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                                                                        Abstract 
 

In this paper we have described the Hartle-Hawking no boundary proposal concerning the Randall-

Sundrum cosmological scenario, nonlocal braneworld action in the two-brane Randall-Sundrum 

model, Hartle-Hawking wave-function in the mini-superspace sector of physical superstring theory,  

p-adic models in the Hartle-Hawking proposal and p-adic and adelic wave functions of the universe. 

Furthermore, we have showed some possible mathematical connections between some equations of 

these arguments and, in conclusion, we have also described some mathematical connections 

between some equations of arguments above mentioned and some equations concerning the 

Riemann zeta function, the Ramanujan’s modular equations and the Palumbo-Nardelli model. 

In the section 1, we have described the Hartle-Hawking “no boundary” proposal applied to Randall-

Sundrum cosmological scenario. In the section 2, we have described nonlocal braneworld action in 

the two-brane Randall-Sundrum model. In the section 3, we have described the compactifications 

of type IIB strings on a Calabi-Yau three-fold and Hartle-Hawking wave-function in the mini-

superspace sector of physical superstring theory. In the section 4, we have described the p-Adic 

models in the Hartle-Hawking proposal. In the section 5, we have described the p-Adic and Adelic 

wave functions of the Universe. In the section 6, we have described some equations concerning the 

Riemann zeta function, specifically, the Goldston-Montgomery Theorem, the study of the behaviour 

of the argument of the Riemann function ( )sζ  with the condition that s  lies on the critical line 

its +=
2

1
, where t  is real, the P-N Model (Palumbo-Nardelli model) and the Ramanujan identities. 

In conclusion, in the section 7, we have described some possible mathematical connections between 

some equations of arguments above discussed and some equations concerning the Riemann zeta-

function, the Ramanujan’s modular equations and the Palumbo-Nardelli model. 
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1. Hartle-Hawking “No Boundary” proposal applied to Randall-Sundrum cosmological 
scenario. Randall-Sundrum from AdS/CFT, CFT in the Domain Wall. [1] 

 

The AdS/CFT correspondence relates IIB supergravity theory in 5

5 SAdS ×  to a ( )NU4=Ν  

superconformal field theory. If YMg  is the coupling constant of this theory then the‘t Hooft 

parameter is defined to be NgYM

2=λ . The CFT parameters are related to the supergravity 

parameters by 

                                               sll
4/1λ= ,    (1.1)    

π

23 2N

G

l
= ,    (1.2) 

 

where sl  is the string length, l  the AdS radius and G  the five dimensional Newton constant. Note 

that λ  and N  must be large in order for stringy effects to be small. The CFT lives on the conformal 

boundary of 5AdS . The correspondence takes the following form: 

 

            [ ] [ ] [ ]( ) [ ] [ ]( ) [ ]( )∫ ∫ −≡−=−≡ hhggh CFTCFTgrav WSdSdZ exp;expexp φφ ,    (1.3) 

 

here [ ]hZ  denotes the supergravity partition function in 5AdS . This is given by a path integral over 

all metrics in 5AdS  which induce a given conformal equivalence class of metrics h  on the 

conformal boundary of 5AdS . A problem with equation (1.3) as it stands is that the usual 

gravitational action in AdS is divergent, rendering the path integral ill-defined. A procedure for 

solving this problem is the following: first one brings the boundary into a finite radius, next one 

adds a finite number of counterterms to the action in order to render it finite as the boundary is 

moved back off to infinity. These counterterms can be expressed solely in terms of the geometry of 

the boundary. The total gravitational action for 1+dAdS  becomes 

 

                                                         ....21 ++++= SSSSS GHEHgrav     (1.4) 

 

The first term is the usual Einstein-Hilbert action with a negative cosmological constant: 

 

                                             
( )

∫ 




 −
+−= +

2

1 1

16

1

l

dd
Rgxd

G
S

d

EH
π

    (1.5) 

 

the overall minus sign arises because we are considering a Euclidean theory. The second term in the 

action is the Gibbons-Hawking boundary term, which is necessary for a well-defined variational 

problem: 

                                                           ∫−= Khxd
G

S
d

GH
π8

1
,    (1.6) 

 

where K  is the trace of the extrinsic curvature of the boundary and h  the determinant of the 

induced metric. The first two counterterms are given by the following expressions: 

 

                           ∫
−

= hxd
Gl

d
S

d

π8

1
1 ,    (1.7)        

( ) ∫−
= Rhxd

dG

l
S

d

216
2

π
,    (1.8) 

 

where R  now refers to the Ricci scalar of the boundary metric. The third counterterm is 
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( ) ( ) ( )∫ 









−
−

−−
= 2

2

3

3
144216

R
d

d
RRhxd

ddG

l
S

ij

ij

d

π
,    (1.9) 

 

where ijR  is the Ricci tensor of the boundary metric and boundary indices ji,  are raised and 

lowered with the boundary metric ijh . This expression is ill-defined for d = 4, which is the case of 

most interest to us. We can now use the AdS/CFT correspondence to explain the behaviour 

discovered by Randall and Sundrum. The (Euclidean) RS model has the following action: 

 

                                                          mGHEHRS SSSSS +++= 12 .    (1.10) 

 

Here 12S  is the action of a domain wall with tension ( ) ( )Gld π4/1− . The final term is the action for 

any matter present on the domain wall. We want to study quantum fluctuations of the metric on the 

domain wall. Let 0g  denote the five dimensional background metric we have just described and 0h  

the metric it induces on the wall. Let h  denote a metric perturbation on the wall. If we wish to 

calculate correlates of h  on the domain wall then we are interested in a path integral of the form 

 

                                         ( ) ( ) [ ] [ ] ( ) ( )'' '''' xhxhZdxhxh jiijjiij hh∫= ,    (1.11) 

 

where 

                          [ ] [ ] [ ] [ ]( ) [ ]( )∫ ∪
×+−=+−=

21
12expexp

BB
RS SSddZ hhgggh 00 δφδ      

                                  [ ] [ ] [ ] [ ] [ ]( )∫ ∪
+−+−+−×

21

;exp
BB

mGHEH SSSdd hhggggg 000 φδδφδ ,    (1.12) 

 

gδ  denotes a metric perturbation in the bulk that approaches h  on the boundary and φ  denotes the 

matter fields on the domain wall. The integrals in the two balls are independent so we can replace 

the path integral by 

                                     [ ] [ ]( ) [ ] [ ] [ ]( )( ) ×+−+−+−= ∫
2

1 exp2exp
B

GHEH SSdSZ ggggghhh 000 δδδ  

                                                 [ ] [ ]( )∫ +−× hh0;exp φφ mSd ,    (1.13) 

 

where B  denotes either ball. We now take d = 4 and use the AdS/CFT correspondence (1.3) to 

replace the path integral over gδ  by the generating functional for a conformal field theory: 

 

                               [ ] [ ] [ ]( )∫ =+−+−
B

GHEH SSd ggggg 00 δδδ exp   

                                 [ ] [ ] [ ] [ ]( )hhhhhhhh 0000 +++++++− 321exp SSSWRS .    (1.14) 

 

This is the RS (Randall-Sundrum) CFT since it arises as the dual of the RS geometry. 

Now we will consider the RS analogue of Starobinsky’s model by putting a CFT on the domain 

wall. Our five dimensional (Euclidean) action is the following: 

 

                                                           CFTGHEH WSSSS +++= 12 .    (1.15) 

 

We seek a solution in which two balls of 5AdS  are separated by a spherical domain wall. Inside 

each ball, the metric can be written 
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                                                            ( )22222 sinh dyddylds Ω+= ,    (1.16) 

 

with 
00 yy ≤≤ . The domain wall is at 

0yy =  and has radius 

 

                                                                     
0sinh ylR = .    (1.17) 

 

The effective tension of the domain wall is given by the Israel equations as 

 

                                                              0coth
4

3
y

Gl
eff

π
σ = .    (1.18) 

 

The actual tension of the domain wall is  

                                                                        
Glπ

σ
4

3
= .    (1.19) 

 

We therefore need a contribution to the effective tension from the CFT. This is provided by the 

conformal anomaly, which takes the value 

 

                                                                
42

2

8

3

R

N
T

π
−= .    (1.20) 

 

This contributes an effective tension 4/T− . We can now obtain an equation for the radius of the 

domain wall: 

                                                        
4

4

3

2

2

2

3

3

8
1

l

R

l

GN

l

R

l

R
+=+

π
.    (1.21) 

 

It is easy to see that this has a unique positive solution for R . 

The AdS/CFT correspondence can be used to give the generating functional of the CFT on the 

perturbed sphere: 

                                              ....21 ++++= SSSSW GHEHCFT     (1.22) 

 

We shall give the terms on the right hand side for d = 4. The Einstein-Hilbert action with 

cosmological constant is 

                                            ∫ 







+−=

2

5 12

16

1

l
Rgxd

G
SEH

π
,    (1.23) 

 

and perturbing this gives 

                                           ∫ 







+∇+−−= µν

µν
µν

µν

π
hh

l
hh

l
gxd

G
Sbulk 2

2

2

5

2

1

4

18

16

1
   

                                                      ∫ 







∇+∇−− νρ

µ
µ

νρµρν
νρµγ

π
hnhhhnxd

G 4

3

2

1

16

1 4 ,    (1.24) 

 

where Greek indices are five dimensional and we are raising and lowering with the unperturbed five 

dimensional metric. ldyn =  is the unit normal to the boundary and ∇  is the covariant derivative 

defined with the unperturbed bulk metric. ijij R γγ ˆ2=  is the unperturbed boundary metric. 

Evaluating on shell gives 
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             ∫ ∫ ∫ 







−∂−=

0

0 44

4
3

44
3 coth

4

3
ˆ

16
sinhˆ

2

y

ij

ij

ijy

ij

EH hh
l

hh
l

xd
G

l
ydyxd

G

l
S γ

π
γ

π
,    (1.25) 

 

where we are now raising and lowering with ijγ̂ . The Gibbons-Hawking term is 

 

                                     ∫ 







∂−−= ijy

ij

GH hh
l

yyxd
G

l
S

400

34
3

8

1
coshsinhˆ

2
γ

π
.    (1.26) 

 

The first counter term is 

                                       ∫ ∫ 







−== ij

ij
hh

l
yxd

G

l
xd

lG
S

40

44
3

4

1
4

1
sinhˆ

8

3

ˆ8

3
γ

π
γ

π
.    (1.27) 

 

The second counter term is 

 

     ∫ ∫ 







∇+−== ij

ij

ij

ij
hh

yl
hh

yl
yxd

G

l
Rxd

G

l
S

2

0

24

0

240

24
3

4

2
ˆ

sinh4

1

sinh

2
sinh12ˆ

3232
γ

π
γ

π
.           

                                                                                                                                                      (1.28) 

Thus with only two counter terms we would have  

 

∫ 












∇−+














+−+∂−−

Ω
= ij

ij

ij

ij

ij

ij

ijy

ij

CFT hh
Rl

hh
RlR

l
hh

l
hh

l
xd

G

l

l

RN
W

2

22222

2

44

4
3

2

4

2

ˆ
8

11
1

2

31

4

1
ˆ

16
log

8

3
γ

ππ

                                                                                                                                                      (1.29)  

 

4Ω  is the area of a unit four-sphere and we have used the following equation: 
π

23 2N

G

l
= . The 

expansion of ijyh∂  at 
0yy =  is obtained from 

 

                                      
( )
( )

( )( ) ( ) ( )( )∑ ∫=∂
p

p

kl

klp

ij

p

p

ijy xHxhxdxH
yf

yf
h ''ˆ'

4

0

0

'

γ     (1.30) 

 

and 

             
( )
( )

( )( ) ( )( )( ) ( ) [ 34

4

4

4

4

2

2

0

0

'

2
8

/log
4

32121
2

2 pp
R

l
Rl

R

l
pppppp

R

l

yf

yf

p

p
+++++++++=  

( )( )( ) ( ) ( ) ( ) ( )( )] ( )







Ο++−+−+++−−−−− Rl

R

l
pppppppp /log2/52/22/213212105

6

6
2 ψψψψ

                                                                                                                                                      (1.31) 

 

The psi function is defined by ( ) ( ) ( )zzz ΓΓ= /'ψ . Substituting into the action we find that the 

divergences as 0→l  cancel at order 44 / lR  and 22 / lR . The term of order 44 / Rl  in the above 

expansion makes a contribution to the finite part of the action: 
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                              ( ) ( )( )( )24

42

2

2

4

2

''ˆ'
256

log
8

3
∑ ∫+

Ω
=

p

p

kl

kl

CFT xHxhxd
R

N

l

RN
W γ

ππ
  

                                          ( )( )( ) ( ) ( )( )pRlpppp Ψ++++ /log3212 ,    (1.32) 

 

where 

( ) ( )( )( ) ( ) ( ) ( ) ( )[ ] 610521222/2/52/321 234 −−−++−−++++++=Ψ ppppppppppp ψψψψ   

                                                                                                                                                            

                                                                                                                                                      (1.33) 

 

To cancel the logarithmic divergences as 0→l , we have to introduce a length scale ρ  defined by 

ερ=l  and add a counter term proportional to εlog  to cancel the divergence as ε  tends to zero. 

The counter term is 

                              ∫ 







−−= 24

3

3
3

1
log

64
RRRxd

G

l
S klij

jlikγγγε
π

 

                                   ∫ 













∇+∇−+−−= ij

ij

ij

ij

ij

ij
hhhhhh

R
xd

G

l 42

4

4
3

ˆ
4

1ˆ
2

3
2

1
12ˆlog

64
γε

π
.    (1.34) 

 

This term does indeed cancel the logarithmic divergence, leaving us with 

 

     ( )( ) ( )( )( ) ( ) ( )( )∑ ∫ Ψ+++++
Ω

=
p

kl

CFT pRppppxhxd
R

NRN
W /log3212'ˆ'

256
log

8

3 2
4

42

2

2

4

2

ργ
πρπ

.       

                                                                                                                                                      (1.35) 

 

Now, recall that our five dimensional action is 

 

                                                       
CFTGHEH WSSSS +++= 12 .    (1.36) 

 

In order to calculated correlators of the metric, we need to evaluate the path integral 

 

       [ ] [ ] ( )∫ ∪
=−=

21

exp
BB

SdZ gh δ  

               [ ] [ ]( ) [ ] [ ] [ ]( )( )2
1 exp2exp ∫ +−+−+−+−=

B
GHEHCFT SSdWS ggggghhhh 0000 δδδ .      (1.37) 

 

Here 0g  and 0h  refer to the unperturbed background metrics in the bulk and on the wall 

respectively and h  denotes the metric perturbation on the wall. Replacing l  and G  with l  and G , 

from equation (1.27) we obtain 

                                          [ ] ∫ 







−=+

40

44
3

1
4

1
sinhˆ

8

3

l
ygxd

G

l
S

π
hh0 ,    (1.38) 

 

where 0y  is defined by 0sinh ylR = . The path integral over gδ  is performed by splitting it into a 

classical and quantum part: 

                                                                    h'hg +=δ ,    (1.39) 

 

where the boundary perturbation h  is extended into the bulk using the linearized Einstein equations 

and the requirement of finite Euclidean action. h'  denotes a quantum fluctuation that vanishes at 
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the domain wall. The gravitational action splits into separate contributions from the classical and 

quantum parts: 

                                                        [ ] [ ]h'h '0 SSSS GHEH +=+ ,    (1.40) 

 

where 0S  can be read off from the equations (1.25) and (1.26) as 

 

          ∫ ∫ 







+∂+

Ω
−=

0

0 4

0

4

4
3

0

2

0

24

3

0

coth

4

1
ˆ

16
coshsinh

2

3 y

ij

ij

ijy

ij
hh

l

y
hh

l
xd

G

l
yydy

G

l
S γ

ππ
.    (1.41) 

 

We shall not need the explicit form for 'S  since the path integral over h'  just contributes a factor of 

some determinant 0Z  to [ ]hZ . We obtain  

 

                                    [ ] [ ] [ ] [ ]( )hhhhhhh 000 +−+−+−= CFTWSSZZ 100 22exp .    (1.42) 

 

The exponent is given by 

 

                  ∫
Ω

+
Ω

+
Ω

−=++
0

0 2

4

24

4224

3

10 log
8

3

4

3
coshsinh

3
22

y

CFT

RN

Gl

R
yydy

G

l
WSS

ρπππ
 

                                  ( ) ( )( )( ) ( )
( )∑ ∫




















−++

p p

pp

kl

kl
y

yf

yf

G

l
xHxhxd

l
6coth4

32
''ˆ'

1
0

0

0

'3
2

4

4 π
γ  

                                  ( )( )( ) ( ) ( )( )



Ψ+++++ pRpppp

y

N
/log3212

sinh256 0

42

2

ρ
π

.    (1.43) 

 

The (Euclidean) graviton correlator can be read off from the action as 

 

                                    ( ) ( ) ( ) ( ) ( )∑
∞

=

−
=

2

1

0''2

42

'' ,',
128

'
p

p

jijijiij ypFxxW
N

R
xhxh

π
    (1.44) 

 

where we have eliminated Gl /3  using the equation (1.21). The function ( )0, ypF  is given by 

 

                             ( )
( )
( )

( )py
yf

yf
yeypF

p

py Ψ+













−+= 6coth4sinh, 0

0

0

'

00
0 ,    (1.45) 

 

and the bitensor ( ) ( )','' xxW
p

jiji  is defined as 

                                                              ( ) ( ) ( )( ) ( )( )∑=
,...,,

'''' '',
mlk

p

ji

p

ij

p

jiji xHxHxxW ,    (1.46) 

 

with the sum running over all the suppressed labels ,...,, mlk of the tensor harmonics. 

Now, we consider the radius R  of the domain wall given by equation (1.21). It is convenient to 

write this in terms of the rank RSN  of the RS CFT (given by π/2/ 23

RSNGl = ) 

 

                                                          
4

4

2

2

2

2

3

3

16
1

l

R

N

N

l

R

l

R

RS

+=+ .    (1.47) 
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If we assume 1>>>> RSNN  then the solution is 

 

                                              ( )







Ο++= 44

2

2

/1
22

NN
N

N

N

N

l

R
RS

RS

RS

.    (1.48) 

 

Note that this implies lR >> , i.e., the domain wall is large compared with the anti-de Sitter length 

scale. Now let’s turn to a four dimensional description in which we are considering a four sphere 

with no interior. The only matter present is the CFT. The metric is simply 

 

                                                                 
ji

ij dxdxRds γ̂2

4

2 = ,    (1.49) 

 

where 4R  remains to be determined. The action is the four dimensional Einstein-Hilbert action 

(without cosmological constant) together with CFTW . There is no Gibbons-Hawking term because 

there is no boundary. Without a metric perturbation, the action is simply 

 

                        ∫
Ω

+
Ω

−=+−=
ρππ

γ
π

4

2

4

2

4

2

444

4

log
8

3

4

3

16

1 RN

G

R
WRxd

G
S CFT .    (1.50) 

 

where 4G  is the four dimensional Newton constant. Varying 4R  gives 

 

                                                                 
π4

4

2
2

4

GN
R = ,    (1.51) 

 

and N  is large hence 4R  is much greater than the four dimensional Planck length. 

Now we can to include the metric perturbation. The perturbed four dimensional Einstein-Hilbert 

action is 

                           
( )

∫ 







∇+−−= ij

ij

ij

ij

EH hh
R

hh
R

Rxd
G

S
2

2

4

2

4

2

4

4

4

4 ˆ
4

12
12ˆ

16

1
γ

π
.    (1.52) 

 

Adding the perturbed CFT gives 

 

             ( ) ( )( )( ) ( )∑ ∫ 



+++

Ω
+

Ω
−=

p

p

kl

kl
pp

RG
xHxhxd

RNN
S 63

64

1
''ˆ'log

8

3

16

3 2

2

44

2
44

2

4

2

2

4

2

π
γ

ρππ
   

                   ( )( )( ) ( ) ( )( )



Ψ+++++ pRpppp

R

N
44

4

2

2

/log3212
256

ρ
π

.    (1.53) 

 

Setting 4R=ρ  we find that the graviton correlator for a four dimensional universe containing the 

CFT is 

                       ( ) ( ) ( ) ( ) ( )[ ]∑
∞

=

−
Ψ+++=

2

12

''

2

4

2

'' 63',8'
p

p

jijijiij pppxxWGNxhxh .    (1.54) 

Hence, we have computed the graviton correlator using the Hartle-Hawking “No Boundary” 

proposal.  
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We shall show how the Euclidean correlator calculated above is analytically continued to give a 

correlator for Lorentzian signature.  

We begin by continuing the graviton correlator (equation 1.44) obtained via the five dimensional 

calculation. The analytic continuation of the correlator for four dimensional gravity (equation 1.54) 

is completely analogous. In terms of the new label 'p , the Euclidean correlator 1.44 between two 

points on the wall is given by 

                                     ( ) ( ) ( )( ) ( )∑
∞

=

−
=ΩΩ

i

ip

p

jijijiij ypGW
N

R
hh

2/7'

1

0

'

''2

42

'' ,'
128

' µ
π

    (1.55) 

 

where  

                              ( ) ( )
( )
( ) 











−+=−−= 6coth4sinh,2/3',' 0

0'

0

'

'

000
0 y

yg

yg
yeyipFypG

p

py
 

           ( )( ) ( ) ( )[( 4/72/'4/52/'4/9'4/1'16/63'52/''4' 22234 +−++−+++−−+−+ ipipppippipp ψψ   

           ( ) ( )])21 ψψ −− ,                                                                                        

                                                                                                                            (1.56) 

 

with ( ) ( )yQyg ipp coth2

2/1'' −−= . The function ( )0,' ypG  is real and positive for all values of 'p  in the 

sum and for arbitrary 00 ≥y . We have the Euclidean correlator defined as an infinite sum. 

Now we write the sum in equation (1.55) as an integral along a contour 1C  encircling the points 

2/,...2/9,2/7' niiip = , where n  tends to infinity. This yields 

 

                    ( ) ( ) ( )( ) ( )∫
−−

=ΩΩ
1

1

0

'

''2

42

'' ,''tanh'
64

'
C

p

jijijiij ypGWpdp
N

Ri
hh µπ

π
.    (1.57) 

 

When the contribution from the closing of the contour in the upper half 'p -plane vanishes, the final 

result for the Euclidean correlator reads 

 

                                 ( ) ( ) ( )( ) ( )

−

=ΩΩ ∫
∞+

∞−

−1

0

'

''2

42

'' ,''tanh'
64

' ypGWpdp
N

Ri
hh

p

jijijiij µπ
π

 

                                                         
( )( ) ( )( )]∑

=

−Λ ΛΛ+
2

1

1

0'' ;,'tan2
k

k

i

jijik iypGW k Resµππ .    (1.58) 

 

The analytic continuation from a four sphere into Lorentzian closed de Sitter space is given by 

setting the polar angle it−=Ω 2/π . We may take Ω=µ , and µ  then continues to it−2/π .  

In conclusion, we note that the Lorentzian tensor Feynman (time-ordered) correlator is 

 

                             ( ) ( ) ( )( ) ( )( )

= ∫

∞+ −

0

1

0

'

''2

42

'' ,''tanh'
128

' ypGRWpdp
N

R
xhxh

pL

jijijiij µπ
π

 

         
( )( ) ( )( )] ( )( ) ( )( )


+ΛΛ+ ∫∑

∞+ −

=

−Λ

0

1

0

'

''

2

1
2

42
1

0'' ,''
128

;,'tan ypGRWdp
N

R
iiypGW

pL

jiji

k

k

iL

jijik
k µ

π
µππ Res  

         
( )( ) ( )( )]∑

=

−Λ Λ−
2

1

1

0'' ;,'
k

k

iL

jiji iypGW k Resµπ .    (1.59) 
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In this integral the bitensor ( ) ( )( )','

'' xxW
pL

jiji µ  may be written as the sum of the degenerate rank-two 

tensor harmonics on closed de Sitter space with eigenvalue ( )4/17'2' += ppλ  of the Laplacian. 

We can understand the effect of the strongly coupled CFT on the microwave fluctuation spectrum 

by comparing the result (1.59) with the transverse traceless part of the graviton propagator in four-

dimensional de Sitter spacetime. On the four-sphere, this is easily obtained by varying the Einstein-

Hilbert action with a cosmological constant. In terms of the bitensor, this yields 

 

                                    ( ) ( )
( ) ( )( )

∑
∞

= −

ΩΩ
=ΩΩ

i

ip p

p

jiji

jiij

W
RGhh

2/7' '

'

''2

4''
2

',
32'

λ

µ
π ,    (1.60) 

 

which continues to 

                               ( ) ( ) ( ) ( )( )∫
∞+

−
=

0

'

''

'

2

4'' ',
2

'
32' xxW

dp
RGxhxh

pL

jiji

p

jiij µ
λ

π .    (1.61) 

 

We note that this can be compared with equation (1.59). 

 

2. Nonlocal braneworld action in the two-brane Randall-Sundrum model. [2] 

 

In the following definition 

                                             [ ]( ) [ ]( ) ( )∫ =ΣΦΦΦ= φφ iSDiSeff expexp ,    (2.1) 

the effective action by construction depends on the four-dimensional fields associated with 

brane(s)
1
. The number of these fields equals the number of branes, geometrically each field being 

carried by one of the branes in the system. In the generalized Randall-Sundrum setup, the 

braneworld effective action is generated by the path integral of the type (2.1), 

 

                                       [ ]( )
( )

[ ]( )∫ =
=Σ

φφ ,exp,,exp 4 giSgGiSDG effgG
,    (2.1a) 

 

where the integration over bulk metrics runs subject to fixed induced metrics on the branes – the 

arguments of [ ]φ,gSeff . Here [ ]φ,, gGS  is the action of the five-dimensional gravitational field with 

the metric ( )yxGG AB ,= ,  ( )5,µ=A ,  ,3,2,1,0=µ propagating in the bulk spacetime 

( )( )yxxxyxx
A === 5,,, µ , and matter fields φ  are confined to the branes IΣ - four-dimensional 

timelike surfaces embedded in the bulk, 

 

                        [ ] [ ] ( ) [ ]∑∫Σ 







+−∂+=

I

Im
I

K
G

ggLxdGSgGS
5

2/14

5
8

1
,,,,

π
σφφφ ,    (2.2) 

                                                  [ ] ( )( )∫ Λ−=
5

5

52/15

5

5 2
16

1

M

GRxGd
G

GS
π

.    (2.3) 

 

The branes are enumerated by the index I  and carry induced metrics ( )xgg µν=  and matter field 

Lagrangians ( )gLm ,, φφ ∂ . The bulk part of the action contains the five-dimensional gravitational 

                                                
1 The scope of this formula is very large, because it arises in very different contexts. In particolar, its Euclidean version  

( )EuclidSiS −→  underlies the construction of the no-boundary wavefunction in quantum cosmology. (Hartle-

Hawking Phys. Rev. D 28, 2960 (1983)) 
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and cosmological constants, 5G  and 5Λ , while the brane parts have four-dimensional cosmological 

constants Iσ . The bulk cosmological constant 5Λ  is negative and, therefore, is capable of 

generating the AdS geometry, while the brane cosmological constants play the role of brane 

tensions Iσ  and, depending on the model, can be of either sign. The Einstein-Hilbert bulk action 

(2.3) is accompanied by the brane “Gibbons-Hawking” terms containing the jump of the extrinsic 

curvature trace [ ]K  associated with both sides of each brane. In the tree-level approximation the 

path integral (2.1a) is dominated by the stationary point of the action (2.2). Its variation is given as a 

sum of five- and four-dimensional integrals, 

 

         [ ] ( )∫ 







Λ+−−= yxGGRGRxdyGd

G
gGS AB

ABABAB ,
2

1

16

1
,, 5

552/14

5

δ
π

φδ    

                                    [ ] ( ) ( )∑∫Σ 







−+−−+

I I

xggTKgK
G

xgd µν
µνµνµνµν δσ

π 2

1

16

1

5

2/14
,    (2.4) 

 

where [ ]KgK
µνµν −  denotes the jump of the extrinsic curvature terms across the brane, and ( )xT

µν  

is the corresponding four-dimensional stress-energy tensor of matter fields on the branes, 

 

                          ( ) [ ]
( )xg

gS

g
xT m

µν

µν

δ

φδ ,2
2/1

=  ,    (2.5)    [ ] ( )∑∫Σ ∂=
I

mm
I

gxLdgS ,,,
4 φφφ ,    (2.6) 

 

hence 

                                  ( )
( )

( )∑∫Σ ∂=
I

m
I

gxLd
xgg

xT ,,
12 4

2/1
φφδ

δ µν

µν .    (2.6a) 

 

The action is stationary when the integrands of both integrals in (2.4) vanish, which gives rise to 

Einstein equations in the bulk, 

 

                                  
[ ]

( )
0

2

1

16

1

,

,,
5

552/1

5

=







Λ+−−≡ ABABAB

AB

GRGRG
GyxG

gGS

πδ

φδ
,    (2.7) 

 

which are subject to (generalized) Neumann type boundary conditions – the well-known Israel 

junction conditions –  

 

                       
[ ]

( )
[ ] ( ) 0

2

1

16

1,, 2/12/1

5

=−+−−≡ σ
πδ

φδ µνµνµνµν

µν

gTgKgKg
Gxg

gGS
,    (2.8) 

 

or to Dirichlet type boundary conditions corresponding to fixed (induced) metrics on the branes, 

with 0=µνδg  in the variation (2.4), 

                                                                 ( )xgG µνµν =Σ
4 .    (2.9) 

 

The solution of the latter, Dirichlet, problem is obviously a functional of brane metrics, 

( )[ ]xgGG ABAB µν= , and it enters the tree-level approximation for the path integral (2.1a). [ ]φ,gSeff  

in this approximation reduces to the original action (2.2)-(2.3) calculated on this solution 

( )[ ],xgGAB µν  [ ] [ ][ ] ( )hOggGSgSeff += φφ ,,, . With this definition, the matter part of effective action 

coincides with the original action Eq. (2.6) 
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                                                         [ ] [ ] [ ]φφ ,, 4 gSgSgS meff += ,    (2.10) 

 

while all non-trivial dependence on g  arising from the functional integration is contained in [ ]gS4 . 

Given the action (2.10) as a result of solving the Dirichlet problem (2.7), (2.9), one can further 

apply the variational procedure, with respect to the induced metric µνg , to get the effective 

equations 

                                     
[ ]
( )

[ ]
( )

( ) 0
2

1,
2/14 =+= xTg

xg

gS

xg

gSeff µν

µνµν δ

δ

δ

φδ
,    (2.11)  

 

which are equivalent to the Israel junction conditions – a part of the full system of the bulk-brane 

equations of motion (2.7), (2.8). 

The action of the two-brane Randall-Sundrum model is given by Eq. (2.2) in which the index ±=I  

enumerates two branes with tensions ±σ . The fifth dimension has the topology of a circle labelled 

by the coordinate y , dyd ≤<− , with an orbifold 2Z -identification of points y  and y− . The 

branes are located at antipodal fixed points of the orbifold, ±= yy , 0=+y , dy =− . When they are 

empty, ( ) 0,, =∂ µνφφ gLm , and their tensions are opposite in sign and fine-tuned to the values of 
5Λ  

and 5G , 

                                                    
25

6

l
−=Λ ,   

lG54

3

π
σσ =−= −+ ,    (2.12) 

 

this model admits a solution with an AdS metric in the bulk l( is its curvature radius), 

 

                                                         νµ
µνη dxdxedyds

ly /222 −
+= ,    (2.13) 

 

dyyy =≤≤= −+0 , and with a flat induced metric µνη on both branes. The metric on the negative 

tension brane is rescaled by the warp factor ( )ld /2exp −  providing a possible solution for the 

hierarchy problem. With the fine tuning (2.12) this solution exists for arbitrary brane separation d  - 

two flat branes stay in equilibrium. Their flatness is the result of compensation between the bulk 

cosmological constant and brane tensions.  

Now consider the Randall-Sundrum model with small matter sources for metric perturbations 

( )yxhAB ,  on the background of this solution, 

 

                                        ( ) BA

AB

ly
dxdxyxhdxdxedyds ,

/222 ++=
− νµ

µνη ,    (2.14) 

 

such that this five-dimensional metric induces on the branes two four-dimensional metrics of the 

form 

                                                          ( ) ( )xhaxg
±

±
± += µνµνµν η2 .    (2.15) 

 

Here the scale factors ( )±± = yaa  can be expressed in terms of the interbrane distance 

 

                                                            1=+a ,    aea
ld ≡= −

−
/2 ,    (2.16) 
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and ( )xh
±
µν  are the perturbations by which the brane metrics ( )xg

±
µν  differ from the (conformally) 

flat metrics of the Randall-Sundrum solution (2.13). The main result is the braneworld effective 

action (2.10) calculated for the boundary conditions (2.9) of this perturbed form (2.15). The 

braneworld effective action is invariant under the four-dimensional diffeomorphisms acting on the 

branes. In the linearized approximation they reduce to the transformations of metric perturbations, 

 

                                                               
±±±± ++→ µννµµνµν ,, ffhh     (2.17) 

 

with two independent local vector field parameters ( )xff
±± = µµ . Therefore, rather than in terms of 

metric perturbations themselves, the action in question is expressible in terms of the tensor 

invariants of these transformations – linearized Ricci tensors of ( )xhh
±= µνµν , 

 

                                             ( )µν
λ

λνµ
λ

λµνµνµν ,,,
2

1
hhhhR −++−= � ,    (2.18) 

 

on flat four-dimensional backgrounds of both branes. (Strictly speaking, −
µνR  is the linearized Ricci 

tensor of the artificial metric −+ µνµνη h . It differs from the linearized Ricci curvature of the second 

brane, ( ) 22 / aRhaR
−− =+ µνµν η , by a factor of 2

a ). Commas denote partial derivatives, raising and 

lowering of braneworld indices here and everywhere is performed with the aid of the flat four-

dimensional metric µνη , σν
λσλ

ν η hh ≡ , µν
µνη hh ≡ , µν

µνη RR = , and �denotes the flat spacetime 

d’Alambertian 

                                                              νµ
µνη ∂∂=� .    (2.19) 

 

Hence, we have to describe the variables which determine the embedding of branes into the bulk. 

Due to metric perturbations the branes no longer stay at fixed values of the fifth coordinate. Up to 

four-dimensional diffeomorphism (2.17), their embedding variables consist of two four-dimensional 

scalar fields – the radions ( )x
±ψ – and the braneworld action can depend on these scalars. Their 

geometrically invariant meaning is revealed in a special coordinate system where the bulk metric 

perturbations ( )yxhAB ,  of Eq. (2.14) satsfy the so called Randall-Sundrum gauge conditions, 

05 =Ah , 0, == µ
µ

ν
µν hh . In this coordinate system the brane embeddings are defined by the equations 

 

                                      ( )x
a

l
yy

±

±

±± +=Σ ψ
2

: ,    0=+y ,    dy =− .    (2.20) 

 

In the approximation linear in perturbation fields and vector gauge parameters, these radion fields 

are invariant under the action of diffeomorphism (2.17). The answer for the braneworld effective 

action, is given in terms of the invariant fields, ( ) ( )( )xxR
±± ψµν , , by the following spacetime integral 

of a 22 ×  quadratic form, 

 

                              [ ] ( ) ( ) ( )
∫ 

 −
+=±± R

FK
RR

F
R

2222

4

4

4

6

6

12

16

1
,

�

��

�

�

ll
xd

G
gS

TT µν
µνµν

π
ψ  

                                                 
( )













+Ψ








+Ψ− R

K
R

6

1

6

1
3

22
�

�

�
�

l

T

.    (2.21) 
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Here 4G  is an effective four-dimensional gravitational coupling constant, 

 

                                                                      
l

G
G 5

4 = ,    (2.22) 

 

( )Ψ,µνR  and ( )TT Ψ,µνR  are the two-dimensional columns 

 

                                                      
( )
( )










=

−

+

xR

xR

µν

µν
µνR ,    

( )
( )






=Ψ

−

+

x

x

ψ

ψ
    (2.23) 

 

and rows 

                                  ( ) ( )[ ]xRxR
T −+= µνµνµνR  ,    ( ) ( )[ ]xx

T −+=Ψ ψψ ,    (2.24) 

 

of two sets of curvature perturbations and radion fields, associated with two branes (T  denotes the 

matrix and vector transposition). 

The quadratic approximation for the action and its nonlocal formfactors obviously determines the 

spectrum of excitations in the theory. Now we show that in the graviton sector this spectrum 

corresponds to the tower of Kaluza-Klein modes well-known from a conventional Kaluza-Klein 

setup. The graviton sector arises when one decomposes metric perturbations on both branes into 

irreducible components – transverse-traceless tensor, vector and scalar parts, 

 

                               µννµµνµνµν ηϕγ ,, ffh +++= ±±± ,    0, == µν
µνν

µν γηγ .    (2.25) 

 

On substituting this decomposition in the linearized curvatures of (2.21) one finds that the vector 

parts do not contribute to the action, and the latter reduces to the sum of the graviton and scalar 

sectors, 

                                          [ ] [ ] [ ]±±±±± += ψϕγψ µνµν ,,4 scalargraviton SSgS .    (2.26) 

 

The graviton part in entirely determined by the operator ( )�F  and reads 

 

                                    [ ] [ ] ( )
∫ 








=

−

+−+±

µν

µν

µνµνµν
γ

γ
γγ

π
γ

2

4

4 2

1

16

1

l
xd

G
Sgraviton

�F
,    (2.27) 

 

while the scalar sector consists of the radion fields of Eq. (2.23) and the doublets of the trace (or 

conformal) parts of the metric perturbations ±ϕ , 

 

                                                 
( )
( )






=Φ

−

+

x

x

ϕ

ϕ
,    ( ) ( )[ ]xx

T −+=Φ ϕϕ .    (2.28) 

 

Their action diagonalizes in terms of the conformal modes and the (redefined) radion modes 

Φ−Ψ2 , 

 

        [ ] ∫ 







+−= −−++±± ϕϕϕϕ

π
ψϕ ��

2

4

4

1

32

3
,

a
xd

G
Sscalar ( ) ( ) ( )∫ Φ−ΨΦ−Ψ− 22

16

3
2

4

4 l
xd

G

T �K

π
.    

                                                                                                                                                      (2.29) 
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Now we consider in the low-energy approximation on the positive-tension brane the case of large 

brane separation, when 1<<a  and 

                                                         1<<�l ,    1>>
a

l �
.    (2.30) 

 

This range of coordinate distances �/1  corresponds to the long-distance approximation on the 

+Σ -brane. Now one should use the asymptotic expressions of large arguments of the Bessel 

functions ( )−−
νν YJ , , ,2,1=ν  

 

                  









−−≅−

24
cos

2
2/1

πνπ

π
ν

a

l

l

a
J

�

�
,    










−−≅−

24
sin

2
2/1

πνπ

π
ν

a

l

l

a
Y

�

�
,    (2.31) 

 

and the small-argument expansions for ( )++
νν YJ , . Then, in the leading order the operator ( )�F  reads 

 

                                                        ( )



















−

≅

−

−

−

−

�
�

��

�

a

l

J

J

J

l

J

ll

2

1

2

2
2

22

2

22
F .    (2.32) 

 

In contrast to the case of small brane separation, the short-distance corrections to this matrix 

operator contain a nonlocal �� ln2 -term. We present it for the ( )�++F -element, 

 

          ( ) ( ) ( ) ( )[ ]32

2

222

22
��

��
� lOk

ll
F ++=++ ,    (2.33)    ( ) 








+−=

−

−

2

2

22 2
4

ln
4

1

J

Y

l
k πC

�
� .    (2.34) 

 

This is a manifestation of the well-known phenomenon of AdS/CFT-correspondence when typical 

quantum field theoretical effects in four-dimensional theory can be generated from the classical 

theory in the bulk. 

If we take the usual viewpoint of the braneworld framework, that our visible world is one of the 

branes embedded in a higher-dimensional bulk, then the fields living on other branes are not 

directly observable. In this case the effective dynamics should be formulated in terms of fields on 

the visible brane. In the two-brane Randall-Sundrum model this is equivalent to constructing the 

reduced action – an action with on-shell reduction for the invisible fields in terms of the visible 

ones. We perform the reduction of the action to the +Σ -fields separately in the graviton and scalar 

sectors. In the graviton sector (2.27) the on-shell reduction – the exclusion of −
−µν

γ  perturbations in 

terms of µνµν γγ =+   – corresponds to the replacement of the original action by the new one, 

 

                          [ ] [ ] ( ) µν
µνµνµν γγ

π
γ +

+±

∫=⇒
2

4

4 216

1

l

F
gxd

G
gSS redred

gravitongraviton

�
,    (2.35) 

 

with the original kernel ( )�F  going over to the new one-component kernel ( )�redF  according to the 

following simple prescription 

 



 16 

                                           ( ) ( ) ( ) ( )
( )

( )�
�

���� +−

−−

−+++ −=⇒ F
F

FFFred

1
F .    (2.36) 

 

It is useful to rewrite (2.35) back to the covariant form in terms of (linearized) Ricci curvatures on a 

single visible brane, 

 

                      [ ] ( ) ( )
∫ 








−= R

l

F
RR

l

F
Rgxd

G
gS redredred

graviton 2222

4

4 3

1

8

1

�

�

�

� µν
µνµν

π
.    (2.37) 

 

A similar reduction in the scalar sector implies omitting in the first integral of (2.29) the negative-

tension term and replacing the 22×  quadratic form in the second integral by the quadratic form in 
+ψ  with the reduced operator 

 

                                   ( ) ( ) ( )
( )

( ) ( )
( )�
�

�
�

���

−−

+−

−−

−+++ =−=
K

K
K

KKK red

Kdet1
.    (2.38) 

 

Thence, we express the conformal mode in terms of the (linearized) Ricci scalar ( )R�3/1−=+ϕ , 

and denote the radion by ψψ =+ . Then the combination of the reduced scalar sector together with 

the graviton part (2.37) yields the reduced action in its covariant form 

 

 

              [ ] ∫ 











−−








−= R

l

F
RRgR

l

F
Rgxd

G
gS redred

red 2222

4

4

21

6

1

2

12

16

1
,

���

µνµν
µνµν

π
ψ  

                                               











+








+−

6

2

6
6

22

2 R

l

KR
l red ψψ �

�
� .    (2.39) 

 

In the regime of small or finite brane separation 1<<�l , 1<<
a

l �
, the calculation of the reduced 

operator (2.36) gives the following result, 

 

    ( ) ( ) ( ) ( ) ( )[ ]32

1

22
2

2

2
1

2
�

��
� lOa

l
a

l
Fred ++−= κ ,    (2.40)    ( ) ( ) ( ) 





−−−−=

222

21 1
2

1
1

1
ln

4

1
aa

a
aκ .  

                                                                                                                                                      (2.41) 

Similarly, in view of  ( ) ( ) ( )[ ]3222

41

ln4
det ��� lOl

a

a
+

−
=K ,  the reduced operator in the radion sector 

(2.38) is at least quadratic in � , 

 

                                   ( ) ( )( ) ( )[ ]3222

2 ��� lOlaK red += κ ,    (2.42)    ( )
22

1
ln

4

1

a
a =κ ,    (2.43) 

 

so that the low-energy radion turns out to be a dipole ghost. 

The reduced braneworld action in the low-energy regime of finite interbrane distance is: 

 

   [ ] ( ) ( ) ( )∫











+








+−−−= 2

1

22

2
2

24

4 26
6

1

6
1

16

1
, µναβµν κψκ

π
ψ Ca

lR
alRR

a
Ragxd

G
gSred �

�
.    (2.44) 
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Furthermore, the following reparametrization from ψ  to the new field ϕ , 

 

                                  
( )

















+

−
−







−= R

a
lRa

G 6

1

6

1
1

4

3 2

4

ψ
κ

π
ϕ �

��
    (2.45) 

 

converts the action (2.44) to the local form 

 

                   [ ] ( ) 







++








−= ∫

2

1

4

2
2

4

4

322

1

12

1

16

1
, µναβµν κ

π
ϕϕϕ

π
ϕ Ca

G

l
R

G
gxdgSred � .    (2.46) 

 

The field ϕ  introduced here by the formal transformation (2.45) directly arose as a local 

redefinition of the radion field relating the Randall-Sundrum coordinates to the Gaussian normal 

coordinates associated with the positive tension brane. 

 

Large interbrane distance and Hartle boundary conditions 
 

In the limit 0→a  the nonlocal and correspondingly non-minimal terms of (2.44) and (2.46) vanish 
and the low-energy model seems to reproduce the Einstein theory. However, this limit corresponds 

to another energy regime (2.30) in which one should use the expressions (2.32) – (2.34) in order to 

obtain the reduced operator (2.36). Then the latter, up to quadratic in �  terms inclusive, reads as 

 

                       ( ) ( ) ( )










++








−+=

−−−

−

212

2

22

2

222

242
2

4
ln

82 JJl

a

J

Yl

l

ll
Fred

�

�

�

��
�

π
C .    (2.47) 

 

As in (2.33) it involves the logarithmic nonlocality (2.34) in 2
� -terms. Moreover, the last term here 

simplifies to the ratio of the first order Bessel functions −−
11 / JY , so that ( )�redF  takes a form very 

similar to that of the large interbrane separation (2.33), 

 

                              ( ) ( ) ( )[ ]32

1

1

2

222

2
4

ln
82

�
�

��
� lO

J

Y

l

ll
Fred +








+−+=

−

−

πC .    (2.48) 

 

The calculation of the radion operator (2.38) with ( )�K  following from (2.32) for 1/ 22 >>al �  

results in 

                                                            ( ) ( ) ( )��� 2

22
klK red = ,    (2.49) 

 

where ( )�2k  is defined by (2.34). Thus, ( )�redF  and ( )�redK  are given by the following two 

nonlocal operators, 

                                       ( ) 







+−=

−

−

ν

ν
ν π

J

Y

l
k C2

4
ln

4

1
2
�

� ,    ,2,1=ν     (2.50) 

 

and the reduced (one-brane) action finally reads 
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       [ ] ( ) ( )∫ 















+








+−+=

66
6

216

1
, 2

2

1

2
4

4

R
k

R
lCkC

l
Rgxd

G
gSred ψψ

π
ψ µναβ

µναβµν ���� .    (2.51) 

 

Here terms quadratic in curvature represent short distance corrections with form factors whose 

logarithmic parts have an interpretation in terms of the AdS/CFT-correspondence. With the usual 

Wick rotation prescription εi+→ ��  these ratios tend to 
 

                                  ii
a

l

J

Y
→








−−+≅

−

−

24
tan

πνπ
ε

ν

ν
� ,    0→a ,    (2.52) 

 

and both form factors (2.50) for 0<�  (Euclidean or spacelike momenta) become real and can be 

expressed in terms of one Euclidean form factor as 

 

( ) ( )
( ) 








−

−
≡=+ → C

�
��

20

4
ln

4

1

l
kik aεν ,    (2.53)   and hence      ( )

( )�
�

−
≡+

2

4
ln

4

1

4

1

l
k C .    (2.54) 

 

This Wick rotation after moving the second brane to the AdS horizon impose a special choice of 

vacuum or special boundary conditions at the AdS horizon. The Hartle boundary conditions 

corresponding to this type of analytic continuation imply that the basis function ( )zu−  is given by 

the Hankel function, ( ) ( )( ) ( ) ( )��� ziYzJzHzu 22

1

2 +==− , and thus corresponds to ingoing 

waves at the horizon. This is equivalent to the replacement  iJJYY −→→ −−−−
2121 ,,1, , in (2.50) and, 

thus, justifies the Wick rotation of the above type. Hartle boundary conditions and the Euclidean 

form factor (2.53) naturally arise when the Lorentzian AdS spacetime is viewed as the analytic 

continuation from the Euclidean AdS (EAdS) via Wick rotation in the complex plane of time. 

 

3. Compactifications of Type IIB Strings on a Calabi-Yau three-fold and Hartle-Hawking   

            wave-function in the mini-superspace sector of physical superstring theory. 

 

 

A. Compactifications of Type IIB Strings on a Calabi-Yau three-fold.  [3] 

 

 

Although the self-duality of the five-form field strength in type IIB string theory implies that the 

latter cannot be described by a supersymmetric 10-dimensional action, the bosonic fields can be 

described by a non-self-dual action in which the equation of motion for the five-form field strength 

is replaced by its Bianchi identity. This is consistent with self-duality, but does not imply it. When 

self-duality is imposed as compactification condition, the non-self-dual action yields the correct 

compactified theory. In the Einstein frame, the action is, 

 

                          ( )∫




++ΗΜΗ+Μ∂Μ∂−−= − 2

ˆˆˆˆˆ

ˆˆˆ

ˆˆˆ

1ˆ

ˆ

10 ˆ
12

5ˆˆˆ
8

3ˆˆ
8

1ˆ
2

1
ˆˆ τσρνµ

ρνµ
ρνµ

µ
µ FTrRgxdS

T     

                             ( ) ( )





+ jiij
HHD

δγβαλτσρνµ
δγβαλτσρνµεε ˆˆˆˆˆˆˆˆˆˆ

ˆˆˆˆˆˆˆˆˆˆ ˆˆˆ
192

1
    (3.1) 

 

The field definitions are 
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−
=Μ
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ˆIm
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2

λ

λλ

λ
;    ϕλ ˆˆˆ −+= iel ,    (3.2a) 

                                          
( )

( ) 












=Η

2
ˆˆˆ

1
ˆˆˆ

ˆˆˆ

ˆ
ˆ

ρνµ

ρνµ
ρνµ

H

H
;    ( )

[ ]
( )ii

BH ρνµρνµ ˆˆˆˆˆˆ
ˆˆ ∂= ,                     (3.2b) 

                                          [ ] [
( )

]
( )jiij

BBDF τσρνµτσρνµτσρνµ ε ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ
ˆˆ

4

3ˆˆ ∂+∂= .                   (3.2c) 

 

Also, g−=9....0ε̂ . It is in the final term of equation (3.1) that 4=D  vectors (from D̂ ) interact 

with the 4=D  scalars from the three-form field strengths. It is convenient to rewrite this (up to an 

overall constant) as 

                                                      ( ) ( )
∫ ∧∧ jiij

BHF ˆˆˆε .    (3.3) 

 

To compactify to four dimensions use 

 

                                                   ...ˆ +∧−∧= Λ
ΛΛ

Λ βα GFF ,    (3.4) 

 

where ( ) { }21,...,1,0,, h=ΛΛ
Λ βα  are some choice of symplectic basis for ( )CYH

3 , Λ
µνF  are the 4-

dimensional vector field strengths and µνΛG  are the magnetic field strengths and the dual 

relationship between Λ
µνF  and µνΛG  is due to self-duality of F̂ ; the terms that have been left out of 

equation (3.4) are those which will not contribute to the integral in equation (3.3). The 3-form field 

strengths are given Calabi-Yau expectation values via 

 

                  
( ) ( ) ( )

Λ
ΛΛ

Λ −>=< ανβν 111ˆ
meH ,    (3.5a)        

( ) ( ) ( )
Λ

ΛΛ
Λ −>=< ανβν 222ˆ

meH ,    (3.5b)  

 

where the ( )emν  are constants that have been prematurely identified as values of the magnetic 

(electric) charges. Using equations (3.5), integration of equation (3.3) over the Calabi-Yau gives 

 

                                             ( ) ( ) ( ) ( )( )∫ ∧−∧ Λ
ΛΛ

Λ
ji

m

ji

e

ij
BGBF ννε .    (3.6) 

 

Writing Λ
F  and ΛG  in terms of electric and magnetic vector potentials Λ

µA  and µΛA
~

, gives, after an 

integration by parts, (again up to a constant) 

 

                                          ( ) ( ) ( ) ( )( )∫ Λ
ΛΛ

Λ −− µ
µ

µ
µ ννε ji

m

ji

e

ij
HAHAgxd ˆ4 ,    (3.7) 

 

where  

                                                             ( ) ( )ii
BH στν

νστµµ ε ∂=
6

1
.    (3.8) 

 

The result is that to lowest order in the coupling constant, with, for simplicity, the fields 

corresponding to the 21h  data set to zero, 
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                        ( )
SeH

KK

Im
3

2
4

1~

4

5

1

µµ ∂=
−

,    (3.9a)        ( )
0

4

3

4

~

2 Im
3

22
CeH

KK

µµ ∂=
+

;    (3.9b) 

 

also, the string coupling constant is 

                                                                 22

~

ˆ
2

KK

ee
−

=ϕ .    (3.9c) 
 

Here S  and 
0C  are the 1=N  superfields which form the dilaton hypermultiplet; the four 

dimensional dilaton has been generalized to 

                                                                         K
e

~

2

1 −=φ .    (3.10) 

 

Substituting equations (3.9) into equation (3.7) gives, after a Weyl rescaling µνµν geg

KK

44

~
3

2
+

→  (to 

go to the 4=D  Einstein metric), 

 

                            ( ) ( ){∫ −∂−∂− Λ
Λ+Λ

Λ
+

0

1
~

0

1
~

4 Im
~

2Im2
3

22
CAeCAegxd m

KK

e

KK µ
µ

µ
µ νν    

                                                           ( ) ( ) }SAeSAe m

K

e

K Im
~

Im 2
~

22
~

2 µ
µ

µ
µ νν ∂+∂ Λ

ΛΛ
Λ .    (3.11) 

 

This can be recognized as the interaction terms of the vector potentials with charged fields S
e  and 

0C
e . Hence, completing the square with the kinetic terms for the hypermultiplets gives (with an 

appropriate numerical rescaling of ( )
( )i

me Λν ) 

 

       ( ) ( )( ) ( ) ( )( ){ }∫ +∂+−+∂+−−= Λ
ΛΛ

ΛΛ
ΛΛ

Λ
+ ...Im

~
2Im

~
8

222
~

22

0

11
~

4
SAAeCAAegxdS me

K

me

KK

µµµµµµ νννν .                     

                                                                                                                                                      (3.12) 

 

From this equation, it is seen that 0ImC  carries electric (magnetic) charges ( )1

Λeν  ( )( )Λ1

mν  and that 

SIm  carries electric (magnetic) charges ( )2

Λeν  ( )( )Λ2

mν . 

With regard the compactification of IIB on a Calabi-Yau, now, the attention is restricted to an 

111 =h , 021 =h  Calabi-Yau. The (uncomplexified) moduli space therefore is one-dimensional, and 

corresponds to the choice of metric; specifically a conformal factor σ
e . Furthermore, as RR fields 

are suppressed in string perturbation theory, and because only the structure of the dilaton multiplet 

is of interest, it will be convenient to take  

 

                                               0ˆ =l ;    0ˆ =
ji

B ;    0ˆˆˆˆ =τσνµD .    (3.13) 

 

The equations of motion are usually written in terms of the fields  
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ψψ
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∂
=P ,  (3.14b)     

           
( )

ψψ

ψψ µ
µ

ˆˆ1

ˆˆˆIm
ˆ ˆ

ˆ ∗

∗

−

∂
=Q ,         (3.14c)    

( )2

1

ˆˆˆˆˆˆ

ˆˆˆ

ˆˆ1

ˆˆˆ
ˆ

ψψ

ψ ρνµρνµ
ρνµ

∗

∗

−

−
=

HH
G ;  ( ) ( )2

ˆˆˆ

1
ˆˆˆˆˆˆ

ˆˆˆ
ρνµρνµρνµ HiHH += .  (3.14d)  
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The equation of motion that will be most interesting is 

 

                                                      ( ) µ
ρνµ

µ
ρνµµ

ˆ

ˆˆˆ

ˆ

ˆˆˆˆ
ˆˆˆˆ ∗=−∇ GPGQi .    (3.15) 

 

Equation (3.15) is satisfied trivially on the Calabi-Yau. After performing a 4-dimensional Weyl 

rescaling µν
σ

µν geg
3−→ , equation (3.15) becomes (on the spacetime) 
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µ
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ψψ
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ψψ

ψψψψ
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−

∂
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−

∂−∂
+∇ GeGe
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.    (3.16) 

 

Subtracting ψ  times the complex conjugate of equation (3.16), from equation (3.16), gives  

 

                                                 ( )
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1

1

1

ψψ

ψ
ψψ

µ
νρ

µ
νρσ

µ

GG
e ,    (3.17) 

 

which is satisfied by introducing a complex scalar field D  such that 

 

                                                     

( )2

1

3

1 ψψ

ψ µµσ
µ

∗

∗

−

−
=∂

GG
eD ,    (3.18) 

 

where, as in equation (3.8) 

                                                         σ
σ

µνρµνρ ε GG = .    (3.19) 

 

The other equation of motion that is used is  

 

                                    ( ) ( )
∗∗∗ −+= τσν

τσν
νµτσν

τσ

µνµνµ ˆˆˆ

ˆˆˆ
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ˆˆ

ˆˆˆˆˆ
ˆˆˆ

16

3ˆˆ
4

9ˆˆ2ˆ GGgGGPPR .    (3.20) 

 

By substituting the Calabi-Yau part of this equation into the space-time part of the equation, the 

four-dimensional action 

                                       ( )∫








+∂++−=
2224

4

9
3

2

1
µµµ σ GPRgxdS     (3.21) 

 

can be deduced. Alternatively, this can be found, almost by inspection, via dimensional reduction of 

the NSD action of equation (3.1). There is a space-time dependent conformal factor of σ
e  in the 

Calabi-Yau metric; hence  geg −=− σ3ˆ   and so to remain in the Einstein frame required the 

Weyl rescaling of the four dimensional metric  µν
σ

µν geg
3−→ . This is the same Weyl rescaling 

used in the derivation of equation (3.17) and the reason for it. To obtain the standard quaternionic 

geometry, we make the field redefinitions, 

 

                        
ϕσ
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1
+

−= ieZ ;    (3.22a)    DiC Im
4

23
0 = ;     (3.22b)     

                          
ϕσ

φ 2

1
3 −

= e ;     (3.22c)    DRe=φ ;                 (3.22d)     and    φφ
~

iS += .    (3.22e) 
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Define also 

 

  ( )







−−−= ZZ

i
K

8
ln ;    (3.23a)    [ ]SSK +−= ln

~
;   (3.23b)    ( )3

0000
32

ZZ
i

R −==Ν ;   (3.23c) 

  00 CCD µµ ∂= ;                  (3.23d); and  SSD µµ ∂= .   (3.23e) 

 

Then, the scalar part of the action of equation (3.21) becomes 

 

                                  {∫ +++∂∂−= 0

4

0

~~
CSDDKSSDDKZZKgxdS

CSSSZZ

µ
µ

µ
µ

µ
µ  

                                                         }000
000

~~
CDCDKSDCDK

CCSC

µ
µ

µ
µ + ,    (3.24) 

 

where the subscripts on ,K  K
~

 denote differentiation. We note that 0C  is pure imaginary. 

 

 

B. Hartle-Hawking Wave-function in the mini-superspace sector of physical 

superstring theory.  [4] 

 

 
Suppose we consider the compactification of type IIB superstrings to two dimensions on a Calabi-

Yau threefold M  times a 2-sphere 2
SM × . Turn on 5-form fluxes for the RR

2
 5-form field strength 

to be 

                                                              ω∧= 35 FF ,    (3.25) 

 

where ω  is a unit volume form on 2
S , and 3F  is a 3-form on M . Choosing an integral basis of 

magnetic/electric ( )MH 3  as { } ,, 1,2,...0 hI

J

I =
βα  we write 

 

                                                      ( )∑ +=
I

I

II

I qpF βα3 .    (3.26) 

 

It is possible to write down a superpotential whose extremization leads to the condition for (2, 2) 

supersymmetry in d = 2: 

                                                              ∫ ×
Ω∧=

2 5
SM

FW ,    (3.27) 

 

hence 

                                                ( )∫ ∑
×

Ω∧∧+=
2

SM
I

I

II

I
qpW ωβα ,    (3.27b) 

 

where Ω  is the holomorphic 3-form on the Calabi-Yau three-fold. To deduce this superpotential, 

we note that this superpotential is consistent with the tension (BPS mass in 1 dimension) of the 

domain wall D3 brane which wraps a 3-cycle in the Calabi-Yau and changes the 5F  flux. 

The condition for extremization of W  and preserving supersymmetry is 

                                                
2
 We remember that the RR (Ramond-Ramond) states in type I and type II superstring theories, are the bosonic closed 

string states whose left- and right-moving parts are fermionic. These include p-form potentials pC , with p taking all 

odd values in the IIA string and all even values in the IIB string.  
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                                                                       0=DW .    (3.28) 

 

The complex structure of the Calabi-Yau are field variables and we can look for extrema of W  with 

respect to their variation. We denote variation of Ω  in arbitrary direction of ( )XH 1,2  by Ωδ . The 

supersymmetry condition (3.28) is equivalent to 

 

                                                   ∫ ∫×
=∧Ω=∧Ω

2
035

SM M
FF δδ .    (3.28b) 

 

Since 3F  is also real, this implies that 3,00,3

3 HHF +∈ . Using the fact that there is only one element 

in 0,3H  represented by Ω , and using the reality condition for 
3F  we deduce that 

 

                                                                           ( )Ω= CF Re3 ,  

 

for some complex number C . In other words 
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where 

                                                                   ∫ Ω=
IA

IX ,    ∫ Ω=
I

B
IF ,    

 

hence 

                                     ( ) ( )[ ]∫ ∑ ∫∫×
Ω∧∧Ω+Ω=

2
ReRe

SM
I

I

B
I

A
II

CCW ωβα ,    (3.29b) 

 

and ( )I

I BA ,  are 3-cycles on M  that are dual to the 3-forms ( )I

I βα , . With the complex structure of 

the Calabi-Yau satisfying (3.29), supersymmetry is preserved with a suitable choice of metric in 2 

spacetime dimensions, i.e. the AdS2 metric. For such a complex structure, the superpotential W  is 

not zero, but it is proportional to  ∫ Ω∧Ω
M

.  In addition, the size of 2
S  is also determined by the 

supersymmetry condition, and we find that  

 

                                                      Area ( ) ∫ Ω∧Ω=
M

CCS π2 .    (3.30) 

 

This is exactly the content of the attractor mechanism. To case it in the standard description of the 

black hole attractor, we consider D3 branes wrapping Iq  times on IA  and Ip  times on IB . This 

gives rise to a supersymmetric black hole in four dimensions, whose BPS
3
 mass BPSM  is given by 

 

                                                                
212

WKM BPS

−= ,    (3.31) 

 

where the exponentiated Kahler potential K  is given by 

 

                                                
3  We remember that the BPS (Bogomolny-Prasad-Sommerfield) state is a state that is invariant under a non-trivial 

subalgebra of the full supersymmetry algebra. Such states always carry conserved charges, and the supersymmetry 

algebra determines the mass of the state exactly in terms of its charges.   
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                                             ( ) JI

IJI

I

I

I XXFXFXiK τIm2−=−= ,    (3.32) 

 

and W  is the superpotential (3.27), which can also be expressed as 

 

                                              ∫ ∫ −=Ω−Ω=
I

IA B
I

II

I

I

I FpXqpqW .    (3.33)  

 

Furthermore, the variation of the action 

 

                ( ) ( ) ( )( ) ( )( )∫ ∫ ∧Ω+Ω+Ω∧Ω−=−+−= 3
4

22,
4

FXWiXiWXXKS
ππ

,    (3.34) 

 

in arbitrary directions of ( )MH 3 , reproduces the attractor equations (3.29). 

Consider type IIB superstring compactified on the Calabi-Yau 3-fold M  times 12
SS × . There is a 

natural Euclidean solution to the classical equations of motion which develops from this spacelike 

section. It is the geometry Z/2

2 HSM ×× , where 2H  is the hyperbolic disk, i.e. the Euclideanized 

AdS2, with the metric 

                                                            2222 τρ ρ dedds += ,    (3.35) 

 

and the Z  quotient periodically identifies βττ +≈ . If we view ρ  as an Euclideanized time, the 

geometry Z/2

2 HSM ××  describes an Euclidean time evolution of type II string compactified on 
12

SSM ×× . This is how we were originally led to the metric (3.35). 

Let us consider a natural notion of a “mini-superspace” where we view ρ  as an Euclideanized time. 

Among relevant light modes are the complex moduli of the Calabi-Yau three-fold denoted by 

( )1,2,...,1 hiz i = , which are in vector multiplets in four dimensions. The gravity multiplet also 

produces some scalar fields upon compactification on 12
SS × . One is the radius R  of 2

S . Another 

scalar field is related to how the 1
S  is fibered over 2

S . The radius R  and the chemical potential ϕ  

naturally combine with the complex structure moduli z  of the Calabi-Yau to make a “large moduli 

space” with coordinates ( )1,2,...,1,0 hIX I = . More explicitly, choose any holomorphic section 

( )zX I

0
 over the complex structure moduli space and define 
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( ) ( )
IiI

X
XWXXK

XW
iX 0

2/1

000

0

,
Re2 








= ϕ .    (3.36) 

 

Upon compactification on 1
S , each gauge field becomes equivalent to a pair of massless scalar 

fields – one is the Wilson line of the gauge field along the 1
S , and the other is the dual magnetic 

potential around the 1
S , 

                                                        ∫=
1

S

II
Aφ ,   ∫=

1

~~

S
II Aφ ,    (3.37) 

 

where IA
~

 is the dual of IA  in four dimensions. One can also think of Iφ
~

 as the dual of the massless 

gauge field in three dimensions. By definition, they couple to the charges ( )I

I qp ,  of the black hole 

as  

                                                             
( )∑ +

I I
II

I pqi
e

φφ
~

.    (3.38) 
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Combining with IX  defined in (3.36), a set of four scalar fields ( )I

III XX φφ
~

,,,  for each I  gives 

bosonic components of supermultiplets. The dependence of the wave-function on ( )I

I φφ
~

,  is also 

simple. Since Iφ  is dual to IA
~

 and Iφ
~

 is dual to IA  in three dimensions, we have 
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IJ qF
d

d
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ρ

φ
,    ∫ ==

2

~

S

IIJIJ
pF

d

d
G

ρ

φ
,    (3.39) 

 

where IJG  is the metric in the kinetic term for the gauge fields, and ,II dAF =  II AdF
~~

= . These 

equations means that, when we quantize the theory along the ρ  direction, )
~

,( I

I φφ  are canonically 

conjugate to  ),( I

I pq . Therefore, the wave-function depends on ( )φφ
~

,  as 

 

                                             ( ) ( ) ( )XXeXX qp

pqi

qp
I I

II
I

,
~

,;, ,

~

, Ψ∑=Φ
+ φφ

φφ ,    (3.40) 

        

if it is an eigenstate of the fluxe quantum numbers ),( qp . This ( )φφ
~

,  dependence is also expected 

from the fact that ( )φφ
~

,  are electric and magnetic static potentials for the black hole charges (3.38). 

Now we consider the original Hartle-Hawking wave-function for a three-sphere 3
S . The saddle 

point computation of the wave-function on 3
S  can be viewed as filling it with a 4-dimensional ball 

with the 3
S  as its boundary, and this leads to the action ES  in the Euclidean ball, 

 

                                                                        
Λ

−≈
1

ES , 

 

where Λ  is the cosmological constant, and the mini-superspace wave-function behaves as 

 

                                                                   








Λ
−≈Ψ

1
exp .  

 

In the present context 0<Λ , and  ( ) entropySSArea ≈≈
Λ

− 21
,  so we may expect that 

 

                                           ( ) ( )∫ ≈Ψ entropyqp SXXXdXd exp,
2

, ,    (3.41) 

 

namely the wave-function is normalized by the exponential of the entropy. It is natural since the 

string partition function on the full space Z/2

2 HSM ××  should give the black hole entropy. Thus, 

at least semi-classically we expect (3.41) to hold. In view of our discussion following (2.11) a 

natural guess for the probability measure is 

 

                                          ( ) ( )





−−−≈ WWiKXXqp

24
exp,

2

,

ππ
ψ ,    (3.42) 

 

hence 

                                 ( ) ( )
entropySWWiKXdXd exp

24
exp ≈





−−−∫

ππ
,    (3.41b) 
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where ( )XW  depends on the flux determined by ( )qp,  as in (3.33). Indeed, the right-hand side is 

peaked at the attractor value and its value is given by the exponential of the entropy. To see this in 

terms of the physical variables, the complex structure moduli iz  and the radius R  of the 2
S , we 

can substitute (3.36) into (3.42) and find 

 

                                                    ( )[ ]RMR BPSqp −−≈Ψ 2
2

, exp π .    (3.43) 

 

Extremizing this with respect to the complex structure moduli iz  gives the attractor equation and 

extremizing with respect to R  gives 

 

                                                ( )
entropyBPSextremumqp SM exp

4
exp

2
2

, =







≈Ψ

π
,  

 

reproducing the expected result. The eq. (3.42) captures essential aspects  of the wave-function. 

This same wave function will give a semi-classical approximation to the topological string partition 

function, which we will argue gives the exact answer for the Hartle-Hawking wave function 

including all string loop corrections.  

The wave-function ( )XXqp ,,Ψ  should satisfy the Wheeler-De Witt equation. In mini-superspace 

the WDW equation corresponds to the quantization of the attractor flow for a black hole with 

charges Ip  and Iq . Consider a ten-dimensional Euclidean metric of the form, 

 

                                       222222222

CY

UUU
dsdedededs +Ω++= −−+ ρτρ ,    (3.44) 

 

where τ  is the Euclideanized time direction compactified on 1
S , ρ  is the radius coordinate, 2Ωd  

is the metric on a two-sphere of unit radius, and 2

CYds  is the metric on the internal Calabi-Yau three-

fold. Note that U
e

−  is the radius of the 2
S , and the 2AdS  geometry is realized when U  is constant. 

Since we are interested in BPS configurations and since the supercharges preserved by the 

background square to become the translation along the τ  direction, we assume that the scale factor 
U

e  and the complex moduli ( )1,2,...,1 hiz i =  of the Calabi-Yau three-fold are independent of τ . In 

this case, we have a one-dimensional system along the ρ direction described by the effective action,    
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where  
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We regard ρ  as the Euclidean time of the system, which flows from +∞=ρ  to ∞− . Since the 

effective action (3.45) can be written as 
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                                                        +













∂− BPSn
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j

Mge
d

zd
2

ρ
(total derivative),    (3.46b) 

 

the BPS equations are 

 

                                 ( )zzMe
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U ,1+−=
ρ

,    ( )zzMge
d
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jiU
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,2 ∂=
ρ

.    (3.47) 

 

The signs on the right-hand side of these equations are chosen so that they are compatible with the 

initial condition at ∞→ρ , which we regard as the infinite past in the Euclidean time. 

The equations (3.47) can be combined into a single equation on the large moduli space. To write 

down such an equation, we start with a holomorphic section ( )( )1,2

0 ,...,1,0 hIzX
I =  over the moduli 

space of complex structure. They make projective coordinates of the moduli space, and as such 

there is a freedom to rescale these coordinates. We define the exponentiated Kahler potential 0K  

and the superpotential 0W  for these coordinates as 

 

                                              JI

IJ XXK 000 Im2 τ−= ,    ( )000 XFpXqW I

II

I −= . 

 

We then combine the scale factor U
e  in the metric (3.44) and the complex moduli iz  into a single 

set of coordinates IX  defined by  
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= − .    (3.48) 

 

Note that the right-hand side of (3.48) is invariant under rescaling of I
X 0 . Moreover 

 

                                                  ( ) ( )2
2Im2, UJI

IJ eXXXXK
−=−= τ  

 

is the diameter squared of the 2
S . Thus, the large moduli space parametrized by IX  combines the 

complex moduli iz  and the radius of the 2
S . 

Using IX , the attractor flow equations (3.47) can be written as a single equation 
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Let us show that (3.49) is equivalent to (3.47). If we multiply 
JI

JX τIm  to both sides of (3.49), the 

left-hand side becomes 
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On the other hand, the right hand-side becomes 
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Combining them together, we obtain 

 

                                        BPS

U

BPSi

i

BPSi

i

BPS

MeM
d

zd
M

d

dz

Md

dU
+−=








∂−∂− 1

2

1

ρρρ
. 

 

The real part of this equation is precisely the first of (3.47): 
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The imaginary part gives 

 

                                                      BPSi

i

BPSi

i

M
d

zd
M

d

dz
∂=∂

ρρ
.    (3.51) 

 

Similarly multiplying IJ

J

i X τIm0∂  to both sides of (3.49) and using (3.50) and (3.51), we find 
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Moreover, (3.52) implies (3.51) since both sides of (3.51) are now equal to 
BPSjBPSi

jiU
MMge ∂∂− 2 . 

Therefore, (3.49) for IX  defined by (3.48) is equivalent to the standard BPS equations (3.47). 

In (3.49), a general BPS solution can be easily expressed. Taking the real and imaginary parts of 

this equation, one finds 
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A general solution to this is then 

 

                                               ,Re ρecpX III +=     ρedqF III +=Re , 

 

where ( )I

I dc ,  are integration constants specified by the initial condition at the infinite past ∞=ρ . 

Whatever initial condition one chooses there, IX  at the infinite future −∞→ρ  are fixed to be at 

the attractor value, 

                                                       ( ) II pX →Re ,    ( ) II qF →Re . 

 

It is useful to write the BPS equation (3.49) as 
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Now, we will use this equation to obtain the supersymmetric version of the WDW equation.  

The supersymmetric WDW equation is equivalent to the quantum version of the BPS equation 

(3.49) and its complex conjugate. To understand the quantum version of the BPS equation, we note 

that the metric in the X  space implied by the effective action (3.45) is almost given by ( )IJτIm  

since 

     ( ) 22Im RXX J

IJ

I −=τ ,  ( ) ( ) 0ImIm == J

jIJ

IJ

IJ

I

i XDXXXD ττ ,  ( )
ji

J

jIJ

I

i gRXDXD 22Im =τ ,                       

                                                                                                                                                      (3.54)  

where  

                                        ( )I

i

I

i XKKXD 1−∂= ,    ( )J

j

J

j
XKKXD 1−∂= , 

 

and Kg
jiji
ln∂∂= . We note that IJτIm  has one negative sign in the direction of ( )0,3H  whereas it 

gives the standard positive definite metric in the ( )1,2H  direction. Flipping the sign in the ( )0,3H  

direction gives what is denoted by IJΝIm  in the supergravity literature, which is the metric derived 

from the effective action (3.45). In the semi-classical approximation, flipping of the sign of the 

metric can be done by a suitable contour deformation in a functional integral. Thus, we will use 

IJτIm  as our metric and the corresponding quantization rule is 
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Given this rule, the quantum version of the BPS equation (3.49) is 
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and similarly for the complex conjugate equation 
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∂
qpIII
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ππ
.    (3.56) 

 

We denote the operator appearing in the constraint (3.55) IC  and the one in (3.56) by IC , so that in 

terms of the state qp,Ψ  the constraints are 0, =Ψ qpIC  and 0, =Ψ qpIC  respectively. Imposing 

both constraints is sufficient to determine the entire wave function. One finds in this way 
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,
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One can use the BPS constraints also in a way that leads to a description of the covariant 

supersymmetric gradient flow, also known as the attractor flow, in terms of a holomorphic wave 

function ( )Xqp,ψ . This wave function can be obtained by imposing first the constraint (3.55). This 

reduces ( )XX ,Ψ  essentially to a holomorphic function. The second condition (3.56) then fixes 

( )Xqp,ψ  to be given by 
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2
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π

ψ = .    (3.57) 
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We note, in particular, that ( ) 10,0 =Xψ . In the remaining part of this chapter we will provide 

evidence that this wave function coincides with the semi-classical approximation obtained from the 

topological string partition function, which we propose to be the exact Hartle-Hawking wave 

function including all string loop corrections.  

We abbreviate the operators appearing in the constraints (3.55) and (3.56) by IC  and IC  

respectively. We want to impose IC  on the ket state Ψ  and its conjugate |

JC  on the bra state Ψ . 

Notice that |

JC  differs from JC  in the sign of the derivative. The Dirac bracket is defined as 
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where the denominator should be read as the inverse matrix. Here we only wrote commutators that 

we know are non-vanishing. For the constraints one finds 
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while the commutators of the constraints with the coordinates give 
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Inserting this in to the definition for the Dirac bracket leads to the following commutation relations 

for IX  and JX  
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The Hilbert space for (3.58) can be represented by holomorphic wave-functions ( )IXψ  of IX , with 

the inner product defined by 

                                              ( ) ( )∫= XXeXdXd
K
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21 ψψψψ
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.    (3.59) 

 

The relation between the wave function in the real and complex polarization can be found at the 

semi-classical level by applying standard canonical transformation techniques. In classical 

mechanics canonical transformations can be described with the help of a generating function. In our 

case this generating function should depend on one of the real and one of the complex coordinates. 

Since we are interested in transforming wave functions ( )Xψ  to ( )χψ  the appropriate choice is to 

use a function ( )χ,XS  of the real coordinate Iχ  and the complex coordinate IX . It is determined 

by requiring that the following canonical transformation 
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After a little algebra one finds 
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This leads to the equations 

                                            ( ) ( )XFXF III −+= χη 2
2

1

2

1
,        III XX −= χ2 ,  

 

which are equivalent to (3.59b). The relation between the semi-classical wave function 

( ) ( )XgeX =ψ  and the corresponding wave function ( ) ( )χχψ fe=  in the real polarization is 
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χ

π
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edX ,    (3.61) 

 

where it is understood that the right-hand side is computed in the saddle point approximation. 

Now we want propose an exact such wave function which agrees in the semi-classical limit with the 

wave function discussed before. We will argue that the state with no flux can be identified with the 

topological string wave function: 

                                                                 topψψ =0,0 .  

 

That this relation could hold presupposes that topological string partition function also corresponds 

to a wave function associated to quantizing ( )MH 3 . Moreover this is in agreement with the fact 

that at least semi-classically the topological string partition function describes the Hartle-Hawking 

wave function in the real polarization. We argue that the semi-classical result 
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also holds with the expected factor 
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interpreted as an operator acting on the topological string Hilbert space. 

Semi-classically, the entropy of the BPS black hole obtained by wrapping D3 branes around cycles 

of M  is given by the area (3.30) of the horizon. The resulting quantum corrected entropy formula 

can be concisely expressed as 
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is the full topological string partition function. 

Moreover the quantum corrected attractor equations also take the simple form: 
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,pq
II F
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∂
−= .    (3.65) 

 

At the attractor point, the string perturbation expansion is an asymptotic expansion for large black 

hole charges. Since (3.63) takes the Legendre transformation from φ  to q , the number of states 

( )qp,Ω  of the black hole with finite charges I

I qp ,  is given by Laplace transformation of the 

topological string partition function 
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More precisely, the conjecture states that ( )qp,Ω  given by (3.66) is the Witten index for the 

quantum Hilbert space of the black hole. 

We note also that the expression (3.66) for the number of states can be written in a nice way as a 

Wigner function. Namely, by taking the contour of the φ  integral in (3.66) along the imaginary axis 

as πχφ i−= , one gets 
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ppedqp toptop

qi, ,    (3.67) 

 

where  

                                                          ( ) ( )χ
χψ topF

top e=     (3.68) 

 

is the exact topological string partition function. 

Now we can relate this result to the normalization of the Hartle-Hawking wave function.  

 

Let qp ,ψ  denote the state we obtain upon doing the path-integral on the right in a fixed flux sector. 

The above consideration leads to the statement that  

 

                                                                 ( ) qpqpqp ,,, ψψ=Ω . 

 

 

Now let us write the expression (3.66) in invariant form 
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top eqp ψψ ηχπ −=Ω , , 

 

where χ  and η  are to be regarded as operators, and the state ψ  is defined by the wave function 

( )χψ −∗ . Here, the state on the left is not simply the complex conjugate but it contains a minus sign 

due to the time reversal in the attractor flow equation. Next we note that the attractor relations 

(3.59b) imply that ( )XWpq I

II

I Re=− ηχ , and hence 
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It follows that if we identify 
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or in the wave function form as 

                                                           ( )








++−

=
II

top
I

I

i
pFq

I

qp e
φ

π
φ

φψ 2

1

, ,  

 

then    
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I

qpqp dqp φψφψψ     (3.69b) 

 

exactly as expected. Moreover the form of the wave function (3.69) is exactly consistent with the 

semi-classical reasoning which led to (3.62). The fact that the wave functions for both the IIA and 

IIB side would lead to the same state is clear once we recall that the internal part of the Calabi-Yau 

and thus the mini-superspace is identical for both cases where a D2 brane IIA instanton is playing 

the role of D3 brane of IIB. We find this a highly non-trivial evidence for our conjecture for the 

exact Hartle-Hawking wave function. 

The relation between the wave function ( )Xtopψ  and the exact topological string partition function 

( )χψ top  
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π
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top edX
,

    (3.70) 

 

is a semi-classical formula. It describes the loop corrections to the Hartle-Hawking wave function to 

all orders in perturbation theory. 

The partition function of topological string theory can be computed perturbatively around a given 

background by writing III xZX += , and treating the perturbation Ix  as coupling constants on the 

worldsheet. The coordinates I
x  used by the perturbative topological string are a linearization of the 

“curved” IX  coordinates. The relation with ( )ηχ ,  is 
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IJII xZF τη += Re ,    (3.71) 

 

where ( )ZFJIIJ 0∂∂=τ  is determined by the background. These are just the attractor equations 

(3.59b) linearized around II ZX = . In this way the topological string avoids the normal ordering 

problems but at the cost of a background dependence. The partition function ( )ZZxtop ,;ψ  is related 

to the background independent wave function ( )χψ top  via the Bargman transform 
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with       
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where indices are lowered with ( )ZIJτIm . This expression is a linearization of the generating 

function ( )χ,XS  defined in (3.60). The topological partition function ( )ZZx ,;ψ  thus gives in a 

certain sense a linearized description of the Hartle-Hawking wave function ( )Xtopψ . 

 
4.  p-Adic Models in the Hartle-Hawking proposal. [5] 

 

Ordinary and p-adic quantum mechanics can be unified in the form of adelic quantum mechanics  

 

                                                            ( ) ( ) ( )( )tUzWL ,,2 Α .    (4.1) 

 

( )Α2L  is the Hilbert-space on Α , ( )zW  is a unitary representation of the Heisenberg-Weyl group 

on ( )Α2L  and ( )tU  is a unitary representation of the evolution operator on ( )Α2L . The evolution 

operator ( )tU  is defined by 
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The eigenvalue problem for ( )tU  reads 
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where αβψ  are adelic eigenfunctions, ( ),...,...,, 2 pEEEE ∞=α  is the corresponding adelic energy, 

indices α  and β  denote energy levels and their degeneration. Any adelic eigenfunction has the 

form 
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where ( )RL2∈Ψ∞ , ( )
pp QL2∈Ψ  are ordinary and p-adic eigenfunctions, respectively. The Ω -

function, that is defined from the following formula 
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is an element of the Hilbert space ( )
pQL2 , and provides convergence of the infinite product (4.4). 

A suitable way to calculate p-adic propagator ( )',';'','' txtxpΚ  is to use Feynman’s path integral 

method, i.e. 
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For quadratic Lagrangians it has been evaluated in the same way for real and p-adic cases, and the 

following exact general expression is obtained: 
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With regard the Hartle-Hawking proposal for the wave function of the universe, the p-adic wave 

function is given by the integral 
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where, according to the adelic structure of N , pp ZG =  (i.e. 1≤
p

N ) for every or almost every p . 

 

Models of the de Sitter type 
 

Models of the de Sitter type are models with cosmological constant Λ  and without matter fields. 

We consider two minisuperspace models of this type, with D = 4 and  D = 3 space-time dimensions. 

The corresponding real Einstein-Hilbert action is 
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where R  is the scalar curvature of D-dimensional manifold M , Λ  is the cosmological constant, 

and K  is the trace of the extrinsic curvature ijK  on the boundary M∂ . The metric for this model is 

of the Robertson-Walker type 
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In this expression 2

1−ΩDd  denotes the metric on the unit ( )1−D -sphere, 

( )( )[ ]21/8 12 −−= −− DDVG DD πσ , where 1−D
V  is the volume of the unit ( )1−D -sphere. 

In the real D = 3 case, the model is related to the multiple-sphere configuration and wormhole 

solutions. v -adic classical action for this model is 
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Let us note that λ , ( )2GΛ=λ , denotes the rescaled cosmological constant Λ . Using (4.6) for the 

propagator of this model we have 
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The p-adic Hartle-Hawking wave function is 
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which after p-adic integration becomes 
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The de Sitter model in D = 4 space-time dimensions may be described by the metric  
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and the corresponding action    [ ] ∫ 







+−−=

''

' 2

2

1
42

1 t

t
v q

N

q
dtNqS λ

&
,    where  ( )πλ 9/2 GΛ= .  

For 1=N , the equation of motion  λ2=q&&   has solution   ( ) '
'''2

qtT
T

qq
ttq +








−

−
+= λλ ,  where 

( )'''' tqq = ,  ( )'' tqq =   and  ''' ttT −= .   Note that this classical solution resembles motion of a 

particle in a constant field and defines an algebraic manifold. The choice of metric in the form 

(4.14) yields quadratic v -adic classical action  
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According to (4.6), the corresponding propagator is  
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We obtain the p-adic Hartle-Hawking wave function by the integral 
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λ
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and as a result we get also ( )
p

qΩ  function with the condition l⋅⋅= 34λ ,  pZl ∈ . The above Ω -

functions allow adelic wave functions of the form (4.4) for both D = 3 and D = 4 cases. Since 
2−≤ p

p
λ  in  (4.13)  for all 2≠p , it means that λ  cannot be a rational number and consequently 

the above the de Sitter minisuperspace model in D = 3 space-time dimensions is not adelic one. 

However D = 4 case is adelic, because l⋅⋅= 34λ  is a rational number when pZZl ⊂∈ . 

 

5. p-Adic and Adelic wave functions of the Universe. [6] 

 
In the Vladimirov-Volovich formulation, p-adic quantum mechanics is a triple 
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                                                         ( ) ( ) ( )( )tUzWQL ppp ,,2 ,    (5.1) 

 

where ( )zWp  corresponds to ( )kxWp
ˆ,ˆ βα  defined in the following equation 

 

                                           ( ) ( ) ( )xkkxW vvvv
ˆˆ

2

1ˆ,ˆ αχβχαβχβα −−







= .    (5.1a) 

 

Adelic quantum mechanics is a natural generalization of the above formulation of ordinary and p-

adic quantum mechanics: ( ) ( ) ( )( )tUzWAL AA ,,2 . In complex-valued adelic analysis it is worth 

mentioning an additive character 

                                                          ( ) ( ) ( )∏∞∞=
p

ppA xxx χχχ ,    (5.2) 

 

a multiplicative character 

                                                       ∏∞∞=
p

s

p
p

ss

A
xxx  ,  Cs ∈ ,    (5.3) 

 

and elementary functions of the form 

 

                                                  ( ) ( ) ( ) ( )∏ ∏
∈ ∉

∞∞ Ω=
P P

P

p p
pppp xxxx ϕϕϕ ,    (5.4) 

 

where ( )∞∞ xϕ  is an infinitely differentiable function on R and ( ) 0→∞∞∞∞ xx
n
ϕ  as ∞→

∞∞x  for 

any { },...2,1,0∈n , ( )
pp xϕ  are some locally constant functions with compact support, and 

 

                               ( ) ,1=Ω
ppx   1≤

ppx ,        ( ) ,0=Ω
ppx    1>

ppx .    (5.5) 

 

All finite linear combinations of elementary functions (5.4) make the set ( )AL  of the Schwartz-

Bruhat adelic functions. The Fourier transform of ( ) ( )Ax L∈ϕ , which maps ( )AL  onto ( )AL , is 

 

                                                        ( ) ( ) ( )∫=
A

A dxxyxy χϕϕ~ ,    (5.6) 

 

where ( )xyAχ  is defined by (5.2) and ...32dxdxdxdx ∞=  is the Haar measure on A . A basis of 

( )( )PAL2  may be given by the corresponding orthonormal eigenfunctions in a spectral problem of 

the evolution operator ( )tU A , where At ∈ . Such eigenfunctions have the form 

 

                                       ( ) ( ) ( ) ( )∏ ∏
∈ ∉

∞∞∞ Ω=
P P

P

p p
ppppp xtxtxtx ,,, ψψψ ,    (5.7) 

 

where ( )RL2∈∞ψ  and ( )
pp QL2∈ψ  are eigenfunctions in ordinary and p-adic cases, respectively. 

( )
ppxΩ  is an element of ( )

pQL2 , defined by (5.5), which is invariant under transformation of an 

evolution operator ( )
pp tU  and provides convergence of the infinite product (5.7).   

p-Adic and adelic minisuperspace quantum cosmology is an application of p-adic and adelic 

quantum mechanics to the cosmological models, respectively. In the path integral approach to 
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standard quantum cosmology, the starting point is Feynman’s path integral method. The amplitude 

to go from one state with intrinsic metric ijh'  and matter configuration 'φ  on an initial hypersurface 

'Σ  to another state with metric ijh ''  and matter configuration ''φ  on a final hypersurface ''Σ  is 

given by the path integral 

 

                             ( ) [ ]( )∫ ΦΦ−=ΣΣ ∞∞∞∞∞ DDK µνµνχφφ ggShh ijij ,',',';'','',''     (5.8) 

 

over all four-geometries µνg  and matter configurations Φ , which interpolate between the initial 

and final configurations. In (5.8) [ ]Φ∞ ,µνgS  is an Einstein-Hilbert action for the gravitational and 

matter fields. To perform p-adic and adelic generalization we make first p-adic counterpart of the 

action using form-invariance under change of real to the p-adic number fields. Then we generalize 

(5.8) and introduce p-adic complex-valued cosmological amplitude 

 

                             ( ) [ ]( )∫ ΦΦ−=ΣΣ ppppijijp ggShh DDK µνµνχφφ ,',',';'','','' .    (5.9) 

 

The standard minisuperspace ground-state wave function in the Hartle-Hawking (no-boundary) 

proposal is defined by functional integration in the Euclidean version of 

 

                                          [ ] [ ]( )∫ ΦΦ−= ∞∞∞∞∞ DD µνµνχψ ggShij , ,    (5.10) 

 

over all compact four-geometries µνg  which induce ijh  at the compact three-manifold. This three-

manifold is the only boundary of the all four-manifolds. Extending Hartle-Hawking proposal to the 

p-adic minisuperspace, an adelic Hartle-Hawking wave function is the infinite product 

 

                                      ( ) [ ]( )∏ ∫ ΦΦ−=
v

vvvvA ggSq DD µνµνχψ , ,    (5.11)  

 

where path integration must be performed over both, Archimedean and non-Archimedean 

geometries. If an evaluation of the corresponding functional integrals for a minisuperspace model 

yields ( )αψ q  in the form (5.7), the such cosmological model is a Hartle-Hawking adelic one.  

Now we consider the approach consists in the following p-adic proposal for the Hartle-Hawking 

type of the wave function: 
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,
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pppp ggSq DD µνµνχψ ,    (5.12) 

 

where summation is over algebraic manifolds. 

The de Sitter minisuperspace model in D = 4 space-time dimensions is the Hartle-Hawking adelic 

one. Namely, according to the Hartle-Hawking proposal one has 
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where  
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is the kernel of the v -adic evolution operator. The functions ( )avλ  have the properties 

 

                      ( ) ,1=
vv aλ  ( ) ( ),2 aab vv λλ =  ( ) ( ) ( ) ( )( )baabbaba vvvv ++= λλλλ .    (5.15) 

 

Employing the p-adic Gauss integral 
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one can rewrite p-adic version of (5.13) in the form 
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Taking the region of integration to be 1≤
p

T  one obtains 
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An evaluation of the integral (5.18) yields 
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where b

aδ  is the Kronecker symbol. With regard ( )∞∞ qψ , the result depends on the contour of 

integration and has an exact solution 
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that can be rewritten also  
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where ( )xAi  is the Airy function. Thence, we obtain an adelic wave function for the de Sitter 

cosmological model in the form 
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The necessary condition that a system can be regarded as the adelic one is the existence of p-adic 

ground state ( )pqαΩ  ( )n,...,2,1=α  in the way 
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pp qdqqTq
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for all p  but a finite set P . For the case of de Sitter model one obtains 
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what is in a good agreement with the result (5.21) obtained by the Hartle-Hawking proposal.  

 

 

 

6. Number Theory: On Some Equations Concerning the Riemann Zeta Function.  

 

 

A. The Goldston-Montgomery Theorem  [7] 
 

In the chapter “Goldbach’s numbers in short intervals” of Languasco’s paper “The Goldbach’s 

conjecture”, is described the Goldston-Montgomery theorem. 

 

 

 

 

 

 

THEOREM 1 

 

Assume the Riemann hypothesis. We have the following implications: (1) If 10 21 ≤≤< BB  and 
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                                                                 21 AA
TXT ≤≤ . 

 

Now, for show this theorem, we must to obtain some preliminary results . 

 

Preliminaries Lemma. (Goldston-Montgomery) 

 

Lemma 1.   

 

We have ( ) 0≥yf     Ry ∈∀  and let      ( ) ( ) ( )∫
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Furthermore, fixed R, ( )Y'ε  is little if ( )yε  is uniformly small for   11 ++≤≤−+ bYyaY . 

 

Lemma 2. 
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with ( )k'ε  small for +→ 0k  if ( )Tε  is uniformly small for  
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Lemma 3. 

 

Let 0)( ≥tf   a continuous function defined on  [ )+∞,0  such that )2(log)( 2 +<< ttf . If  
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Lemma 4. 

 

Let    ( ) ( )
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Lemma 5. 
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For to show the Theorem 1, there are two parts. We go to prove (1). 

We define 
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Montgomery has proved that        ( ) ( ) ( )TOTXFTXJ 3log,2, += π      and thence the hypothesis 
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For the Lemma 2, we obtain that 
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For the Lemma 5 and the parity of the integrand, we have that  
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From the Plancherel identity, we have that 
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For the substitution   XY log= ,   yu =− π2   we obtain 
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Using the Lemma 1 with  ( ) yeyR 2=  if  2log0 ≤≤ y   and  ( ) 0=yR   otherwise, and putting 
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Substituting X  with jX −2 , summarizing on j, Kj ≤≤1 , and using the explicit formula for ( )xψ  

with XXZ 3log=  we obtain 
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Furthermore, we put [ ]XK loglog=  and we utilize, for the interval K
Xx

−≤≤ 21 , the estimate of  

Lemma 4 (placing KX −2  for X ). Thus, we obtain (1). 

Now, we prove (2). 

We fix an real number 1X . Making an integration for parts between 1X  and 1

3/2

12 log XXX =  we 

obtain, remembering that for hypothesis we have 

                                          ( )( ) ( )( )∫ ≈−−+
X

Xdxxxx
1

22 1
log

2

1
1

δ
δδψδψ , 

 



 44 

that                     ( )( ) ( )( ) ( )∫
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Utilizing the estimate, valid under the Riemann hypothesis 
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we obtain  analogously as before that 
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Now, summarizing (c) and (d) and multiplying the sum for 2
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Putting XX =1 ,  XY log= ,  yY
ex

+=  and using the explicit formula for ( )xψ  with XXZ 3log= , 

we obtain the equation (b).  

 

B. On the study of the behaviour of the argument of the Riemann function ( )sζ  with the 

condition that s  lies on the critical line its +=
2

1
, where t  is real.  [8] 

 

We introduce the known functions ( )tS , ( )tS1 . 

Definition 1.  For real t , not equal to the imaginary part of a zero of ( )sζ , 
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Definition 2.  For positive t  the function ( )tS1  is defined by 
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Definition 3.  The following function is known as Selberg’s function: 
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Furthermore, we have the following four theorems. 

 

Theorem A.  With α+= 82/27TH , 001.00 << α , ( ) 01 >≥ αTT , and 12/1 ≤≤ σ  we have 
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where ( )TN ,σ  is the number of zeros of the Riemann zeta function in the rectangle σ≥sRe , 

Ts ≤< Im0 , and the constant in the symbol O  depends only on α . 

 

Theorem B.  Suppose that α+= 82/27TH , 001.00 << α , ( ) 01 >≥ αTT , and k  is a natural number. 

Then the following asymptotic formula holds: 
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where the constant in the symbol O  depends only on α  and k . 

 

Theorem C.  Suppose that α+= 82/27TH , 001.00 << α , ( ) 01 >≥ αTT , and k  is a natural number. 

Then the following asymptotic formula holds: 
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where kc  is a positive constant depending only on k , and the constant in the symbol O  depends 

only on α  and k . 

 

Theorem D.  Let α+= 82/27TH , 001.00 << α . Then there are positive numbers ( )α11 TT =  and 

( )αAA =  such that for 1TT ≥  the function ( )tS  changes sign in the interval ( )HTT +,  no fewer 

than K  times, 
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Theorem 1.  If 2≥t  and 22 tx ≤≤  we have 
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Theorem 2.  If 2≥t  and 
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Now we describe the estimates of the mean deviations of ( )tS  and ( )tS1  from the corresponding 

original segments of the Dirichlet series. 

To prove the following Theorems 3 and 4, on which the proofs of Theorem B and C are based, we 

require the following Lemma 1 and 2. 

 

Lemma 1.  Suppose that 
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where the constant within the symbol O  depends only on α  and k . 

 

Proof.  Using the definition of tx,σ  we obtain 
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and summation in the last sum is taken over zeros of ( )sζ  of the form γβρ i+= . We present the 

terms in ( )νR  in a somewhat different form. Since 
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it follows that, by increasing somewhat the right-hand side of ( )νR , we obtain 
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Hence we arrive at an estimate for ( )νR  given by 
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It is easy to estimate the last integral. In fact, on changing the variable of integration to 
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From (6.5) and (6.6) we obtain 

 

                              ( ) ( ) ( ) ( ) ( ) νννν −−+−
<<+<< xHTH

x

T
TH

x

T
R loglog

log

log
log

log

log 1
2

, 

 

thence 

                         ( ) ( ) <<




















−+








−<< ∫









−−

−
1

2/1

2

1
1.0

1

log
2

1

log2

1

log

log
duTHTu

x
u

x

T
R

uα
νν

ν
ν      

                                 ( ) ( ) ( ) ( ) ννν −−+−
<<+<< xHTH

x

T
TH

x

T
loglog

log

log
log

log

log 1
2

.    (6.6b) 

 

The lemma follows from (6.4) and the last inequality. 
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where the constant in the symbol O  depends only on α  and k . 
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where the constant in the symbol O  depends only on α  and k . 

 

We base the proofs of Theorems 3 and 4 on Theorems 1 and 2 and Lemmas 1 and 2. We give only 

the proof of Theorem 3. In Theorem 1 we put k
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this theorem the sum 
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We transform each of the jR ,  ,7,6,5,2=j  to a uniform form (similar to the form of 
3R ). First of 
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We now consider 2R . It is easy to see that 
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From (6.7) and the estimates already obtained we obtain 
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From Lemma 2 we have 
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Applying Cauchy’s inequality to 4K , we obtain 
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By Lemma 1 the first integral in (6.9) is estimated by 
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The second integral in (6.9) is therefore estimated by 
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(we have again used Lemma 2, estimating the last integral with respect to t ). 

 

Therefore from (6.9)-(6.11) we obtain 
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which is was required to prove. 

 

 

 

C.  The P-N Model (Palumbo-Nardelli model) and the Ramanujan identities.  [9] 

 

Palumbo (2001) ha proposed a simple model of the birth and of the evolution of the Universe. 

Nardelli (2005) has compared this model with the theory of the strings, and translated it in terms of 

the latter obtaining: 
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A general relationship that links bosonic and fermionic strings acting in all natural systems. 

It is well-known that the series of Fibonacci’s numbers exhibits a fractal character, where the forms 

repeat their similarity starting from the reduction factor φ/1  = 0,618033 = 
2

15 −
 (Peitgen et al. 

1986). Such a factor appears also in the famous fractal Ramanujan identity (Hardy 1927): 
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Furthermore, we remember that π  arises also from the following identity (Ramanujan’s modular 

equations and approximations to π ): 
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From (6.14b), we have that 
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We remember that the “Ramanujan function” (an elliptic modular function that satisfies the 

“conformal symmetry”) has 24 “modes” that correspond to the physical vibrations of a bosonic 

string.  

The introduction of (6.13) and (6.14) in (6.12) provides: 
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which is the translation of (6.12) in the terms of the Theory of the Numbers, specifically the 

possible connection between the Ramanujan identity and the relationship concerning the Palumbo-

Nardelli model. 

 

7. On some possible mathematical connections. 
 

In this section we describe some possible mathematical connections between some equations of 

arguments above discussed and some equations concerning the Riemann zeta-function, the 

Ramanujan’s modular equations and the Palumbo-Nardelli model. 

 

First of all, now we describe the following possible mathematical connections.  

If we take the eq. (1.52) of section 1 and the eq. (2.51) of section 2, we note that 
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hence the possible mathematical connection. 

Furthermore, we note that the eqs. (3.70), (3.72) of section 3 and (5.10) of section 5, can be related, 

and we obtain the following connections 
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Also the eqs. (3.70), (3.72), of section 3, (4.17), of section 4, and (5.17) of section 5, can be 

related, and we obtain the following interesting connections 
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With regard the possible mathematical connections concerning the Ramanujan’s modular equations, 

we note that the eqs. (4.17) of section 4 and (5.17) of section 5, can be related with the eq. (6.14c) 

of section 6, obtaining the following connection 
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But, remember that the 24 “modes”  correspond to the physical vibrations of a bosonic string, it is 

possible to obtain the following interesting connection concerning the Palumbo-Nardelli model in 

the terms of Number Theory 
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Now we describe the possible mathematical connections with some equations concerning the 

Goldston-Montgomery theorem and the Riemann zeta-function. 

We take the eqs. (1.29) of section 1, (6.3), (6.9) and (6.11) of section 6, then we obtain the 

following connections 
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With the eqs. (1.50) of section 1, (6.3), (6.9) and (6.11) of section 6, we obtain the following 

connections 
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With the eqs. (1.53) of section 1, (6.3), (6.9) and (6.11) of section 6, we obtain the following 

connections 
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With the eqs. (2.51), (2.54) of section 2, (6.3), (6.9) and (6.11) of section 6, we obtain the following 

connections 
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Furthermore, with the eqs. (5.17), (5.20b) of section 5, (6.3), (6.9) and (6.11) of section 6, we 

obtain the following connections 
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                                                                       Conclusion 
 

Hence, in conclusion, also for some mathematical sectors concerning the Hartle-Hawking no 

boundary proposal concerning the Randall-Sundrum cosmological scenario, Hartle-Hawking wave-

function in the mini-superspace sector of physical superstring theory and p-adic Hartle-Hawking 

wave function, can be obtained interesting and new possible connections between them, String 

Theory and some sectors of Number Theory, principally the Ramanujan’s modular equations and 

some formulae related to the Riemann zeta function.  

Furthermore, also the fundamental relationship concerning the Palumbo-Nardelli model, can be 

related with some equations (see eq. (7.5)) regarding p-adic models in the Hartle-Hawking proposal 

and p-adic and adelic wave functions of the Universe.  
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