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Abstract — This paper presents some of the methods under 
subspace-based family to perform closed-loop system 
identification. Three methods have been observed; those are 
the ORT method, MOESP method and CCA method. The 
performance of these models is evaluated by identifying the 
same experimental systems. Three performance evaluation 
tests according to mean square errors, variance accounted for 
and best fit are used to verify the accuracy of the models to 
identify the given systems. The noise model is also introduced 
in order to see whether the developed model can improve the 
overall identification performance or not. Based on the 
simulation results, some justifications are made as to conclude 
the efficacy of the observed models to identify a closed-loop 
data system.   

Keywords- subspace method; closed-loop system; system 
identification 

I. INTRODUCTION  
Subspace identification methods (SIMs) has proven to 

be such a valuable tool in identification area since past few 
years. This interest is due to the ability of the subspace 
approach in providing accurate state-space models for 
multivariable linear systems directly from input-output data 
[1,2,3,4,5]. Recently, system identification is focused on 
closed-loop system applications since there are many cases 
where open-loop experiments are impossible due to safety 
and stability consideration [2,6,7]. Closed-loop experiments 
are also necessary if the open-loop plant is unstable, or the 
feedback is an inherent mechanism of the systems. At the 
early development of subspace method, this approach seems 
to provide bias when implemented on a system that works 
under closed-loop operation. This is due to the correlation 
between disturbances and the control signal, induced by 
loop, in which the ordinary subspace methods failed to 
solve. However, with special treatment, now the subspace 
methods are also able to identify the closed-loop system 
(See for some published examples in [6,7,8,9,10]). 

There are three common approaches to closed-loop 
identification: (i) direct approach, (ii) indirect approach and 
(iii) joint input-output approach. These approaches have 
their own advantages and disadvantages (Details 
explanation can be referred in [2,11]). The direct approach 
usually provides biased estimates unless the noise effect is 

not so significant and can be neglected. However, this is not 
always true in practical applications. On the other hand, the 
indirect approach requires the information about the 
controller transfer function is known. The advantage of the 
joint input-output approach is that the knowledge of the 
controller is not required. However, the major drawback is 
that the identified model has an order which is equal to the 
sum of the plant and controller order. Therefore, model 
reduction step is required in the procedure.  

Instrumental variable (IV) techniques are usually 
adopted in subspace approaches to identify plant models of 
systems operating in closed-loop. The IV are mainly used as 
an instrument to remove the effect of the noise term, since 
the geometrical properties of the ordinary subspace equation 
are lost in the presence of noise term [6,12,13].  

In this paper, three subspace approaches are observed in 
order to perform closed-loop system identification. These 
three approaches are the ORT (Orthogonal Decomposition) 
method, MOESP (Multivariable Output Error State Space) 
method and CCA (Canonical Correlation Analysis) method. 
Some of the published paper in relation to these three 
approaches can be referred for example in [7,9,14,15,16,17].  

The objective of this paper is to analyse the performance 
of the models in identifying same experimental data system. 
The accuracy of those three models will be discussed based 
on results from the evaluation tests. Three tests are used; the 
mean square errors (MSE) test, the variance accounted for 
(VAF) test and the best fit (BF) test. In addition, the noise 
model is also introduced as to see whether the developed 
models can improve the overall identification performance 
or not. The significant contribution of this paper is the 
analyses that have been done for three different approaches 
of the same subspace family, in terms of method differences 
and performance demonstrated during the simulation and 
evaluation procedure. In addition, the introduction of noise 
model and pre-filtering process can be considered as an 
improvised approach for the existing observed methods. 
Having few differences in terms of computation of system 
matrices for estimation, some justifications can be made as 
to investigate any significant improvement with respect to 
performance of those models.  

This paper is organized as follows. Closed-loop 
framework will be shown in Section II. Model description 
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of closed-loop system is elaborated in detail during this 
section. In Section III, problem formulation to identify 
closed-loop system will be explained and notations used in 
subspace identification process will be shown. Detail 
description on subspace methods used in this performance 
measure is discussed in Section IV. As to compare the 
performance on those three approaches in obtaining the state 
space model, simulation example is demonstrated in Section 
V. Results from evaluation tests are also tabulated in a table. 
Discussion based on the observation over the results 
obtained will be clearly justified. Finally, Section VI 
concludes the paper.    

 

II. A CLOSED-LOOP FRAMEWORK 
The experimental setup for the closed-loop system is 

shown in Fig. 1. The identification setup considered in this 
paper is organized as follows: 

x1nuu∈ , x1yny ∈ ,
x1ynr ∈  and x1un

sr ∈  are the input, 
output, reference and set point signals generated by the 
closed-loop configuration in Figure 1. The controller output 
is denoted by x1un

cu ∈  while x1yne∈  is unobserved, 
zero mean, white noise vector sequence. It is assumed, 
without loss of generality, that the set point, 0sr = while an 
excitation signal is added to the controller output, via r . 

 

 
Figure 1. Closed-loop system setup 

The signals are connected through the following state 
space representations. 

• The plant equations: 
( 1) ( ) ( ) ( )x t Ax t Bu t Ke t+ = + +   (1) 
( ) ( ) ( ) ( )y t Cx t Du t e t= + +   (2) 

• The controller equations are defined as 
( 1) ( ) ( )c c c cx t A x t B y t+ = −   (3) 

( ) ( ) ( )c c c cu t C x t D y t= −   (4) 

where ( ) ( ) ( )cu t r t u t= + . We assume that the closed-loop 
identification problem is well posed, in a sense that the 
output ( )y t is uniquely determined by the states of the plant, 
by the controller and by the disturbances and reference 

input. This generic condition is satisfied when ( )
yn cI DD+  

is non-singular [6,7]. 
 

III. PROBLEM AND NOTATIONS 

A. Problem formulation 
The problem treated in this paper can now be stated as 
 
Given: 

• Input, output and reference data: ( )u t , ( )y t  and 
( )r t , 0,1, ..., 2 2t N k= + −  are given with number 

of data, N → ∞ and k n>  where k is number of 
block rows of Hankel matrix and n is order of the 
system. 

Find: 
• The system matrices , , ,A B C D up to within a 

similarity transformation. 

B. Notations 
Some system related matrices need to be defined first, 

before presenting the solution to this problem. The usual 
block Hankel matrix of past input is defined as 

 
(0) (1) ( 1)
(1) (2) ( )

( 1) ( ) ( 2)

p

u u u N
u u u N

U

u k u k u N k

−

=

− + −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                (5) 

 
and future input as 
 

( ) ( 1) ( 1)
( 1) ( 2) ( )

(2 1) (2 ) ( 2 2)

f

u k u k u k N
u k u k u k N

U

u k u k u N k

+ + −
+ + +

=

− + −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  (6) 

where x, km N
p fU U ∈R . Similarly, we define past and 

future output x, kp N
p fY Y ∈R  respectively. Therefore, the 

constructed input and output are given as 

 p

f

U
U

U
=
⎡ ⎤
⎢ ⎥
⎣ ⎦

,                 p

f

Y
Y

Y
=
⎡ ⎤
⎢ ⎥
⎣ ⎦

   (7) 

The extended observability matrix of order i is defined as 

1( ) ( )
TT T i T

i
C CA CA −⎡ ⎤
⎢ ⎥⎣ ⎦Γ =   (8) 

and the block lower triangular Toeplitz matrix as 
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2 3

0 0
0

i

i i

D
CB D

CA B CA B D− −

Η =

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

   (9) 

 

IV. SUBSPACE IDENTIFICATION METHODS 
The subspace identification based on ORT, MOESP and 

CCA methods are observed in this paper. The algorithms are 
developed for both deterministic and stochastic components. 
Details regarding this algorithm can be referred in [2,5,15]. 
The main idea for models based on ORT and MOESP 
methods is to reconstruct the past input and past output data 
as instrumental variables. Then, the past input-output and 
future input-output data are projected onto the space of 
exogenous inputs by using the Linear Quadratic (LQ) 
decomposition in order to obtain their deterministic 
components. 

In comparison between ORT and MOESP methods, 
differences in their developed algorithms can be stated as 
follows: 
• Even though both methods use the same LQ 

decomposition, the way of utilizing the L factors is 
different. The ORT [2] utilizes the 42L  to obtain 

[ ]42 2
1 1

lim lim T
i fN N

L X Q
N N→∞ →∞

Γ ⎡ ⎤= ⎣ ⎦  

whereas the MOESP [5] method utilizes [ 42 43L L ] to 
obtain 

[ ]42 43 2 3
1 1

lim lim T T
i fN N
XL L Q Q

N N→∞ →∞
Γ ⎡ ⎤= ⎣ ⎦   

• Due to the above mentioned factorization, the way of 
obtaining the extended observability matrix is also 
different. Hence, the computation of A and C matrix is 
also treated differently.   

• In stochastic algorithm formulation the difference can 
be observed during the computation of residuals, 
( ) & w vρ ρ . The ORT computes the residuals using the 
following equation 

1

|

i s w
i

s vi i

AX
X

CY

+⎡ ⎤ ρ⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ρ⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦

   (10)  

whereas the MOESP computes the residuals using the 
following equation 

ii s s w

yu s s v

XX A B
LL C D
⎡ ⎤ ρ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= +⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ρ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
   (11) 

uL is row in L corresponding to  the ,1,i NU and yL is 

row corresponding to ,1,i NY .  
 

Both subspace methods are then applied to deterministic 
components like the direct approach in order to derive state-
space models of the plant. In the other hand, the stochastic 
part will derive Kalman gain to develop a pre-filter 
computed as follows. 

1 1( ) ( )L z C zI A K I− −= − +    (12) 
The noise model is obtained from developed pre-filter and 
reconstructed input. The input-output data will be filtered by 
the noise model and the new instruments are generated 
based on the estimated system matrices from the 
deterministic part of both methods. By having the new 
instruments and the filtered data, the IV estimate of the 
process is finally determined. 

For model based on CCA approach, a stochastic 
component is directly used to determine an estimation of 
system matrices of the process. In terms of LQ 
decomposition, this approach is slightly different from the 
previous two methods. Here, the instrumental variable is 
produced in the dimension of the joint process of past input 
output data. [ ; ]p p pW U Y= . Hence, the 3x3 matrix is used 
instead of 4x4 as in ORT and MOESP methods. The 
remarkable difference is observed in the use of the 
normalized SVD of the conditional covariance matrix. 
Details regarding this algorithm can be referred in [2]. 

In summary the identification procedure that runs using 
these methods goes as follows. 
Let { , }u y  the input-output data of the system (1)-(2) and 

{ , }u y  the reconstructed input-output sequence from the 
following simulation of the closed-loop system 

( 1) ( ) ( )x t Ax t Bu t+ = +     (13) 

( ) ( ) ( )y t Cx t Du t= +     (14) 

( 1) ( ) ( )c c c cx t A x t B y t+ = −    (15) 

( ) ( ) ( )c c c cu t C x t D y t= −     (16) 
 

Step 1: Construct data matrices of  
, , ,p f p fU U Y Y for ORT and MOESP methods 

, ,f f pU Y W for CCA method 
Step 2: Perform LQ factorization. 
Step 3: Perform SVD to the working matrix 

ORT: 42[ ]L  
MOESP: [ 42 43L L ] 

CCA: 32 22*[ * ]*Lfi L L Lpi′ ′  
(Lfi and Lpi denote some other matrix 
multiplication as can be referred in [2]) 

Step 4: 
 

Solve the stochastic components and compute the 
residuals and the estimate of covariance matrices 
based on Equation (10) for ORT and Equation 
(11) for MOESP and CCA.  
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Step 5: Determine the system matrices ( ˆ ˆˆ ˆ ˆ, , , ,A B C D K ). 
Step 6: Compute noise model based on Equation (12). 
Step 7: Generate new instruments and filter the I/O data 

with noise model. 
Step 8: Using information in Step 7, repeat Step 1 – 4. 
Step 9: Generate the predicted output. 
 

V. SIMULATION EXAMPLE 

A. Example 1- Heating System 
The first example is a heating system data taken from 

[18]. The physical apparatus consists of a 300 Watt Halogen 
lamp suspended several centimeters above a thin steel plate. 
The purpose is to model the change in temperature of the 
metal plate for changes in lamp power. The system input 
was the driving voltage for the lamp. The output consists of 
the measurements taken by a thermocouple mounted on the 
back of the plate. 

The data obtained from this plant is used to evaluate the 
performance of three observed methods. Length of data 
sequence used to estimate the process model is 800N = . A 
signal to noise ratio is 

SNR 10log( ) 37.9968dy

e

P
P

= =  dB  (17)  

where 
dyP denotes the signal power and eP is the noise 

power. 
The input and output of heating data system is shown as 

in Fig. 2. The graph of superimpose between simulated true 
system data and simulated output obtained from ORT, 
MOESP and CCA models are shown in Fig.3. 

B. Example 2- Electrical Servo Motor 
Second example is an electrical servo motor system 

which has been used as in [6]. The plant corresponds to a 
discrete-time model of a laboratory plant set-up of two 
circular plates rotated by an electrical servo motor with 
flexible shafts. The plant has a state-space description as in 
(1)-(2) with  

4.40 1 0 0 0
8.09 0 1 0 0

7.83 0 0 1 0
4.00 0 0 0 1

0.86 0 0 0 0

A

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥=
⎢ ⎥
−⎢ ⎥
⎢ ⎥⎣ ⎦

   

0.00098
0.01299
0.01859
0.00330
0.00002

B

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

 

[ ]1 0 0 0 0C =  
0D = and ke is a Gaussian white noise sequence. The plant 

has one integrator, and therefore is only marginally stable. 
The controller has a state-space description as in (3)-(4) 
with 

        

2.65 3.11 1.75 0.39
1 0 0 0
0 1 0 0
0 0 1 0

cA

− −⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

,  

1
0
0
0

cB

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

        [ ]0.4135 0.8629 0.7625 0.2521cC = − −  
        0.61cD =  
  

 
Figure 2. Input and output data of example 1 with noise 

 

 
Figure 3. Superimpose between simulated true data system of example 1 
and simulated output obtained from estimated system matrices of ORT, 

MOESP and CCA methods. 
 

The excitation signal kr  is a Gaussian white noise 
sequence with variance 1. The data obtained from this plant 
is used to evaluate the performance of three observed 
methods. Length of data sequence used to estimate the 
model is 1000N = .  

The signal to noise ratio of this data is 14.8179 dB. The 
input and output of electrical servo motor data is shown as 
in Fig. 4. The graph of superimpose between simulated true 
system data and simulated output obtained from ORT, 
MOESP and CCA models are shown in Fig.5. 
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Figure 4. Input and output data of example 2 with noise 

 

 
Figure 5. Superimpose between simulated true data system of example 2 
and simulated output obtained from estimated system matrices of ORT, 

MOESP and CCA methods. 

 
The following test will be used for model evaluation 

• Mean Squares Error (MSE) Test 

2

1

1MSE | ( ) ( ) |
N

i

y t y t
N −

= −∑   (18) 

where ( )y t =measured output; ( )y t =estimated output  
• Best Fit (BF) 

| |BF (1 )x100%
| |

y y
y y
−

= −
−

   (19) 

where ( )y t =measured output; ( )y t =estimated output; 

( )y t =mean output 
• Variance Accounted For (VAF) 

VAR( ( ) ( ))VAF (1 )x100%
VAR( ( ))

y t y t
y t
−

= −  (20) 

where ( )y t =measured output; ( )y t =estimated output  
 

Table I and Table II tabulate the results obtained from 
the evaluation tests of example 1 and example 2 
respectively.  

TABLE I.  VALIDATION TEST RESULTS OF EXAMPLE 1 

Type Output MSE BF VAF 

ORT Without noise model  1.0500x103 3.5587 94.2576 

   With noise model 15.0948 88.4225 98.9213 

MOESP Without noise model 382.2326 41.7407 98.3505 

   With noise model 21.2063 86.2775 99.2504 

CCA Without noise model 1.1908 96.7483 99.8943 

   With noise model NO NO NO 
 
 

TABLE II.  VALIDATION TEST RESULTS OF EXAMPLE 2 

Type Output MSE BF VAF 

ORT Without noise model  15.4028 97.0117 99.9257 

   With noise model 5.2023 98.2633 99.9714 

MOESP Without noise model 60.4090 94.0820 99.8937 

   With noise model 9.7487 97.6226 99.9631 

CCA Without noise model 6.1440 98.1127 99.9766 

   With noise model NO NO NO 

 
 
Based on Table I and Table II, the following justifications 
are made: 

• In general, these three methods are able to identify 
the corrupted closed-loop data system successfully.  

• The performance of ORT and MOESP approach is 
improved when the noise model is introduced 
during the identification process.  

• However, the performance given by CCA is good 
even though without the noise model. 

• In consideration on stochastic observation only 
(without considering the adoption of the noise 
model), it shows that the CCA method gives the 
best performance. 

• In terms of computational load and computational 
time, the CCA is also chosen as the best model 
since the identification process already completed 
at step 5.  

• Based on example 2, the CCA method requires 
only 100 of block rows of Hankel matrix to obtain 
the same performance, in which ORT and MOESP 
require 150 block rows. Again, the CCA is better in 
terms of computational time. 
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CONCLUSION 

Three methods under the subspace-based family are 
observed to develop a state-space model based on 
identification from closed-loop data. Given the heating 
system and the electrical servo motor system as an example, 
these three approaches are able to identify the corrupted 
closed-loop data system successfully. Among all, the CCA 
method gives the best performance overall. The CCA 
method can be considered as a good model since it does not 
need the noise model and require less block rows to obtain 
the same performance as the other two approaches. It also 
requires less computational load and time.   
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