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ABSTRACT 

 

 Many methods and procedures have been developed and proposed to overcome the 
estimation problem in spatial modelling, for example, by defining classes of models 
called separable models and the unilateral models. A special type of spatial models that 
received much attention is the spatial unilateral autoregressive models denoted as 
AR(p1,1). Several procedures have been proposed to estimate the parameters of this 
model. Awang and Shitan (2008) used the maximum likelihood method with some 
modifications at the border in their proposed procedure but the properties and sampling 
distribution of the estimates were not discussed. Hence, in this paper, we examine the 
properties and the sampling distribution of the estimate by the method based on 
resampling, i.e. bootstrapping. 
 
 Keywords: Bootstrap, maximum likelihood, sampling distribution, spatial modelling, 
spatial unilateral autoregressive model. 
 

1. INTRODUCTION 
 

Many methods and procedures have been developed and proposed to overcome the 
estimation problem in spatial modelling, however, some of the estimators are biased or 
inconsistent and computational difficulties exist. Some effort had been made to remedy 
these problems, for example, Martin (1979, 1990 and 1996) studied extensively a class of 
models called separable models, while Tjøstheim (1978 and 1983) and Basu and Reinsel 
(1992, 1993 and 1994) considered the unilateral models. A special feature of separable 
models is that it has a product correlation structure, which in turn simplifies the 
estimation, whereas, the unilateral models can be analyzed using extension of time series 
theory in some special cases. 

 

A special type of spatial models that received much attention is the spatial unilateral 
autoregressive models denoted as AR(p1,1) and defined by  

10 1, 01 , 1 ,1 , 11 1ij i j i j p i p j ijY Y Y Yα α α− − − −= + + + +L ε          (1.1) 
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where  is an associated random variable and ijY ijε  is an independent and identically 

random variable with ( ) 0ijE ε =  and ( ) 2
ijVar ε σ=  at site labelled (i, j) and sijα  are 

parameters to be estimated for processes on rectangular grid of size m × n. Tjøstheim 
(1978) discussed the Yule-Walker method for estimating the parameters of the spatial 
unilateral autoregressive model of any orders. The method can be used to estimate the 
parameters of the AR(p1,1) model as defined in (1) above. Shitan and Brockwell (1996) 
also proposed a procedure to estimate the parameters of the model, where the approach is 
to transform the 2-dimensional spatial series to a multiple time-series, treating one of the 
coordinates as a time index and the other coordinates as a multivariate index and then 
carried out  the multivariate least squares estimation procedures. Awang and Shitan 
(2006) looked at the same problem of estimation from a different perspective where the 
approach is to use the maximum likelihood method with some modifications at the 
border. They focused on the second order model, i.e. the AR(2,1) model. The method is 
then extended for the AR(p1,1) model defined in equation (1) above (refer to Awang and 
Shitan, 2008). 

 

In this paper, we examine the properties of the estimator proposed by Awang and 
Shitan (2008) by using the resampling method, i.e. bootstrapping. It is a computer-based 
method which helps to simplify the theoretical analysis of the estimator. Bootstrap 
method is considered since it is proven useful in the analysis of time series (see Efron and 
Tibshirani, 1986).  In the next section, the maximum likelihood method as proposed by 
Awang and Shitan (2008) for estimating the parameters of the AR(p1,1) model is 
reviewed. Section 3 discusses about the bootstrap method in general, whereas in section 4 
details about the bootstrap procedure applied in this research and the results of the 
analysis are presented. Finally, in section 5, some conclusions and directions for further 
research are given. 
 
2. MAXIMUM LIKELIHOOD METHOD FOR THE SPATIAL AR(p1,1) MODEL 

 
We consider a non-separable spatial unilateral autoregressive, AR( ,1) model 

defined as, 
1p

1 1 1 110 1, 01 , 1 11 1, 1 0 , 1 , 1... ,

1, 2, ...,   and  1, 2, ..., ,
ij i j i j i j p i p j p i p j ijY Y Y Y Y Y

i m j n

α α α α α− − − − − − −= + + + + + +

= =

ε

Y Y Y Y Y Y Y Y Y

 

 (2.1) 
where {Yij} is a sequence of two-dimensional random variable with zero mean and the 
errors εij are assumed to be normally distributed with mean 0 and common variance σ2.  
 

By assuming that the unobserved values to be zeroes, and letting the observation 
vector, 11 12 1 21 22 2 1 2( , , ..., , , , ..., , ..., , , ..., )n n m m mn ′=Y 2( , , ..., )′= 1 mY Y Y ,  
where 1 2( , , ..., ) ,i i i inY Y Y ′=Y   and the error vector, 1, 2, ...,i = m

11 12 1 21 22 2 1 2( , , ..., , , , ..., , ..., , , ..., )n n m m mnε ε ε ε ε ε ε ε ε ′=ε ( ... )′= 1 2 mε , ε , , ε , where 

1 2( , , ..., )i i inε ε ε ′=iε , 1, 2, ...,i m=  we can rewrite equation (2.1) in the matrix form as, 
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1 1

0

1 02 2 2

2 1 03 3 3

1 2 1 0p pm m m−

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛
⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜
⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜
⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜= +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜
⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜
⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝⎝ ⎠
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⎟
⎟
⎟
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,  (2.2) 
where jΦ s are n × n matrices defined as, 

01

01
0

01

01

0 0 0 0 0
0 0 0 0

0 0 0
0 0 0 0

0 0 0 0

α
α

α

α

⎛ ⎞
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⎜ ⎟
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= ⎜ ⎟
⎜ ⎟
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⎝ ⎠
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0

0
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j
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L

L
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M M O O O M

L

for j = 1, 2, …, . 1p
 

Equation (2.2) can be written more compactly as, 
,= +Y ΦY ε         (2.3) 

where  is N × N matrix, N = m×n. It is clear that Φ  is a lower triangular matrix with 
zeroes on the main diagonal. Then, if we decompose Φ  into + 1 matrices such that it 
isolates different parameters, we obtain  

Φ
12 p

1 1 1 110 10 01 01 11 11 0 0 1 1( ... p p p p ) ,α α α α α= + + + + +Y W W W W W Y ε+    (2.4) 

where, 
1 1 1 110 10 01 01 11 11 0 0 1 1... p p p pα α α α α= + + + + +Φ W W W W W  and 

jkW , j = 1, 2, …, ; k = 0, 1  are the N × N lower triangular weight matrices with 
elements ones and zeros. 

1p

Equation (2.4) can then be written as, 

( )1 1 1 1
1

10 10 01 01 11 11 0 0 1 1( ... )p p p pα α α α α −= − + + + + +Y I W W W W W ε    (2.5) 

or 

( ) 1−= −Y I Φ ε

1−

         (2.6) 

where I is an N × N identity matrix. Therefore, the covariance matrix of , V is given 
as, 

Y

( ) ( )12 .σ − ′⎡ ⎤= − −⎢ ⎥⎣ ⎦
V I Φ I Φ       (2.7) 

The square root of the determinant of V is given as, 

( ) / 21/ 2 2 ( )
N

σ −= −V I Φ 1 .       (2.8) 
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Since  is the lower triangular matrix with diagonal elements 1, ( −I Φ) 1( )− 1− =I Φ . 

This leads to 

( ) / 21/ 2 2 .
N

σ=V         (2.9) 

Therefore, the likelihood function l  is given as, 
1

1/ 2/ 2

1/ 2 2 / 2 1 1
2

/ 2 2 / 2
2

1 1exp
2(2 )

1(2 ) ( ) exp ( ) ( )
2

1(2 ) ( ) exp ( )( ) .
2

N

N N

N N

l
π

π σ
σ

π σ
σ

−

−− − − −

− −

⎧ ⎫′= −⎨ ⎬
⎩ ⎭

⎧ ⎫⎡ ⎤′= − − −⎨ ⎬⎣ ⎦⎩ ⎭
⎧ ⎫′= − − −⎨ ⎬
⎩ ⎭

Y V Y
V

Y I Φ I Φ Y

Y I Φ I Φ Y

 

Thus we obtain the log likelihood, L as 
2

2
1ln(2 ) ln( ) ( )( ) .

2 2 2
N NL π σ

σ
′ ′= − − − − −Y I Φ I Φ Y   (2.10) 

 
The partial derivative of L with respect to jkα ,  j = 1, 2, …, 1p ; k = 0, 1 is given by 

2
1

jk jk jk jk rs rs jk
jk r j s k

L α α
α σ ∀ ≠ ∀ ≠

⎡ ⎤∂ ′ ′ ′ ′ ′ ′⎢ ⎥= − − + +
∂ ⎢ ⎥⎣ ⎦

∑ ∑Y W Y Y W W Y Y W W Y  

(2.11) 
for j = 1, 2, …, 5. 
 
Equating (2.11) to zero leads to 

jk jk jk rs rs jk jk
r j s k

α α
∀ ≠ ∀ ≠

⎡ ⎤
′ ′ ′ ′⎢ ⎥+ =

⎢ ⎥⎣ ⎦
∑ ∑Y W W Y Y W W Y Y W Y′ ′ .  (2.12) 

 
Therefore, denoting i i=Z W Y , the maximum likelihood for jkα s can be obtained by 
solving the equation 
 

1 1

1 1

11 1 1 1 1 1

11 1 1 1 1 1
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p p
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pp p p p p p
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α

α

α
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⎜ ⎟ ⎜ ⎟′ ′ ′ ′ ′⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ =⎜ ⎟ ⎜ ⎟
⎜ ⎟′ ′ ′ ′ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟′ ′ ′ ′ ⎝ ⎠⎝ ⎠

Z Z Z Z Z Z Z Z Y Z
Z Z Z Z Z Z Z Z Y Z

Z Z Z Z Z Z Z Z

Z Z Z Z Z Z Z Z

L

L

M MM M L M M

L

L

1

1

0

1

p

p

⎛ ⎞
⎜ ⎟
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⎜ ⎟
⎜ ⎟

′⎜ ⎟
⎜ ⎟⎜ ⎟′⎝ ⎠

Y Z

Y Z

 , 

 



5 Bootstrap Technique for Examining the Properties of the ML Estimator 

or .

 (2.13) 

1 1

1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1
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⎜ ⎟⎜ ⎟ ′ ′ ′ ′ ′⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟ = ⎜ ⎟⎜ ⎟
⎜ ⎟′ ′ ′ ′⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟′ ′ ′ ′⎝ ⎠ ⎝ ⎠
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3. BOOTSTRAP 
 

 The bootstrap is a computer-intensive method and it is based on resampling the data. 
The primary objective of bootstrapping is to obtain the properties of the sampling 
distribution of a a random variable without assuming any distributional function of the 
random variable. For independent data, the classical bootstrap is done by resampling with 
replacement the data of size n, 1, 2 , ..., nx x x . In another words, a random sample of size n 
is drawn and here, we assign a probability mass of 1/n on 1, 2 , ..., nx x x . From this random 
sample, the estimator of interest is computed. These steps are repeted B times and from 
these B estimates, the standard deviation or other estimator’s accuracy are calculated.  
 
 For dependent data or data with more complicated structure, the procedure above 
cannot be done in a similar manner. For spatial data, two bootstrap methods may be 
applied. The first method is the block bootstrap where the data is divided into congruent 
subregions and the resampling with replacement is done for these subregions. The second 
method is based on resampling with replacement the residuals, instead of the data. This 
method is adopted in our study and details about the procedure are presented in the next 
section. 
 
 

4. METHODOLOGY AND RESULTS 
 

 Having obtained the estimator given in equation (2.13), the question is, how accurate  
it is as an estimator for α? In this research, we choose the standard error of the estimator 
as the measure of the estimator’s accuracy and we choose the bootstrapping the residual 
method as a tool to determine the value of standard deviation.  We focus our analysis on 
the first order model, AR(1,1) defined as  

10 1, 01 , 1 11 1, 1ij i j i j i jY Y Y Yα α α− − − −= + + .    (4.1) 

 
 The grid size, m×n and the value of parameters are the first to be determined. 
Following the previous research, we choose the grid sizes of 10×6, 8×8, 10×8, 15×6, 
10×10, 20×5, 20×10, 15×15, 20×15, 20×16, 30×12, 25×15 and 20×20. Three set of α’s 
values are considered, α = (α10 = 0.3, α01 = 0.2, α11 = 0.2), α = (α10 = 0.5, α01 = 0.3,  α11 = 
0.1) and α = (α10 = 0.8, α01 = 0.7, α11 = −0.6). The series { }ijε , i = 1, 2, ..., m and j = 1, 2, 
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..., n is then generated from independent standard normal with mean 0 and variance 1. 
The border values of { }ijY is then determined by assuming that the cells bordering the 

lattice have fixed values of zeros. Then the remaining values of { }ijY are obtained 

recursively from equation (4.1). The estimates of the parameters are then obtained by 
equation (2.13). From these estimates, the estimate of residuals { }îjε  is computed by 

, where ˆ
îj ij ijY Yε = − 10 1, 01 , 1 11 1, 1

ˆ ˆ ˆ ˆij i j i j i jY Y Y Yα α α− − −= + + − . A bootstrap sample  is 

created from

*
ijY⎧ ⎫

⎨ ⎬
⎩ ⎭

*
ijε⎧ ⎫

⎨ ⎬
⎩ ⎭

, where 
*

ijε⎧ ⎫
⎨ ⎬
⎩ ⎭

is obtained by sampling with replacement from the 

residual { }îjε . Then, the parameters are reestimated from 
*
ijY⎧ ⎫

⎨ ⎬
⎩ ⎭

 by the same equation 

(equation 2.13). The estimate is denoted as . The steps above are 

repeated B times (B = 100, 200 and 500). Finally, the standard deviation of the estimate is 
calculated by 

10 01 11, ,α α α α
∗ ∗ ∗ ∗⎛= ⎜

⎝ ⎠

⎞
⎟

_

2
ˆ

( )
1s B

∗ ∗

α
α−α= −

∑ . 

 
 

The results of the analysis are presented in Table 1. It displays the value of estimates 
together with its standard deviation (in bracket, B =100, 200 and 500). We notice that as 
the grid size increases, the standard deviation of the estimates decreases. For example, for 
α = (α10 = 0.3, α01 = 0.2, α11 = 0.2) and B = 100, the standard error for  10α̂  is 0.1440 for 
the grid size 10×6, but it reduces to 0.0518 when the grid size is 20×20. From the table we 
may observe that the number of replication (B) does not affecting the value of the 
standard deviations. As the number of replication increases, the improvement is very 
small and in many cases, we may conclude that it does not improve at all. Also, we may 
notice that the standard deviations (as well as the absolute biases) are smaller for α = (α10 
= 0.8, α01 = 0.7, α11 = −0.6) compared to the other two set of α values. Another aspect 
that we may observe is the shape of the grid. Generally, the square grid gives smaller 
standard deviation (and the absolute bias) than the rectangle grid for the same grid size. 
For instance, for α = (α10 = 0.3, α01 = 0.2, α11 = 0.2) and B = 200, the standard deviation 
is (0.1041, 0.0952, 0.0.1121) for 10×10 grid but for 20×5, the standard deviation is 
(0.1060, 0.0957, 0.1235). To see the results clearly, we plot the graph (see Figure 1) of 
grid size versus the value of standard deviation for α = (α10 = 0.8, α01 = 0.7, α11 = −0.6). 
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Table 1: The maximum likelihood estimates and its standard deviation (in bracket: B 
= 100, 200 and 500) for three set of α  values. 

  
a) α10 = 0.3, α01 = 0.2, α11 = 0.2 

Grid size 
10α̂  01α̂  11α̂  

10 × 6 0.1517  
(0.1440, 0.1455, 0.1342) 

0.1143  
(0.1216, 0.1310, 0.1325) 

0.2781  
(0.1477, 0.1477, 0.1477) 

8 × 8 0.2946  
(0.1242, 0.1314, 0.1224) 

0.0259  
(0.1352, 0.1315, 0.1270) 

− 0.0115  
(0.1462, 0.1337, 0.1458) 

10 × 8 0.2528  
(0.1013, 0.1151, 0.1135) 

0.1354  
(0.1178,0.1130, 0.1143) 

0.2198  
(0.1213, 0.1217, 0.1294) 

15 × 6 0.1599  
(0.1139, 0.1202, 0.1105) 

0.1343  
(0.1182, 0.1078, 0.1048) 

0.2341  
(0.1202, 0.1126, 0.1230) 

10 × 10 0.2076 
(0.0973, 0.1041, 0.0989) 

0.1412 
(0.1028, 0.0952, 0.1009) 

0.1869 
(0.1070, 0.1121, 0.1087) 

20 × 5 0.1057  
(0.1172, 0.1060, 0.1061) 

0.1043  
(0.0995, 0.0957, 0.1017) 

0.0652  
(0.1223, 0.1235, 0.1163) 

20 × 10 0.1340 
(0.0817, 0.0800, 0.0747) 

0.1362 
(0.0710, 0.0682, 0.0652) 

0.1164 
(0.0736, 0.0770, 0.0764) 

15 × 15 0.2336 
(0.0701, 0.0734, 0.0678) 

0.1754 
(0.0693, 0.0591, 0.0631) 

0.2851 
(0.0698, 0.0665, 0.0704) 

20 × 15 0.2127 
(0.0600, 0.0558, 0.0583) 

0.1264 
(0.0529, 0.0586, 0.0601) 

0.1373 
(0.0679, 0.0655, 0.0631) 

20 × 16 0.2114  
(0.0562, 0.0530, 0.0528) 

0.1133  
(0.0490, 0.0521, 0.0561) 

0.1483  
(0.0585, 0.0594, 0.0579) 

30 × 12 0.2942  
(0.0468, 0.0500, 0.0498) 

0.1278  
(0.0552, 0.0507, 0.0525) 

0.2873  
(0.0569, 0.0510, 0.0532) 

25 × 15 0.2769  
(0.0497, 0.0457, 0.0499) 

0.1355 
 (0.0520, 0.0542, 0.0510) 

0.2310  
(0.0573, 0.0564, 0.0513) 

20 × 20 0.2807  
(0.0518, 0.0493, 0.0481) 

0.1355 
 (0.0489, 0.0480, 0.0504) 

0.1660  
(0.0543, 0.0554, 0.0520) 

  
b) α10 = 0.5, α01 = 0.3,  α11 = 0.1 

Grid size 
10α̂  01α̂  11α̂  

10 × 6 0.3456  
(0.1410, 0.1428, 0.1297) 

0.2099  
(0.1202, 0.1274, 0.1315) 

0.2043 
(0.1432, 0.1646, 0.1459) 

8 × 8 0.5073  
(0.1192, 0.1245, 0.1137) 

0.1380  
(0.1380, 0.1312, 0.1273) 

− 0.0763  
(0.1574, 0.1316, 0.1453) 

10 × 8 0.4142 
 (0.0940, 0.1092, 0.1076) 

0.2482 
(0.1179, 0.1114, 0.1131) 

0.1345  
(0.1186, 0.1222, 0.1292) 

15 × 6 0.3478  
(0.1107, 0.1162, 0.1060) 

0.2280  
(0.1162, 0.1068, 0.1040) 

0.1540  
(0.1214, 0.1123, 0.1257) 

10 × 10 0.3938 
(0.0917, 0.0991, 0.0932) 

0.2413 
(0.1011, 0.0927, 0.0998) 

0.0897 
(0.1073, 0.1136, 0.1092) 

20 × 5 0.3098  
(0.1106, 0.1033, 0.1013) 

0.2201 
 (0.0967, 0.0919, 0.1012) 

0.0280  
(0.1167, 0.1200, 0.1144) 

20 × 10 0.3443 
(0.0768, 0.0749, 0.0728) 

0.2437 
(0.0685, 0.0656, 0.0631)  

0.0648 
(0.0751, 0.0760, 0.0759) 

15 × 15 0.4223 
(0.0661, 0.0679, 0.0629) 

0.2683 
(0.0677, 0.0557, 0.0612) 

0.2137 
(0.0686, 0.0696, 0.0708) 

20 × 15 0.4179 
(0.0530, 0.0515, 0.0527) 

0.2242 
(0.0512, 0.0572, 0.0587) 

0.0780 
(0.0677, 0.0676, 0.0638) 
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20 × 16 0.4177  
(0.0525, 0.0490, 0.0487) 

0.2112  
(0.0494, 0.0514, 0.0547) 

0.0885  
(0.0629, 0.0611, 0.0582) 

30 × 12 0.5101  
(0.0429, 0.0443, 0.0443) 

0.2155  
(0.0546, 0.0504, 0.0505) 

0.1907  
(0.0574, 0.0508, 0.0552) 

25 × 15 0.4658  
(0.0486, 0.0417, 0.0455) 

0.2361  
(0.0519, 0.0525, 0.0497) 

0.1518  
(0.0591, 0.0570, 0.0512) 

20 × 20 0.4647  
(0.0484, 0.0417, 0.0446) 

0.2361  
(0.0487, 0.0465, 0.0494) 

0.0920  
(0.0562, 0.0584, 0.538) 

  
c) α10 = 0.8, α01 = 0.7,  α11 = − 0.6 

Grid size 
10α̂  01α̂  11α̂  

10 × 6 0.6510  
(0.1265, 0.1306, 0.1208) 

0.6781  
(0.1062, 0.1075, 0.1105) 

− 0.5207  
(0.1329, 0.1438, 0.1441) 

8 × 8 0.8730  
(0.1000, 0.0942, 0.0818) 

0.6464  
(0.1224, 0.1067, 0.1105) 

− 0.7538  
(0.1580, 0.1230, 0.1315) 

10 × 8 0.7179  
(0.0787, 0.0956, 0.0946) 

0.6949  
(0.1008, 0.0933, 0.0933) 

− 0.5737  
(0.1040, 0.1070, 0.1165) 

15 × 6 0.6853  
(0.0964, 0.1043, 0.0908) 

0.6997  
(0.0906, 0.0856, 0.0856) 

− 0.5635  
(0.1121, 0.1045, 0.1130) 

10 × 10 0.7078 
(0.0753, 0.0820, 0.0757) 

0.6762 
(0.0873, 0.0749, 0.0857) 

− 0.5908 
(0.0980, 0.1075, 0.0974) 

20 × 5 0.6138  
(0.0920, 0.0942, 0.0915) 

0.6617  
(0.0798, 0.0703, 0.0831) 

− 0.5576  
(0.1055, 0.1049, 0.1048) 

20 × 10 0.6896 
(0.0599, 0.0607, 0.0611) 

0.6241 
(0.0567, 0.0531, 0.0544) 

− 0.5611 
(0.0668, 0.0646, 0.0661) 

15 × 15 0.7311 
(0.0559, 0.0554, 0.0532) 

0.6774 
(0.0541, 0.0472, 0.0530) 

− 0.5136 
(0.0586, 0.0613, 0.0652) 

20 × 15 0.7532 
(0.0430, 0.0385, 0.0399) 

0.6123 
(0.0413, 0.0461, 0.0472) 

− 0.5618 
(0.0557, 0.0560, 0.0538) 

20 × 16 0.7453  
(0.0394, 0.0396, 0.0370) 

0.6169  
(0.0449, 0.0477, 0.0429) 

− 0.5500  
(0.0564, 0.0576, 0.0506) 

30 × 12 0.8121  
(0.0353, 0.0340, 0.0344) 

0.6638  
(0.0419, 0.0443, 0.0419) 

− 0.5561 
 (0.0490, 0.0467, 0.0492) 

25 × 15 0.7676  
(0.0402, 0.0402, 0.0381) 

0.6492  
(0.0407, 0.0406, 0.0413) 

− 0.5380  
(0.0510, 0.0466, 0.0439) 

20 × 20 0.7681  
(0.0383, 0.0354, 0.0350) 

0.6477  
(0.0378, 0.0373, 0.0407) 

− 0.5612  
(0.0430, 0.0480, 0.0469) 
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Figure1 : Grid size vs. Standard deviation forα = (α10 = 0.8, α01 = 0.7, α11 = −0.6) – (♦: B = 
100, : B = 200, •: B = 500) 

 
5. COMMENTS AND CONCLUSION 

 

 In this analysis, we applied the bootstrap method to examining the properties of the 
maximum likehood estimator as proposed by Awang and Shitan (2008). The method was 
based on resampling with replacement the residual of the AR(1,1) model. The standard 
deviation of the estimator was choosed as the measure for estimator’s accuracy. Three set 
of α values and nine grid sizes were considered. The numbers of the replication were 
100, 200 and 500. The results showed that as the grid size increased, the standard 
deviation of the estimates decreased and the size of replication did not give huge 
differences for the value of the standard deviations.  
 
 From this analysis, we may conclude that bootstrap can be considered as a tool to 
obtain the properties of sampling distribution of a random variable when the traditional 
statistical analysis are complicated. Further research may take into cosideration the block 
bootstrap and comparison can be done as which method of bootstraping is better for 
examining the properties of the estimator. The research may also be extended to higher 
order model. 
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