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Abstract: This paper presents a fuzzy multipass filter that effectively removes impulse noise in digital images.
The proposed fuzzy inference mechanism is partly based on the well-known Fuzzy Inference Ruled by Else-action
(FIRE) reasoning strategy, coupled with a newly introduced pseudo fuzzy rulebase that is represented by a set of
simple logical operations. The FIRE mechanism is adopted to perform strong noise cancellation when impulses are
detected, whereas the pseudo fuzzy rulebase conveniently simplifies the complicated computation and evaluation
of a complex-structured rulebase in fuzzy filtering. Additionally, the proposed filter uses two inter-related fuzzy
membership functions to increase its adaptiveness towards local noise statistics, which in turn has improved its
restoration performance. Simulation results demonstrate the effectiveness and feasibility of the proposed fuzzy
multipass filter.
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1 Introduction

Visual information from digital images plays a piv-
otal role in image processing as multimedia become
more widespread from day to day with the advance-
ment in computing. Unfortunately, digital images are
subjected to the contamination of noise during im-
age acquisition, transmission, storage, and/or retrieval
[1]. One of the common types of noise is the impulse
noise. This kind of noise affects many image process-
ing applications and has been widely addressed in lit-
erature. The main problem of impulse noise is the al-
teration of pixel gray values so that they no longer ex-
hibit a luminance compatibility with the local neigh-
boring pixels. Such changes in pixels intensities sig-
nificantly degrade the visual quality of the digital im-
age.

In the last few years, impulse noise filters have
been developed using various approaches, leading to a
varied collection of methods in the literature [2]−[7].
Generally, a good impulse noise filter is characterized
by its capability to distinguish between useful infor-
mation (e.g., image details, edges, and textures) and
the unwanted noise in order to preserve the fidelity
of image data [8]. In other words, an effective fil-
ter should possess filtering strategy that could mimic
human decision-making to accurately classify noise
and noise-free pixels. Such a filter can be designed
by applying a branch of artificial intelligence theories,

called the fuzzy logic, to its filtering mechanism. Over
the last decade, fuzzy logic has successfully entered
many application domains in science and engineering,
projecting itself as a competitive alternative over clas-
sical methods, particularly in the field of image noise
reduction [9]−[12].

In this paper, we propose a novel filter for im-
pulse noise removal, called the fuzzy multipass (FM)
filter, that is capable to perform detail-preserving im-
pulse noise smoothing. In the next section, we pro-
vide a detailed discussion on the fuzzy multipass fil-
ter. The characteristics of the two inter-related fuzzy
sets adopted are explained in detail, and the concept
of pseudo fuzzy rulebase is introduced. Moreover,
an appropriate correction estimate is also formulated
by evaluating the pseudo fuzzy rulebase. Simulation
results by the proposed filter are presented and com-
pared to those of some existing filters in Section 3.
Finally, we conclude this work in Section 4.

2 The Fuzzy Multipass Filter

The FM filter performs impulse denoising by raster-
scanning the noisy image with a3× 3 search window
as shown in Fig. 1. Each element in the search window
is treated as a fuzzy input variable that is defined by:

ŵx = wx − wc : x = 1, 2, 3, . . . , 8, (1)
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Figure 1: The3 × 3 search window.

wherewc is the center reference pixel in the search
window, wx is the neighboring pixels ofwc, ŵx is
the relative gradient value betweenwx andwc, andx
is the index number for the neighboring pixels in the
3 × 3 search window. For a grayscale digital image
with L gray levels, this search window will be applied
recursively on the noisy image.

2.1 The Choice of Fuzzy Sets

The fuzzy input variableswx andŵx are used in the
fuzzification process, whereby the first fuzzy setaver-
ageµA(wx) takes on the neighboring pixelswx. This
trapezoid-shaped fuzzy set is controlled by two prede-
fined parametersa1 anda2 [10], as shown in Fig. 2. It
is mathematically defined by (2) to (7):

µA(wx) =




wx

a1−a2
+ C1 : 0.0 ≤ wx < W1,

1.0 : W1 ≤ wx < W2,
−wx

a1−a2
+ C2 : W2 ≤ wx < Wmax,

0.0 : otherwise,

(2)

where:

Wmax = L− 1, (3)

W1 = 0.5Wmax − a2, (4)

W2 = 0.5Wmax + a2, (5)

C1 =
a1 − 0.5Wmax

a1 − a2
, (6)

C2 =
a1 + 0.5Wmax

a1 − a2
. (7)

The fuzzy setaverageis used to deal with long-
tailed impulse noise for pixel intensity in the medium
range (i.e., 20 to 150). Any pixel in this range that is
affected by impulsive intensities will be smoothed by
this fuzzy set.

The ability to suppress impulses are further im-
proved by the inclusion of a second fuzzy sethigh

Figure 2: The fuzzy setaverage.

Figure 3: The fuzzy sethigh.

µH(|ŵx|). This fuzzy set is shown in Fig. 3, and it
is related to the first fuzzy setaveragethrough the re-
lation

a = b× µA(wx), (8)

wherea andb define the shape of the second fuzzy set
high.

The fuzzy sethigh helps to exhibit good charac-
terization in fine image details preservation. Implic-
itly, it is controlled by the first fuzzy setaverageac-
cording to (8). Mathematically, the fuzzy sethigh is
defined by

µH(|ŵx|) =



0.0 : 0.0 ≤ |ŵx| < a,
b(|ŵx|−a)

Wmax(b−a) : a ≤ |ŵx| < b,
|ŵx|

Wmax

: b ≤ |ŵx| ≤Wmax.

(9)

Interpreting (9), the center reference pixelwc is
retained if its relative gradient̂wx falls within the
range0 ≤ |ŵx| < a because the intensity differ-
ence betweenwx andwc is small. Such action avoids
disturbing fine details in the image. In an attempt to
further cultivate the detail-preserving characteristic of
the FM filter, the parametera is adaptively varied ac-
cording to the local image contents. Then, within the
rangeb ≤ |ŵx| ≤ Wmax, a higher membership value
is assigned to neighboring pixel when the relative gra-
dientŵx is large, which signals the likely presence of
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impulsive pixel in the neighborhood and, therefore, a
strong cancellation is required.

Note that the input variable for the fuzzy sethigh
is the absolute of the relative gradient|ŵx|. For an
image with intensities that fall in the dynamic range
[0, L−1], ŵx varies within the range[−L+1, L−1].
However, only the absolute value is considered in the
fuzzification process as the proposed fuzzy rulebase
structure is capable of handling the symmetrical re-
quirement to address positive and negative impulses.
Here, positive impulse appears when the center ref-
erence pixelwc is brighter than its neighboring pixels
wx. On the other hand, a negative impulse is produced
whenwc is darker thanwx.

2.2 The Pseudo Fuzzy IF-THEN-ELSE
Rulebase Structure

Based on the original idea introduced by Zadeh [13], a
new approach to capture human knowledge with fuzzy
rules is outlined by Negnevitsky in [14]. The most
basic form of fuzzy rule is theIF-THEN conditional
statements:

IF antecedent clauseis . . .

THEN consequent clauseis . . .

where the antecedent clause is the condition to be
evaluated, and the consequent clause is the action
taken if the condition of the antecedent clause is met.
In many cases, as is shown in [9]−[11], the flexibility
provided by fuzzy reasoning can be expanded by in-
corporating theELSE statement into the fuzzy rule in
the form

IF input is . . .

THEN outputis . . .

ELSE outputis . . .

where the consequent clause of theELSE statement
is an additional action that caters for a more robust
outcome in the decision-making process.

In this paper, the rulebase is constructed as a
set of symmetrical fuzzy rules. It consists of a
series of rules that is capable in handling positive
and negative impulses. These fuzzy rules are repre-
sented by a set of pseudo fuzzy rulebase, which is a
newly introduced rulebase structure using logical op-
erations. The importance of the pseudo fuzzy rulebase
is largely in simplifying the tedious process in evalu-
ating complex-structured fuzzy rulebase, which is a
common problem for many fuzzy filters particularly
the class of FIRE filters [9]−[11]. In this framework,
instead of using the conventionalIF-THEN-ELSE

Figure 4: The3 × 3 binary windows representing the
pseudo fuzzy rulebase.

fuzzy structure to “fire” a rule, logical (Boolean) op-
erations are used to keep track on the execution of any
rule.1 These pseudo rules are indexed by the setz
(z = 1, 2, 3, . . . , 12), in which eachz represents a pat-
tern in the3 × 3 binary window, as shown in Fig. 4.

The patterns represented by binary 1’s in thez bi-
nary windows are determined heuristically, and each
“1” represents an antecedent clause for evaluating the
noisy image. These patterns take into consideration
the possibilies of textural orientations that might con-
tain in a3× 3 search window. The presence of impul-
sive pixel will interrupt the patterns, and thus, it can
be detected and removed. Moving forward, the logi-
cal operations that evaluate the pseudo fuzzy rulebase
is formulated.

2.3 The Fuzzy Inference Mechanism

Once the fuzzification process with the aid of the
pseudo fuzzy rulebase in Fig. 4 is completed, the
fuzzy inference mechanism will determine an esti-
mate to correct the noise pixel. The decision whether
the center reference pixel requires a correction fully

1The word “pseudo” is used to describe the fact that fuzzy
rules are represented and evaluated by logical operations, which
involve either logic “0” or “1”, unlike the conventional fuzzi-
fication process that produces membership values in the range
[0.0, 1.0] for fuzzy reasoning.
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Figure 5: The general representation of thezth fuzzy
rule.

depends on the fuzzy inference mechanism to be dis-
cussed here.

The fuzzy rules represented by thez binary win-
dows is dictated by the logical operation

ψ(t) = ψ(t− 1) · ρ(x), (10)

wheret is the number of times (10) is executed in the
zth window (i.e.,t ≤ 8). Then, the polarity function
ρ(x) is defined as

ρ(x) =

{
0 : ŵx < 0,
1 : ŵx ≥ 0.

(11)

In (10),ψ(t) is used to detect positive or negative im-
pulses. If the relative gradient is positive,ρ(x) takes
on logic “1” to indicate a positive impulse is present.
Otherwise,ρ(x) is assigned with logic “0” to indicate
the presence of a negative impulse. Before we venture
forth, the pseudo fuzzy rulebase in Fig. 4 is general-
ized with a general window as shown in Fig. 5. The
central bit is the binary variablebc while its neighbor-
ing bits are represented bybx. Again, the neighboring
bits of bc are indexed byx.

Initially, ψ(0) is initialized as logic “1”. During
the filtering phase,ψ(t) is applied repeatedly ifbx = 1
in thezth window. It is worth noting thatψ(t) is not
executed whenbx = 0. Clearly, bx is used to repre-
sent the rules in the pseudo fuzzy rulebase, and given
the absolute relative gradient|ŵx|, the final value of
ψ(t) is solely determined by the variableρ(x). After
eachzth window is evaluated, the final value ofψ(t) is
used to decide on the appropriateness for a correction
estimate.

The correction estimatêc is adopted from the one
used in FIRE filter due to its elegant simplicity. It is
defined by:

ĉ = Wmax · (c+ − c−), (12)

where

c+ = max{min{µH(|ŵx|) : ψ(t) = 1}z = 1, . . . , 12}

and

c+ = max{min{µH(|ŵx|) : ψ(t) = 0}z = 1, . . . , 12}.

Althoughψ(t) in (10) is seen to favor thec− term,
but this is not the case because the selection of the
fuzzy sets would automatically handle impulsive pix-
els appropriately. Finally, the correction estimateĉ is
added to the center reference pixelwc to yield the final
output

w̃c = wc + ĉ. (13)

When none of the pseudo fuzzy rules is activated, both
c+ andc− will be nil and, in this case, the center ref-
erence pixelwc is retained.

3 Experimental Results

In this section, simulation results by the proposed FM
filter are presented. They are compared to the simu-
lation results by some state-of-the-art impulse noise
filters, namely, the histogram-based efficient detail-
preserving (HEDP) [3], efficient detail-preserving al-
gorithm (EDPA) [5], FIRE [10], and the adaptive
fuzzy switching (AFS) [2] filters. Note that these fil-
ters, like the FM filter, employ fuzzy techniques in
their filtering mechanisms, and thus, they belong to
the class of fuzzy filters.

Here, two widely used test images (“Jet” and
“Pentagon”) of size512× 512 are artificially inflicted
with 10% to 50% impulse (salt-and-pepper) noise in
10% noise step. These test images are denoised by the
abovementioned filters and their restored images are
evaluated, both numerically and visually. The peak
signal-to-noise ratio (PSNR) image quality metric is
used to quantitatively compare the restoration results.
Visual inspection on the filtered images is also per-
formed to subjectively evaluate the quality of the fil-
tered images. Then, the choice for parameters selec-
tion is reported at the end of this section.

Simulation results using the “Jet” test image cor-
rupted with 20% of impulse noise are shown in Fig. 6.
The “Jet” test image is chosen because of the simi-
larity between the object and background, which are
difficult to distinguish except by their salient features.
The object is mainly identified by its textures which
are separated by sharp edges, whereas the background
is characterized by the nonuniform surfaces. These
characteristics make the “Jet” test image suitable for
testing the denoising power, as well as the detail-
preserving ability, of the filters. At 20% noise level,
the HEDP filter fails to perform as most of the im-
pulse noise still appear in its filtered image. The
EDPA filter leaves behind white dots scattered across
the sky regions with bright intensities. The FIRE and
AFS filters both able to remove impulsive pixels, but
at the cost of damaging minute details, such as the
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(a) (b) 11.9 dB (c) 14.3 dB (d) 27.8 dB

(e) 30.5 dB (f) 32.7 dB (g) 34.7 dB (h) 35.4 dB

Figure 6: (a) A portion of the original “Jet” image. (b)
“Jet” image corrupted with 20% impulse noise. The
filtered images using the (c) HEDP [3], (d) EDPA [5],
(e) FIRE [10], and (f) AFS [2]. The restored images
using the proposed filter with (g) one, and (h) two it-
erations.

(a) (b) 9.8 dB (c) 10.6 dB (d) 21.3 dB

(e) 26.8 dB (f) 27.0 dB (g) 28.1 dB (h) 33.9 dB

Figure 7: (a) A zoomed segment of the original “Pen-
tagon” image. (b) “Pentagon” image corrupted with
40% impulse noise. The filtered images using the (c)
HEDP [3], (d) EDPA [5], (e) FIRE [10], and (f) AFS
[2]. The restored images using the proposed filter with
(g) one, and (h) two iterations.

graphemic letters on the plane. Conversely, the pro-
posed FM filter outperforms other filters by produc-
ing the highest PSNR values, at the same time, it sup-
presses impulse noise and preserves fine image de-
tails.

Table 1: The PSNR (dB) of Iteratively Restored “Jet”
Image by the Fuzzy Multipass Filter.

Impulse Noisy After 1 After 2
Noise Density PSNR iteration iterations

10% 14.9 39.1 39.5
20% 11.9 34.7 35.4
30% 10.2 31.3 32.5
40% 8.9 28.0 29.7
50% 7.9 25.3 26.6

Table 2: The PSNR (dB) of Iteratively Restored “Pen-
tagon” Image by the Fuzzy Multipass Filter.

Impulse Noisy After 1 After 2
Noise Density PSNR iteration iterations

10% 15.8 37.5 37.6
20% 12.8 33.6 33.9
30% 11.1 30.9 31.4
40% 9.8 28.1 33.9
50% 8.8 25.3 26.6

The “Pentagon” test image corrupted with 40%
of impulse noise is shown in Fig. 7. It is a high alti-
tude aerial image, representing images often obtained
from applications such as remote sensing or satellite
images. It is made up of sharp corners, edges, and
abundant of small details. The simulation results show
that the HEDP and EDPA filters fail to remove noise,
with the latter having a better performance than the
former. The FIRE and AFS filters leave behind some
black dots disguised as image details in the filtered
images. Again, the proposed FM filter yields the high-
est PSNR, and its performance is further improved by
performing one additional iteration without jeopardiz-
ing the content of the image data.

The overall filtering results by the FM filter, us-
ing one and two iterations, are numerically summa-
rized in Tables 1 and 2 for for the “Jet” and “Pen-
tagon” test images, respectively. From Tables 1 and
2, it is found that images corrupted with higher den-
sity of impulse noise (i.e., 30 to 50%) would require
an additional iteration to further improve its denois-
ing performance. The second iteration would remove
any remaining noise unfiltered during the first itera-
tion, while keeping image details, edges, and textures
undisturbed. For lower noise densities (i.e., 5 to 25%),
additional iterations are not required as one iteration is
sufficient to remove most of the impulses.

We now comment on the computational complex-
ity of the proposed FM filter based on its runtime, and
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later compare it with the runtime of the HEDP, EDPA,
FIRE, and AFS filters. All the algorithms are coded
in C++ using a Dell laptop with 1.66 GHz Intel Cen-
trino Duo processor. The HEDP and EDPA filters con-
sume about 0.12 s and 0.14 s, respectively, to denoise
a 512 × 512 image. It takes about 0.25 s for the AFS
filter to process images of the same dimension, while
the FIRE filter has the slowest runtime with approxi-
mately 0.60 s. On the other hand, the proposed FM fil-
ter only takes about 0.05 s to denoise an image of size
512 × 512. The simplicity for fuzzy rulebase evalua-
tion and generation speeds up the runtime of the FM
filter, and this underscores the importance of the pro-
posed pseudo fuzzy rulebase. Furthermore, the pro-
posed method does not require the computation or es-
timation of complex parameters. These significantly
improve the computing time of the FM filter.

Finally, the optimization of the fuzzy sets parame-
ters is performed using the “hill-climbing” approach.
The test image “Jet” corrupted with 10% of impulse
noise is used for tuning and optimization purposes.
Initially, the parametersa1 andb are set to 127, while
a2 is made varying from 0 to 255. Here, the value of
a2 with the highest PSNR is chosen. Then, by keep-
ing a1 anda2 constant,b is made varying from 0 to
255 and the value corresponds to the highest PSNR
value is chosen. The process is repeated fora1. Using
this procedure, it is found thata1 = 127, a2 = 117,
and b = 143 could yield optimal restoration results
even when the FM filter is applied to images other
than the “Jet” test image. Once these parameters are
optimized, the FM filter is applicable without needing
to tune its parameters.

4 Conclusion

This paper presents a novel fuzzy multipass filter for
the removal of impulse noise. It is capable of sup-
pressing high density of impulse noise, at the same
time, preserving fine details, edges, and textures in
the underlying image. A new pseudo fuzzy inference
mechanism that utilizes simple logical operations to
evaluate and represent complex fuzzy rulebase is also
proposed. Simulation results, which are comparable
to the state-of-the-art fuzzy filters, show that the pro-
posed filter has a relatively fast runtime. This makes
the proposed algorithm practically useful for real ap-
plications.
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