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Unit commitment by nonlinear mixed variable programming ∗

G.M. Casolino†, G. Liuzzi‡, A. Losi†

Abstract

In this paper we consider the unit commitment problem and its solution via a nonlinear mixed variable
programming algorithm. Indeed, the natural formulation of the problem involves both integer and
continuous variables thus yielding an optimization problem solvable by a mixed variable algorithm.
Our formulation of the problem besides taking into account ramp rate and minimum up and down
time constraints, handles the size of the operator and the uncertainty related to the selling prices by
defining different residual demand curves and using a scenario formulation. The objective function
is indeed given by the expected value of the revenue over the different scenarios minus a term which
takes into account the risk related to the decision. We report results for an operator managing a
single unit and three units at the same time.

Keywords: Unit commitment, mixed variable programming, risk aversion.

1 Introduction

The unit commitment (UC) is the scheduling of power generating units over a daily (or weekly) time
frame that optimizes some objective [11]. With a traditional UC the on/off status of the generating
units is obtained, while the dispatching (optimal power flow) determines the best production level of the
committed generators [5]. Indeed, the two aspects are the two faces of the same problem, which can be
comprehensively referred to as the UC problem.
The UC is a mixed-integer nonlinear optimization problem. A huge effort has been devoted to it, since
its results strongly affect the economics of the operation of a power system.
Models and methods have usually faced a centralized UC: in regulated markets, where a central authority
controls its own generators to serve its loads, and also in deregulated markets, with a centralized unit
commitment (assumed or even enforced) in spite of the decentralized ownership/control of generators.
Self-commitment, a decentralized unit commitment, calls now for the attention in liberalized, re-regulated
markets; each generation company (GENCO) looks after his own interest, while market rules foster
competitiveness and fairness, as well as market equilibrium and price stability [19]. System-wide objective
function, such as min production costs or max social welfare, are substituted for individual one, max
GENCO’s profit, towards the so called profit-based UC [3, 10, 9, 7]. It is driven by the interest of
generation companies for an operation as profitable as possible; in contrast, in the past there may have
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been little interest in obtaining the ultimate cost saving, since the main focus was on satisfying load
supply with adequate reserve margins.
For a system wide unit commitment, the most successful solution approach is based on the Lagrangian
relaxation of the constraints that couples the different units (system demand and reserve) [11], adopting
dynamic programming to schedule each unit separately, and on the updating of the Lagrange multipliers
associated with the relaxed constraints [18]. This has been the mainly used approach, although it gener-
ates sub-optimal (near-optimal) solutions. Other approaches have been proposed (augmented Lagrangian
relaxation, integer programming, evolutionary algorithms) all intended to overcome the duality gap of
the Lagrangian relaxation methods, while the computational burden is kept acceptable [4, 3, 20].
In committing their units, GENCOs face uncertainty; in the following we make specific reference to the
GENCO’s UC for the day-ahead market. In perfect competition, a GENCO is a price-taker, and its short
term commitment decisions depend on the spot price forecast. In oligopolistic markets, a GENCO has
to forecast its residual demand curve, which depends on the forecasted load demand and competitors’
behavior. The UC is a decision making process which has to consider both the risk of a bid not being
accepted and the profit loss that can be incurred into if a low spot price or a low residual demand has
been forecasted [1].
A stochastic approach is able to completely handle the uncertainties that characterize the problem and to
give evidence to the risk aversion of the decision-maker. The objective function directly accounts for the
uncertainties of the problem, by including the expected value of the GENCO’s profit over the scenarios
chosen to represent the uncertain future; at the same time, it directly includes the risk aversion of the
decision-maker, by considering the variance of the profit through an appropriate scaling factor [13, 6].
In the paper, the UC problem is modelled with a stochastic approach. A detailed description of the
problem is proposed, to have a complete representation of the actual possibilities of the generating units
and of the actual costs incurred in operation. Besides production costs and limits on the operating
range of the units, also ramp rate and minimum up and down times constraints are treated, as well
as startup and shutdown costs. Revenues have been modelled with reference to a realistic oligopolistic
market structure; it determines a coupling between the unit outputs of a multi-unit GENCO, which adds
complexity.
To solve the problem, we adopt a recently proposed algorithm, well suited to treat all the above-mentioned
characteristics of UC problem [15, 14]. Different cases have been solved: a single unit GENCO, with a
small ability to influence the market clearing price, and a multi-unit GENCO whose output has a greater
influence on the market price. The results are compared with the ones obtained with a standard local
search algorithm [17, 21].

2 The single-unit commitment problem

Let T = {1, . . . , T} be a set of consecutive time intervals covering some time horizon (e.g. a day or a
week). We denote by T − 1 the set {0, . . . , T − 1}. The problem is that of determining the operating
status of a thermal generating unit in each time interval t ∈ T so as to maximize the difference between
the expected profit over the time horizon and a term related to the risk of the committing.

2.1 Feasible activation and power production schedules

A commitment of the generating unit on the set T is completely specified by the operating status (active
or inactive) and the amount of generated power in each time interval t ∈ T . Let us denote by the binary
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variables zt ∈ {0, 1}, t ∈ T , the operating status of the unit. Namely, zt = 1 means that the unit is active
in time interval t and zt = 0 that it is inactive. Hence z ∈ {0, 1}T represents an activation schedule of the
generating unit. Furthermore, let us denote by qt ∈ ℜ+, t ∈ T , the amount of power produced in time
interval t. Moreover, let z0 ∈ {0, 1}, q0 ≥ 0, ŷ0 and ỹ0 be given constants specifying the initial operating
status of the unit at the beginning of the time horizon; ŷ0 and ỹ0 represent the number of consecutive
time intervals in which the unit has been uncommitted and, respectively, committed at the beginning of
the time horizon. More precisely, if z0 = 1 then ỹ0 > 0 and ŷ0 = 0, whereas, if z0 = 0 then ỹ0 = 0 and
ŷ0 > 0.
The commitment of the generating unit is subject to a number of technical constraints so that not all
vectors z ∈ {0, 1}T and q ∈ ℜT

+ are representative of feasible commitment schedules for the generating
unit.
To begin with, an activation schedule for the generating unit z must satisfy so-called minimum up
and down constraints. Namely, if the unit has been committed (uncommitted) in time interval t, it
must remain committed (uncommitted) until time interval t + tup (t + tdw). In order to express these
constraints, we need to introduce additional discrete variables to detect changes in the operating status
of the unit and to count the number of consecutive up and down time intervals [7].
Let ut ∈ {−1, 0, 1}, t ∈ T − 1 be a set of discrete variables indicating a change in the operating status, if
any. Namely, ut = 1 when zt = 0 and zt+1 = 1; ut = −1 when zt = 1 and zt+1 = 0; ut = 0 otherwise, that
is, zt = zt+1. In order to express the aforementioned relationship between the u(t)’s and z(t)’s variables,
the following set of constraints is needed:

u(t) = z(t + 1) − z(t), ∀ t ∈ T − 1. (1a)

Then, we denote by z̃t ∈ IN0, t ∈ T the number of consecutive time intervals in which the unit has been
committed (zt = 1) up to time interval t. Similarly, let ẑt ∈ IN0, t ∈ T denote the number of consecutive
time intervals that the unit has been uncommitted (zt = 0) up to time interval t. In order for z̃t and ẑt

to act as we have just described, they must satisfy the following group of constraints.

ẑ0 = ŷ0,

ẑt+1 − ẑt ≤ 1, ∀ t ∈ T − 1, (2a)

ẑt − ẑt+1 ≤ Mzt+1 − 1, ∀ t ∈ T − 1, (2b)

ẑt ≤ M(1 − zt), ∀ t ∈ T − 1. (2c)

z̃0 = ỹ0,

z̃t+1 − z̃t ≤ 1, ∀ t ∈ T − 1, (3a)

z̃t − z̃t+1 ≤ M(1 − zt+1) − 1, ∀ t ∈ T − 1, (3b)

z̃t ≤ Mzt, ∀ t ∈ T − 1, (3c)

where M ≫ 1 is a constant such that M > max{ŷ0, ỹ0} + T . We are now in the position to express the
minimum up and down constraints, that is,

tup − z̃t ≤ M(1 + ut), ∀ t ∈ T , (4a)

tdw − ẑt ≤ M(1 − ut), ∀ t ∈ T . (4b)
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Now, let h : {0, 1}T → {−1, 0, 1}T−1 × INT
0 × INT

0 ∪ {∞}3T−1 be a vector of discrete-valued functions
such that

h(z) =

{

(u⊤, z̃⊤, ẑ⊤)⊤ if z, u, z̃, ẑ satisfy (1)–(4)
(∞, . . . ,∞)⊤ otherwise,

(5)

where symbol ⊤ denotes transposition.
If we denote by Fz ⊆ {0, 1}T the feasible set of activation schedules, that is, the set of z ∈ {0, 1}T such
that the minimum up and down time constraints are met, then

Fz = {z ∈ {0, 1}T : h(z) 6= (∞, . . . ,∞)⊤)}.

Now, given a feasible activation schedule z ∈ Fz, a feasible production schedule qt, t ∈ T , is such that
when zt = 0, for some t ∈ T , qt = 0 and, on the contrary, a component qt strictly positive implies
zt = 1. Besides these constraints, when the unit is committed qt must remain bounded by maximum and
minimum output levels, Pmax and Pmin, respectively. Moreover, the power output in two consecutive
time intervals, say t and t + 1, is limited by so-called ramp-up and ramp-down constraints. Hence we get
the following group of constraints.

Pminzt ≤ qt ≤ Pmaxzt, ∀ t ∈ T . (6a)

qt+1 − qt ≤ Rup, ∀ t ∈ T − 1, (6b)

qt+1 − qt ≥ −Rdw, ∀ t ∈ T − 1, (6c)

where Rup and Rdw are the maximum ramp-up and ramp-down power rates and we assume that Pmin ≤
min{Rup, Rdw}.
Let us denote by Fq(z) ⊆ ℜT

+ the feasible set of power levels, that is

Fq(z) = {q ∈ ℜT
+ : (q, z) satisfies (6)}.

2.2 Objective function

The objective function is the difference between the expected profit over the time horizon and a term
related to the risk of the committing. The profit is the difference between the incomes due to selling the
power in the day-ahead market and the sum of production costs and startup/shutdown costs.

2.2.1 Costs

Let us first consider the production costs. When the unit is operational and producing power, that is
zt = 1 and qt ≥ Pmin, it is subject to a convex cost of the form

Aq2
t + Bqt + C,

where A, B, C are positive constants. Besides these production costs, the unit is subject to costs which
only depends on h(z) for each z ∈ Fz. They are:

- The shutdown cost, which is constant and equal to SDC; it is paid for whenever the unit is turned
off, that is when u(t) = −1.

4

GMC
12345678



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

- The startup cost, which depends nonlinearly on the number of time intervals in which the unit has
remained uncommitted and has to be paid whenever u(t) = 1. In particular:

SUC(ẑt) = TS + BS

(

1 − exp−
ẑt

τ

)

.

The total cost is therefore given by

Ctot(z, q, h(z)) =

T
∑

t=1

(

Aq2
t + Bqt + Czt

)

+

T−1
∑

t=0

ut

(

SUC(ẑt)
ut + 1

2
+ SDC

ut − 1

2

)

.

2.2.2 Incomes

As for the income due to selling power produced by the unit, let ρ(qt; t) be the residual demand function
for the considered unit: at each time interval t ∈ T , ρ(qt; t) is the price level at which it is possible to
sell the electric power qt.

2.2.3 Profits

Hence, for the profits we have that

P(z, q, h(z)) =

T
∑

t=1

ρ(qt; t)qt − Ctot(z, q, h(z)).

It is not realistic to assume that functions ρ(·; t), t ∈ T , are completely known; we assume instead they
depend on qt and θt, where θt is a random variable. Moreover, let each θt have only a finite number of
different realizations θ1

t , . . . , θ
nt

t with associated probabilities π1
t , . . . , πnt

t .
Now, since ρ = ρ(qt, θt; t), profit P depends on the random vector θ = (θ1, . . . , θT ) too. Hence:

P(z, q, h(z), θ) =

T
∑

t=1

ρ(qt, θt; t)qt − Ctot(z, q, h(z)).

2.2.4 Objective function

Taking expectation and variance of P we get:

Eθ[P(z, q, h(z), θ)] =

T
∑

t=1

Eθ[ρ(qt, θt; t)]qt − Ctot(z, q, h(z)),

σ2
θ [P(z, q, h(z), θ)] =

T
∑

t=1

σ2
θ [ρ(qt, θt; t)]q

2
t +

T
∑

t=1

T
∑

ℓ=1,ℓ 6=t

qtqℓcovθ[ρ(qt, θt; t), ρ(qℓ, θℓ; ℓ)].

To account for the risk in committing, we consider the following objective function, as in [13]:

U(z, q, h(z)) = Brσ
2
θ [P(z, q, h(z), θ)] − Eθ[P(z, q, h(z), θ)],

5
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where

Br =
Ar

2Ctot

;

constant Ar is the so called risk aversion coefficient, that allows to account for the risk attitude of the
decision maker. For an average risk averse decision maker, a value Ar = 3 has been derived based on
historical data [13].

To conclude, the single-unit commitment problem can be thus posed as

min U(z, q, h(z)),
s.t. z ∈ Fz,

q ∈ Fq(z).
(7)

3 The multi-unit commitment problem

In this section we extend the unit commitment problem to the case where possibly more than one unit is

to be committed for power production. Let us suppose we have Nu generating units and denote by q
(i)
t

and z
(i)
t , i = 1, . . . , Nu, the power production and activation status of unit i at time interval t ∈ T . The

units are assumed to behave “independently”, that is, their technical constraints (cfr. subsection 2.1) do
not interfere with each other. However, even in this setting, it is not possible (nor profitable) to consider
Nu distinct optimization problems to find optimal commitment and power production schedules for each
unit. It comes from the fact that a GENCO managing all the units faces a global residual demand for
each time interval t ∈ T . Thus, for t ∈ T ,

ρ = ρ (pt, θt; t) ,

where

pt =

Nu
∑

i=1

q
(i)
t .

Hence, the multi-unit commitment problem can be posed as

min U (x, p, H(x), θ) ,

s.t. x ∈ Fx,

p ∈ Fp(x),
(8)

where x = (z(1)⊤, . . . , z(Nu)⊤)⊤, p = (q(1)⊤, . . . , q(Nu)⊤)⊤,

H : {0, 1}NuT →
Nu
∏

i=1

(

{−1, 0, 1}T−1 × INT
0 × INT

0 ∪ {∞}3T−1
)

,

H(x) =







h(z(1))
...

h(z(Nu))






, Fx =

Nu
∏

i=1

F (i)
z , Fp(x) =

Nu
∏

i=1

F (i)
q (z(i)),

F (i)
z = {z(i) ∈ {0, 1}T : h(z(i)) 6= (∞, . . . ,∞)⊤},

F (i)
q (z(i)) = {q(i) ∈ ℜT

+ : (q(i), z(i)) satisfies (6)}.
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4 A neighborhood search approach

When the discrete activation/deactivation variables are held fixed, say x = x̄ ∈ Fx, Problem (8) becomes
a standard linearly constrained optimization problem which can be put in the form

min f(p) = U(x̄, p, H(x̄)),
s.t. p ∈ Fp(x̄)

(9)

where Fp(x̄) = {p ∈ ℜT : A(x̄)p ≤ b(x̄)}.
The main characteristics of Problem (8) is that its objective function nonlinearly depends on the residual
demand functions ρ(pt, θt; t) which is a nonsmooth function. Hence, we choose to solve Problem (9) by
the following derivative free optimization method for linearly constrained problems [16], which we report
in the following for completeness.

4.1 A derivative-free method for linearly constrained problems

We begin this subsection by recalling some basic definitions and assumptions which are needed to describe
the derivative-free method.
For any ǫ > 0 and p ∈ Fp(x̄), we define the set of indices of ǫ-active constraints by

I(p; ǫ) = {j : a⊤
j p ≥ bj − ǫ},

and the ǫ-approximation of the cone of feasible directions by

T (p; ǫ) = {d ∈ ℜT : a⊤
j d ≤ 0, ∀j ∈ I(p; ǫ)}.

In order to define a derivative-free method for the solution of Problem (9), we have to associate a suitable
set of search directions with each point pj produced by the algorithm. This set should have the property
that the local behavior of the objective function in each direction in the set provides sufficient information
to overcome the lack of the gradient. Formally, we introduce the following assumption.

Assumption 4.1 Let {pj} be a sequence of feasible points and {Dj} a sequence of sets of search direc-
tions. Then, for all j,

Dj = {dj
i : ‖dj

i‖ = 1, i = 1, . . . , rj},

and, for some constant ǭ > 0,

cone{Dj ∩ T (pj; ǫ)} = T (pj; ǫ) ∀ǫ ∈ [0, ǭ].

Moreover,
⋃∞

j=0 Dj is a finite set and rj is bounded.

In order to compute sets of search directions Dj satisfying Assumption 4.1, we follow the approach
proposed in [12].
Following [16], the derivative-free minimization algorithm for linearly constrained optimization problems
can be stated as follows.
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Algorithm DFA(p1, αtol)
Data. α◦ > 0.

1. Set j = 1.

2. Apply procedure DF (j, pj , αj−1, pj+1, αj).

3. If αj > αtol then set j := j + 1 and go to step 2.
else return (pj+1, αj).

Procedure DF(j, p, µ0, p̃, µ)

Data: γ > 0, δ, δ1, θ ∈ (0, 1), ǭ > 0.

Step 1: (Computation of search directions)

Choose Dj = {dj
1
, . . . , dj

rj
} satisfying Assumption 4.1.

Step 2: (Minimization on the cone{Dj})

Step 2.1: (Initialization) Set i = 1, yi = p, α̃i = µ0.

Step 2.2: (Computation of the initial stepsize)

Compute the maximum steplength ᾱi such that yi + ᾱid
j
i ∈ Fp(x̄)

and set α = min{ᾱi, α̃i}.

Step 2.3: (Test on the search direction)

If α > 0 and f(yi + αdj
i ) ≤ f(yi) − γα2, go to Step 2.4

otherwise set αi = 0, α̃i+1 = θα̃i and go to Step 2.5.

Step 2.4: Let α̂ = min{ᾱi, (α/δ)}.

If α = ᾱi or f(yi + α̂dj
i ) > f(yi) − γα̂2 Then set αi = α and go to Step 2.5.

Else set α = α̂ and go to Step 2.4.

Step 2.5: (New point) Set yi+1 = yi + αid
j
i .

Step 2.6: (Test on the minimization on the cone{Dj})

If i = rj , go to Step 3;

otherwise set i = i + 1 and go to Step 2.2.

Step 3: (Main iteration) Set p̃ = yi+1, µ = maxi=1,...,rj{α̃i, δ1µ0}.

Algorithm DFA can be used to solve Problem (9), that is Problem (7) when x = x̄ ∈ Fx.
Obviously, this is not satisfactory in that the computed solution (activation/deactivation schedule plus
production levels) (x̄, p⋆) depends on the chosen activation/deactivation schedule x̄. Moreover, it is very
often the case that, by modifying a little the activation/deactivation schedule x̄ by considering in its place
x̂ ∈ Fx, the solution of Problem (9) will provide us with a different production plan p† such that

U(x̄, p⋆, h(x̄)) > U(x̂, p†, h(x̂)).

For this reason, we can try and solve Problem (8) by using some local search heuristic.
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4.2 Local search approach

Generally speaking, a local search method is completely specified by defining a neighborhood system,
that is, a point-to-set map N that associates any given feasible point (x̄, p̄) ∈ Fx × Fp(x̄) with a subset
N (x̄, p̄) ⊂ Fx×Fp(x̄). In order to simplify this subsection, we report the discrete neighborhood definition
in the appendix.
The neighborhood system N allows us to define the following local search algorithm for the approximate
solution of Problem (8).

Local search Algorithm (LSA)

Data: x◦ ∈ Fx, p◦ ∈ Fp(x◦), tol > 0.

Set k = 0, x̃ = xk, p̃ = pk, success=true

Repeat

Foreach (x, p) ∈ N (xk, pk)

Compute (q, α) = DFA(p, tol)

If (U(x, q, h(x)) < U(x̃, p̃, h(x̃))) set success=true, x̃ = x, p̃ = q

End Foreach

If (success) Then

xk+1 = x̃, pk+1 = p̃, success=false

Else xk+1 = xk, pk+1 = pk End If

Set k = k + 1

Until (success)

Even though Algorithm LSA is, in principle, able to find a good local solution of Problem (8), its main
limit is the unacceptably large computational time that it requires to get convergence. This is due, on
the one hand, to the cardinality of the discrete neighborhoods that get explored during the optimization
and, on the other hand, to the fact that every local minimization is completely carried out. Namely, for
a given choice of the discrete variables, we solve Problem (9) as best as we can by using Algorithm DFA.
In the next section we present a solution technique which is able to handle explicitly the mixed variable
nature of Problem (8) thus considerably reducing the computational burden of the solution process.

5 A mixed variable approach

Problem (8) is a mixed variable programming problem. The presence of both continuous and discrete
variables requires a suitable definition of local minimum point, which is not immediate. In fact this notion
refers to the behavior of the objective function in a “suitable neighborhood” of a given point. While a
neighborhood of a continuous variable is well represented by a continuous ball, the neighborhood of a
discrete variable must be defined taking into account the structure of the particular problem.
As in [2], we can characterize a local solution (x∗, p∗) of Problem (8) as a point satisfying the following
definition:

Definition 5.1 A feasible point (x∗, p∗) is said to be a local minimizer of Problem (8) with respect to the
feasible discrete neighborhood N (x∗, p∗) if there exists an ǫ > 0 such that ∀(x̂, p̂) ∈ N (x∗, p∗)

U(x∗, p∗, h(x∗)) ≤ U(x, p̂, h(x)) ∀x ∈ B(x̂, ǫ) ∩ Fp(x), (10)
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where N (x∗, p∗) is a finite set of feasible points.

This definition implies that there are not better feasible solutions in the balls centered at the points
belonging to the discrete neighborhood of (x∗, p∗). Note that this definition depends on the choice of
the discrete neighborhoods, which hence represent a measure of the quality of the solution. In fact, a
larger discrete neighborhood N (x∗, p∗) should give a better local minimizer, but this may increase the
computational effort needed to locate the solution, so there is a trade off.
In [15] it has been introduced an algorithm for solving mixed variable programming problems based on
the combination of a local search with respect to the continuous variables and of a local search in the
discrete neighborhood of the current point. This algorithm has been applied to the solution of Problem
(8). In particular, it is based on the idea to alternate two phases:

- an attempt to update the continuous variables by a local continuous search (Phase 1) in Fp(x),

- an attempt to update the discrete variables by a local search in the discrete neighborhood of the
current point (Phase 2).

Phase 1:
Given the current feasible point (xk, pk), the discrete variables are fixed to the value xk and the following
continuous optimization problem is considered:

min
p

U(xk, p, h(xk)) (11)

p ∈ Fp(xk).

Starting from pk, we perform an iteration of a derivative free local continuous search with the goal of
finding a new vector p̃k which is, roughly speaking, a better approximation of a stationary point of
Problem (11).

Phase 2:
In this phase we try to update the discrete variables by considering the points belonging to the discrete
neighborhood N (xk, p̃k) of the point (xk, p̃k) produced by Phase 1.
First, we simply evaluate the objective function at the points belonging to N (xk, p̃k). If one of these
points produces a sufficient decrease from U(xk, p̃k, h(xk)), then it becomes the current point, and a new
iteration is performed.
If none of the points belonging to N (xk, p̃k) produces a sufficient decrease with respect to U(xk, p̃k, h(xk)),
we perform a further investigation, by selecting some of these points which can be considered promising.
In particular, we still try to update the discrete variables by selecting some points belonging to N (xk, p̃k)
with objective value not significantly worse than U(xk, p̃k, h(xk)). Starting from each one of these points,
we perform a suitable number of local continuous searches with the aim to obtain a point which produces
a sufficient decrease from U(xk, p̃k, h(xk)).

The proposed algorithm model is formally stated as follows:
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Mixed Integer Variable Algorithm (MIVA)

Data: x◦ ∈ Fx, p◦ ∈ Fp(x◦), ξ ≥ 0, θ ∈ (0, 1), η0 > 0, µin > 0.

Step 0: Set k = 0, µk,0 = µin.

Step 1: Compute x̃k and µk by applying Procedure DF(k, pk, µk,0, p̃k, µk) to Problem (11) and set µk+1,0 = µk.

Step 2: If there exists a (x̂k+1, p̂k+1) ∈ N (xk, p̃k) such that

U(x̂k+1, p̂k+1, h(x̂k+1)) ≤ U(xk, p̃k, h(xk)) − ηk ,

set xk+1 = x̂k+1, pk+1 = p̂k+1, ηk+1 = ηk , and go to step 5.

Step 3: Define W k = {(x, p) ∈ N (xk, p̃k) : U(x, p, h(x)) ≤ U(xk, p̃k, h(xk)) + ξ}.

3.1: If W k 6= ∅, choose (x′, p′) ∈ W k, set j = 1, pj = p′, µj−1 = µk.

Otherwise go to Step 4.

3.2: Compute pj+1 and µj by applying Procedure DF(j, pj , µj−1, pj+1, µj) to Problem (11).

3.3: If U(x′, pj+1, h(x′)) ≤ U(xk, p̃k, h(xk)) − ηk , set pk+1 = pj+1, xk+1 = x′, ηk+1 = ηk , and go to
step 5.

3.4: If µj > µk, set j = j + 1, and go to 3.2.

Otherwise set W k = W k \ {(x′, p′)}, and go to 3.1.

Step 4: Set pk+1 = p̃k, xk+1 = xk.

If U(xk+1, pk+1, h(xk+1)) ≤ U(xk, pk, h(xk)) − ηk , set ηk+1 = ηk.

Otherwise set ηk+1 = θηk.

Step 5: Set k = k + 1, and go to step 1.

At Step 1, Phase 1 is performed by applying the local continuous search DF(k, pk, µk,0, p̃k, µk). This
procedure tries to produce a new point p̃k, where the objective function is sufficiently decreased. In
particular, if the procedure DF is not able to produce a sufficient decrease of the objective function, the
point p̃k is set equal to pk.
Phase 2 is performed in Steps 2 and 3. In particular, at Step 2 the objective function is evaluated at
each point in N (xk, p̃k). If one of these points produces a decrease with respect to U(xk, p̃k, h(xk))
greater than or equal to ηk, it becomes the current point and a new iteration is started. Otherwise
the discrete neighborhood is further investigated in Step 3. In particular, a set W k ⊆ N (xk, p̃k) of
points with objective value not significantly worse than U(xk, p̃k, h(xk)) is selected. Each of these points
(x′, p′) ∈ W k is considered promising, and the algorithm tries to determine if it is worth replacing xk

with x′. In details, starting from each point (x′, p′) ∈ W k, the local continuous search is repeated until

(a) it finds a point significantly better than (xk, p̃k), or
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(b) the test at Step 3.4 fails.

In case (a), the new point becomes the current iterate (with new discrete variables x′), and a new iteration
is performed. In case (b), we reject the discrete variables x′ because a sufficient decrease of the objective
function has not been achieved.
At Step 4 the point (xk, p̃k) becomes the new current point and, if neither the local continuous search
nor the discrete search have been able to produce a decrease of the objective function greater or equal to
ηk, then this parameter is reduced before starting the next iteration.
For an analysis of the theoretical properties of Algorithm MIVA we refer to [15] where global convergence
of algorithm MIVA toward a stationary point of the mixed variable problem is proved provided that the
objective function is smooth with respect to the continuous variables. Algorithm MIVA has been recently
used to solve a difficult problem related to the optimal design of an induction motor [14].

6 Numerical results

In this section we report and analyze the results obtained for both the single- and multi- UC problem. We
obtained the residual demand curves ρ(pt; t) for the case of the Italian electricity market. We considered
the historical data freely distributed by the Italian Gestore del Mercato Elettrico (the independent market
operator), and we defined ρ(pt; t) as a piecewise linear function having three segments with different slopes.
The first and last segments are the steepest ones and represent situations in which small variations
of power output determine large variations in selling prices. On the other hand, the middle segment
represents the case of limited dependence of selling prices on the produced power. As an example, in
Figure 1(a) and (b) we report, as an example, three residual demand curves at hours t = 3 (off-peak
hour) and t = 13, 20 (peak hours) for the two producers: the first, referred to as small-GENCO, has a
maximum producing capacity of 600 MW and a limited influence on the market price, while the second,
referred to as large-GENCO, has a maximum producing capacity of 1800 MW and a significat influence
on the market price.
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(a) Residual demand curves for a small-GENCO
at t = 3, 13, 20
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(b) Residual demand curves for a large-GENCO
at t = 3, 13, 20

Figure 1: Residual demand curves for a small-GENCO and a large-GENCO
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θt Pr(θt) ∆p(θt) ∆ρ1(θt) ∆ρ2(θt)
(SPV) (LPV)

θ1
t 0.000429117 -100 10 50

θ2
t 0.000920851 -70 9 45

θ3
t 0.002480458 -50 8 40

θ4
t 0.005984882 -35 7 35

θ5
t 0.012934755 -30 6 30

θ6
t 0.025040268 -25 5 25

θ7
t 0.043420952 -20 4 20

θ8
t 0.067443978 -15 3 15

θ9
t 0.093837208 -10 2 10

θ10
t 0.116948937 -5 1 5

θ11
t 0.130558596 0 0 0

θt Pr(θt) ∆p(θt) ∆ρ1(θt) ∆ρ2(θt)
(SPV) (LPV)

θ12
t 0.130558596 5 -1 -5

θ13
t 0.116948937 10 -2 -10

θ14
t 0.093837208 15 -3 -15

θ15
t 0.067443978 20 -4 -20

θ16
t 0.043420952 25 -5 -25

θ17
t 0.025040268 30 -6 -30

θ18
t 0.012934755 35 -7 -35

θ19
t 0.005984882 50 -8 -40

θ20
t 0.002480458 70 -9 -45

θ21
t 0.001349967 100 -10 -50

Table 1: Scenario realizations

Scenarios. In the function ρ(pt; θt; t) representing the residual demand curve, we assume every random
variable θt, t = 1, . . . , T , to have the same discrete probability distribution. Namely, θt has r = 21 different
possible realizations θ1

t , . . . , θr
t with probabilities π1, . . . , πr.

The realizations of prices and quantities in each scenario can be represented, for s = 1, . . . , r, as follows:

ρ(pt; θ
s
t ; t) = ρ(pt − ∆p(θs

t ); t) + ∆ρ(θs
t ),

where ∆p(θs
t ) and ∆ρ(θs

t ) are variations of quantity and price. We examined two cases of price variations,
as reported in Table 1. The first case, referred to as “Small Price Variations” (SPV) is represented by
∆ρ1(θt) and corresponds to a knowledge of prices less uncertain that the one represented by ∆ρ2(θt),
referred to as “Large Price Variations” (LPV).

2 4 6 8 10 12 14 16 18 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

scenario

Pr(θ)

Figure 2: Scenarios’ probability distribution

Means and covariances. Means and covariances have been computed as follows. For the sake of
readability, let us denote by Φt = ρ(pt; θt; t) the random variable which gives the price level in the
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unit SDC τ TS BS A B C Pmin Pmax

[e ] [h] [e ] [e ] [e /MW2h] [e /MWh] [e /h] [MW] [MW]
# 1 0 4 585.75 1455.5 8.0230 · 10−4 6.406 582.2 300 1000
# 2 0 4 674.50 1491.0 1.0437 · 10−3 6.214 426.0 165 600
# 3 0 2 532.50 965.6 3.6565 · 10−3 5.008 124.3 50 200

Table 2: Types of unit

interval t at which it is possible to sell the produced power pt and by φt,s the realization of the random
variable Φt in the s-th scenario. Let

Eθ[Φt] = φ̄t =

21
∑

s=1

φt,sPr(θs
t ).

Given two distinct time intervals s, r ∈ T , we approximate the covariance between Φs and Φr by means
of the following formula [8]

covθ[Φt, Φℓ] =

∑21
k=1

∑21
h=1 Pr(θk

t )Pr(θh
ℓ )(φt,k − φ̄t)(φℓ,h − φ̄ℓ)

1 −
∑21

k=1

∑21
h=1 Pr(θk

t )Pr(θh
ℓ )

.

As concerns the characteristics of the generating units, we consider three different types of unit whose
distinguishing cost parameters are reported in Table 2.

6.1 The single-unit case

Let us begin with the case of a single-unit small-GENCO. We tried both the local search algorithm LSA
and the mixed integer variable algorithm MIVA. We set ξ = 106, θ = 0.9, η0 = 10−1 and µin = 102.
Moreover, in order to get comparable results, we chose to stop MIVA whenever parameter µk falls below
10−4 and set, in LSA, tol = 10−4. As concerns the discrete neighborhoods, their definition is rather
involved; the interested reader is referred to the appendix for a detailed exposition.
All the results are obtained with an initial configuration in which every unit is active at the beginning of
the time period, has been active for the past four time intervals and is producing the minimum allowed
power quantity, as reported in the following Table.

unit z0 ỹ0 ŷ0 q0

# 1 1 4 0 300
# 2 1 4 0 165
# 3 1 4 0 50

In the single-unit case, both the algorithms performed very similarly, producing the same results reported
in the following.
In Figure 3 we report the commitment obtained by considering the three different type of units listed
in Table 2, of different size and efficiency. The results refer to the case SPV and moderate risk aversion
(Ar = 3, see [13]).
As it can be seen, the production levels for the three considered unit types are considerably variable over
the time horizon. This is mainly due to GENCO’s dependence on the market prices variability. Roughly
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Figure 3: Commitment for small-GENCO’s units with SPV (Ar = 3)

speaking, we could say that the operator acts as a follower thus trying to adapt its production to the
price levels. Moreover, the unit # 1 (i.e. 1000MW maximum capacity) does not produce in hours 2 and
3, whereas units # 2 and # 3 do; this is due to the higher efficiency of units #2 and #3 which allows
them to produce even when the selling price is relatively low.
In case of LPV, the results for the commitment of the three unit types are reported in Figure 4 where,
again, a moderate risk aversion (Ar = 3) has been considered.

[M
W

]

t [h]

Figure 4: Commitment for small-GENCO’s units with LPV (Ar = 3)

Comparing the results reported in Figures 3 and 4, it can be noticed that the former case is characterized
by smaller production levels for all the unit types and even by shorter up periods. This is due to the
fact that in case of LPV there is more uncertainty to be dealt with and this ends up in a more cautious
production schedule.
The final part of this subsection is devoted to the comparison of different risk aversions. We ran MIVA
with increasing values for the risk aversion coefficients, Ar = 0.5, 3, 5. Since the risk aversion coefficient
only slightly affects the operator behavior in the case of SPV, we only report results for the case of LPV.
Hence, Figure 5 reports the output levels obtained for the three different types of unit in the case of LPV.
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Figure 5: Risk aversion comparison for (a) unit # 1 (b) unit # 2 and (c) unit # 3 in case of LPV

In Figure 5 it can be noticed that the larger the risk aversion the lower the production levels during the
time horizon. This is intuitively imputable to the fact that, in uncertain scenarios, the more we produce
the bigger is the risk we run. Further, by comparing the results obtained for unit #1 with those obtained
for unit # 2 and # 3, we note that unit type 1, which is the one with higher costs, is committed in fewer
hours than units # 2 and # 3, at least when Ar = 3 and Ar = 5. For the sake of completeness, in the
following table we report the expected values of the incomes for the three unit types in case of LPV.
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Incomes [e ]
unit Ar = 0.5 Ar = 3 Ar = 5

# 1 1,284,270 815,407 541,430
# 2 788,089 626,742 359,803
# 3 258,589 210,208 102,523

As it can be noticed, the greater the risk aversion coefficient Ar, the lower the expected value of the
incomes due to selling power to the day-ahead market.

6.2 The multi-unit case

Also in this case we used both the algorithm LSA and MIVA. This time they behaved very differently,
mainly in terms of total execution time. The LSA did not converge to a solution of the problem within
12 hours of CPU time on an Intel Pentium IV 3.2 GHz processor with 2GB memory; the algorithms
were implemented in FORTRAN-90 with a 32-bit library. It is largely due to the cardinality of the
discrete neighborhoods visited during the optimization process, which have dimensions ranging from
a few thousands elements to a maximum of 15000 elements. Indeed, discrete neighborhoods in the
multi-unit case are the cartesian product of the discrete neighborhoods for each one of the Nu units.
Since at every iteration LSA might entirely explore the current discrete neighborhood, it is plagued by
the dimensionality issue up to the point that it reaches the CPU time limit without converging to a
satisfactory solution.
On the contrary, MIVA converged to a solution well within the prescribed limit of 12 hours. This
substantial difference is imputable to the fact that MIVA performs the minimizations, with respect to
the continuous variables, with a precision that is progressively increased with the number of iterations.
This implies that, at the early stages of the optimization process the minimizations only require a few
iterations and are thus very rapid. Moreover, partial minimizations are only started from those points of
the current discrete neighborhood which are deemed to be promising (see Step 3 of Algorithm MIVA).
In this multi-unit case we consider the case of a large-GENCO who owns one unit for every type reported
in Table 2, for a total of three units and 1800MW maximum capacity. The commitment of the three
units computed by MIVA is reported in Figure 6 for both the cases of SPV and LPV.
As it can be noticed, in the case of SPV, the units # 1 and # 3 (those with largest and smallest capacity)
are up only around the peak hours. Off peak hours are covered by using the unit # 2 (the one with
intermediate capacity).
In the case of LPV the situation is considerably different. Indeed, even though the largest amount of
power is produced around peak hours, unit # 1 is on also in the early hours of the day. This behavior
can be explained considering the large-GENCO ’s ability of influencing the market price. Figure 7 reports
the comparison among commitments obtained by considering the case of LPV and running MIVA with
increasing values for the risk aversion coefficient, namely Ar = 0.5, 3, 5.
Not surprisingly, we can see that the great amount of power is produced in the case Ar = 0.5, that is
when the operator has lowest risk aversion. Increasing the value of Ar turns in a consequent mostly
uniform decrease of power output along the 24 hours of the day. Again, as reported in the following
table, it can be noticed that the higher the risk aversion coefficient Ar, the lower the expected value of
the income due to selling power.

Incomes [e ]
Ar = 0.5 Ar = 3 Ar = 5

1,534,645 1,442,479 1,191,857
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Figure 6: Commitment for a large-GENCO managing three units in case of (a) SPV (Ar = 3) and (b)
LPV (Ar = 3)
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Figure 7: Risk aversion comparison for a large-GENCO managing three units in case of LPV

7 Conclusions

We considered the day-ahead UC problem of a GENCO operating in an oligopolistic market. The
GENCO’s residual demand curves, which give for each hour the price level at which it is possible to
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sell power in the day-ahead electricity market, depend on the forecasted load demand and competitors’
behavior. Thus, by using different residual demand curves we managed to model different types of
GENCO. In particular, we considered two types which differ for their ability to influence the market
prices. The first type is representative of a small GENCO (owning a single unit) which has hardly any
ability to influence the market price while the second type schematize a larger GENCO (owning three
units) with greater ability to influence the market price.
The UC problem is characterized by uncertainty; in oligopolistic markets, it is related to the actual
residual demand curve which comes to complete knowledge only after the market clearing. To handle
the uncertainty related to selling power into the day-ahead electricity market, we defined some scenarios,
each one with an associated probability, and we assumed that the GENCO’s residual demand curve varies
with the scenarios. Then, according to a stochastic programming approach, we used as objective function
the GENCO’s expected profit over the scenarios minus a term which accounts for its risk aversion.
We formulated the UC problem by taking into account the relevant minimum up and down time con-
straints and ramp-up and ramp-down constraints, as well as the limits on the operating range of the
units. The effort made in formulating the UC problem allowed us to put evidence on its mixed vari-
able nature. Indeed, the problem we came up with is a mixed-integer nonlinear programming problem.
To solve the problem we adopt two methods: a quite standard local search procedure [17, 21] and an
algorithm recently proposed [15] to solve mixed variable nonlinear problems named MIVA.
The latter method managed to solved both the single-unit and multi-unit problems within a reasonable
amount of time on an Intel Pentium 4 3.2Ghz processor based computer with 2Gb RAM. In fact all the
runs terminated within 4 hours of CPU time. On the opposite, the local search strategy failed to solve
the multi-unit case within the prescribed limit of 12 hours CPU time.

Further developments can be envisaged, regarding the execution time. At first, we note that by the
definition of Algorithm MIVA, the time it requires to get a solution is intimately related to the cardinality
of the discrete neighborhoods that it explores during the optimization process. The definition of MIVA
promptly allows for a parallel visit of the discrete neighborhood; this, in turn, would imply a consistent
reduction in total execution time.
Second, it is possible to study different and more efficient definitions of discrete neighborhoods than
that used in the paper. Proposing new way of defining the discrete neighborhoods is not a trivial task.
Indeed, a new discrete neighborhood definition should, primarily, reduce the cardinality of the discrete
neighborhoods while guaranteeing a sufficient ability to explore the feasible region thus avoiding, as much
as possible, the local minima.

Appendix

A Discrete neighborhood definition

In this section we define the discrete neighborhood relative to feasible activation and power production
schedules of the Nu generating units. In order to do this, we first define the discrete neighborhood relative
to feasible activation and power production schedules for a single unit which, without loss of generality,

we assume to be the ℓ-th one. Let z̄ ∈ F
(ℓ)
z and q̄ ∈ F (ℓ)(z̄) be feasible activation and power production

schedules for the ℓ-th unit. We define the discrete neighborhood H(z̄, q̄) relative to (z̄, q̄) according to
the following rules. We assume [i, j] = {i, i + 1, . . . , j − 1, j} ⊆ T and [i, j] = ∅ whenever j < i.
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1. Augmentation, diminution and traslation. Let i, j be indices such that, z̄h = 1, h ∈ [i, j]. If i > 1
then z̄i−1 = 0 and if j < T then z̄j+1 = 0. Then H(ℓ)(z̄, q̄) ∋ (y(1,1), q(1,1)), (y(1,2), q(1,2)), (y(1,3), q(1,3)),
(y(1,4), q(1,4)), (y(1,5), q(1,5)), (y(1,6), q(1,6)) where

y(1,1) = z̄, q(1,1) = q̄,

y
(1,1)
j+1 = 1, q

(1,1)
j+1 = P

(ℓ)
min, j + 1 ≤ T,

y(1,2) = z̄, q(1,2) = q̄,

y
(1,2)
i = 0, q

(1,2)
t = P

(ℓ)
min, t ∈ [i + 1, j]

y(1,3) = z̄, q(1,3) = q̄,

y
(1,3)
j+1 = 1, y

(1,3)
i = 0, j + 1 ≤ T,

q
(1,3)
t = q̄t−1, t ∈ [i + 1, j + 1]

y(1,4) = z̄, q(1,4) = q̄,

y
(1,4)
i−1 = 1, q

(1,4)
i−1 = P

(ℓ)
min, i − 1 ≥ 1,

y(1,5) = z̄, q(1,5) = q̄,

y
(1,5)
j = 0, q

(1,5)
t = P

(ℓ)
min, t ∈ [i, j − 1]

y(1,6) = z̄, q(1,6) = q̄,

y
(1,6)
i−1 = 1, y

(1,6)
j = 0, i − 1 ≥ 1,

q
(1,6)
t = q̄t+1, t ∈ [i − 1, j − 1]

provided that y(1,i) ∈ F
(ℓ)
z , q(1,i) ∈ F

(ℓ)
q (y(1,i)) and y(1,i) 6= z̄, i = 1, . . . , 6.

2. Start-up and fill-up

(a) Let z0 = 0, z̄h = 0, h ∈ [1, j] where j is an index such that, if j < T then z̄j+1 = 1. Then
H(ℓ)(z̄, q̄) ∋ (z(2,1), q(2,1)), where

y(2,1) = z̄, q(2,1) = q̄,

y
(2,1)
t = 1, q

(2,1)
t = P

(ℓ)
min, ∀t ∈ [tdw − ŷ0 + 1, j],

provided that y(2,1) ∈ F
(ℓ)
z , q(2,1) ∈ F

(ℓ)
q (y(2,1)). Moreover, if j ≥ 2tdw + tup − ŷ0 + 1,

H(ℓ)(z̄, q̄) ∋ (z(2,1+h), q(2,1+h)), for all h = 1, . . . , j − 2tdw − tup + ŷ0, where

y(2,1+h) = z̄, q(2,1+h) = q̄,

y
(2,1+h)
t = 1, q

(2,1+h)
t = P

(ℓ)
min, ∀t ∈ [tdw − ŷ0 + h, tdw + tup − ŷ0 + h],

provided that y(2,1+h) ∈ F
(ℓ)
z , q(2,1+h) ∈ F

(ℓ)
q (y(2,1+h)) and y(2,1+h) 6= z̄.
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(b) Let i, j be indices such that, z̄h = 0, h ∈ [i, j], z̄i−1 = 1, i ≥ 0 (we assume z̄0 = z0).
Furthermore, if j < T then z̄j+1 = 1. Then H(ℓ)(z̄, q̄) ∋ (y(3,1), q(3,1)) where

y(3,1) = z̄, q(3,1) = q̄,

y
(3,1)
t = 1, q

(3,1)
t = P

(ℓ)
min, ∀t ∈ [i, j],

provided that y(3,1) ∈ F
(ℓ)
z , q(3,1) ∈ F

(ℓ)
q (y(3,1)). Moreover, H(ℓ)(z̄, q̄) ∋ (y(3,1+h), q(3,1+h)), for

h = 1, . . . , j − i − 2tdw − tup, where

y(3,1+h) = z̄, q(3,1+h) = q̄,

y
(3,1+h)
t = 1, q

(3,1+h)
t = P

(ℓ)
min, ∀t ∈ [i + tdw + h − 1, i + tdw + tup + h − 1],

provided that y(3,1+h) ∈ F
(ℓ)
z , q(3,1+h) ∈ F

(ℓ)
q (y(3,1+h)) and y(3,1+h) 6= z̄.

(c) Let z0 = 0, z̄ = 0. Then H(ℓ)(z̄, q̄) ∋ (y(4,1), q(4,1)) where

y(4,1) = z̄, q(4,1) = q̄,

y
(4,1)
t = 1, q

(4,1)
t = P

(ℓ)
min, ∀t ∈ [1 + tdw − ŷ0, T ],

provided that y(4,1) ∈ F
(ℓ)
z , q(4,1) ∈ F

(ℓ)
q (y(4,1)).

Moreover, H(ℓ)(z̄, q̄) ∋ (y(4,1+h), q(4,1+h)), for all h = 1, . . . , T − tdw + ŷ0, where

y(4,1+h) = z̄, q(4,1+h) = q̄,

y
(4,1+h)
t = 1, q(4,1+h) = P

(ℓ)
min, ∀t ∈ [tdw − ŷ0 + h, min{T, tdw + tup − ŷ0 + h],

provided that y(4,1+h) ∈ F
(ℓ)
z , q(4,1+h) ∈ F

(ℓ)
q (y(4,1+h)) and y(4,1+h) 6= z̄.

3. Shut-down and clear-down

(a) Let z0 = 1, z̄h = 1, h ∈ [1, j] where j is an index such that, if j < T then z̄j+1 = 0. Then
H(ℓ)(z̄, q̄) ∋ (y(5,1), q(5,1)) where

y(5,1) = z̄, q(5,1) = P
(ℓ)
min

y
(5,1)
t = 0, q

(5,1)
t = 0, ∀t ∈ [tup − ỹ0 + 1, j − 1],

provided that y(5,1) ∈ F
(ℓ)
z , q(5,1) ∈ F

(ℓ)
q (y(5,1)).

Moreover, if j ≥ 2tup + tdw − ỹ0 + 1, then H(ℓ)(z̄, q̄) ∋ (y(5,1+h), q(5,1+h)), for all h = 1, . . . , j −
2tup − tdw + ỹ0, where

y(5,1+h) = z̄, q(5,1+h) = P
(ℓ)
min,

y
(5,1+h)
t = 0, q

(5,1+h)
t = 0, ∀t ∈ [tup − ỹ0 + h, tdw + tup − ỹ0 + h],

provided that y(5,1+h) ∈ F
(ℓ)
z , q(5,1+h) ∈ F

(ℓ)
q (y(5,1+h)) and y(5,1+h) 6= z̄.
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(b) Let i, j be indices such that, z̄h = 1, h ∈ [i, j], z̄i−1 = 0, i ≥ 0 (we assume z̄0 = z0).
Furthermore, if j < T then z̄j+1 = 0. Then H(ℓ)(z̄, q̄) ∋ (y(6,1), q(6,1)) where

y(6,1) = z̄, q(6,1) = P
(ℓ)
min,

y
(6,1)
t = 0, q

(6,1)
t = 0, ∀t ∈ [i, j],

provided that y(6,1) ∈ F
(ℓ)
z , q(6,1) ∈ F

(ℓ)
q (y(6,1)).

Moreover, H(ℓ)(z̄, q̄) ∋ (y(6,1+h), q(6,1+h)), for h = 1, . . . , j − i − 2tup − tdw, where

y(6,1+h) = z̄, q(6,1+h) = P
(ℓ)
min,

y
(6,1+h)
t = 0, q

(6,1+h)
t = 0, ∀t ∈ [i + tup + h − 1, i + tdw + tup + h − 1],

provided that y(6,1+h) ∈ F
(ℓ)
z , q(6,1+h) ∈ F

(ℓ)
q (y(6,1+h)) and y(6,1+h) 6= z̄.

(c) Let z0 = 1, z̄ = 1. Then H(ℓ)(z̄, q̄) ∋ (y(7,1), q(7,1)) where

y(7,1) = z̄, q(7,1) = P
(ℓ)
min,

y
(7,1)
t = 0, q

(7,1)
t = 0, ∀t ∈ [1 + tup − ỹ0, T ],

provided that y(7,1) ∈ F
(ℓ)
z , q(7,1) ∈ F

(ℓ)
q (y(7,1)).

Moreover, H(ℓ)(z̄, q̄) ∋ (y(7,1+h), q(7,1+h)), for all h = 1, . . . , T − tup + ỹ0, where

y(7,1+h) = z̄, q(7,1+h) = P
(ℓ)
min,

y
(7,1+h)
t = 0, q(7,1+h) = 0, ∀t ∈ [tup − ỹ0 + h, min{T, tdw + tup − ỹ0 + h}],

provided that y(7,1+h) ∈ F
(ℓ)
z , q(7,1+h) ∈ F

(ℓ)
q (y(7,1+h)) and y(7,1+h) 6= z̄.

Thus, given z̄(ℓ), q̄(ℓ), ℓ = 1, . . . , Nu, and defined H(ℓ)(z̄(ℓ), q̄(ℓ)), ℓ = 1, . . . , Nu, N (x̄, p̄) is given by

N (x̄, p̄) =

Nu
∏

ℓ=1

H(ℓ)(z̄(ℓ), q̄(ℓ)).

References

[1] P. Attaviriyanupap, H. Kita, E. Tanaka, and J. Hasegawa. New bidding strategy formulation for
day-ahead energy and reserve markets based on evolutionary programming. Electrical Power and
Energy Systems, 27:157–167, 2005.

[2] C. Audet and J. E. Dennis. Pattern search algorithms for mixed variable programming. SIAM J.
on Optimization, 11:573–594, 2001.

[3] R. Baldick. The generalized unit commitment problem. IEEE Transactions on Power Systems,
10(1):465–475, 1995.

[4] J. F. Bard. Short-term scheduling of thermal-electric generators using Lagrangian relaxation. Op-
erations Research, 36(5):756–766, September-October 1988.

22

GMC
12345678



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

[5] D. P. Bertsekas, G. S. Laurer, N. R. Sandell, and T. A. Posbergh. Optimal short-term scheduling of
large-scale power systems. IEEE Transactions on Automatic Control, AC-28(1):1–11, 1983.

[6] J.R. Birge and F. Louveaux. Introduction to Stochastic Programming. Springer Series in Operations
Research and Financial Engineering, 1997.
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