
i

PARALLEL QUICK-SKIP SEARCH HYBRID

ALGORITHM FOR THE EXACT STRING

MATCHING PROBLEM

By

MUSTAFA ABDULSAHIB NASER

Thesis submitted in partial fulfillment of the
requirements for the degree of

Master of Science

January 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository@USM

https://core.ac.uk/display/11947801?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

DECLARATION

Name: …………...Mustafa Abdulsahib Naser ………………………………………..
Matric No: ………PCOM0066/08……….………………………………………........
Faculty: ………....School of Computer Science ……………………………..………..
Thesis Title: …….Parallel Quick-Skip Search Hybrid Algorithm for the Exact String

Matching Problem

I hereby declare that this thesis in I have submitted to School of Computer Science

on June 21th January 2010 is my own work. I have stated all references used for the

completion of my thesis.

I agree to prepare electronic copies of the said thesis to the external examiner or

internal examiner for the determination of amount of words used or to check on

plagiarism should a request be made.

I make this declaration with the believe that what is stated in this declaration is true

and the thesis as forwarded is free from plagiarism as provided under Rule 6 of the

Universities and University Colleges (Amendment) Act 2008, University Science

Malaysia Rules (Student Discipline) 1999.

I conscientiously believe and agree that the University can take disciplinary actions

against me under Rule 48 of the Act should my thesis be found to be the work or

ideas of other persons.

Students Signature: ... Date: 21th January 2010

(Mustafa Abdulsahib Naser)

Acknowledgment of receipt by: Date:

iii

 بسم الله الرحمن الرحيم

ا مَا ينَفَعُ النَّاسَ فيَمَْكُثُ فيِ بدَُ فيَذَْهَبُ جُفَاء وَأمََّ ا الزَّ فأََمَّ
 الأَرْضِ كَذَلِكَ يضرَِْبُ الّلهُ الأَمْثاَلَ

 صدق الله العظيم
 ١٧اية سورة الرعد

DEDICATION

This thesis is dedicated to my wonderful parents, who have raised me to be the

person I am today. You have been with me every step of the way, through good times

and bad. Thank you for all the unconditional love, guidance, and support that you

have always given me, helping me to succeed and instilling in me the confidence that

I am capable of doing anything I put my mind to. Thank you for everything. I love

you!

iv

ACKNOWLEDGEMENTS

Firstly, All Praise is to Allah for giving me the courage and inspiration to finish this

thesis. I am heartily thankful to my supervisor, Associate Professor Dr. Nur’Aini

Abdul Rashid, whose encouragement, guidance and support from the initial to the

final level that enabled me to develop an understanding of the subject in hand.

I owe my deepest gratitude to my friend and colleague Mohammed F. Eessa for his

continuous encouragement and support, and to my friend Muhammed Zuhear

Almulali for his guidance in correcting the language of this thesis.

I am indebted to my friends Bisam, Zaid, Talib, Mustafa, Hala and Khansaa for their

support and encouragement. Without you this would not have happened.

This thesis would not have been possible unless for the support of Universiti Sains

Malaysia (USM). I am grateful and much thankful.

Last but not least, my dearest family. Although you are not near but your

unconditional love, support and prayers made me reach this important point in my

life. Thank you.

v

TABLE OF CONTENTS

Page

DECLARATION...ii

DEDICATION..iii

ACKNOWLEDGEMENTS..iv

TABLE OF CONTENTS...v

LIST OF TABLES...x

LIST OF FIGURES..xi

LIST OF EQUATIONS..xiii

LIST OF ABBREVIATIONS...xiv

ABSTRAK..xvi

ABSTRACT...xvii

CHAPTER 1: INTRODUCTION

1.1 Introduction .. 1

1.2 Definitions .. 2

1.3 Motivation .. 3

1.4 Problem Statement ... 4

1.5 Objectives .. 5

1.6 Contributions .. 5

1.7 Justification .. 5

1.8 Research Methodology .. 6

1.8.1 Research Procedure ... 6

1.8.2 Theoretical Framework ... 8

1.8.3 Research Design .. 8

vi

1.9 Thesis Organization ... 9

CHAPTER 2: LITERATURE REVIEW

2.1 Introduction .. 10

2.2 Approximate String Matching ... 11

2.2.1 Insertion ... 12

2.2.2 Substitutions .. 12

2.2.3 Deletion ... 13

2.3 Exact String Matching ... 14

2.3.1 Classical Based Algorithms .. 16

(A) Brute Force Algorithm ... 16

(B) Search with an Automata Algorithm .. 16

(C) Knuth-Morris-Pratt Algorithm ... 17

(D) Boyer-Moore Algorithm .. 17

(E) Skip Search Algorithm ... 18

2.3.2 Suffix Automata Based Algorithms .. 19

(A) Reverse Factor Algorithm .. 19

(B) Forward DAWG Matching Algorithm ... 20

2.3.3 Bit-parallelism Based Algorithms ... 20

(A) Shift-Or Algorithm ... 21

(B) Backward Nondeterministic DAWG Matching Algorithm 21

2.3.4 Hashing Based Algorithms .. 22

(A) Karp Rabin Algorithm ... 22

2.4 Hybrid String Matching Algorithms .. 26

2.5 Parallelism .. 32

vii

2.5.1 Parallel Programming Models ... 33

(A) Distributed Memory Model ... 33

(B) Shared Memory Model ... 35

2.5.2 Parallel String Matching Algorithms .. 36

2.6 Conclusion ... 38

CHAPTER 3: THE QUICK-SKIP SEARCH HYBRID ALGORITHM

3.1 Introduction .. 40

3.2 Sequential Algorithms Analysis .. 40

3.2.1 Quick Search Algorithm .. 41

(A) Pre-processing Phase .. 41

(B) Searching Phase .. 42

3.2.2 Skip Search Algorithm .. 44

(A) Pre-processing Phase .. 44

(B) Searching Phase .. 45

3.3 Quick-Skip Search Hybrid Algorithm ... 46

(A) Pre-processing Phase ... 47

(B) Searching Phase ... 48

3.4 Quick-Skip Search Hybrid Algorithm Tracing Example 55

3.5 Time Complexity Analysis .. 59

3.5.1 Worst Case Analysis ... 59

3.5.2 Best Case Analysis .. 60

3.6 Parallelizing the Quick-Skip Search Hybrid Algorithm 62

3.7 Parallel Performance .. 65

3.7.1 Execution Time ... 65

viii

3.7.2 Speedup ... 66

3.7.3 Efficiency .. 66

3.7.4 Percentage of Performance Gain ... 67

3.7.5 Overhead ... 67

3.8 Conclusion ... 68

CHAPTER 4: IMPLEMENTATION AND EVALUATION

4.1 Introduction .. 69

4.2 Empirical Design ... 69

4.2.1 Experimental Database .. 69

(A) DNA Sequence ... 70

(B) Protein Sequence .. 70

(C) English Text ... 70

4.2.2 Program Execution .. 71

4.2.3 Performance and Evaluation ... 71

 4.2.4 Implementation Environment .. 71

4.3 Sequential Algorithms Evaluation ... 72

4.3.1 Evaluating the Number of Character Comparisons 72

(A) DNA Sequence Data Type ... 72

(B) Protein Sequence Data Type .. 74

(C) English Text Data Type .. 75

4.3.2 Analyzing Number of Character Comparisons ... 77

4.3.3 Evaluating the Number of Attempts .. 78

(A) DNA Sequence Data Type ... 78

(B) Protein Sequence Data Type .. 79

ix

(C) English Text Data Type .. 81

4.3.4 Analyzing Number of Attempts .. 82

4.4 Parallel Hybrid Algorithm Evaluation ... 83

4.4.1 Intel VTune™ Performance Analyzer .. 85

4.4.2 Evaluating the Parallel Performance ... 87

(A) DNA Sequence Data Type ... 87

(B) Protein Sequence Data Type .. 88

(C) English Text Data Type .. 89

4.4.3 Multi-Threading Program Performance Analysis ... 91

4.5 Conclusion ... 92

CHAPTER 5: CONCLUSION AND FUTURE WORK

5.1 Introduction .. 94

5.2 Conclusion ... 94

5.3 Future Work ... 95

REFERENCES..96

APPENDIX...101

x

LIST OF TABLES

Page

Table 2.1 Exact String Matching Algorithms Comparison 23

Table 2.2 Hybrid String Matching Algorithms Comparison 31

Table 3.1 Comparisons of Hybrid Algorithms Complexity 61

Table 4.1 Parallel Performance Using Different Pattern Lengths 84

Table 4.2 Parallel Performance Using DNA Sequence Data Type 87

Table 4.3 Parallel Performance Using Protein Sequence Data Type 88

Table 4.4 Parallel Performance Using English Text Data Type 89

xi

LIST OF FIGURES

 Page

Figure 1.1 Research Procedure 7

Figure 2.1 Insertion Operation 12

Figure 2.2 Substitution Operation 12

Figure 2.3 Deletion Operation 13

Figure 2.4 Example of Edit Distance Operation 13

Figure 2.5 An Example of Exact String Matching Operation 14

Figure 2.6 Exact String Matching Categories 15

Figure 2.7 The Character Comparison Arrangement 29

Figure 2.8 MPI Execution Model 34

Figure 2.9 OpenMP Execution Model 36

Figure 3.1 Quick Search bad Character Table Creation 42

Figure 3.2 Shifting the Pattern to Align (X) 43

Figure 3.3 Shifting the Pattern to the Right Side of (X) 43

Figure 3.4 Skip Search Buckets Creation 45

Figure 3.5 Search Operation for the Skip Search Algorithm 46

Figure 3.6 Hybrid Algorithm Pre-processing Phase 48

Figure 3.7 Skip Search Shift in the Hybrid Algorithm 51

Figure 3.8 Quick Search Shift in the Hybrid Algorithm 53

Figure 3.9 Comparison between the Hybrid and Original Algorithms 54

Figure 3.10 Worst Case Example 60

Figure 3.11 Best Case Example 61

Figure 3.12 Parallel Technique for the Quick-Skip Search Hybrid Algorithm 64

Figure 4.1 Number of Characters Comparison in DNA Sequence Data 73

Figure 4.2 Number of Characters Comparison in Protein Sequence Data 75

xii

Figure 4.3 Number of Characters Comparison in English Text Data 76

Figure 4.4 Number of Attempts in DNA Sequence Data 79

Figure 4.5 Number of Attempts in Protein Sequence Data 80

Figure 4.6 Number of Attempts in English Text Data 82

Figure 4.7 Execution Time of Using Different Pattern Lengths 84

Figure 4.8 Intel VTune Sampling Screenshot 85

Figure 4.9 Intel VTune Call Graph Screenshot 86

Figure 4.10 Execution Time Using DNA Sequence Data Type 88

Figure 4.11 Execution Time Using Protein Sequence Data Type 89

Figure 4.12 Execution Time Using English Text Data Type 90

Figure 4.13 Intel Thread Checker Screenshot 91

Figure 4.14 Intel Thread Profile Screenshot 92

xiii

LIST OF EQUATIONS

Page

Equation 3.1 Computation of Speedup 66

Equation 3.2 Computation of Efficiency 66

Equation 3.3 Percentage of Performance Gain Computation 67

Equation 3.4 Computation of Overhead 67

xiv

LIST OF ABBREVIATIONS

API Application Program Interface

BF Brute Force algorithm

BM Boyer-Moore algorithm

BNDM Backward Nondeterministic DAWG Matching algorithm

BR Berry-Ravindran algorithm

CPU Central Processing Unit

CRCW Concurrent Read Concurrent Write

DAWG Directed Acyclic Word Graph

DFA Deterministic Finite Automaton

ED Edit Distance

FDM Forward DAWG Matching algorithm

FS Fast Search algorithm

GB Giga Byte

GH Giga Hertz

KMP Knuth-Morris-Pratt algorithm

KR Karp Rabin algorithm

MB Mega Byte

MCCRB Mesh-Connected Computer with a Reconfigurable Bus system

MIMD Multiple Instruction Multiple Data

MPI Massage Passing Interface

NFA Nondeterministic Finite Automata

OpenMP Open Multi-Processing

POSIX Portable Operating System Interface

PRAM Parallel Random Access Machine

xv

qsBc Quick Search Bad Character

RAM Random Access Machine

RF Reverse Factor algorithm

SO Shift-Or algorithm

SIMD Single Instruction Multiple Data

VLDCs Variable Length Don’t Cares

xvi

ALGORITMA HIBRID CARIAN CEPAT DAN LOMPAT

 YANG SELARI UNTUK MASALAH PADANAN

RENTETAN YANG TEPAT

ABSTRAK

Masalah padanan rententan merupakan mercu tanda dalam kebanyakan bidang sains

komputer kerana peranan yang dimainkannya dalam pelbagai aplikasi komputer.

Oleh itu, beberapa algoritma padanan rententan telah dihasilkan dan diaplikasikan

dalam kebanyakan sistem operasi, dapatan semula maklumat, penyunting, enjin

carian internet, pintasan dinding-panas dan pola jujukan pencarian asid amino atau

nukleotida dalam genom dan pangkalan data jujukan protein. Beberapa faktor

penting dipertimbangkan semasa proses padanan, iaitu seperti jumlah perbandingan

aksara, jumlah masa percubaan dan masa yang digunakan. Penyelidikan ini

mencadangkan suatu algoritma padanan tali hibrid yang tepat dengan

menggabungkan sifat terbaik daripada algoritma carian cepat dan carian lompat. Ini

bertujuan mendemonstrasikan serta mereka kaedah yang lebih baik bagi

menyelesaikan masalah padanan rententan pada kelajuan yang lebih tinggi dan kos

yang lebih rendah. Hal ini dapat mempertingkatkan kehadiran serta prestasi urutan

algoritma dengan menggunakan model yang berkongsi memori secara selari.

Algoritma hibrid diuji menggunakan pelbagai jenis data piawai semasa fasa

berjujukan dan selari. Algoritma hibrid juga memberikan keputusan yang lebih

efisien dibandingkan dengan algoritma asal, dari segi bilangan aksara perbandingan

dan bilangan percubaan apabila algoritma hibrid diaplikasikan secara berjujukan

dengan panjang pola yang berbeza. Tambahan pula, keselarian algoritma hibrid telah

meningkatkan kualiti prestasi metrik dengan kelajuan yang lebih tinggi, serta

kecekapan dan peratusan yang lebih baik.

xvii

PARALLEL QUICK-SKIP SEARCH HYBRID ALGORITHM

FOR THE EXACT STRING MATCHING PROBLEM

ABSTRACT

The string matching problem occupies a corner stone in many computer science

fields because of the fundamental role it plays in various computer applications.

Thus, several string matching algorithms have been produced and applied in most

operating systems, information retrieval, editors, internet searching engines, firewall

interception and searching nucleotide or amino acid sequence patterns in genome and

protein sequence databases. Several important factors are considered during the

matching process such as number of character comparisons, number of attempts and

the consumed time. This research proposes a hybrid exact string matching algorithm

by combining the good properties of the Quick Search and the Skip Search

algorithms to demonstrate and devise a better method to solve the string matching

problem with higher speed and lower cost by enhancing the existing algorithms

sequentially and improving their performance using the parallel shared memory

model. The hybrid algorithm was tested using different types of standard data during

the sequential and parallel phases. The hybrid algorithm provides efficient results

compared with the original algorithms in terms of number of character comparisons

and number of attempts when the hybrid algorithm is sequentially applied with

different pattern lengths. Additionally, parallelising the hybrid algorithm produced

better quality in performance metrics through providing higher speedup with better

efficiency and percentage of gain.

1

CHAPTER 1

INTRODUCTION

1.1 Introduction

 This research concerns the string matching problem. A hybrid algorithm which

solves the string matching problem and a parallel method for this hybrid algorithm will

be proposed in this research. String matching is used to check the similarities of strings.

To solve the string matching problem it is necessary to find an algorithm which can

locate the similarities of strings. The string matching procedure is an algorithm which

compares a short string called pattern with a long string called text, its function is to

check whether this pattern is a substring of the text. The procedure outputs location

when a pattern occurs in the text and produces a mismatched signal when no pattern

occurs in the text. In many fields, such as computer science, computer engineering, bio-

science, lexical analysis, database query and so on, string matching processing is

essential and therefore applied frequently (Navarro and Raffinot, 2002).

There are different types of problems in string matching; the most fundamental problem

is the exact string matching problem. The inputs of this problem are two strings as

mentioned above, text and pattern, while the processes is to find all exact occurrences of

the pattern string in the text string. This type of string matching algorithm comes in two

types, namely the on-line and off-line algorithms. The on-line algorithms pre-process the

pattern, but do not pre-process the text. On the other hand, the off-line algorithms pre-

2

process the text (Michailidis and Margaritis, 2000). This study focuses on on-line type of

algorithms.

1.2 Definitions

 A string matching problem can be defined as finding one or more occurrence of a

given pattern string P of length m in a text string T of length n, which are built over a

finite alphabet set Σ of size σ.

Definition 1.1: An alphabet Σ is a set of characters. The size of the alphabet is denoted

by σ and represented by an integer number.

Definition 1.2: A string is a sequence of characters drawn from an alphabet. The input

of the string matching algorithm are two strings, which are the pattern string

 … and the text string … where n ≥ m. Different sizes of text

string and different pattern string lengths will be used in this study.

Generally, string matching algorithms scan the text with the aid of the sliding window

mechanism. This mechanism involves opening a window on the text of which its size is

equal to the pattern length m. Then it is followed by a comparison between the

characters of the window and the characters of the pattern. This specific work of

character comparison is called an attempt. After matching or mismatching all of the

pattern characters with the window characters, the window is shifted along the text

according to the heuristics of each algorithm (Charras and Lecroq, 2004).

Definition 1.3: A shift is defined as a safe skip to the number of characters without

missing any occurrence of the pattern in the text (Weinsberg et al., 2007).

3

Most of the on-line exact string matching algorithms pre-process the pattern before

searching the text. The purpose of the pre-processing phase is to maximize the length of

the shift during the searching phase and that happens by collecting information about the

pattern before starting the search of the pattern in the text. The searching phase involves

different approaches for scanning the text to find the pattern occurrences in the text

(Lecroq, 1995).

The character comparison between the pattern and the text can be performed in different

orders. Most of the string matching algorithms perform the comparisons from left to

right like Knuth-Morris-Pratt (Michailidis and Margaritis, 2000), Karp Rabin (Karp and

Rabin, 1987) and many other string matching algorithms. Another example of order is in

the Boyer-More string matching algorithms (Boyer and Moore, 1977) and many other

algorithms, where the comparison is performed from right to left. There are also string

matching algorithms that may perform the character comparisons in any order or in

some specific order. Horspool string matching algorithm performs comparison in any

order while Two Way algorithm uses its own particular comparison order (Hassan,

2005).

1.3 Motivation

Development of the algorithms is considered a critical component in solving the

problems when using the computer. The consumed time, performance, deficiency and

cost are considered important factors in developing the algorithms. Many studies focus

on the string matching problem. The hybrid algorithms are considered an example of

such studies that deal with getting benefits from the original algorithms and overcome

4

their weaknesses. In addition, parallel algorithm shows how to solve a given problem

faster by using multiple processors. However, there have been little empirical studies on

hybrid with parallel algorithms. Quick Search and Skip Search string matching

algorithms are considered in this study, and these algorithms differ in their technique,

performance, efficiency and usage.

1.4 Problem Statement

The Quick Search and Skip Search string matching algorithms are good

algorithms to find all the occurrences of the pattern in the text, however, both are

associated with problems. The Quick Search is an efficient algorithm when using large

alphabets with a short pattern during the text search (Lecroq, 1995; Klaib et al., 2007),

but show less efficient behaviour for small alphabets with a long pattern. On the other

hand, the work by (Charras et al., 1998) proposed an algorithm (Skip Search) that shows

an efficient behaviour when using small alphabets with a long pattern.

Based on the reverse behaviour of the two existing algorithms which deals with different

alphabet types and different pattern lengths, along with the long consumed time wasted

in searching big sized data, the important question that needs to be answered is “How to

overcome the performance weaknesses of the two existing algorithms by proposing a

hybrid algorithm which takes advantage of the positive characteristics of both

algorithms to solve the string matching problem efficiently in any alphabet type and any

pattern length during the sequential and the parallel phases?”.

5

1.5 Objectives

The objectives of this research are:

1. To propose and implement a hybrid string matching algorithm based on Quick

Search and Skip Search algorithms in order to improve searching results.

2. To parallelize the proposed algorithm in order to improve processing time.

3. To evaluate the sequential and parallel performance of the proposed algorithm.

1.6 Contributions

The expected contributions of this research are:

1. A hybrid string matching algorithm from combining Quick Search and Skip

Search algorithms that gains the efficient advantages of their positive

characteristics.

2. Improve the processing time and performance of the proposed hybrid string

matching algorithm by using a parallelization method.

1.7 Justification

As mentioned in Section 1.4 of this chapter, the algorithms that were chosen in

this study are Quick Search and Skip Search string matching algorithms to hybridize

their good properties and to overcome their weaknesses. These two algorithms differ in

technique, performance, efficiency and usage. The Quick Search algorithm is efficient

when large alphabets with a short pattern are used while the Skip Search algorithm is

efficient when small alphabets with a long pattern are used. According to these different

6

properties, this study aims to extract the advantages from each algorithm in a hybrid

algorithm that is able to solve the string matching problem efficiently using any type of

alphabet and any length of pattern. The hybrid algorithm will provide less number of

character comparisons and attempts during the sequential phase and reducing the

consumed time during the parallel phase.

1.8 Research Methodology

 This section discusses the main points related to the methodology parts of this

research. These parts include the research procedure, the theoretical framework and the

research design.

1.8.1 Research Procedure

 The procedure of this research comprises different steps, it began with collecting

the data by downloading it from websites (Pizza and Chili Corpus, 2009). A standard

benchmark type of data was used in this research which illustrates the common use to

present the string matching applications. These types of data contain the DNA sequence,

protein sequence and English text.

The second procedure step of this research consists of two phases. The first phase is

designing a new hybrid algorithm from the original algorithms (Quick Search and Skip

Search algorithms) through their analysis to extract the advantages of the positive

characteristics of both algorithms. The second phase is the proposed parallelization

method to improve the processing time of the proposed hybrid algorithm.

7

The final step is a comparison that consists of two phases. The first comparison phase

occurs between the original algorithms and the proposed hybrid algorithm to show the

positive properties of the proposed hybrid algorithm over the original algorithms. The

second comparison phase occurs between the sequential and the parallel approach of the

proposed hybrid algorithm to show the improvement gained in time between the two

approaches. Figure 1.1 shows the steps of the procedure taken by this research.

Figure 1.1: Research Procedure

8

1.8.2 Theoretical Framework

 Several studies have addressed the string matching problem. These studies deal

with producing new algorithms or hybridizing between the existing algorithms. The aim

of the hybridization between the algorithms is mostly represented by creating a new

efficient algorithm to solve the matching problem. Several examples of hybrid

algorithms are discussed in Chapter 2 of this research. From this point the method of this

research is generated which is represented by combining the good characteristics of the

Quick Search algorithm (Sunday, 1990) and the Skip Search algorithm (Charras et al.,

1998) in an algorithm which is capable of overcoming their weaknesses by solving the

matching problem efficiently using different pattern lengths with different alphabet

sizes.

1.8.3 Research Design

 This section clarifies the attributes and variables involved in the research design.

These attributes and variables include the purpose of the study, type of investigation,

study setting and its time horizon. The purpose of the study will be a case study since the

method is qualitative in nature. To prove the correctness of the study, the method is

conducted by implementing steps to apply the hybrid algorithm. The type of

investigation conducted will be “Causal” since the proposed algorithm is to add a new

entity over the original algorithms. While the study’s setting is a “Lab Experiment”

since it is presented by creating a new algorithm that will solve the matching problem by

providing less number of character comparisons and less number of attempts during the

searching operation. In addition, the implementation of the proposed method is a type of

9

lab environment. The time horizon for this research is a “Cross Sectional Study” since

the data collected is necessary information that will help to design and implement other

algorithms and there is no need to collect the resultant data in different situations and

time.

1.9 Thesis Organization

 This thesis is organized in five chapters. Chapter 1 begins by giving an

introduction to the general fundamentals of string matching algorithms, and then it

discusses the motivation and presents the problem statement of our study followed by

the objective, contributions and justification of this thesis. The chapter ends with the

brief explanation to the methodology part of this thesis. Chapter 2 offers a background

and classification to the string matching algorithms, and also list and explains several

previous studies of hybrid string matching algorithms. In addition, it will discuss some

parallel issues and previous studies of parallelizing string matching algorithms. Chapter

3 outlines the method to the proposed hybrid algorithm in the sequential and parallel

phases and also discusses the performance of each phase as well as the type of the data

usage in the experimental results. Chapter 4 reports and evaluates the results of running

the proposed hybrid algorithm during the sequential and parallel phases. Chapter 5 offers

a conclusion of the major components of the research and suggests future work that may

result in new features to be added to the proposed hybrid algorithm.

10

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter presents a description of a few standard algorithms used in text

processing. These algorithms are applied in various applications, for example, text

editors, text compression, data retrieval systems, and computational biology. These

algorithms are considered useful in different aspects and produce challenges in

theoretical computer science. The literature survey distinguished two types of string

matching solutions; the first one is when the pattern is fixed, while the second solution is

when the text is fixed. This research focuses on the second type that is when the text is

fixed and not known in progress.

Basically, there are two problems in string matching, the first one is the approximate

string matching problem and the second is the exact string matching problem. This

chapter briefly discusses the problem related to the approximate string matching

explained in Section 2.2 for the purpose of understanding the basic idea behind it.

Furthermore, the exact string matching problem is discussed by classifying it into

different categories and provides examples and comparisons of the algorithms for each

category as explained in Section 2.3. In addition, examples of the well known hybrid

string matching algorithms are discussed in Section 2.4. Also, Section 2.5 will discuss

some parallelism issues and will refer to some examples of parallelization techniques for

string matching algorithms. Finally Section 2.6 concludes this chapter.

11

2.2 Approximate String Matching

The approximate string matching problem is defined as follows: a pattern string

 … and a text string … , , are given and a maximal

number K of errors allowed between the pattern and its occurrences in the text (Navarro

and Raffinot, 2002).

The solution of the approximate string matching algorithms can be off-line when the text

can be pre-processed. It can also be on-line when the text is not known in advance. This

consists of two phases, the pre-processing phase for the pattern and the searching phase

of the pattern in the text. The pre-processing phase consists of an assembly of

information about the pattern, while the searching phase which involves different

approaches consisted of scanning the text to find all approximate occurrences of the

pattern in the text. Some of these approaches include dynamic programming,

deterministic finite automata, bit-parallelism and filtering algorithms approach. There

are many different models in the approximate string matching problem with K number

of errors. One of the best studied cases of this error model is the edit distance (ED) or

Levenshtein’s distance. It supports three main operations which are insertion, deletion

and substitution of simple characters to edit the difference between two strings. As a

definition, the edit distance is the minimum number of edit operation between two

strings X and Y (ED(X, Y)), which is required to convert X to Y, or vice versa (Navarro et

al., 2001). The following is a simple example for each edit distance operation.

12

2.2.1 Insertion

A character F of X is missing in Y at a corresponding position. By inserting a

character F in this missing position, the string Y can be transformed into string X as

shown in Figure 2.1.

Figure 2.1: Insertion Operation

2.2.2 Substitutions

 The symbols at corresponding positions are different. By substituting a character

D to C in string Y, the string Y can be transformed into string X as shown in Figure 2.2.

Figure 2.2: Substitution Operation

X B F E

Y B - E

X B D E

Y B C E

13

2.2.3 Deletion

A character C of Y is missing in X at a corresponding position as shown in Figure

2.3. By deleting a character C in string Y, the string Y can be transformed into string X.

Figure 2.3: Deletion Operation

Example of the edit distance operations can be shown in Figure 2.4

Figure 2.4: Example of Edit Distance Operation

X B - E

Y B C E

Given a string X =" FGHEF ” and a string Y =" FGHK" . We want to

transform Y into X. Finally, the ED(X, Y) = 2. First, substitute a character E to K.

 Y F G H K Y F G H E

Insert a character F at the end of string Y.

 Y F G H E Y F G H E F

Y successfully transforms to X.

 Y F G H E F X F G H E F

14

In an approximate string matching problem, the number of K must be less than the

length of the pattern 0 , otherwise every text substring of length m will be

converted into P by substituting the m characters. Therefore, the exact string problem is

a special case of the approximate string matching problem in which K=0 (Michailidis

and Margaritis, 2002).

2.3 Exact String Matching

The exact string matching problem is defined as follows: a text

 … , and a pattern … , where n ≥ m. The purpose is to find all

occurrences of P in T. All the characters in text T and pattern P are obtained from a

finite set of characters called an alphabet denoted by Σ of size σ. The Figure 2.5 below

shows a simple example of the exact string matching operation (Navarro and Raffinot,

2002).

Figure 2.5: An Example of Exact String Matching Operation

Input: We are given a text T with length n and a pattern P with length m.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14
 T = A T C T A C G A T A T A C G
 P = A C G

 n =14, m = 3, Σ = (A, C, G, T), σ = 4

Output: All the occurrences of pattern P in text T.

P occurs at location 5 and 12 of T

15

Depending on whether the text or the pattern needs pre-processing, the exact string

matching algorithms can be divided into two types. The first one is off-line exact string

matching algorithms in which the text can be pre-processed. The second type is on-line

exact string matching algorithms in which the text is not known in progress. This

research deals with the on-line type of algorithms which is consisting of two phases, the

pre-processing phase of the pattern and the searching phase for the pattern in the text.

This section uses the same classifications used by (Michailidis and Margaritis, 2000).

The authors classify the exact string matching algorithms into four main categories of

algorithms as a survey to introduce several examples of exact string matching

algorithms. The four categories are Classical algorithms, Suffix Automata algorithms,

Bit-Parallelism algorithms and Hashing algorithms as shown in Figure 2.6.

Figure 2.6: Exact String Matching Categories

16

2.3.1 Classical Based Algorithms

This category of string matching algorithms is based on character comparisons

between a character in the text and a character in the pattern from different directions

depending on the heuristic of the algorithm. The following are examples of some

classical algorithms.

(A) Brute Force Algorithm

The Brute Force algorithm (BF) is a basic algorithm for the string matching

problem. It locates all occurrences of pattern string in text string in time O(mn), where n

is the length of the text and m is the length of the pattern. The algorithm finds all n-m+1

possible substrings with length m in the text by shifting a sliding window with length m

to find all occurrences of the pattern in the text. The algorithm performs the comparison

from left to right one by one and requires no pre-processing phase or extra space.

For every possible substring in the text, the Brute Force algorithm takes O(m) time to

find whether the pattern appears in the text. Thus, the time complexity is O(nm). This

algorithm is not efficient, because once a mismatch occurs, the sliding window shifts

one position to the left and restarts to match from the first position of the pattern

(Charras and Lecroq, 2004).

(B) Search with an Automata Algorithm

The main concept of this algorithm depends on the automaton theory by building

the minimal Deterministic Finite Automaton (DFA) to the pattern as a pre-processing

17

phase. It is applied afterwards to search for the pattern in the text by parsing the text

with the Deterministic Finite Automaton (Nedjah, 1998).

The search with an automata algorithm requires O(mσ) time and space complexity to

construct the minimal Deterministic Finite Automaton for the pre-processing phase,

while it requires O(n) time complexity for the searching phase (Rafiq et al., 2004).

(C) Knuth-Morris-Pratt Algorithm

Discovered in 1977, the Knuth-Morris-Pratt (KMP) is the first linear time string

matching algorithm which performs character comparisons from left to right in the

pattern. When a mismatch occurs, the Knuth-Morris-Pratt algorithm moves the pattern to

the right by maintaining the longest overlap of a prefix of the pattern with a suffix of the

part of the text that has matched the pattern. This means that the algorithm uses the

knowledge of the previous characters that were already examined in order to compute

the next position of the pattern to use (Michailidis and Margaritis, 2000).

The Knuth-Morris-Pratt algorithm require O(m) time and space complexity for the pre-

processing phase, while it requires O(n+m) time complexity for the searching phase

(Charras and Lecroq, 2004).

(D) Boyer-Moore Algorithm

Discovered in 1977, the Boyer-Moore (BM) algorithm is considered as the most

efficient string matching algorithm in usual applications. Its main function is to perform

character comparisons from right to left in the pattern. The Boyer-Moore algorithm

18

triggered two heuristics which are bad character and good suffix on a mismatch to

reduce the number of comparisons. The heuristics are independent and they are used

simultaneously where the maximum shift computed by the two heuristics is considered

after each attempt during the searching phase (Boyer and Moore, 1977).

There are many variants of Boyer-Moore algorithm, some of these variants like Galil

Giancarlo algorithm, Apostolico Giancarlo algorithm and Turbo-Boyer-Moore algorithm

use the same two heuristics that are used in the original Boyer-Moore algorithm and also

perform the character comparisons from right to left with some modification. All those

modifications generally aim at reducing the implementation complexity, space

requirements, and search time. Another variant like Tuned Boyer-Moore algorithm and

Horspool algorithm depend on simplifying the original Boyer-Moore algorithm by using

only the bad character heuristic (Lecroq, 1995).

The Quick Search algorithm is another variant that simplifies the Boyer-Moore

algorithm by using only the bad character heuristic, but it performs the character

comparisons from left to right during the matching process (Sunday, 1990).

The Boyer-Moore algorithm requires O(m+σ) time and space complexity for the

heuristics’ pre-processing phase, while it requires O(nm) time complexity for the

searching phase (Charras and Lecroq, 2004).

(E) Skip Search Algorithm

 The idea behind the Skip Search algorithm is to build buckets as a pre-processing

phase. These buckets contain information about all the alphabets’ position in the pattern.

19

These alphabets start recording from the first left position of the pattern. The algorithm

examines the m-th text character to delimit a possible starting search point.

There are two variants to the original Skip Search algorithm. The first variant is linear in

time which combines the Skip Search algorithm with Knuth-Morris-Pratt algorithm; this

algorithm is named the KMP Skip Search algorithm. The second variant is Alpha Skip

Search algorithm. It improves the Skip Search algorithm by building a trie of length

log for all factors of the pattern, where there is a single bucket for each leaf of the

trie (Charras et al., 1998).

The Skip Search requires O(m+σ) time and space complexity for the pre-processing

phase, while it requires O(mn) time complexity for the searching phase (Rafiq et al.,

2004).

2.3.2 Suffix Automata Based Algorithms

This category of string matching algorithms is based on using the suffix

automaton data structure which is also called DAWG (Directed Acyclic Word Graph).

Basically, this structure recognizes all the suffixes of the pattern (Michailidis and

Margaritis, 2000). The following algorithms are types of this category.

(A) Reverse Factor Algorithm

The Reverse Factor (RF) algorithm scans the characters of the text from right to

left using the smallest suffix automaton of the reverse pattern. It is even better than the

Boyer-Moore family, because the shifts are longer.

20

The pre-processing phase of the Reverse Factor algorithm consists of computing the

smallest suffix automaton for the reverse pattern, denoted as . In the search phase, the

algorithm parses the characters of the window from right to left with the automaton of

the reverse pattern starting with the initial state. It continues until there are no more

transitions defined for the current character of the window from the current state of the

automaton. Then a right shift will be performed based on the length of the longest prefix

of the reverse pattern that has been matched (Crochemore et al., 1992).

The Reverse Factor algorithm requires O(m) time and space complexity for the pre-

processing phase, while it requires O(n log m /m) time complexity for the searching

phase (Charras and Lecroq, 2004).

(B) Forward DAWG Matching Algorithm

The Forward DAWG Matching (FDM) algorithm computes the smallest suffix

automaton of the pattern as a pre-processing phase to obtain the longest factor of this

pattern which ends at each position in the text. The searching phase performs the

comparisons from left to right by parsing the text character with the suffix automaton

(Charras and Lecroq, 2004).

2.3.3 Bit-parallelism Based Algorithms

The main function of the Bit-parallel algorithms is that they store several data

items into a single computer word and then update them in parallel using a single

computer operation. The technique of using bit-parallelism is a general way to simulate

21

simple nondeterministic finite automata (NFA) structure with simplicity, flexibility and

no buffering as advantages of this approach (Prasad and Agarwal, 2008).

(A) Shift-Or Algorithm

 The Shift-Or (SO) algorithm represent the state of the search as a number and

each search iteration costs a small number of arithmetic and logical operations. The

implementation of the algorithm is considered very competitive if the length of the

pattern is smaller than the size of the computer word. The pre-processing phase consists

of creating a table which has one bit mask for every character in the alphabet, and this

bit mask corresponds to the position of the character in the pattern. The Shift-Or

algorithm performs character comparisons from left to right in the pattern and involves

keeping a set of all the prefixes of the pattern that match a suffix of the text (Baeza-

Yates and Gonnet, 1992).

The Shift-Or algorithm requires O(m+σ) time and space complexity for the pre-

processing phase, while it requires O(n) time complexity for the searching phase

(Charras and Lecroq, 2004).

(B) Backward Nondeterministic DAWG Matching Algorithm

 The Backward Nondeterministic DAWG Matching (BNDM) algorithm is

considered a variant of the reverse factor algorithm. It therefore uses the suffix

automaton of the reverse pattern but in a nondeterministic form which is simulated using

bit-parallelism. Like Shift-OR algorithm, BNDM algorithm uses a table which has one

22

bit mask for every character in the alphabet and it is very efficient if the length of the

pattern is smaller than the size of the computer word (Navarro and Raffinot, 1998).

The Backward Nondeterministic DAWG Matching algorithm requires O(m+σ) time and

space complexity for the pre-processing phase, while it requires O(nm) in the worse case

and O(n log m /m) in the average case time complexity for the searching phase (Rafiq et

al., 2004).

2.3.4 Hashing Based Algorithms

The main function of the hashing algorithms is to check out the similarity of the

window content and the pattern, instead of checking at each text position if the pattern

occurs. This approach provides a simple and efficient method of avoiding quadratic

number of character comparisons in most practical situations (Lecroq, 2007).

(A) Karp Rabin Algorithm

The Karp Rabin (KR) algorithm searches for a pattern in a text by hashing. The

algorithm checks the similarity between the pattern and the window in the text by

computing the hashing function (H). This function is efficiently computable and highly

recognized for strings.

The pre-processing phase of the Karp Rabin algorithm consists of computing the hash

function for the pattern (H (P)). During the searching phase, the algorithm compares the

(H(P)) with (H(T [j...j+m-1])) for 0 ≤ j < n – m and if equality is found the algorithm

checks the equality of P = T [j...j+m-1] character by character (Karp and Rabin, 1987).

23

The Karp Rabin algorithm requires O(m) time and space complexity for the pre-

processing phase, while it requires O(nm) time complexity for the searching phase and

O(n+m) time complexity for the expected number of text character comparisons

(Charras and Lecroq, 2004).

The comparison of different foregoing linear exact string matching algorithms can be

shown in Table 2.1 in terms of the pre-processing phase and the searching phase’s time

and space complexity with the important characteristics for each algorithm. The

complexity information is obtained from the publications by (Charras and Lecroq, 2004;

Rafiq et al., 2004), while the underlying technique is obtained from the original

publication of the algorithms. These algorithms use different techniques in the pre-

processing and searching phase. Furthermore, most of these algorithms pre-process the

pattern before searching for the pattern in the text in order to maximize the length of the

shifts during the searching phase. However this pre-processing phase needs extra space

linear to the length of the pattern.

Brute Force (BF), the first mentioned algorithm, scans the character of the window from

left to right and shifts the window exactly one position to the right after a mismatch or a

complete match. The Knuth-Morris-Pratt (KMP) algorithm is an improvement of the

Brute Force (BF) algorithm, which uses a shift function based on the notion of the

prefixes of the pattern and it is considered the first linear string matching algorithm. Skip

Search and KMP Skip Search algorithms behave like Knuth-Morris-Pratt algorithm by

performing the characters of the window from left to right while the algorithms use

buckets to determine the starting positions of the window in the text. The Boyer-Moore

(BM) algorithm is considered as one of the most efficient string matching algorithms

24

which scan the characters of the window from right to left. There are many variants of

Boyer-Moore algorithm which are widely recognized and used in various string

matching applications. The work of many algorithms depend on automaton theory with

the Knuth-Morris-Pratt or Boyer-Moore algorithms concepts. Search with an Automaton

algorithm and Forward DAWG Matching (FDM) algorithm work with the concept of the

Knuth-Morris-Pratt (KMP) algorithm by performing the character comparisons from left

to right. Search with an Automaton algorithm use the minimal Deterministic Finite

Automaton (DFA), while Forward DAWG Matching algorithm uses the suffix

automaton. Like the Boyer-Moore type algorithms, the Reverse Factor algorithm scans

the characters of the window from right to left by calculating the smallest suffix

automaton in the deterministic form of the reverse pattern. Some of the algorithms use

the nondeterministic form of the automata. Backward Nondeterministic DAWG

Matching (BNDM) algorithm uses the suffix automaton of the reverse pattern in

nondeterministic form which is simulated by using bit-parallelism. Shift-Or (SO)

algorithm uses bit-wise operations for its work and Karp Rabin (KR) algorithm uses the

hashing methodology for string searching.

	Mustafa Abdulsahib Naser

