

WAVEFRONT LONGEST COMMON

SUBSEQUENCE ALGORITHM ON MULTICORE

AND GPGPU PLATFORM

BILAL MAHMOUD ISSA SHEHABAT

UNIVERSITI SAINS MALAYSIA

2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository@USM

https://core.ac.uk/display/11947787?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

WAVE-FRONT LONGEST COMMON

SUBSEQUENCE ALGORITHM ON MULTICORE

AND GPGPU PLATFORM

By

BILAL MAHMOUD ISSA SHEHABAT

Thesis submitted in partial fulfillment of the

requirements for the degree of Master of Science

June 2010

 1

CHAPTER 1

INTRODUCTION

1.1 Background

String comparison is a central operation in numerous applications. It has a

critical task in many operations such as data mining, spelling error correction and

molecular biology (Tan et al, 2007; Michailidis and Margaritis, 2000). String

comparison aims to evaluate the similarity between a pair of given strings defined over

a common finite alphabet (Michailidis and Margaritis, 2000). String comparison is

used in spelling error correction, which tries to find a dictionary entry most resembles

to a given word. In molecular biology, sequence comparison is used to find the

homology between the bio-sequences (Tan et al, 2007; Michailidis and Margaritis,

2002). String matching has two paradigms; Exact matching and Approximate

matching. The longest common subsequence (LCS) problem which is a very well

known classical problem in computer science has a lot of applications. It is an

approximate string matching problem and the simplest prototype of a sequence

alignment algorithm. The longest common subsequence problem is an obvious

measure for the closeness of two strings to find the maximum number of identical

symbols between them taking into consideration the symbol order (Tan et al, 2007).

A subsequence of a given substring is any string obtained by deleting zero or more

symbols from the given string. It is called as a common subsequence of two or more

strings when it exists in both. The longest common subsequence is the common

subsequence that has the maximum length (Strate and Wainwright, 1990; Giegerich et

al, 2004).

 2

1.2 Motivation

 Longest common subsequence (LCS) problem is a very important problem

used in various applications such as file comparison, word processing, molecular

biology. Longest Common Subsequence has many implementations, among which one

is based on dynamic programming (DP) solution. This solution gives an optimal result

but takes a quadratic time and space complexities. While the time is an important

factor, many researches have been done on the Dynamic Programming based Longest

Common Subsequence to speed up its execution. One of these solutions is to run the

LCS in parallel in order to reach the best execution time. Parallel programming is

taking a new dimension, a new technology in order to reach the best execution speed.

A new technology that uses the graphics hardware to implement different algorithms

in parallel and run them on the Graphical Processing Unit (GPU) using a new platform

called Compute Unified Device Architecture (CUDA) rather than uses the traditional

parallel techniques those run on the Central Processing Unit (CPU).

1.3 Problem Statement

 The basic implementation of the longest common subsequence algorithm

consumes a quadratic time. The parallel method is used in order to reduce the

execution time. The basic longest common subsequence algorithm has a high data

dependency inhibits parallelism. The important question that needs to be asked

is:”how to make the design of the longest common subsequence able to be parallel,

and will the parallel solution using the General Purpose Graphical Processing Unit

(GPGPU) enhance the execution speed?”

 3

1.4 Research Objectives

The objectives of this research are:

 To propose a new design of the LCS problem using wave-front approach to

eliminate the data dependency so that it can be parallelizable. Using wave-front

approach.

 To design the proposed LCS problem (dynamic programming) for

implementation on the GPGPU platform, using CUDA (Compute Unified

Device Architecture) to improve its speed.

 To Implement the proposed design on Multicore platform using OpenMP.

1.5 Contributions

The expected contributions of this research are:

1. A new design of the basic implementation of the longest common subsequence

problem to be parallel.

2. CUDA based parallel LCS on the GPGPU.

3. Parallel LCS on the Multi-core using OpenMP.

1.6 Scope

 The scope of this study has 3 phases: (1) finding the longest common

subsequence (LCS) of two strings using the wave-front approach. (2) Parallelization

phase on multi-core CPU. (3) Parallelization phase using CUDA platform on the

graphics hardware GPGPU.

 4

This research focuses on the longest common subsequence algorithm and how to

improve its execution speed depending on parallelization using different architectures.

1.7 Research methodology

This section shows the principles and methods of this research by discussing

the parts of the research methodology such as research procedure, theoretical

framework and research design.

1.7.1 Research Procedure

 The first step of the procedure is to collect the data for the experiment by

downloading it from the internet. The data used is a standard benchmark data being

used in string matching applications. These types of data are DNA sequence and

protein sequence.

The second step in the procedure is to change the design of the basic LCS algorithm

into the wave-front approach, in order to reduce the data dependency and make the

LCS algorithms able to run in parallel, there will be a comparison between the basic

and the updated designs of the LCS problem during this step.

 5

The third and last step is to parallelize the wavefront LCS using the multicore and the

graphics hardware and compare the parallel results in the two parallel

implementations. Figure 1.1 explains the steps of the research procedure.

Figure 1.1: Research Procedure

1.7.2 Theoretical Framework

 Lots of studies have been done on the LCS problem, some are concerned with

improving the space complexity, and some are concerned with improving the time

complexity. The intent of using parallel platforms to run the algorithms is to get a high

performance and execution speed. Some experiments to enhance the LCS algorithm

are discussed in the related work section in this research. New dimensions have

 6

appeared in parallel computing area such as exploiting the graphics hardware to run

non-graphical (general purpose) algorithms. Hence the starting point of our research is

taken.

1.7.3 Research Design

 There are some attributes and variables involved in the research design such as

a purpose of the study, type of investigation, study setting and time horizon. The

purpose of the study in this research is a “Case Study Analysis” since the method is

qualitative in nature. The type of investigation is “causal” seeing that we need to

change something in the algorithm itself. Since our study is showed doing some

change to an existing algorithm in order to make it able to be parallel. The setting of

our study is a lab experiment. And the time horizon of the study is a “Cross Sectional”

since the data is collected only once and used as a standard in all the experiments

without needing to collect data for different situations.

 7

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

 This chapter discusses the dynamic programming technique, general

information about the string matching, string matching groups and algorithms.

Furthermore, this chapter discusses some of the experiments related to our work in this

thesis. The parallelism is discussed including parallelism types and parallel models.

2.2 Dynamic Programming

Dynamic programming (DP) is a classical powerful and well-known technique

for solving large kinds of optimization problems (Tan and Sun and Gao, 2007;

Giegerich et al, 2004). The programming in this context doesn't mean the computer

programming; it is a tabular method of solving the problems.

Divide and Conquer technique solves the problem by dividing it into smaller sub-

problems, each of one can be solved independently. These sub-problems are in turn

recursively divided into smaller sub-problems and solved independently and so on

(Strate and Wainwright, 1990). In contrast, dynamic programming is applicable when

the sub-problems are not independent (Cormen et al, 2001). In general Dynamic

programming technique can be thought of as the divide and conquer principle taken to

an extreme (Strate and Wainwright, 1990). The essence of dynamic programming

algorithms is that they trade space for time by storing solutions to sub-problems rather

than recomputing them (Strate and Wainwright, 1990).

 8

Dynamic programming can be applied to the optimization problem if it has an optimal

substructure and overlapping sub-problems. To solve an optimization algorithm using

dynamic programming, two things must be done. First is to characterize the structure

of the optimal solution, the optimal solution of the problem comes from the optimal

solutions of the sub-problems. Second the overlapping sub-problems. The

optimization algorithm has overlapping sub-problems when the algorithm solves the

same sub-problems over and over rather than generating new sub-problems. The

benefit of overlapping sub-problems is that the solution of the sub-problem can be

stored in a table for use when needed (Morrison, 1997). Using the dynamic

programming to solve a problem needs the following steps (Eddy, 2004).

 Define the optimal structure of the solution, depending on a scoring system to

find the general definition (formula) of the problem.

 Filling the dynamic programming matrix, saving the optimal solution of sub-

problems, in this case each sub-problem will be solved only once rather than

the simple recursion.

 Calculating the optimal score using bottom up approach (from the smallest

sub-problems to progressively bigger sub-problems).

 Trace-back the matrix to extract the result, this step may need an extra

information to be stored in the dynamic programming matrix, this step starts

from the cell (M,N) and follows the appropriate path depending on the formula

which is determined in the first step until reaching cell(0,0).

2.3 String Matching Groups

String matching is a technique to compare two or more strings to find if they

are similar or not. It takes a part in many computer science applications as data

 9

processing, speech recognition, information retrieval, search engines on the internet,

vision for two dimensional image recognition and computational biology (Michailidis

and Margaritis, 2000; Michailidis and Margaritis, 2002).

String matching problem consists of two parts, which are text and pattern, where the

text is larger in size than the pattern. The matching is done by attempting to find

identical characters between the text and pattern. Many algorithms have been studied

to speedup the matching process (Michailidis and Margaritis, 2000) (Michailidis and

Margaritis, 2002).String matching has two paradigms, which are the exact string

matching and the approximate string matching as shown in Figure 2.1.

Figure 2.1 String matching algorithm types

2.4 Exact String Matching

String matching consists of finding one or more generally all the occurrences

of a short pattern P=P0P1…..Pm-1 of length m in a large text T=T0T1…Tn-1 of length n,

where m,n>0 and m≤n. Both P and T are built over the same alphabet (Michailidis and

and Margaritis 2000). As shown in Figure 2.2, exact string matching has a four types.

String Matching

Approximate

String matching

Exact String

matching

 10

Figure 2.2 Exact String Matching Algorithm Types

2.4.1 Classical Algorithms

 The classical approach exact string matching algorithms are based on character

comparisons. Many algorithms use this approach like Brute-Force (BF) algorithm, The

Knuth-Morris-Pratt (KMP) algorithm, the Boyer-Moore (BM) algorithm.

The simplest algorithm is Brute-Force (BF) algorithm, which has no preprocessing

phase and performs the comparison from the left to the right. It has O(mn) time

complexity in the worst-case (Michailidis and Margaritis, 2000). The Knuth-Morris-

Pratt (KMP) algorithm performs the comparison from the left to the right. KMP has a

preprocessing phase which takes O(m) time and space, and is considered as the first

discovered algorithm that has a linear time (Michailidis and Margaritis, 2000). Boyer-

Moore (BM) algorithm performs the comparison of the characters in the text and the

pattern from the right to the left. BM algorithm uses two heuristics called occurrence

heuristic and match heuristic, the maximum shift of these two heuristics is the length

of the character shift when the mismatch happens or after the complete match.

O(m+|Ò|) is the processing time and space of the two heuristics. BM takes O(n+rm)

searching phase time in its worst-case, r here means the number of how many time the

pattern occurs in the text (Michailidis and Margaritis, 2000).

Exact String Matching

Classical

Approach

Suffix Automata

Approach

Bit-parallelism

Approach

Hashing

Approach

 11

2.4.2 Suffix Automata Approach

Suffix automaton also called DAWG (Deterministic Acyclic Word Graph) on

String S is the minimal deterministic finite automaton that recognizes all the substrings

of S.

The Reverse Factor (RF) algorithm uses the smallest suffix automaton of the reverse

pattern to perform the text from right to left (Michailidis and Margaritis, 2000). RF

algorithm requires a linear time in the preprocessing phase and space in the length of

the pattern. The searching phase of RF algorithm has an optimal time complexity in

the average case and quadratic time, in the worst case. It performs O (nlogm/m)

comparisons between characters on the average (Michailidis and Margaritis, 2000).

2.4.3 Bit-Parallelism Approach

 Bit-parallelism is a technique aims to speedup the matching process using bit

parallelism operations by cutting down the number of bits in the computer word

(Navarro, 2001). This approach has two main advantages, first: simplicity, where the

preprocessing and searching phases are very simple. Second advantage is the

flexibility, where one text character is processed by a constant time and delay and no

buffering and the text does not need to be stored (Michailidis and Margaritis, 2000).

Shift-Or (SO) algorithm is a bit-wise technique algorithm, it creates a mask in the

preprocessing phase for every character in the alphabet. Searching the characters in the

string is directed from left to right, retrieving the mask of the character which is being

read. It uses a variable R to keep track of the characters (Leidig and trefftz, 2007).

 12

2.4.4 Hashing Approach

Hashing aims to avoid the quadratic number of the character comparisons in

most practical situations (Charras and Lecroq, 2004). Karp-Rabin (KR) algorithm

computes the signature or the hashing function of each possible M-character substring

in the text and checks its equality with the hashing function of the pattern. Karp-Rabin

algorithm has O(m) preprocessing phase and O(mn) searching phase(Michailidis and

Margaritis, 2000).

2.5 Approximate String Matching

The difference between the exact string matching and the approximate string

matching is that the exact string matching searches for a complete identification

between the pattern with a substring in the text. While the approximate string

matching focus on finding a similarity between the pattern and a substring inside the

text (Michailidis and Margaritis, 2000;Giegerich et al, 2004). The string matching

algorithm can be on-line that is the text is not known in advanced and needs a

preprocessing phase or off-line which means no need to a preprocessing phase

(Michailidis and Margaritis, 2002).

Figure 2.3: Approximate String Matching Algorithm Types

Approximate String Matching

K Mismatches

Algorithm

K differences

Algorithm

 13

There are two classes of the approximate string searching: string searching with k

mismatches and string searching with k differences as shown in Figure 2.3. Two well

known distance functions represent these two classes. The hamming distance

represents the string searching with k mismatches, where the hamming distance shows

how many mismatched characters in two equal length strings. The Levenshtein

distance represents the minimum number of character insertions, deletions and

substitutions which are needed to transmute one string to another. Taking into

consideration that the two strings are not important having the same length. It is

referred as string searching with k differences (Michailidis and Margaritis, 2000).

2.5.1 String Matching with K Mismatches

The searching phase has four approaches; classical algorithms, deterministic

finite automata algorithms, counting algorithms and bit-parallelism algorithms. As

shown in Figure 2.4, the searching phase for the string searching with k mismatches

problems has four categories:

Figure 2.4: K Mismatch Approximate String Matching Types

K mismatch problem

Classical Approach

Deterministic finite

automata approach

Counting approach
Bit-parallelism

Approach

 14

(A) Classical Approach

When the string searching algorithms mainly rely on the character comparisons

then it is called a classical string searching algorithms (Michailidis and Margaritis,

2002).

The Brute-Force (BF) algorithm has O(mn) time complexity in its worst case. It counts

the number of mismatches happened during the left to right comparison between the

complete pattern with the text substring, noticing that the preprocessing phase is not

needed for this algorithm.

The first efficient developed algorithm is the Lindau-Vishkin (LV) algorithm. LV

algorithm has a preprocessing phase that extracts information to decrease the required

character comparisons during the searching phase; this algorithm takes O(km log m)

time for preprocessing phase and O(kn) for searching phase. In spite of the LV

algorithm is efficient it has a disadvantage that it requires extra space O(k(m+n)),

which is not acceptable for practical purposes (Michailidis and Margaritis, 2002).

Tarhio-Ukkonen (TU) algorithm is based on Boyer-Moore-Harspool (BMH) exact

searching algorithm, the TU algorithm has O(m+k|Σ|) time and O(k|Σ|) space as

shown in Table 2.1 (Michailidis and Margaritis, 2002).

(B) Counting Approach

Arithmetic operations are used instead of character comparisons in the

classical approach. Baeza-Yates-Perlberg (BYP) algorithm is a very practical and

simple solution to the string searching with k mismatches problem and whose

 15

performance is independent on k, the worst case happens when all characters in P are

distinct (Michailidis and Margaritis, 2002).

(C) Bit-Parallelism Approach

 A common technique was found by Baeza-Yates and Gonnet that they

considered every element in the pattern as a set of symbols rather than one symbol

(Bayeza-yates, 1992).

The goal of taking the character as symbols (bits) is to perform many operations in

parallel. This approach has many advantages such as simplicity, flexibility, and no

buffering. Like Shift-Or (SO) algorithm which is an a bit-parallelism algorithms

(Michailidis and Margaritis, 2002).

(D) Deterministic Finite Automata Approach

 This kind of algorithms has an advantage where it can repeat the searching

process during the matching operation (Zhang, 2003).

Table 2.1: Time and Space Complexities for String Matching with K Mismatches

(Michailidis, 2002)

Algorithm Worst Case Average Case Preprocessing Time Extra Space

BF Mn Kn - 1

LV Kn Kn Km log m Km

TU Mn kn(k/|Σ|+1/m-k) m+ k|Σ| k|Σ|

BYP N (1+m/|Σ|)n 2m+|Σ| m+|Σ|

SO mn log k/w mn log k/w (|Σ|+m) log k/w |Σ|+m log k/w

 16

2.5.2 String Matching with K Differences

 This type can be sorted into four approaches, which are the dynamic

programming approach, filtering approach, deterministic finite automata approach and

bit-parallelism approach as shown in Figure 2.5.

Figure 2.5: K Differences Approximate String Matching Types

(A) Dynamic Programming Approach

 This approach is a classical solution to compute the edit distance between two

strings, was found by Wanger and Fischer. Dynamic programming works as an

accumulating process until it reaches the result (Michailidis and Margaritis, 2002).

SEL algorithm has O(mn) worst and average case running time. It is a search

algorithm finds all approximate occurrences of the pattern string P in the text string T.

Dynamic programming paradigm has utilized this algorithm in order to compute kn

rather than mn entries (Michailidis and Margaritis, 2002). CUTOFF algorithm found

by (Ukkonen, 1985), computes only a part of the dynamic programming array

enhancing the execution time into O (nk).

K differences problem

Dynamic

programming

Approach

Deterministic finite

automata approach

Filtering approach
Bit-parallelism

Approach

 17

New diagonal transition algorithms were developed based on computing the values in

the incremented diagonal positions in the dynamic programming array. The Galil-Park

(GP) algorithm based on diagonal transition takes O(m
2
) time for preprocessing phase

and O(nk) searching phase in the average or worse case (Michailidis and Margaritis

2002). The dynamic programming approach also adapted using "column partition

approach" in order to increase the speed of the running time, as like the Chang-Lampe

(CL) algorithm which is based on this approach (Michailidis and Margaritis, 2002).

(B) Deterministic Finite Automata Approach

The goal of this approach is to convert the general automaton into a

deterministic one to reduce the states and memory requirements. (Ukkonen, 1985)

proposed an algorithm in the kind of deterministic finite automaton (DFA), but it may

take large time and space. Sometimes it requires large time and space requirements

because of the large number of the generated states, which makes this algorithm

insufficient (Michailidis and Margaritis, 2002).

(C) Filtering Approach

It is a newer method uses dynamic programming approach to drop the areas

that cannot match in the text then apply another algorithm on it. For filtering the text a

new algorithm based on Boyer-Moore-Harspool called TUD which has been found by

Tarhio-Ukkonen (Tarhio and Ukkonen, 1993). COUNT is a new filtering algorithm

found by Navarro is based on counting the matching positions in the pattern and the

text depending on the k differences (Navarro, 2001). Pattern partition approach is a

simple filter proposed by (Wu and Manber, 1992) it can conclude that there is

matching between a substring in the text with a substring in the pattern if an

 18

occurrence with at most k differences of the pattern happen (Michailidis and

Margaritis, 2002). BYPEP is a new suggested algorithm by (Baeza-Yates, 1992),

combines the pattern partition approach with the traditional multiple string matching

searching algorithms (Michailidis and Margaritis, 2002).

(D) Bit-Parallelism Approach

This approach can be applied to the parallelization of the nondeterministic

finite automata (NFA) and the parallelization of the dynamic programming array. This

approach has been used by Wu and Manber (WM) to simulate the automaton by rows.

BYN algorithm uses the bit parallelism to parallelize the NFA. Another algorithm

called Myers (MYE) has an optimal speedup uses a bit parallel simulation of the

dynamic programming array (Michailidis and Margaritis, 2002).Table 2.2 shows the

time and space complexities of some string matching algorithms with k differences.

Table 2.2: Time and Space Complexities of String Matching with K Differences

(Michailidis 2002).

Algorithm Worst case Average case
Preprocessing

time
Extra space

SEL Mn Mn - Mn

CUTOFF Mn Kn - M

GP Kn Kn m
2
 m

2

CL Mn kn/ || M|Σ| M|Σ|

TUD mn/k
(|Σ|/|Σ|-2k)

kn(k/|Σ|+2k
2
+l/m)

(k+|Σ|)m m|Σ|

COUNT Mn N |Σ|+m |Σ|

BYPEP - n,k≤m/ log n M m
2

WM kn[m/w] kn[m/w] M|Σ|+ k[m/w] m|Σ|

BYN N N |Σ|+m min(m, |Σ|) |Σ|

MYE mn/w kn/w m|Σ| |Σ|

 19

2.6 Edit Distance Solution

 The distance between two strings x and y defined as the minimal cost of

sequence operations to transform x into y. However, there are four possible operations;

insertion, deletion, substitution or replacement and transposition. Edit distance allows

to insert, delete, substitute simple characters in both strings, there are two types of edit

distance; when the operations have different cost or depend on the involved characters

then it is called general edit distance, if the all operations cost 1 then it called simple

edit distance or edit distance (Navarro, 2001).

There exist many distance functions such as levenshtein distance, hamming distance,

episode distance and longest common subsequence distance. However, levenshtein

distance is symmetric allows a minimal number of insertions, deletions, and

substitutions to make two strings equal. The search problem in many cases called

string matching with k differences. Hamming distance also considered to be a

symmetric, search problem in many cases called string matching with k mismatches. It

allows only substitutions, which cost one, on the other hand, is episode distance,

which is considered as asymmetric, which allows only insertions that cost 1, and it

may not be possible to convert x into y, in many cases called episode matching.

Longest common subsequence distance allows insertions and deletions that have the

cost 1. This distance measures the length of the longest pairing of characters that can

be made between both strings, and this distance is symmetric (Navarro, 2001).

2.7 Related Work

In this section, we are summarizing some experiments that are related to the

longest common subsequence problem. We mentioned three kinds of experiments;

 20

enhancements done on the longest common subsequence algorithm, parallelism done

on the longest common subsequence problem and parallel with graphics hardware.

2.7.1 Enhancements on LCS

This section mentions some enhancements done to the longest common

subsequence algorithms. The enhancements are focusing to improve the time and

space complexity to the algorithm.

(A) SB_LCS (Stack Based)

While LCS algorithm takes a large space complexity which is the

multiplication of the sequence lengths, e.g. two sequences with 50kb needed memory

50kb * 50kb, which is not applicable to ordinary computers. A solution has been

proposed to reduce the memory complexity in the LCS algorithm at a forward path.

The proposed algorithm called SB_LCS (Stack Based LCS), saves the information in a

stack if it cannot be reproduced at the backward path. This method increases the input

DNA sequence several times. SB_LCS can test DNA with length up to 100 kb, and

have a time complexity same as the basic LCS algorithm O(mn)(parvinnia et al, 2008).

(B) Bit-Vector LCS Algorithm

 A proposed algorithm by (Crochemore et al, 2001) uses the bit-parallelism to

get higher speed of the LCS. The proposed algorithm determines the length p of a

longest common subsequence in O(nm/w) time complexity and O(m/w) space

complexity, where w is the number of bits in the machine word.

 21

 (C) Fast Algorithm for LCS

 The work proposed by (Hunt and Szymaski, 1977) presented an algorithm that

has O((r+n) log n) running time, where r is the total number of ordered pairs of

positions at which the two sequences match. While many algorithms are O(n
2
) worst

case time complexity, this algorithm has O(n
2

log n) worst case time complexity. This

algorithm exhibits an O(n log n) time complexity in a large number of applications

when r is expected to be close to n.

2.7.2 Parallel Algorithms for LCS

This section mentions some proposed parallel solutions done to the longest

common subsequence algorithms. Parallel algorithms are to improve the execution

time of the algorithm regardless of the time and space complexity.

(A) FAST_LCS

(Liu et al, 2006) has presented a fast parallel implementation for the LCS

problem called FAST_LCS, the main idea of this algorithm is to generate pairs of

successors through successor tables using skipping and pruning techniques. This

algorithm has two main phases, first is to search all identical character pairs and their

levels, second is to trace back from the identical character pair at the largest level to

obtain the longest common subsequence. FAST_LCS algorithm is faster than the basic

Waterman algorithm, the required memory is max{4*(n+1)+4*(m+1),L}, L here is the

number of identical character pairs , n is the length of the sequence X , m is the length

of the sequence Y, and the time complexity of the parallel implementation is

O(|LCS(X,Y)|), where |LCS(X,Y)| is the length of LCS of X,Y.

 22

(B) RLE_LCS

(Freschi and Bogliolo, 2004) have proposed a new method to solve the LCS

problem taking the advantage of RLE (run-length-encoded) to achieve better speed

and improve the parallelism. RLE is a string compression technique represents the

string as a sequence of runs instead of sequence of characters, e.g. string “acccttgggg”

can be represented as “1a,3c,2t,4g” reaching the number of elements from 10

characters to 4 runs. The proposed algorithm achieves complexity O(mN+Mn-mn),

where M and N are the lengths of the original strings and m and n is the number of

runs in their RLE representation.

(C) Cache-Oblivious LCS Using Graphics Hardware

 The work by (Kloetzli et al, 2008) have proposed a solution of the longest

common subsequence problem using the GPU, they identified a parallel memory

access pattern that divides the problem into sub-algorithms and matches them to the

multiple layers on parallel hardware, using a mix of the theoretical and experimental

data including knowledge of the specific structure of the hardware and memory of

each layer.

The developed method accelerates the cache oblivious method proposed by

(Chowdhury et al, 2006) by solving sub-problems on the GPU. The advantage of this

approach is that any algorithm that maps well onto the GPU can be used instead of

being limited to a specific algorithm. Table 2.3 shows a comparison of the time and

space complexity between the experiments mentioned in the related work.

 23

Table 2.3: Comparison of the Related Experiments

Algorithm Time Complexity Space Complexity

Stack Based LCS O(mn) Not available

Bit Vector LCS O(mn/w) O(mn/w)

Fast LCS algorithm
O((r+n) log n)

O(n
2
log n),worst case

Not available

FAST_LCS O(|LCS(x,y)|) Max{4*(n+1)+4*(m+1),L}

RLE_LCS O(mN+Mn-mn) Not available

2.8 Parallelism

 Parallelism is the method that can carry out the huge and complex tasks faster.

Another description of parallelism is the collaborative processors of computers that

can solve the computational problems. It has strong relationship with life activities,

such as parallel databases and data mining, web search engines, medical issues,

industrial technology, multimedia technologies and others (Abdulrozaq, 2009).

2.8.1 Parallelism Types

There are two well known types of parallelism, according to the way of

partitioning of data and functions.

(A) Data Decomposition

It is also called data parallelism or partitioning, it focuses on executing the

same function, distributing the data across different parallel computing nodes. I can be

static where each process has priority or dynamic where the subunits are specified to

do some processes when free.

 24

(B) Function Decomposition

Moreover, known as task parallelism, focus on executing many different

functions on multiple cores.

2.8.2 Parallel Programming Models

There are two types of models shared memory model and distributed memory

model. In the shared memory model, a group of processors are communicated with

each other sharing the same memory. In distributed memory the connected processors,

each one has its own memory that cannot be accessed by another processor. The

common parallel platforms used are POSIX Thread, OpenMP, MPI and CUDA

(Abdulrozaq, 2009).

(A) POSIX Threads (Pthread) (Portable Operating System Interface)

POSIX is a standardized programming interface to make the programming

with threads easier. Using the shared memory and divides the problem into sub-

problems. Pthread in C language has three elements: data type that refers to the thread,

thread manipulation routines that refer to the library such as creation and initialization

of the thread, the third element is the synchronization of the processors (Abdulrozaq,

2009).

(B) OpenMP

 Supports multiplatform shared memory multiprocessing in C, C++ and Fortran

on many architectures. It composed of libraries, compiler directives. OpenMP has

	OUTER COVERTitle Page
	inner Title Page
	bilal-corrected thesis 31-5-2010
	bilal-table of contents & abstract(corrected) 31-5-2010

