

DEVELOPMENT OF AN AUTOMATED TEST DATA GENERATION AND

EXECUTION STRATEGY USING COMBINATORIAL APPROACH

By

MOHAMMAD FADEL JAMIL KLAIB

Thesis submitted in fulfilment of the

requirements for the degree of

Doctor of Philosophy

June 2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository@USM

https://core.ac.uk/display/11939413?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 ii

ACKNOWLEDGEMENTS

The work described in this thesis was undertaken under the main supervision of Dr.

Kamal Zuhairi Zamli, to whom I am grateful for his support, his interest during all

levels of my PhD study, and for his insightful and critical comments in writing the

published papers and the following thesis. To say the least, without Dr.Kamal’s

encouragement and enthusiasm, I will probably would not have gone this far. Also,

even though Dr.Kamal is very busy, he took an enormous task of revising my thesis

word by word. His efforts are greatly appreciated and will never be forgotten. Thanks

again Dr.Kamal.

 I also wish to thank my co-supervisor Dr. Nor Ashidi Mat Isa, who gave me his ever

devotion and all valuable information which I really require to finish my thesis.

I am also thankful to all my friends in Malaysia, who gave their support and help

through many helpful and enjoyable discussions. In particular, I am thankful to all

academic staffs in the School of Electrical and Electronic Engineering, USM, and all

those persons who have encouraged me to complete my study. Thanks!

I will never forget to be thankful to whom my love will never end, to my father and

my mother, to my brothers and sisters, uncles and aunts, they all gave me their

lasting encouragement in my studies, so that I could be successful in my life. Dad

and mom, thank you for the prayers – this thesis is for both of you.

Finally, I would like to thank my loving wife (Haneen). To my daughter (Felesteen),

even with her disturbing cry, she enters the joy to my heart and keeps me going;

thanks for being patient all along. I am sorry to have sometimes neglected all of you

to pursue my dream.

 iii

The work reported here would have not been possible without the e-science fund

grant entitled “Development of a Fault Injection Tool to Ensure Dependability of

Commercial-off-the-shelf Components (COTs) for Embedded System Applications”,

and fellowship support from Universiti Sains Malaysia.

 iv

Table of Contents

Acknowledgment …………………………...………………………………….. ii

Table of Contents ………………………………………………………………. iv

List of Tables …………………………………………………………………… vii

List of Figures ………………………………………………………...………... ix

Abstrak ………………………………………………………………...……….. xi

Abstract ………………………………………………………………...………. xiii

CHAPTER 1 - INTRODUCTION 1

1.1 Overview of Software Testing…………………………………………….. 2

1.2 Problem Statements ………………………….…………………...………. 3

1.3 Thesis Aim and Objectives ……………………………………………….. 7

1.4 Thesis Outline …………………………………………………………….. 8

CHAPTER 2 – LITERATURE REVIEW 10

2.1 Overview ………………………………………………………………….. 10

2.2 Classification and Issues on T-Way Strategies …………………………… 19

2.3 Analysis of T-Way Testing Strategies …………...……………………….. 23

 2.3.1 Algebraic strategies …….………………..…………………………. 23

 2.3.1.1 Orthogonal Arrays (OA) ………………...……………………. 23

 2.3.1.2 Covering Arrays (CA) …………………..……………………. 26

 2.3.1.3 Mixed Level Covering Arrays (MCA)…..……………………. 28

 2.3.2 Computational Strategies ………………………...…………………. 29

 2.3.2.1 TConfig ……………………………………...………………... 30

 2.3.2.2 AllPairs ………………………………..……………………… 31

 2.3.2.3 Combinatorial Test Services (CTS) ………...………………… 32

 v

 2.3.2.4 Automatic Efficient Test Generator (AETG) …...……………. 33

 2.3.2.5 mAETG ……………………………………………………….. 34

 2.3.2.6 Test Case Generator (TCG) …………………...……………… 35

 2.3.2.7 mTCG …………………………………………..…………….. 37

 2.3.2.8 Genetic Algorithms (GA) ……………………..……………… 38

 2.3.2.9 Ant Colony Algorithm (ACA) ………………...……………… 39

 2.3.2.10 In Parameter Order (IPO) ……………………..…………….. 42

 2.3.2.11 IPOG ………………………………………...………………. 43

 2.3.2.12 Jenny ………………………………………...………………. 44

 2.3.2.13 Test Vector Generator (TVG) ……………...………………... 45

 2.3.2.14 Intelligent Test Case Handler (ITCH) ………..……………... 47

2.4 Discussion …………………………………………….…………………... 48

2.5 Summary ……………………………………………….…………………. 51

CHAPTER 3 - GTWAY DESCRIPTION AND IMPLEMENTATION 52

3.1 Design Consideration ……………………………………………………... 52

3.2 Description of GTWay Strategy ………………………………………….. 53

 3.2.1 The Parser Algorithm in GTWay …………………...……………. 56

 3.2.2 The T-Way Pair Generation Algorithm ……...…………………… 57

 3.2.3 The Backtracking Algorithm in GTWay ………...……………….. 60

 3.2.4 Execution Algorithm in GTWay …………………………………. 64

3.3 GTWay as a Pairwise Strategy (G2Way) ……………...…………………. 65

3.4 Implementation Summary for GTWay ………………...…………………. 69

3.5 Summary ………………………………………………..………………… 72

CHAPTER 4 - EVALUATION OF GTWAY STRATEGY 74

4.1 Applicability and Effectiveness of the GTWay Strategy for T-Way
Test Planning and Execution ……………………….…………………….. 74

4.2 Comparison GTWay with Other Strategies ……………...……………….. 80

 vi

4.3 Evaluation of GTWay as a Pairwise Strategy (G2Way) …………………. 87

 4.3.1 Effectiveness of GTWay Strategy for Pairwise Test Data
Generation ……………………………………...…………………. 88

 4.3.2 Comparison G2Way with Other Pairwise Strategies …..…………. 91

4.4 Summary ………………………………………………………………….. 95

CHAPTER 5 – CONCLUSION 96

5.1 Overview ………………………………………………………………….. 96

5.2 Discussion …………..…………………………………………………….. 97

5.3 Future Work …………….………………………………………………… 102

5.4 Closing Remarks ………………………………….……………………..... 104

REFERENCES 105

APPENDICES 115

Appendix A: Demonstration of Correctness……………………….…………… 115

Appendix B: Testing GTWay Itself…………………………….………….…… 122

Appendix C: Predicting the Test Size…………………………….……..……… 126

Appendix D: The GTWay Markup Language………………………...………… 127

List of Publications and Awards…………………………….………………….. 130

 vii

LIST OF TABLES

 Page

Table 2-1 Running Example

11

Table 2-2 Exhaustive Combinations (at t=4)

12

Table 2-3 3-Way Combinations for ABC

13

Table 2-4 3-Way Pair Combinations

16

Table 2-5 Analysis of 3-Way Combination Occurrences

17

Table 2-6 Characteristics of T-Way Strategies

22

Table 2-7 Summary of the Analysis of Algebraic and Computational
Strategies

49

Table 3-1 Base Test Values

57

Table 3-2 Index Search for a 4 Parameter System

58

Table 3-3 Row Index for a 4 Parameter System

59

Table 3-4 Index Search for a 3 Parameter System

65

Table 3-5 Row Index for a 3 Parameter System (Multi-Valued)

67

Table 4-1 Base Test Cases

76

Table 4-2 Number of Test Cases with Coverage for college_acceptance
Implementation

79

Table 4-3 Group 1(Size): P & V constants (10, 5), but t varied up to 6

82

Table 4-4 Group 1 (Time): P & V constants (10, 5), but t varied up to 6

82

Table 4-5 Group 2 (Size): t & V constants (4, 5), but P varied (from 5 up
to 15)

83

Table 4-6 Group 2 (Time): t & V constants (4, 5), but P varied (from 5 up
to 15)

83

Table 4-7 Group 3 (Size): P & t constants (10, 4), but V varied (from 2 up
to 10)

84

 viii

Table 4-8 Group 3 (Time): P & t constants (10, 4), but V varied (from 2
up to 10)

84

Table 4-9 Group 4 (Size): TCAS Module (12 multi-valued parameters, t
varied from 2 to12)

85

Table 4-10 Group 4(Time): TCAS Module (12 multi-valued parameters, t
varied from 2 to12)

85

Table 4-11 Suggested Test Set

90

Table 4-12 Percentage Coverage

90

Table 4-13 Comparison Based on the Test Size

93

Table 4-14 Comparison Based on Execution Time (in seconds)

94

Table 5-1 Summary of the Analysis of Algebraic and Computational
Strategies

100

Table A-1 Web Based System

115

Table A-2 Suggested Test Set at t=2

116

Table A-3 Pairwise Coverage

117

Table A-4 Suggested Test Set for Web-Based Configuration Example at
t=3

119

Table A-5 3-Way Combinations Coverage

120

Table B-1 Generated Test Suite for GTWay Interface

124

Table B-2 Percentage Coverage for GTWay Generator Engine Interface

124

Table D-1 Keywords Description

128

Table D-2 Specifying Input with Basic Data Types

129

Table D-3 Specifying Input with Array of Basic Data Types

129

Table D-4 Specifying Input with Class

129

Table D-5 Specifying Input with Array of Class

129

 ix

LIST OF FIGURES

 Page

Figure 1-1 Software Engineering Product Lifecycle

2

Figure 1-2 Microsoft Excel View Tab Options

5

Figure 2-1 All 3-Way Combinations for ABC, ABD, ACD, and BCD

14

Figure 2-2 Merging of all 3-Way Combinations for ABC, ABD,
ACD, and BCD

15

Figure 2-3 Orthogonal Latin Squares

25

Figure 2-4 ACA Search Space (Shiba et al., 2004)

40

Figure 2-5 Input-Output (IO) Relationships (Schroeder and Korel,
2000a)

46

Figure 3-1 Overview of the GTWay Strategy

54

Figure 3-2 Sample Base Test Case Definition

55

Figure 3-3 The Parser Algorithm

56

Figure 3-4 The T-Way Pair Generation Algorithm

60

Figure 3-5 The Backtracking Algorithm

63

Figure 3-6 The Executor Algorithm

64

Figure 3-7 The Pair Generation Algorithm

66

Figure 3-8 The Backtracking Algorithm in G2Way

68

Figure 3-9 GTWay Tool

72

Figure 4-1 Snapshot of Test Data Specification for
college_acceptance Program

77

Figure 4-2 Concurrent Execution Snapshot for t-way Test Suite

78

Figure 4-3 Percentage Coverage Chart for college_acceptance

79

 x

Figure 4-4 FileChooserDemo Interface

88

Figure B-1 GTWay Generator Engine Interface

123

Figure B-2 Percentage Coverage Chart for GTWay Generator Engine
Interface

125

Figure D-1 Sample Keywords Definition in a Fault File

127

 xi

PEMBANGUNAN PENJANAAN DATA UJIAN DAN STRATEGI PELARIAN
AUTOMATIK MENGGUNAKAN PENDEKATAN BERGABUNGAN

ABSTRAK

Untuk memastikan tahap piawaian jaminan kualiti dan keboleharapan sesuatu

perisian, pengujian hendaklah dijalankan untuk setiap konfigurasi. Tetapi, masalah

letupan konfigurasi tidak memungkinkan pertimbangan keseluruhan terhadap semua

nilai data ujian. Kekangan sumber, masalah kos, dan masa untuk dipasarkan yang

ketat adalah merupakan antara faktor yang menghalang terhadap pertimbangan

keseluruhan itu. Penyelidikan terdahulu menyimpulkan bahawa strategi persampelan

berdasarkan interaksi t-cara antara parameter adalah sangat efektif. Berdasarkan

kesimpulan ini, terdapat banyak strategi t-cara yang sedia ada telah dihasilkan.

Bidang penyelidikan ini mengalami pertumbuhan yang pesat sejak 10 tahun yang

lalu dalam membantu proses perancangan ujian, terutamanya dalam mengurangkan

data ujian yang perlu digunakan secara sistematik berdasarkan sesuatu interaksi t-

cara yang terpilih. Walaupun terdapat banyak kemajuan, integrasi dan automasi

strategi daripada proses perancangan dan pengujian amat tidak dititik beratkan.

Dalam praktis sekarang, data ujian yang disampel perlu diekstrak secara manual dan

ditukarkan dalam format tertentu sebelum ia boleh dilaksanakan (sama ada oleh

penguji sendiri, atau alatan perisian daripada pihak ketiga). Masalah integrasi dan

automasi ini amat menyusahkan kerja jurutera pengujian terutamanya apabila modul

yang perlu diuji adalah bersaiz besar.

Selain daripada isu berkaitan integrasi dan automasi, perancangan untuk persampelan

dan pembinaan data ujian yang paling minima daripada keseluruhan data ujian adalah

juga masalah lengkap NP. Oleh yang demikian, tidak mungkin akan ada strategi bagi

 xii

menghasilkan data ujian yang optimal untuk setiap kes data ujian. Bagi menyahut

cabaran yang digariskan di atas, tesis ini membincangkan rekabentuk, implementasi,

dan penilaian, strategi GTWay untuk menerbitkan data ujian t-cara yang optimum.

Tidak seperti strategi yang lain, GTWay dapat membantu proses perancangan dan

larian data ujian secara automatik (serentak) yang diintegrasikan sebagai sebahagian

daripada implementasinya. Keputusan empirikal membuktikan GTWay, dalam banyak

keadaan, mengatasi strategi sedia ada dalam aspek penghasilan data ujian yang

minima. Julat masa penghasilan ujian data juga adalah berpatutan seiring dengan

perancangan dan larian ujian yang diintegrasikan.

 xiii

DEVELOPMENT OF AN AUTOMATED TEST DATA GENERATION AND
EXECUTION STRATEGY USING COMBINATORIAL APPROACH

ABSTRACT

To ensure acceptable level of quality and reliability of a typical software product, it

is desirable to test every possible combination of input data under various

configurations. Due to combinatorial explosion problem, considering all exhaustive

testing is practically impossible. Resource constraints, costing factors as well as strict

time-to-market deadlines are amongst the main factors that inhibit such

consideration. Earlier work suggests that sampling strategy (i.e. based on t-way

parameter interaction) can be effective. As a result, many helpful t-way sampling

strategies have been developed in the literature.

Much useful advancement has been achieved in the last 10 years particularly to

facilitate the test planning process, that is, in terms of systematically minimizing the

test data to be considered for testing (i.e. based on some t-way parameter

interactions). Despite such a significant progress, the integration and automation of

the strategies from the planning process to execution appears to be lacking. In the

current practice, the sampled test data need to be manually extracted and converted

to some acceptable format before they can be executed (e.g. by a human tester, a

code driver or a third party execution tool). This lack of integration and automation

between test planning and execution can potentially burden the test engineers

especially if the software module to be tested is significantly large.

Apart from integration and automation issues, strategizing to sample and construct

minimum test set from the exhaustive test space is also a NP complete problem (i.e.

nondeterministic polynomial). As such, it is often unlikely that efficient strategy

exists that can always generate optimal test set. Motivated by such challenges, this

 xiv

paper discusses the design, implementation, and validation of an efficient strategy,

called GTWay. GTWay, unlike other strategies, supports both t-way test generation

and automated (concurrent) execution integrated within the strategy itself. Empirical

evidences demonstrate that GTWay, for some cases, outperforms other strategies in

terms of the number of generated test data. The test generation time is also within

reasonable value considering the fact that some overhead is required to permit the

integration between test generation and execution.

 1

CHAPTER 1

INTRODUCTION

Computing technology has gone a long way since the first Babbage computer.

Today, many chores that were once manual have been taken over by computers.

Factories use computers to control manufacturing equipments. Electronics

manufacturing use computers to test everything from microelectronics to circuit card

assemblies.

Software is one of the major components that drive the functionality and automation

of computers. Here, software can be viewed as a collection of written program,

functions, and procedures that enable the user to accomplish the task at hand. From

washing machine controllers, mobile phone applications to sophisticated airplane

control systems, software is becoming an indispensable part of our lives.

Imagine the world without software. For instance, our household washing machine

may still be bulky as the controls may be composed of all mechanical switches.

Similarly, our hand phone without software may have too limited capabilities to be

useful. As these two examples illustrate, software (whenever possible) are becoming

increasingly popular replacement for its hardware counter parts.

Our growing dependency on software can be attributed to a number of factors.

Unlike hardware, software does not wear out. Thus, the use of software can help to

control maintenance costs. Additionally, software is also malleable and can be easily

customized as the need arises.

Nevertheless, the fact that software is malleable and can be easily customized can

also be a burden. Here, testing is often sought for to ensure quality (i.e. whether or

 2

not the software is reliable and meets its specification). In the next section to come,

this chapter will highlight an overview of software testing and the problem statement

in order to set the scene of the work undertaken in this research work. Additionally,

this chapter also highlights the roadmap of the thesis.

1.1 Overview of Software Testing

Covering as much as 40% to 50% of the development costs, software testing is an

integral part of software engineering lifecycle. In a nut shell, software testing can be

viewed as the process of executing a program with the intent to find error (Myers,

2004). Putting the overall picture as far as the overall software engineering product

lifecycle is concerned, software testing can be viewed as the following (see Figure 1-

1).

Figure 1-1 Software Engineering Product Lifecycle

 3

Referring to Figure 1-1, software engineering product lifecycle starts with the

requirement elicitation phase. Here, the customers and stakeholders interact with the

requirement engineers to produce the software specifications. Based on the

specifications, software engineers and programmers collaborate to produce software

design and implementations. This activity occurs in the implementation phase.

Software testing falls under the validation phase which may occur in parallel with the

requirement elicitation phase and implementation phase. The independent

verification and validation (V&V) team needs to consult the requirement engineers

for software specification. Based on the software specification, the V&V team

produces the test cases to be executed against the software implementation. If the

execution results satisfy the requirement specification, then the software is ready to

be released, otherwise, some additional work need to be done to the design and

implementation until conformance is achieved.

As seen above, the purpose of testing is not to prove anything, rather to reduce the

perceived risk of not working to an acceptable value. The key challenges in software

testing are not only dependent on the actual execution of the test cases but also the

production of quality test cases.

1.2 Problem Statements

Covering as much as 40 to 50 percent of the development costs and resources

(Beizer, 1990, Kaner et al., 1999, Pan, 1999), testing can be considered as one of the

most important activities in product development for both software and hardware

(Bryce et al., 2005, Tsui and Karam, 2007). In order to ensure accepted quality and

reliability, many combinations of possible input parameters, hardware/software

 4

environments, and system conditions are tested and verified against for conformance

based on system’s specification (Cohen et al., 2007a, Cohen et al., 2007b).

Lack of testing can lead to disastrous consequences including loss of data, fortunes,

and even lives. For instance, consider the accident that occurred during the European

Space Agency’s launching of Ariane 5 in 1996. Investigation by independent

researchers from Massachusetts Institute of Technology reveals that the disaster is

caused by the mismatch of the hardware and software component faults (Lions,

1996). The component erroneously puts a 64 bit floating point number in to a 16 bit

space, causing overflow error. This overflow error affected the rocket’s alignment

function, and hence, causing the rocket to veer off course and eventually exploded a

mere 37 seconds after lift off.

Despite its importance, exhaustive testing is impossible due to the fact that the

number of test cases can be exorbitantly large (Chaudhuri and Zhu, 1992, Copeland,

2004, Roper, 2002) even for simple software and hardware products. Consider a

hardware product with 20 on/off switches. To test all possible combination would

require 220 = 1,048,576 test cases. If the time required for one test case is 5 minutes,

then it would take nearly 10 years for a complete test.

The same argument is applicable for any software system. As illustration, consider

the option dialog in Microsoft Excel software (see Figure 1-2). Even if only View tab

option is considered, there are already 20 possible configurations to be tested. With

the exception of Gridlines colour which takes 56 possible values, each configuration

can take two values (i.e. checked or unchecked). Here, there are 220x56 (i.e.

58,720,256) combinations of test cases to be evaluated. Using the same calculation as

 5

the previous example, it would require nearly 559 years for a complete test of the

View tab option.

Figure 1-2 Microsoft Excel View Tab Options

The above mentioned examples highlighted the common combinatorial explosion

problem in software testing. Given limited time and resources, the research questions

are:

• What are the smaller optimum sets of (sampled) test data to be considered for

testing?

• How can one decide (i.e. the strategy) on which combination of data values to

choose over large combinatorial data sets?

• Will the test coverage be significantly affected by using lesser combinatorial data

sets?

 6

Combinatorial explosion problem (Cohen et al., 1997, Cohen et al., 2006b, Colbourn

et al., 2004, Tai and Lei, 2002) poses one of the biggest challenges in modern

computer science due to the fact that it often kills traditional approaches to analysis,

verification, monitoring and control. A number of techniques have been explored in

the past to address the combinatorial explosion problem. Undoubtedly, parallel

testing (e.g. (ITL/NIST, 2008, Younis et al., 2009)) can be employed to reduce the

time required for performing the tests. Nevertheless, as software and hardware are

getting more complex than ever, parallel testing approach becomes immensely

expensive due to the need for faster and higher capability processors along state-of-

the-art computer hardware. Apart from parallel testing, systematic random testing

could also be another option (Antony, 2003, Duran and Ntafos, 1984, Schroeder et

al., 2004, Tseng et al., 2001). However, systematic random testing (e.g. (Ammann

and Offutt, 1994)) tends to dwell on unfair distribution of test cases.

Earlier work (e.g. (Bryce and Colbourn, 2006, Dalal et al., 1999, Kuhn and Okum,

2006, Kuhn and Reilly, 2002, Kuhn et al., 2004, Yan and Zhang, 2008)) suggests

that from empirical observation, the number of input variables involved in software

and hardware failures is relatively small (i.e. in the order of 3 to 6), in some classes

of system. If t or fewer variables are known to interact and cause fault (Ellims et al.,

2008b), test data can be generated on some t-way combinations (i.e. resulting into a

smaller set of test data for consideration).

As will be seen in Chapter 2, a number of useful strategies have been reported to

facilitate the test planning process, that is, in terms of systematically minimizing the

test data to be considered for testing (i.e. based on some t-way parameter

interactions). However, the integration and automation of the existing strategies from

the planning process to execution appears to be lacking. In the current practice, the t-

 7

way sampled test data need to be manually extracted and converted to some

acceptable format before they can be executed (e.g. by a human tester (Binder, 2000,

Dustin et al., 1999, Fewster and Graham, 1999), a code driver or a third party

execution tool (Li and Wu, 2004)). This lack of integration and automation between

test planning and execution can potentially burden the test engineers especially if the

software module to be tested is significantly large.

In addition to integration and automation issues, strategizing to sample and construct

minimum test set from the exhaustive test space is also a NP complete problem

(Shiba et al., 2004, Tai and Lei, 2002). As such, it is often unlikely that efficient

strategy exists that can always generate optimal test set. Motivated by such

challenges, this research work is devoted to investigate an optimum strategy, called

GTWay, for systematic t-way test data generation (and reduction). Unlike earlier

work, GTWay supports both the test planning process and the automated

(concurrent) execution integrated within the strategy itself. In short, using t-way

strategy is useful to systematically detect faults in a particular software system is the

main hypothesis on this thesis.

1.3 Thesis Aim and Objectives

The main aim of this research is to develop and evaluate a general t-way test data

generation and execution strategy, called GTWay, for software configuration testing.

The main objectives of the work undertaken were:

i. To develop and implement the GTWay strategy as a prototype

implementation tool.

 8

ii. To investigate automatic execution, when actual values are used, as part of

the GTWay strategy.

iii. To investigate and compare the performance of GTWay strategy in terms of

test size as well as execution time against existing works.

1.4 Thesis Outline

The remainder of this thesis is organised into five chapters as follows.

Chapter 2 presents an overview as well as highlights the main characteristics of t-

way strategies. Using the characteristics, a survey of existing t-way strategies is

provided including that of a special case for t-way strategies, the pairwise testing.

Towards the end of Chapter 2, an analysis of existing work is presented which

provides the requirements and justification for the development of GTWay.

Chapter 3 discusses and justifies the detailed algorithms and implementation for

GTWay based on the requirements from Chapter 2. Here, issues related to the

enabling automated execution are also explained. Additionally, the prototype

implementation is also discussed in order to highlight its usage.

In Chapter 4, a detailed account for evaluating GTWay is presented. Here, the

correctness of GTWay strategy will be evaluated. Apart from the correctness

evaluation, a comparative study on the effectiveness of pairwise testing versus t-way

testing will be highlighted using suitable case studies. Additionally, GTWay will

also be compared against existing strategies in terms of the number of generated test

data as well as execution time both as a pairwise strategy and as a general t-way

strategy.

 9

The conclusion of this work is given in Chapter 5, where the achievements,

contributions and problems are summarised. Additionally, the main research

hypothesis is revisited and the usefulness of GTWay is debated. Conclusions are

drawn from the experience gained from this work and the significance of findings

along with considerations for future work.

 10

CHAPTER 2

LITERATURE REVIEW

The previous chapter has established the needs for software testing (i.e. for

evaluating conformance and ensuring reliability), and highlighted the possible

catastrophic aftermaths due software failure (i.e. including fortune and data losses as

well as human fatality). In doing so, the previous chapter has also advocated the fact

that testing for all combination of parameters, although desirable, is infeasible due to

lack of resources as well as strict time-to-market constraints. Thus, systematic

strategies are required to reduce the number of test cases by selecting a subset of

these combinations for sampling, executing and analyzing.

In this chapter, these systematic strategies will be elaborated based on the t-way

interaction of variables. Specifically, this chapter begins by giving an overview of

the concept and terminology that will be used throughout this thesis. Next, the main

characteristics of the combinatorial strategies will be identified in order to facilitate

their survey and analysis. This survey and analysis is then used to provide

justification for the development of GTWay, the strategy that is the basis of this

thesis. Finally, this chapter closes by providing a short summary.

2.1 Overview

As discussed earlier, the main focus of the work described in this thesis is on the

development of systematic test data minimization strategy based on (t-way)

parameter interaction testing (or termed t-way testing). Here, the parameter

interaction can be specified using a variable (t) indicating how strong the interaction

is.

	PhD Thesis Klaib EE School

