

AF0x006) =506 2 (78)
where p; andc, are as in the following expressions
n=p 4oy, PO 0R; AEX =% V26 =% =% V2] __X1+\/_

1
0,=0,=0; 03=$x0; () u(,o], )+|v(,oj, ) (79)
©=v2; ¢=¢=1; =0 &=-J/2; g=¢=1;, =0, (80)
and £,s,0 R Then
3/21
fo? (A 0><1x2,x3))2=8205(§j —- (81)

We change the variables 19, Y, Y,

14



2 1 2 1
=¢§>&—Exz—%xe: YZ:\/;XZ_EXG; Y, =2% (82)

Then
3
D pi=yi+ys+y;  (83)
i=1

As y, andy, are not functions ok, we can change the order of integration

—(2sfy _

[atxe ™ T4 = [aoxe™ T = [dixe b age o = [qexes i [Idyle

= [d?xe b [J_(fﬁ) (84)

As vy, is not a function ofx, we can change the order of integration

jd Xeﬁ y2+y3

\/_jd Id xe? Vi) \/—\/_(\/_,3)

% NeZ jdxge‘ﬁ“jdxzez ol \/_\f\/_\/_,g jd><3e‘/’y3jdye2 S
_1 §(2ﬂ)(\/§ﬂ)_zjd)%e_ﬁzy§ =%\/§%(2ﬂ)(\/§ﬂ)_ IdySe‘ﬁzk _T ——(27T) (\/_,8) (85)

22

J'd e —ZﬁZZ/JJ _(zj_jjd Xe —ZﬁZZpJ _ LTT%:
2) p° V 2) B

= Id x( (0,x,, xz,xg))2 = jcf(gjm

1
—. (86
7 (86)

Thence, we can conclude that the eq. (81) is true.
We can rewrite the eq. (85) also as follows:

fexe 1L oy e bioi) L otz = L [ o2

3 V3
Dd w7 0+33) \/_\/_(\/_,8)} ; ﬁlﬁ' (86b)

Lemma 2
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Let the gauge field satisfy
AP0 6%) =56 =7 (87)

where p; andc, are as in(79), (80)and 3,s,J R. Then
[, = —iﬁzsjs (88)
B 16 3

where in Minkowski’s metric at, =0, we haveB =0. In the negative definite metric

-1 0 0 O

0O -1 0 O
O.)=) o 5 -y o (@D

0O 0 0 -1

we have thathl—;’+§+4.

From (79) and (82) follows that

p:iy —iy +iy p :iy —iy —iy p :—iy —\/éy (89)
l\/él\/EZ\/ES' 2\/§1\/€2\/§3’ 3 \/él 32'
For Minkowski’'s metric
P(p)=0=By; +B,y; +B,y; +B,y,y, + By,y, + Bey,y,  (90)

where B, = Ofor all k. For the metric (88b)

P(p)=4p7 + 402 + p2 - 4p,p, = BY? + B,yZ + B,y2 + B,Y,Y, + By,Vs + Byy,y,  (91)

where

B =- (92)

4
NS
We do the integration with generic parametBys Then

s 5810t +03 +p2) (a5 @PP (i) ) ) )
J-d Xe P(p) = jd Xe (Biy: +B,Y, +By; + B,yiY, + By, s + BsY,Ys) -
(93)

As vy, and y, are not functions ofx, we can change the order of integration and chahge
integration parametex, to vy,

16



) (Pl P2 +P3) ) (Y1 +y3+ 3)

jd xe 2 Id xe 2 (Blylz + Bzyz2 + Bsye? + B4y1y2 + Bsy1y3 + B6y2y3) =
L2py ( Leppy? Leppy?
= jd xe 2 jdxlyle 2 + (Bzy22 + Bgy§ + B6Y2Y3)jd)ﬁe 2 +
@By
+(By, + Byys) [ dxvie =
1 ¢ o -henrbie) 2 PR (22 ~3eer v
"7 [d*xe B[ dy,y7e +(B.y2 + Byy: + Boyeya ) dyie ¥

5287 ¥2
+(By, +Byy:)[dyye 2 J =

IdZ 2(y3+y3 (Bl\/_( ) (Bzyg + Bgy:f + B6y2y3)\/?ij' (94)

As vy, is not a function ofx, we can change the order of integration and changentegration
parameterx, to y,:

BY (02 p§+p3) B)2(v2+y2+y2)

2
j d*xe 2 (BLY; +B,Y5 + Byy: + By, + Boyys + By, ¥5) =

2 3 l 1
J-dz y y Bl ( 2y2+Bsy3+Beyzy3)\'2 sl b
R "2y )
1 (3 ~2(2p) v -L(2)2y3 1 L2y 2
=ﬁ£””fdxsezz y (Blg)afdyzezz "em fduyie s

jd xe22

(283 1 -2 (26)y3
+Bys jdyze T B [dy,y.e 2 ]=

1 [3 Loy R e S R =
ﬁ\/;@jdx?,e [ ( )F Zﬂm(zﬂ)3+sgy32ﬁm2ﬂj

_1 ﬁ)y3 1
=2 (Bl(zz?)“ (Zﬂ) Bgys(ﬂ)J

3 S 1 _ 3
f Bl+B+B)(2ﬁ)5—n(2[,,)5(81+Bz+83). (95)

We can rewrite this equation also as follows:

1 2
~5(28P e +yi i) ™ 8l
{[dgxe ? (Bly12 + Bzys + Bgysz +B,Y,Y, +Byiys + BGyZyS):| :Zx (16,85j2 . (95b)

Thence, we can conclude that the eq. (88) is tndedd, we have that:

(28)? (0?2 p§+p3) (28 (y2 +y3+y3)

J-d xe 2 .[d xe 2 (Bly12 + Bzy22 + |33Y32 +B, 1Y, + BoYiYs + BsY,Ys) =

17



| [gie =LV o
=TT (2'8)5(81+Bz+83)_jd£9z_ ﬁlﬁ Za:SaB- (96)

5. Ramanujan’s equations, zes#rings and mathematical connections

Now we describe some mathematical connections sathe sectors of String Theory and Number
Theory, principally with some equations concerning Ramanujan’s modular equations that are
related to the physical vibrations of the bosortilngs and of the superstrings, the Ramanujan’s
identities concerning and the zeta strings.

3.1 Ramanujan’s equations] [7]

With regard the Ramanujan’s modular functions, vegenthat the number 8, and thence the

numbers64=8" and 32=2°x8  are connected with the “modes” that corresponthéophysical
vibrations of a superstring by the following Rammufunction:

r COS7EXW oW dx
antilog——COSIVK E %42
—iw‘ : t W
1 e * @litw)

= Iog[ \/{mim}ﬁlojﬁﬂ . (97)

Furthermore, with regard the number 24 (12 = 24an2l 32 = 24 + 8) this is related to the physical
vibrations of the bosonic strings by the followiRgmanujan function:

[ COSTIXW __ ey 4
antilog™ conszhm D'tZZL\:IZ

e + g (itw)

T

It is well-known that the series of Fibonacci’'s ruars exhibits a fractal character, where the forms
J5-1

repeat their similarity starting from the reductitactor Vg - 0,618033 = 2  (Peitgen et al.
1986). Such a factor appears also in the famogtafrRamanujan identity (Hardy 1927):

(98)

18



0,618033= 1/¢:*/_5—_1 =R(q) + E -
2 14375 ;quf(—ﬂggg
2 \/g o f(_t1/5) t4/5

(99)
= 2<1>—i R(q) + V5
20 3+4/5 1 a f5(-t) dt
By B o
and : (100)
o=Y5+1
where 2

Furthermore, we remember thét arises also from the following identities (Ramaml§ paper:
“Modular equations and approximationsitbQuarterly Journal of Mathematics, 45 (1914), 350-

372.):
o 2 [10+11\/§J+ (10+7\/§J
Va2 Y 4 4

n

_ 12 Iog{ 2+5)3++13)
V130 V2
(100b)

} , (100a) and

From (100b), we have that

_ 7142

Iogl\/(10+£111\/§j +\/[1o+47\/§]]
. (100¢)

Let u(g) denote the Rogers-Ramanujan continued fractidineteby the following equation

1/5

2 3
u:=u(q)::(i—+1i+f—+%, g <1 (101)

and setv = u(qz). Recall thatt//(q) is defined by the following equation

o 2.2
w(a)=tao?)= Yo :Hq =L (102)
n=0 q,q 0

§J’w5(c5] %=I09(U2V3)+\/§|Og(l+ V52 sz- (103)
ST Y\d’) ¢

Then

1- W5 +2uv?
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We note that 1+(J/5-2)=2(061803398 and that 1-(\/5+2)=20161803398 where
¢ =0,61803398and ® =1, 61803398are the aurea section and the aurea ratio regpBctiet

k:=k(g):=uv’. Then from page 326 of Ramanujan’s second notehwekhave

u _k(l kj and v° = kz(l kj. (104)
1+k k
It follows that

Iog(u2 ) Iog(k81 Ej (105)

If we set & = (\/5+1)/2=161803398 i.e. the aurea ratio, we readily find thet=+/5+2 and
2 =/5-2. Then, with the use of (105), we see that (108pjisivalent to the equality

8.y°(q)dg _1 [ sl—kj 1+ &3k
= —=Zlog| k*=— |++/5] . (106
SIw(qsg g 509 K Iy JHBlog T | (108)

Now from Entry 9 (vi) in Chapter 19 of Ramanujasécond notebook,
(//5(01 _ 2 3(.5 d fla®,q°
=250°w(qk°\g° )+ 1- 59— log . (107)
w(q5; (ah() dg ~ fla.q*

By the Jacobi triple product identity

f(a,b) = (- a;ab), (-b;ab), (abab),, (108)
we have

flo2.q?) _ (Caia)(- o). = qusula)
tlaa') Fadllaia), @aLldallaa®Liaha®) ~ va)’

by the following expression

Using (109) in (107), we find that

gj%?g—g;% = 40J'q¢/(q)w3(q5)dq + J's—z dg- SIdiqlog(ql’5u/v)dq =
= 40] qy(al*(c° Jdq - 8log(u/v) = 40] qw(q)wS(qS)dq%Iogk ——Iog—k (111)

where (104) has been employed. We note that weevarnite the eq. (111) also as follows:
d 1-k
IT_} A =40] a(al*(a )dq+—|ogk——| og - (112)
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Multiplying both sides for6£4 , we obtain the following identical expression:

1 ws(q dg_ 3(5 1 _ 1-k
sjﬂq_f’}q 25%[(140((4)!// (a )dq+8Iogk 3%Iogl+k, (112b)

or

1 ¢/5(q %:}( 3(5 B Hj
8jﬂq_5} q 8 25.[0141/((1)1// (q )dq+|ogk 3Iog1+k . (1129

In the Ramanujan’s notebook part IV in the Sectimegrals” are examined various results on
integrals appearing in the 100 pages at the erdeo§econd notebook, and in the 33 pages of the
third notebook. Here, we have showed some intedhas can be related with some arguments
above described.

w2y (dne L s ag K aare XX
J &™) 87> kZ:;(eZ’k -1)4a* +k*) 4 |, (€™ -1)f4a* + x*)’ (113)
2 [ xdx _1 m, < 1
b e a) 2 s a9
Multiplying both sides forr7”, we obtain the equivalent expression:
2fn_ xdx i_ﬂs S
7 [4a J-o (€™ -1f4a* + x ) 4a kZ‘ (a+ Ky (148
Let n>0. Then
- sin(2nxdx  _ & (-1)e P cod(2k +1)n}
J-O x(cosHrx)+codrx)) 4 2;) 2k +1)cosH(2k +1)rr/2} (115)

Also here, multiplying both sides for*, we obtain the equivalent expression:

= sin(2nx)dx ©, (-1)f e+ cod(2k +1)n}
nzjo x(cosi(nx)+cos(nx)) kz (2k +1)cosH(2k +1)77/2} 15

Now we analyze the following integral:

Iog(lJr Ji+ 4x]
- dx =

_ 2 .
=], X =15 (119
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Letu= (1+ V1+ 4x)/2, so thatx = u® —u. Then integrating by parts, setting=1/v and using the

following expression Li2(2)=—IOZMdW, zOC, and employing the value
W
Li, \/_5—_1 :i—logz \/_5—_1 , we find that
2 10 2
V5+ 5+ 2 V5+ -
I :J-( 5+1)/2 I(Z)gu (2u-1)du= _I( 5 1)/2|og!u u!du: _J-( 5 1)/2(Iogu . log(u 1)jdu:
1 u—u 1 u 1 u u
=_1|ogz J5+1 +J-(ﬁ+1)/2Iog(1—v)—Iogvdv:
2 2 1 v
~Liog? V5+1 — Li, V5-1 +Li,(1) - Llog? V5 +1 S (117)
2 2 2 2 2 10 6 15
Thence, we obtain the following equation:
|og(1+‘/1+ 4xj
1 2 (vs+1)r2 logu Vg
| = dx = 2u-1)du=—. (118
J-O X jl u? —u( ) 15 (118)
Multiplying both sides forlfﬂ, we obtain the equivalent expression:
Iog(1+\/1+ 4x
2 5+
|:1_5 ! dle_Sn(Sl)/z |(2)gU (2u—1)du:1_5n' :i;
4 Jo X 4 A u - —-u 4 15 4
1+/1+4x
! 2 15 (Vs+a)iz | T
| =225 dx=="71 99 (2u-1)du="L. @1sh
4 7o X 4 1 u“-u 4

In the Ramanujan’s paper: “Some definite integanected with Gauss’'s sums” (Ramanujan,
1915 -Messanger of Mathematics, XLIV, 75)8&re described the following integrals:

: dx= ,  (120)
0 sink7x 167

2
J~X3cosnx dx = 1(1 3

_1(1_3 J»oox3 sin7x’ 1
o sinh7x 16\4 77

j . (119)

© XCOS27K 1(1 3 5 o X2 COS27K 1 5 5
S22 P dx=— | = -2+ = |, (121 dx= 1-—+ = |. (122
Io e?mx _q 64(2 T nzj (121) Io e?x _q1 256( T nzj (122)

Now, we sum (119) and (120) obtaining:

[0S g ij33‘“m2dx=i(1_ij+i=i_ 3,1
o sink7x o sinhrx 16\4 °) 16m 64 16m° 167
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Now we multiply both the sides for® and obtain:

2 H 2
773(] chgsm dx+J' ng.lnm o) = T _3r i:i 3m i_i i—3n+772,
o sink7x o sinh7x 64 1677 16m 64 16 16 16
thence
7o [ 36 O g [ S )L g, 29
o sinh7x smhm 16\ 4 '

Now, we sum (121) and (122) obtaining:

J-wxc052mdx+ij2c052mdxz( 1 38,5 .1 5 5 j

0 g2mx _q o @2mx _q 128 64 647 256 256w 25677

Now we multiply both the sides for® and obtain the following equivalent equation:

© XCOS27K » X2 COS27K ™ 3 5 1 5 5
77| [ XEOSETR o ("X COSX gy | = S (S T/ & e, iy, Ry, o B
UO e?mx -1 IO e2mx —1 16 204 27 27 8 8 '8 (129

In the work of Ramanujan, [i.e. the modular funieig the number 24 (8 x 3) appears repeatedly.
This is an example of what mathematicians call magmbers, which continually appear where we
least expect them, for reasons that no one unaelst&amanujan’‘s function also appears in string
theory. Modular functions are used in the matherahtanalysis of Riemann surfaces. Riemann
surface theory is relevant to describing the bedraof strings as they move through space-time.
When strings move they maintain a kind of symmetrifed "conformal invariance". Conformal
invariance (including "scale invariance") is rethte the fact that points on the surface of a giin
world sheet need not be evaluated in a particutdroAs long as all points on the surface arertake
into account in any consistent way, the physicukhaot change. Equations of how strings must
behave when moving involve the Ramanujan functMien a string moves in space-time by
splitting and recombining a large number of math@rahidentities must be satisfied. These are the
identities of Ramanujan's modular function. The Ki®dp diagrams of interacting strings can be
described using modular functions. The "Ramanujarction” (an elliptic modular function that
satisfies the need for "conformal symmetry") has"&dmdes" that correspond to the physical
vibrations of a bosonic string. When the Ramantyaction is generalized, 24 is replaced by 8 (8 +
2 =10) for fermionic strings.

With regard theSection 1 we have the following mathematical connectionsveen the eqgs. (16b)
and (18b) and the egs. (112c), (123) and (124):

. :_1K2E5(§_§w+§wz+§ P R § +iwzjd4xfz:
o™ g arm o 49 Y Tat 2 e X T 1Y

} (//5(01 %_E( 3(5 _ ﬁj
SSJE(Q_S% q 8 25] ay(ak (o°)aq + logk Slogi |- (129)
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" =_y2Ef(§_§w+§wz+§ I PR +iwzjd4xf2
a =15 o2 g a2 e T8 2% T % T, 4 =

N 773(.[ N COSTK’ dX+J'°° N S_inmz dXJ :i(i_3n+ 77'2}, (126)
0 sinhrx 0 4

sinh7x 16

o) __iKZEf(§_3

5 3 1 3 1 1 —
= —a)+—a)2+— —Zwf+=a Wl +—af{ || d*xF?
quad 16 2]72 4 8 Q( af af af{ 32 ZJJ. =
=T roxcosZmderIw—x cosZde i §772+— +1773—§772+§n; (127)
0 g2mx _1 o gx _q 162 g8 8 8
K°E?  3k*A
di - - INEZ + —InE d*xF? =
)= 8 2( 8 16 37 jj

} v q%:i 3(q° _ ﬂ )
gfﬂq—s;q 8(25Iqw(q)w (6°)da+logk 3Iogl+kj, (128)

22 32/\
dl\(ﬁ ) 16( /(87526_1/6(5772 EC+ InE]J'd XF? =

:>773(I 3cosm J'Xsslnm j_i(i_yﬁ;ﬁj; (129)
0 smhnx 4

sinh7x 16

KE 3N, _, €
difp®)= 16( L n2|nEdexF =

® XCOS27X = X* COS27K T 3 1 5 5
:>ﬂ3(j0 ez”&—ldx+jo—2”&—1 dxj 16 2(— —n2+— +§n3—§n2+§nj, (130)

€

With regard theSection 2 we have the following mathematical connectionsvben the egs. (24)
and (27) and the egs. (123) and (124):

Ti§ 9 = 2ig (167G Id{ Va1 £(0)+ (g g ) £(eg)+ (g — kg™ i (a?) +
+omp’ - prg” i )=

2 H 2
=7 J' e dx+j N alatity V) P i—3ﬂ+ﬂ2 . (131)
0 sinh7x 0 sinhrx 16\ 4

Tigr e = 2igliere) o v 2(0)+ (o7 - e b ()« o7k -k bl
+lg™p - prg” J 2)| =
» XCOS27K » X* COS27X 1 7 3 5 1 5 5
= 773(-[0 eZIT\/; _1dx+jo md)(j Z—G];(T_Eﬂz +E7T+§773 _gﬂz +§7Tj| (132)
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o1 el MZ U
- — + S | _c 1 + S
P 16772b°g 16#{” 1 Y yO(M H:

C

:>77SUO 3COSM( dx+ jxgslnm J_i(é_gﬂ.wfj; (133)

sinh7x sinh7x 16

c

2
:>773] xcostdeJrJ- X cgsan B1_ +§n+£n3—§n2+§ﬂ. (134)
0 e2n X1 0 ez” -1 16 2\ 4 2 2 8 8 8

K__i 3 2 2 :us

Thence, mathematical connections with the Ramamujan@dular equations that are related to the
physical vibrations of the superstrings and with Ramanujan’s identities concerning

With regard theSection 4 we have the following mathematical connectionsveen the egs. (85)
and (95b), that derive from the (95), and the éts4b), (115b), (118b), (123) and (124):

jder_ﬁz(ygwg)%jdyle_;(ﬁﬁ)zylz =Id2xe‘ﬁz(y5+y§)%\/ﬁ(\/§ﬂ)‘l:
%J— nlv2p)" [axe™ jd)(zez Fi _ % E Va2 ﬂ)-lj e | dyze_g(m)zyz )
- lrkVas) e = 3 Serlan) e = 4 3 on{vza)

NE
= 2y p2varv3) 1 ok _ ix 1
Ud *© \/5\/5(\/5,3) } 8 o
2 Xax . o 1
= 7 [3a° [ (@ -1aa*+x*) 4a 4 +a772kZ:; @ik (135)

.[d X6 - B yz+y3

\/_J‘d P < [ b e 2p) =

28] [ e ) f J2(v28) jd)geﬂy3 jdyzez”

_ Ddzxe_ﬁz("g*yg)—\/ﬁ(\/iﬂ)_lr = 8% x@f =
(-1) e’ @ cod(2k +1)n}

sin(2nx)dx
TS (2nx) 2 (2k + Doost{(2k + )77/2}

o x(cosH7x)+codmx))

a ¥
XMS

(136)
J-dzxe"gz(‘é*yg)%jdyle_;(ﬁﬂ)zy12 :Idzxeﬁ ) \/—\/_(x/_ﬁ)
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—3\/_(\/_,3) Idx3e B3 Idee 2 J28) 3 :%\/E@(\/Eﬂ)_ljd)%e_ﬁzygIdyze_;(ﬁﬂ)zyg _
E(Zﬂ)(ﬁﬂ)_zjd&e‘/’zyg :% \/g%(zﬂ( j dy,e? = \/5 g

1

=Ud%‘ﬁ“%ﬂWT28§*@f:‘

15 ((s+1)r2 logu T
——(2u-)du=—; (137
ﬂjl uz—u( u-1)du o (18D

3
%\/E(ZH(\/_'B) jd)ge”y :% g% ( ) J‘dyse‘/’y = \/§ g

. HSU:Xe.cpsnx e [0 307 dxj=i(i—3ﬂ+ﬂ2j; (138)

sinh7x sinh7x 16\ 4

Lfass T = faer) & o) -
= 2 2l2p) Jaxe s faxe # T = ﬁm(@)—ljdxse_ﬁzyg [aye 207

-1 \E (2r)\V2B)" [ e = g%(Zn)(\/Eﬂ)_z [y = E z ;(2n)3 (v25)°

l 2 3
5@ v i) B, =
h dxe 2 (By? +BoyZ + By + By, + By + Bﬁyzys)} TR

= P a(” xdx - ”3 3 . (140)

0(e”—1)(4a4+x) 4a kz ( N

5P +yi+¥3) L
D dixe 2V B2 + B2 + Byl + B, + By + BoYays) =

26



. . w [_ 1) a-(2k+1)n
N j sin(2nx)dx __ ) Z( 1)e cod(2k +1)n} . (141)
o x(cosHrx)+cod7x)) 4 & (2k +1)cosH(2k +1)77/2}
B (v +y3+y3) ‘7. sl
2
Nxez (&ﬁ+%ﬁ+%ﬁ+amh+&%h+%W%ﬂ:_”“_?73
4 (ep°)
|og(1+‘/1+ 4xj
2 5+
Ny :1_577 1 d =1_5”I( 5 1)/2|(2)ﬂ(2u —1)du=i; (142)
4 Jo X 4 u“-u 4
Lo levievi] 7. sl
Dd3xe 2 e (Bﬂﬁ2 + BZYS + BsY32 +B,yY, + By ys + Bey2y3) :ZX 16,85 2=
3cosnx 3smnx _1(7 _
= j dx+ j =\ Z—3m+ 2|, (143)
0 sinh/x smhm 16| 4
Lo leyievi] 7. sl
Dd3xe 2 e (Bﬂﬁ2 + BZYS + BsY32 +ByiY, By ys + Bey2y3) :ZX 16,85 2=
© XCOS27K » X* COS27X ™ 3
7| [T RCO3ETK gy (7 X COSETK g 1~ - -= +— += 773 772+ 77 144
= (.[0 ez;r& -1 jo eZm& -1 16 2l 4 2 2 ( )

Thence, mathematical connections with the Ramatwidentities concerning, premselyT.

3.2 Zeta Strings[8]

The exact tree-level Lagrangian for effective schédd ? \which describes open p-adic string
tachyon is

1 p2 +1
6=t Pl Lgipe g
" gp-l { p+1

-07 + 00

(145)

where P is any prime number; = is the D-dimensional d’Alambertian and we adopt

metric with signaturé_ ), Now, we want to show a model which incorporatesg-adic
string Lagrangians in a restricted adelic way. ustake the following Lagrangian

N1, 1] 10 S 1
-* ;C Sin gz{ Zwén ¢+;n+1¢] }

(146)

Recall that the Riemann zeta function is defined as

I_IlIO

nx1 n

=o+ir  o>1 (147)
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Employing usual expansion for the logarithmic fumctand definition (147) we can rewrite (146)
in the form

RN
L=—= o p+p+ In(l (0)
g°l2 \2 (148)

O

1)
wherek4 <1. 2) acts as pseudodifferential operator in the follaywvay:

O _ 1 ixk _k_z“'
) L U

= J. e g x)alx

Dynamics of this field? is encoded in the (pseudo)differential form of Riemann zeta function.
When the d’Alambertian is an argument of the Riemaeta function we shall call such string a

where ¢ is the Fourier transform cﬁ(x)

“zeta string”. Consequently, the aboffeis an open scalar zeta string. The equation ofandor
the zeta strindt is

_ 1 iX k2 - —_ w
Z(E}o——o 2 ki(——jw K)dk =
2 (277-) .[k0 -k?>2+¢ 2 ( ) 1—(0 (150)

which has an evident solutidh=9.
For the case of time dependent spatially homogeneolutions, we have the following equation of

motion
- 0; 1 it A Ko ot)
. t - 0 Y
Z( 2 Jw( ) (2n)jko> 20 Z( 2 olko)dk, = 1- oft)
With regard the open and closed scalar zeta strthg equations of motion are

gl oz

n21 . (152)

I( J Kk = Z{en (;:Sen(“;l)_l( W_l)]

(151)

ek

and one can easily see trivial solutibi

nx1
6=0

With regard theSection 3 we have the following mathematical connectionvaein the eq. (54b)
and the eq. (150):
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Dlp= L ez Kk =—2-
Z(ij (277)'D Ikg—R2>z+ge Z( ij(k)dk 1-¢

42 d-1 (1-&)r2
:p:pTdel(s )fo IS p(l_gdj (d) - 1) g (154)
T 2 2d zl—(zjn.(d—l)/z

With regard theSection 4 we have the following mathematical connectionsveen the egs. (74)
and (77) and the egs. (150):

=

4 3 sz 5/2 .
(Z) =], o Za ¥ 2R+ 750+ R, 3 R Ky (2 fmm e =
- 2 ml;t0m2¢0

2

V.[llzd II:%ES(Q’E)SL(ZZ) z e Q.U li+pul? ( (6)1.2 ()J (U,U)SL(Z,Z):
2

vz (i.p)#(0.0) 4T,

Z(%jwzﬁjkg_.zgm 'ka( 2] ()dk_ﬁl

In conclusion, multiplying fo%nﬁ the eq. (77), we obtain the following equivaleguation:

1 el + S e o

(155)

- (156)

2

1/2 SL(2,2)

—nﬁ XV, [
(i.p)#(00)

(157)

This equation can be related with the expressi@8)(and with the eq. (150), giving the following

interesting complete mathematical connections:

de 2E(QQ)

1/2

—L# 2

1/2 Qg

o 3 37TZ(5) —\sL(2,2)
_7(25(6)'5 M ]ES(U,U) =

2

= [d? xeﬁ(“*ys)\/lgj'dyle_;(ﬁﬁ)z = [d*x xe? b \/_x/_(\/_ﬁ)

= i\/ﬁ(ﬁﬂ)_lj' dxe” | dxze_% e 1 \/E \/ZT(\/E,B _1j dx,e J' dy,e 2 AR

[Jasertiod m(fzﬂ)‘l} o fl
2B
:ﬂs(Jm 3 COSTE 4+ ooxssinnxzd] i(i—-?xﬂ n2]:>
0 sinh7x 0 sinhrx 16
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