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PENYEDIAAN, PENCIRIAN DAN PRESTASI PELET BERMANGKIN 
BERASASKAN TiO2 BAGI PENGESANAN SEBATIAN ORGANIK  

MERUAP DI BAWAH CAHAYA UV 
 
 

ABSTRAK 
 
 

Dewasa ini, peraturan alam sekitar ke atas sebatian organik meruap telah 

diketatkan di seluruh dunia, memandangkan penyejatannya yang cepat dan beracun 

serta sifat karsinogenik semulajadinya pada kepekatan yang tinggi di dalam udara 

menyebabkan ia berbahaya kepada kehidupan manusia. Oleh yang demikian, untuk 

mengesan sebatian organik meruap yang berbahaya dan beracun, sensor gas 

berprestasi tinggi yang diperbuat daripada kos bahan yang murah dan ringkas dalam 

fabrikasi adalah diperlukan untuk mengukur pelbagai jenis dan kuantiti sebatian 

organik meruap.  

 

Dalam kajian ini, bahan pengesanan (La mengubahsuai TiO2/ Sn 

mengubahsuai TiO2) telah dibangunkan dengan menggabungkan lantanum (La) atau 

stannum (Sn) ke atas bahan asas TiO2 melalui kaedah sol gel dalam turutan kaedah 

yang berbeza dengan kandungan julat aditif dan julat suhu pengkalsinan masing-

masing di antara 0.0 % – 10.0 % berat atomic dan 500 °C – 900 °C. Kemudian, 

bahan pengesanan tersebut dimampatkan menjadi pelet bermangkin dengan bergaris 

pusat 20 mm dan ketebalan 2 mm. Bahan pengesanan yang berbentuk pelet 

bermangkin ini dicirikan dengan menggunakan analisis suhu gravimetrik (TGA), 

belauan sinar-X (XRD), mikroskop elektron sinaran (TEM), analisis permukaan 

(penyerapan-penyahserapan N2), mikroskop elektron imbasan (SEM) dan 

spektroskop penyebaran tenaga sinar-X (EDX). Aktiviti pengesanan telah dijalankan 

menggunakan reaktor pengukur dengan kemudahan haba yang beroperasi pada julat 
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suhu antara 50 °C hingga 400 °C. Prestasi pelet bermangkin yang telah terpilih 

seterusnya dikaji di bawah pelbagai keadaan operasi dengan kepekatan-kepekatan 

wap sebatian organik meruap (etanol, metanol dan aseton) yang berbeza di antara 

1000 ppm dan 3000 ppm di bawah pengaruh sinaran cahaya UV.     

 

Berdasarkan prestasi pengesanan dan kajian pencirian yang telah dijalankan, 

keputusan yang terbaik telah diperolehi apabila TiO2 telah diubahsuai dengan aditif 

Sn manakala kandungan optimum bagi Sn dan suhu pengkalsinan adalah masing-

masing 2.5 % berat atomik dan 600 °C. Prestasi pelet bermangkin yang telah terpilih 

(2.5-Sn-TiO2-600) di bawah pelbagai keadaan operasi adalah optimum pada suhu 

operasi 250 °C dengan kepekaan yang tertinggi iaitu ~ 38.12 terhadap pengesanan 

3000 ppm wap etanol. Kepekaan pelet bermangkin tersebut telah meningkat dengan 

banyaknya oleh sinaran cahaya UV dengan nilai kepekaan iaitu ~ 73.57 dan 

menurunkan suhu optimum operasi kepada 200 °C. Mekanisma pengesanan gas bagi 

pelet bermangkin ini dapat diklasifikasikan sebagai jenis kawalan permukaan dan 

sifat rintangan elektriknya menunjukkan jenis n-semikonduktor.  

 

Kesimpulannya, pelet bermangkin 2.5-Sn-TiO2-600 merupakan sensor pelet 

yang sesuai bagi pengesanan sebatian organik meruap di bawah sinaran cahaya UV 

kerana menggunakan kos bahan yang murah dan fabrikasi yang ringkas dengan 

menunjukkan kepekaan sebatian organik meruap yang tinggi walaupun pada suhu 

operasi yang rendah.  
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PREPARATION AND CHARACTERIZATION OF TiO2 BASED THICK 
FILM CATALYTIC PELLET FOR DETECTION OF VOLATILE ORGANIC 

COMPOUND UNDER UV LIGHT 
 
 

ABSTRACT 
 
 

Nowadays, environmental regulations on volatile organic compounds (VOCs) 

have been tightened all over the world, as their rapid evaporation and toxic or 

carcinogenic nature at high concentrations in the air make them dangerous to human 

beings. Accordingly, in order to detect dangerous and toxic VOCs, high performance 

gas sensors made up from low cost materials and simplicity in fabrication are 

required to measure various kinds and quantities of VOCs.  

 

In the present study, a sensing material (La-modified TiO2/ Sn-modified 

TiO2) was developed by incorporating lanthanum (La) or tin (Sn) onto TiO2-based 

material by sol-gel method in different orders with additive loadings range between 

0.0 at.% and 10.0 at.% and calcination temperatures range between 500 °C and 900 

°C, respectively. Then, the sensing material was pressed into a catalytic pellet with a 

diameter of 20 mm and a thickness of 2 mm. The sensing materials (powders and 

catalytic pellets) were characterized using thermal gravimetric analysis (TGA), X-ray 

diffraction (XRD), transmission electron microscopy (TEM), surface analysis (N2 

adsorption-desorption), scanning electron microscope (SEM) and energy dispersive 

X-ray (EDX) spectroscopy. The detection activity was performed in a measurement 

chamber with heating facilities operated at temperatures between 50 °C and 400 °C. 

The performance of selected catalytic pellet under various operating conditions was 

further studied with different concentrations of VOC vapor (ethanol, methanol and 
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acetone) between 1000 ppm and 3000 ppm under the influence of UV light 

irradiation.   

 

Based on the detection performance and characterization study, the best result 

was obtained when TiO2 was modified with Sn additive while the optimum loading 

of Sn and calcined temperature was 2.5 at.% and 600 °C, respectively. The 

performance of selected catalytic pellet (2.5-Sn-TiO2-600) under various operating 

conditions was at the optimum when operating temperature was at 250 °C with the 

highest sensitivity of ~ 38.12 for 3000 ppm of ethanol vapor detection. The 

sensitivity of the catalytic pellet was greatly enhanced by the UV light irradiation to 

sensitivity values of ~ 73.57, while reducing the optimum operating temperature to 

200 °C. The gas-sensing mechanism of the catalytic pellet was found to be a surface-

controlled type and the electrical resistance-temperature characteristic indicated an n-

type semiconductor.  

 

 In conclusion, the 2.5-Sn-TiO2-600 catalytic pellet was a suitable pellet 

sensor for the VOC detection under UV light irradiation due to the low cost materials 

used and eases of fabrication with high VOC sensitivity even at lower operating 

temperature. 
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CHAPTER 1 
 

INTRODUCTION 
 
 

Air pollution caused by human beings goes hand in hand with civilization. 

Before industrialization, pollution of the air one breathes was mainly due to the use 

of open fireplaces which emitted smoke and gaseous organic combustion products, 

and the formation of urban structures then gradually led to a significant deterioration 

in the outdoor air quality in centre of population (Godish, 2001). The birth of the 

industrial era led to important sources of emission of polluting substances in the 

indoor and outdoor air, and reports of diseases caused by air pollution began to 

increase in number (Pearson, 2001). 

 

Air pollutants from variety of sources keep contaminating the environment 

and thus threatening our life cycle system. Among the most dangerous air pollutants 

recognized globally in our atmosphere are oxides of nitrogen (NO and NO2), oxides 

of sulfur (SO2 and SO3), oxides of carbon (CO and CO2), ozone (O3), volatile organic 

compounds (VOCs), lead and fine particulates. All these substances if present in the 

air in appreciable amount can cause harmful effects to human health, vegetation and 

human properties as well as the global environment (De Nevers, 2000). Therefore, 

high performance sensors and systems are required to detect and monitor various 

kinds and quantities of these pollutants.  

 

Recently, the VOCs detection and monitoring has become a serious task due 

to stringent environmental standards and regulations on VOCs in many countries of 

the world. In United State, for example, approximately 50 % of the U.S 

Environmental Protection Agency’s (EPA’s) list of priority pollutants is composed of 
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VOCs. The Clean Air Act of 1990 calls for a 90 % reduction in the emission of 189 

toxic chemicals over the next 8 years, 70 % of these being VOCs. Thus, in the 

present researcher work, particular attention on the detection and monitoring of 

volatile organic compounds is selected.  

 

1.1 Volatile Organic Compounds (VOCs) 

1.1.1 Definition  

One of an important class of air pollutants, commonly found in the 

atmosphere at ground level in all urban and industrial centers is volatile organic 

compound and is abbreviated as VOC. The term volatile organic compound refers to 

those organic compounds which are present in the atmosphere as gases, but which 

under normal conditions of temperature and pressure would be liquids or solids.  

 

The original definition of VOC is defined as organic compounds whose have 

vapor pressure less than 760 torr (101.3 kPa) and greater than 1 torr (0.13 kPa) at 

room temperature. However, effective as of December 29, 2004, the definition relies 

solely on any carbon-containing compound found in the atmosphere, excluding 

carbon monoxide, carbon dioxide, carbonic acid, metallic carbides or carbonates and 

ammonium carbonate, which participates in atmospheric photochemical reactions 

(The United State Environmental Protection Agency, U.S. EPA, Definition of VOC: 

Code of Federal Regulations: Title 40, Part 51 Section 51.100). Other terms used to 

represent VOCs are hydrocarbons (HCs), reactive organic gases (ROGs), and non-

methane volatile organic compounds (NMVOCs).  

 

 



3 
 

1.1.2 Emission Sources  

There are two main sources of VOC emitted to the environment. 80 % of 

which comes from natural activities such as biogenic sources, vegetation and 

biomass. The other comes from human activities such as domestic activities, 

industrial activities, transportation and landfill (Wong, 2007). VOCs from the natural 

give rise to substantial ambient concentrations of organic compounds deriving from 

plants, trees, wild animals, natural forest fires, and anaerobic processes in bogs and 

marshes. The emissions of VOC by plants accounts for a significant fraction of the 

carbon fixed by photosynthesis, especially under stress conditions. These emissions 

reduce the amount of carbon that is fixed by vegetation. They take place on the 

continental scale and can therefore play a role in atmospheric chemistry even in 

remote areas (Hewitt et al., 1995).  

 

On the other hand, the anthropogenic VOC emissions come from motor 

vehicle exhausts, evaporation of petrol vapors from motor cars, solvent usage, 

industrial processes, oil refining, petrol storage and distribution, land filled wastes, 

food manufacture, and agriculture (Derwent, 1995). Some of the examples of human 

activities that directly emit VOCs are painting, varnishing, waxing, disinfecting, 

applying cosmetics, degreasing, storing fuels and using automotive products.  

 

Figure 1.1 shows an example of human-made VOC emissions in one area. In 

1985, Alberta is the fourth largest VOC emitting province in Canada. According to 

Environment Canada, the sources and percentage amounts of human-made VOCs 

generated in Alberta were transportation (motorcycles, cars, buses, trucks, 

boats/ships and aircraft); petroleum and petrochemical industry (petroleum refining 
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plants); solvents, coating and miscellaneous sources (paints, paint strippers, wood 

preservatives, cleansers and disinfectants, moth repellents and air fresheners); fuel 

marketing (gasoline transfers from refinery to bulk stations, bulk stations to gas 

stations, gas stations to vehicles); electrical power generation (power plants); and 

others.    

 

 
Figure 1.1: VOC emissions in Alberta, Canada in 1985 (Environment Canada). 
 

EPA's Total Exposure Assessment Methodology (TEAM) studies found 

levels of about a dozen common organic pollutants to be 2 to 5 times higher inside 

homes than outside, regardless of whether the homes were located in rural or highly 

industrial areas. Additional TEAM studies indicate that while people are using 

products containing organic chemicals, they can expose themselves and others to 

very high pollutant levels, and elevated concentrations can persist in the air long after 

the activity is completed. 
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1.1.3 Human Health and Environmental Impact 

According to Moretti and Mukhopadhyay (1993), most VOCs are 34 % 

aliphatic hydrocarbon, 28 % aromatic hydrocarbon, 26 % alcohols/ethers/ 

epoxides/phenols, 10 % halogenated hydrocarbons and 2 % others. These 

compounds are known for their carcinogenicity and mutagenicity, tropospheric 

photochemical oxidant production, stratospheric ozone depletion and climate change, 

global warming and odor problems (Chapman, 2004). The impact of VOCs on the 

environment depends on the concentration and properties of the individual 

compounds. VOCs can cause eye and respiratory tract irritation, headaches, 

dizziness, visual disorders, and memory impairment immediately after exposure to 

some VOCs. The extent and nature of the health effect depend on many factors, 

including level of exposure and length of time exposed. 

 

VOCs have direct effect on human health by introducing ground level ozone, 

a common air pollutant which has been proven to be a public health hazard. Ground 

level ozone is a highly reactive gas that according to Environmental Protection 

Agency (EPA), it affects the normal function of the lung in many healthy human. 

Breathing air with ozone concentration above air quality standards aggravates 

symptoms of people with pulmonary diseases and seems to increase rates of asthma 

attacks. There is also evidence that prolonged exposure to ozone causes permanent 

damage to lung tissue and interferes with the functioning of the immune system. It 

can also adversely affect plants, animals and materials (Trimboli, 2005). 

 

On a global scale, VOCs are Green House Gases (GHG) that contributes 

global warming by absorbing infrared radiation from the sun. The more complex 
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structure of VOC is, the greater it’s capacity to absorb infrared radiation. Many 

VOCs have a distinctive odor, which may become a localized nuisance. Certain 

VOCs may be highly odorous and are likely to be considered an annoyance under 

most circumstances, even if they are not necessarily harmful. 

 

1.2 Gas Sensor Technology  

A gas sensor is a device that creates an electrical signal in response to a 

chemical interaction with vapors. Because the information obtained from this process 

is useful, gas sensors have found widespread applications in both home and industry. 

Table 1.1 shows some applications of gas sensors. Despite its importance, there are 

challenges that exist in fabricating a reliable sensor before it can be deployed 

successfully. Ideal gas sensors exhibit high sensitivity to the vapor they are designed 

to detect. The sensor should produce an electrical response only when it is exposed to 

the gas of interest. Sensors should have stable, reproducible electrical signals to 

reduce the amount of time needed for calibration. Other practical concerns include 

minimization of size, weight, and power consumption, as well as the ability to place 

the sensor close to where the measurements are needed. 

 

Table 1.1: Examples of applications for gas sensors (Capone et al., 2003). 
 
Applications Purposes/ Function 
 
Automobiles  Car ventilation control 

 Filter control 
 Gasoline vapor detection 
 Alcohol breath tests 

 
Safety 
 

 Fire detection 
 Leak detection 
 Toxic/flammable/explosive gas detectors 
 Boiler control 
 Personal gas monitor 
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Indoor air quality 
 

 Air purifiers 
 Ventilation control 
 Cooking control 

 
Environmental control 
 

 Weather stations 
 Pollution monitoring 

 
Food 
 

 Food quality control 
 Process control 
 Packaging quality control (off-odors) 

 
Industrial production 
 

 Fermentation control 
 Process control 

 
Medicine 
 

 Breath analysis 
 Disease detection 

 

Despite some issues relating to the development of gas sensors, their roles are 

increasingly felt. For example, hydrogen sensors are needed in the rocket propulsion 

industry because hydrogen propellant leaks pose significant safety risks (Borodko et 

al., 1999). In the automotive industry, the air to fuel ratio in vehicles is routinely 

monitored with oxygen sensors that utilize an electrochemical cell containing ZrO2, 

which conducts oxygen ions at high temperatures (Spetz, 2006). In some industrial 

processes such as in the production of carbonated beverages, the presence of oxygen 

at ppm level must be detected and controlled (Sotter et al., 2007). 

 

NOx sensors are of high interest in industries that utilize combustion fuels or 

engines, because nitrogen oxides are formed when fuel burns at high temperatures. 

Approximately one-half of all NOx emissions into the environment are due to power 

plants and industrial boilers (Chen and Tsang, 2003). Nitrogen oxides are a unique 

danger because they can travel great distances from their emission source and result 

in acid rain, ozone, photochemical smog, and particulate matter far from the actual 

source of pollution. Beside O2, H2, NOx, CO, CO2 sensor is another device that finds 
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multiple uses needed for indoor air quality operations, early fire detection as well as 

for incubators for food storage and processing (Marsal et al., 2003). Also, 

hydrocarbon or VOC sensors are needed for aeronautic and automotive exhaust 

monitoring, leak detection, and fire detection.  

 

1.3 Types of Gas Sensor  

Gas sensors can be divided into three big groups known as spectroscopic gas 

sensor, optic gas sensor and solid-state gas sensor.  

 

1.3.1 Spectroscopic Gas Sensor 

 Spectroscopic systems are based on the direct analysis of the molecular mass 

or vibration spectrum of the target gas. These sensors can measure the composition 

of the different gases quantitatively with a good precision (Endres et al., 1994). Mass 

chromatography, Nuclear magnetic resonance (NMR) spectroscopy and mass 

spectrometer are important gas sensor spectroscopic systems.   

 

1.3.2 Optical Gas Sensor 

Optical gas sensors measure absorption spectra after the target gas has been 

stimulated by light. This kind of sensors requires monochromatic excitation source 

and an optical sensor for the analysis of the absorbed spectra. Gas sensors based on 

optical absorption changes in thin films are for detection of various gases such as 

CO, NO, H2. Optical gas sensors have several advantages over conventional 

electronic gas sensors, including the potential for higher sensitivity, reduced signal 

noise, and compatibility with combustible gases (Nam et al., 2004). However, both 

of spectroscopic and optical systems are very expensive for domestic use, complex, 
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large in size and sometimes difficult to implement in reduced spaces such as car 

engines. In addition, most analysis requires sample preparation, so that on-line, real-

time analysis is difficult. 

 

1.3.3 Solid-state Gas Sensor 

Solid-state gas sensor based on a variety of principles and materials are 

favorable in the development of commercial gas sensors for a wide range of 

applications (Mandelis and Christofides, 1993; Moseley, 1997; Capone et al., 2003). 

The preferences stem from their numerous advantages like ease of miniaturization, 

high sensitivities in detecting very low concentrations (at level of ppm or even ppb) 

of a wide range of gaseous chemical compounds, possibility of on-line operation and 

low cost (Capone et al., 2003). 

 

While solid-state gas sensors are favorable, they suffer from limited 

measurement accuracy and problems of life long stability. However, recent advances 

in nanotechnology has facilitated the production of novel classes of nanostructure 

materials with enhanced gas sensing abilities that increase the performances of solid-

state gas sensors (Yamazoe, 1991; Yamazoe, 2005; Comini, 2006). This enables the 

solid-state gas sensors to have reversible interaction between the gas and the surface 

of a solid-state material, in addition providing conductivity/resistivity change of gas-

sensing material, the detection of which can be performed by measuring the change 

of capacitance, work function, mass, optical characteristics or reaction energy 

released by the gas/solid interaction (Capone et al., 2003). Table 1.2 provides the 

detection principle for solid-state gas sensors, which are strongly, depend on the 

development of technologies mainly driven by other than gas sensor applications. 
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Table 1.2: Types of solid-state gas sensors with the corresponding physical change 
used as gas detection principle (Capone et al., 2003). 
 

Type of devices Physical change 
 
Semiconductor gas sensors 
 

Electrical conductivity/resistivity 
 

Catalytic gas sensors:                             
seebeck effect, pellistors, semistors 
 

Heat or temperature 

Electrochemical gas sensors  
(potentiometric or amperometric) 
 

Electromotive force or electrical current 
in a solid-state electrochemical cell 
 

Field effect gas sensors:  
diodes, transistors, capacitors 
 

Work function (electrical polarization) 
 

Piezoelectric sensors:                           
Quartz crystal microbalances (QMB), 
surface acoustic wave (SAW),  
microcantilevers   
 

Mass 

 

1.4 Semiconductor Gas Sensors 

Semiconductor gas sensors (SGS) known also as chemoresistive gas sensors, 

are typically based on semiconducting metal oxides such as SnO2, TiO2, ZnO, In2O3, 

WO3, NiO, etc. These semiconducting metal oxides appear to be the best candidates 

for SGS owing to high sensitivity to pollutant gases, low cost, easy implementation, 

small size and good reliability for real-time control systems (Ruiz et al., 2004a). 

These candidates also have non-stoichiometrics structures, so free electrons 

originating from oxygen vacancies contribute to electronic conductivity (Yu-De et 

al., 2001).  

 

SGS were originally commercialized in Japan (Taguchi, 1970) but, 

employing tin oxide as the sole sensitive component, were limited in application by a 

characteristic lack of specificity between gases. A range of more specifically reacting 

materials is now employed and all three of the categories of gas which need to be 
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sensed; oxygen, flammable gases and toxic gases can now be monitored. This is the 

faster growing of the three main categories of gas of SGS at the present time.  

 

The sensitivity of SGS is based on the dependence of the conductivity 

(resistivity) of semiconducting metal oxides on the surrounding atmosphere. 

Reactions involving gas molecules can take place at the semiconductor surface to 

change the density of charge carriers available (Yamazoe et al., 2003). Hence, the 

conductance of the device changes progressively with changing atmospheric 

composition. The effectiveness of SGS prepared from semiconducting metal oxides 

depends on several factors including the nature of the reaction taking place at the 

oxide surface, the temperature, the catalytic properties of the surface, the electronic 

properties of the bulk oxide and the microstructure (Moseley, 1997). 

 

1.5 Problem Statement  

Gas sensors have a great influence in many areas such as environmental 

monitoring, domestic safety, public security, automotive applications, and air 

conditioning in airplanes, spacecrafts and houses, sensors networks. Due to this huge 

application range the need of cheap, small, low power consuming and reliable solid- 

state gas sensors has grown over the years and triggered a huge research worldwide 

to overcome their drawbacks, summed up in improving the well known “3S” which 

are sensitivity, selectivity and stability (Comini, 2006). 

 

Currently, semiconductor gas sensors (SGS) or best known as metal oxide 

semiconductor gas sensors is widely used in industrial processes such as for 

detection of toxic pollutants and detection of hazardous gas leakages. So far the 
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majority of research works have been carried out on the metal oxide semiconductor 

gas sensors using SnO2. However, there are several problems associated with SnO2 

such as poor sensitivity at high operating temperature (> 200 °C), lack of selectivity 

and stability. Therefore, some new types of sensing materials are still being studied 

and exploited at present time.  

 

 One of the most innovative solutions to this problem has been recently 

proposed by Zakrzewska and Radecka (2007) who have realized that some metal 

oxides that are well-known for their gas sensing properties are extremely efficient in 

a photocatalytic decomposition of organic pollutants. The best example of this kind 

of a material seems to be TiO2 in its combination of anatase and rutile form (Yu et al. 

2002). Nevertheless, there is a great interest in sensing materials with different 

combinations of electronic and catalytic properties to achieve a considerable 

improvement in the performance of metal oxide semiconductor gas sensors. 

Therefore, it motivated many researchers to investigate the possibility of improving 

the gas-sensing properties of TiO2 by loading with foreign additives (Ruiz et al., 

2005b). Moreover, one interesting approach for lowering the operating temperature 

is the exposure of TiO2 to UV light irradiation (Anothainart et al., 2003). Due to this, 

the development of reliable TiO2-based gas sensors to detect VOC under UV light 

irradiation was carried out in this study.  
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1.6 Objectives  

The present study has the following objectives: 

a) To develop suitable catalytic pellets based metal oxide and their modified that 

can be used to detect VOCs at low temperature. 

b) To characterize the catalytic pellets and their modified in order to elucidate 

the physicochemical properties for better performance in VOCs detection. 

c) To design and fabricate the experimental rig for VOCs detection in order to 

measure the performance of developed catalytic pellets based on their 

conductivity/resistivity and sensitivity, and also to understand the reaction 

mechanism. 

 

1.7 Scope of the Study  

In the present study, titanium dioxide (TiO2) was identified to be used as the 

substrate for the catalytic pellets. The selection was based on the high sensitivity, 

high chemical stability under harsh conditions, high photosensitivity, relatively low 

cost and successful application as sensing material by other researchers. The 

synthesis of TiO2 powders was carried out by using titanium isopropoxide (TTIP) via 

sol-gel method. The selection of this method was made on the basis of their 

advantages reported by Chen et al. (2004) where is ability to improve homogeneity, 

stability, surface area and porosity of the sensing materials. 

 

In order to enhance the gas sensing properties of the TiO2-based sensor, 

several metal additives such as lanthanum (La) and tin (Sn) were incorporated to the 

TiO2 powders. The modification of TiO2 with metal additives was accomplished 

using an in-situ method. All synthesized gels were dried at 120 °C for 5 h and then 
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further calcined at desired temperatures for 3 h in air. The pellet was prepared by 

pressing the powders and then further sintered at 850 °C for 2 h in air and cooled to 

the room temperature before been tested. The parameter studies at this stage as effect 

of different types of metal additive (La and Sn), metal additive loading (0 – 10 at.%) 

and calcination temperature (500 – 900 °C) was done in order to obtain the best 

catalytic pellet that can be used for further detection activity. The synthesis and 

preparation parameters which give the high porosity, high surface area and more 

crystallinity were chosen to obtain sensing materials with different physical and 

chemical characteristics for comparison of results. The resulted TiO2, modified-TiO2 

powders and TiO2, modified-TiO2 catalytic pellets were subjected to comprehensive 

characterization techniques in order to find out their chemical and physical properties 

using TGA, XRD, TEM, N2 adsorption/desorption analysis, SEM and EDX.  

 

The gas sensing behavior of catalytic pellets was measured in a measurement 

chamber with heating facilities under controlled atmospheres. In the present study, 

the hazardous VOC vapors such as ethanol, methanol (alcohol group) and acetone 

(ketone group) were used as the model organic pollutant detection under the 

influence of UV light. The concentration of VOC vapors was analyzed by Hewlett 

Packard, Model 5890 series II gas chromatography, equipped with a packed column 

(Porapak Q, 3 m long x 2.33 mm ID) and a flame ionization detector (FID) before 

flowing into the measurement chamber. The parameter studies at this stage as effect 

of operating temperature (50 – 400 °C), different types of VOC vapor (ethanol, 

methanol, and acetone) and concentrations (1000 – 3000 ppm) and also UV light 

irradiation (with and without UV) were investigated. The course of the reaction can 

be monitored based on the electrical resistance and sensitivity of the catalytic pellets. 
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Exploration on the use of UV light to supply the energy for the reaction between 

VOC vapors and catalytic pellets was made, instead of providing high temperature.  

 

1.8 Organization of the Thesis  

 There are five chapters covered in the thesis and each chapter describes the 

detail of the research study. 

 

Chapter 1 (Introduction) gives a brief introduction and definition of VOCs, 

their emission sources and their impacts on human health and environmental. Then, 

the current gas sensor technologies to control and monitor the VOCs in domestic and 

industrial is described in general. This chapter also enclose with problem statements 

that provide some basis and rational to identify the clear direction of research 

objectives in the current studies. The scope of study covers the research work done to 

meet these objectives. Organization of the thesis winds up this chapter. 

 

Chapter 2 (Literature Review) consists of the review conducted on 

semiconductor gas sensor researches. The brief explanation of semiconducting metal 

oxide based gas sensor as sensing material is introduced in the first section, followed 

by the exploration of sensing mechanism, sensing characteristics of TiO2 including 

its advantage used as a sensing material, role of additives and ultraviolet (UV) light 

on sensing performance.  

 

 Chapter 3 (Materials and Experimental Methods) describes the chemicals 

and reagents used, preparation method and analysis required for the detection 

activity. It also explained on the details of the experimental setup, equipment used 



16 
 

throughout the whole process of this study, detection analysis and analytical 

techniques for material characterization.   

 

Chapter 4 (Results and Discussion) presents the result obtained from 

experimental runs and discusses on every effect of parameters on the preparation of 

sensing material and detection activity. Besides, the results from material 

characterization such as thermal stability, crystallinity, morphology, surface area, 

porosity, grain size and elemental compositions present also discussed.  

 

Chapter 5 (Conclusions and Recommendations) gives the overall 

conclusions of the results obtained in the present study. Several recommendations for 

future studies as a continuation to the present one are also included in this chapter. 
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CHAPTER 2 
 

LITERATURE REVIEW 
 
 

2.1 Introduction 

Gas sensors are used for monitoring and controlling of industrial processes, 

analysis of gas compositions, for surveillance and many other applications. The 

development of gas sensor devices with optimized sensitivity and selectivity has 

been gaining prominence in recent years. Since the demonstration almost 50 years 

ago, that the adsorption of gas on the surface of metal oxides can bring about a 

significant change in the electrical resistance of the material, there has been a 

sustained and successfully effort to make use of this change for purposes of gas 

detection. Zakrzewska (2004) reported that the detection of toxic and flammable 

gases as well as humidity is a subject of growing importance in both domestic and 

industrial environments.   

 

The present study is focused on the development of semiconductor gas 

sensors (SGS) based on metal oxides as functional sensing material and the role of 

incorporation additives on metal oxides that can be used to detect volatile organic 

compounds (VOCs) under UV light irradiation. These possible VOCs detection 

technologies have attracted the attention of many scientists and have been reviewed 

in recent reports (Paraguay D et al., 2000; Sberveglieri et al., 2000; Ruiz et al., 

2005a; Jiang et al., 2006; Alessandri et al., 2007; Rella et al., 2007; Sasahara et al., 

2007; Teleki et al., 2008; Vijaya et al., 2008). Furthermore, Table 2.1 shows the 

summarized of metal oxides used in SGS for VOCs detection that have been studied 

by others authors.   
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Table 2.1: Summary of metal oxides used in SGS for VOCs detection. 
 
Metal oxides Method of preparation Type of VOCs Remarks References 
 
Polymer-TiO2 

 
Chemical precipitation Alcohols, 500 ppm 

Benzene, 500 ppm 
 

Maximum sensitivity observed at 
room temperature 
 

Islam et al. (1999) 

HPC-TiO2 Sol-gel  Ethanol, 100-1000 ppm 
Methanol, 100-1000 
ppm 
 

Maximum sensitivity observed at 
operating temperature of 500 °C 
 

Garzella et al. (2000) 
 

ZnO Chemical precipitation, 
emulsion and microemulsion 
 

Isobutane, 1000 ppm 
Gasoline, 1000 ppm 
Ethanol, 1000 ppm 
 

Maximum sensitivity observed at 
operating temperature of 300 °C 

Xu et al. (2000) 

La2O3-Pd-ZnO Hydrolysis and impregnation 
 

Ethanol, 1000 ppm Maximum sensitivity observed at 
operating temperature of 175 °C 
 

Rao (2000) 

Pt/Nb-TiO2 Sol-gel  Ethanol, 500 ppm 
Methanol, 500 ppm 

Maximum sensitivity observed at 
operating temperature of 300 °C 
 

Comini et al. 
(2000a) 

TiO2-WO3 High-energy ball milling Ethanol, 1000 ppm Maximum sensitivity observed at 
operating temperature of 160 °C 
 

Reddy et al. (2001) 

WO3 Commercial powder Ethanol, 100 ppm Maximum sensitivity observed at 
operating temperature of 200 °C 

Yu-De et al. (2001) 
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Table 2.1: Continuous 
  
Metal oxides Method of preparation Type of VOCs Remarks References 
 
Polymer-TiO2 

 
Chemical precipitation Benzene, 150-350 ppm 

Methanol, 150-350 ppm 
Ethanol, 150-350 ppm 
 

 
Maximum sensitivity observed at 
room temperature 
 

Mabrook and 
Hawkins (2001) 

Pt-Ca-SnO2 Chemical precipitation Ethanol, 0-2000 ppm 
Toluene, 0-2000 ppm 
Acetone, 0-2000 ppm 
Benzene, 0-2000 ppm 
 

Maximum sensitivity observed at 
operating temperature of 400 °C 
 

Lee et al. (2002) 

TiO2-ZnO Vapor-phase oxidation and 
mechanical mixing 

Benzene, 10-200 ppm 
Toluene, 10-200 ppm 
Xylene, 10-200 ppm 
Acetone, 10-200 ppm 
Alcohol, 10-200 ppm 
 

Maximum sensitivity observed at 
operating temperature of 370 °C 

Zhu et al. (2004) 

Sb-ZnO Vapor condensation Benzene, 100 ppm  
Toluene, 100 ppm  
Xylene.100 ppm 
Acetone, 100 ppm  
Alcohol, 100 ppm 
 

Maximum sensitivity observed at 
operating temperature of 370 °C 

Zhu et al. (2005a) 

ZnO/ZnFe2O4 Wet-ball milling Methanol, 0-8000 ppm 
Ethanol, 0-8000 ppm  
Propanol, 0-8000 ppm 

Maximum sensitivity observed at 
operating temperature of 25 °C 
 

Arshak and Gaidan, 
(2005) 
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Table 2.1: Continuous 
 
Metal oxides  Method of preparation Type of VOCs Remarks References 
 
Tetrapod-shaped 
ZnO 

 
Vapor-phase oxidation Benzene, 100 ppm  

Toluene, 100 ppm 
Acetone, 100 ppm  
Alcohol, 100 ppm  
 

Maximum sensitivity observed at 
operating temperature of 320 °C 

Zhu et al. (2005b) 

Anatase TiO2 Flame spray pyrolisis 
(FSP)  

Ethanol, 1-75 ppm 
Isoprene, 1-75 ppm 
Acetone, 1-75 ppm 
 

Maximum sensitivity observed at 
operating temperature of 500 °C 
 

Teleki et al. (2006) 

ZnO-Fe2O3 Hydrolysis  Ethanol, 50 ppm 
Acetone, 50 ppm  

Maximum sensitivity observed at 
operating temperature of 200 °C 
 

Si et al. (2006) 

CeO2-ZnO Sol-gel Alcohol, 100 ppm Maximum sensitivity observed at 
operating temperature of 320 °C 
 

Ge et al. (2006) 

TiO2 Chemical precipitation Ethanol, 20-200 ppm 
Acetone, 20-200 ppm 
 

Maximum sensitivity observed at 
operating temperature of 350 °C 
 

Rella et al. (2007) 

Pd/γ-Al2O3 
 

Mechanical mixing Toluene, 10-1000 ppb Maximum sensitivity observed at 
room temperature 
 

Sasahara et al. 
(2007) 

SnO2 Chemical precipitation  Ethanol, 100-1000 ppm 
Propane-2-ol, 200-2000 ppm  
Acetyl acetone, 200-2000 
ppm  

Maximum sensitivity observed at 
operating temperature of 300 °C 
 

Huang et al. (2007) 
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2.2 Metal Oxides as Sensing Materials  

The development of new and more efficient materials for gas sensing is a 

challenge of the near future, as the market for these devices continues to grow. As 

first discovered in the early 60s, metal oxides are able to sense gases upon changes of 

their conductance. Gas sensors using metal oxide semiconductors have several 

advantageous features such as simplicity in device structure, reduced size, low cost 

for fabrication, robustness in practical applications and adaptability to a wide variety 

of reductive and or oxidative gases (Chung et al., 1998). Simple metal oxides such as 

SnO2, ZnO, WO3 and TiO2 are well known for their high sensitivity to changes in the 

surrounding gas atmosphere. The growing number of papers reporting on the 

successful application of these metal oxides in gas sensing devices shows the 

important role they play in the gas sensor research field (Moseley, 1997; 

Zakrzewska, 2001; Comini, 2006; Karunagaran, 2007; Herrán et al., 2008).  

 

Fairly extensive studies have been carried out on this group of gas sensors. 

Nevertheless, there are basic and technological problems yet to solve. One of such 

problems is that, so far the majority of investigations have been carried out on the 

metal oxide semiconductor gas sensors using SnO2. Moreover, in spite of their high 

sensitivity, such gas sensors show usually poor selectivity and stability (Kocemba et 

al., 2001). The other metal oxides should also be investigated more to get a 

comprehensive understanding about gas sensing-materials and sensing-mechanism. It 

is known that metal oxides can have either n- or p-type semiconductor of 

conductivity as shown in Table 2.2. For metal oxides with p-type semiconductor, the 

conductivity rises with oxygen pressure’s growth, whilst for metal oxides with n-type 

semiconductor, the conductivity drops with oxygen pressure’s growth.  
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Table 2.2: Classification of metal oxides based on type of conductivity 
(Korotcenkov, 2007). 
 
Type of conductivity Metal oxides  
 
n-type  MgO, CaO, TiO2, ZrO2, V2O5, Nb2O5, Ta2O5, MoO3, 

WO3, ZnO, Al2O3, Ga2O3, In2O3, SnO2 
 

p-type Y2O3, La2O3, CeO2, Mn2O3, Co3O4, NiO, PdO, Ag2O, 
Bi2O3, Sb2O3, TeO2 
 

n, p-type HfO2, Cr2O3, Fe2O3, CuO 

 

The analysis of main gas-sensing materials in respect to their conductivity 

type shows that all the most effectively working gas sensors are designed on the base 

of metal oxides of n-type conductivity, such as SnO2, TiO2, WO3, ZnO and In2O3 

which providing the opportunity of oxygen’s chemisorptions. Previous research has 

shown that, in general, all n-type metal oxides are thermally stable and have 

possibility to work at lower oxygen partial pressure in comparison with well known 

p-type metal oxides, for example such as CuO (Gordon et al., 1996). It is known that 

many p-type metal oxides are relatively unstable because of the tendency to 

exchange lattice oxygen easily with air (Madou and Marrison, 1987).  

 

Besides, the interaction with reducing gas decreases the resistance of n-type 

metal oxides and increases the resistance of p-type metal oxides as shown in Table 

2.3. This is the preferred direction for sensor’s resistance change during detection of 

reducing gases, contributing to simpler compatibility with peripheral measuring 

devices, and better reproducibility of output signal (Korotcenkov, 2007). However, it 

does not mean that p-type materials are not applicable for sensor design. For 

example, the previous research has shown that metal oxide Cr2−xTixO3 (x < 0.4) 

(CTO), prospective for gas sensors design, is p-type material (Williams et al., 2000). 
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Table 2.3: Resistance responses expected for reducing and oxidizing gases on n- and 
p-type metal oxides. 
 
Metal oxides  Reducing gases Oxidizing gases 
 
n-type 
 

Resistance falls 
 
Resistance rises 

p-type  
 

Resistance rises Resistance falls 

 

Furthermore, the pretty big band gap (Eg) and small activation energy of the 

centers, responsible for metal oxides conductivity which is an optimal combination 

of parameters for the materials designed for solid-state semiconductor gas sensors 

(Korotcenkov, 2007). Such correlation of activation energies is necessary in order to 

avoid sensor’s operation in the region of self-conductance. Kolmakov and Moskovits 

(2004) reported the influence of surrounding temperature on gas sensor parameters is 

reduced and as a rule, the higher operation temperature is, the bigger should be Eg. 

According to previous experimental results, the optimal band gap must be higher 

than 2.5 eV when operate at the operating temperatures exceeding T > 300 °C. Thus, 

it can be concluded that the well-known metal oxides satisfy this requirement as 

shown in Table 2.4. 

 

It is necessary to note that an opportunity to operate at higher temperature is 

an important advantage of solid-state semiconductor gas sensors, because this fact 

allows reducing considerably the influence of air humidity on gas-sensing 

characteristics. It was established that, as a rule, the lower operating temperature is, 

the greater is the sensitivity of the sensor’s parameters to relative air humidity 

(Korotcenkov, 2005). The big band gap also is a sufficient advantage for metal 

oxides with ionic conductivity, because the contribution of electron conductivity in 

sensing materials is being reduced especially at high operating temperatures 
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(Korotcenkov, 2007). On the other hand, there are n-type and p-type states that are 

formed in the band gap of the metal oxides as shown in Figure 2.1.  The n-type metal 

oxides may act as donor band while the p-type metal oxides act as acceptor band.  

 

Table 2.4: Band gap of metal oxides (Korotcenkov, 2007). 
 
Metal oxides semiconductor  Band gap (eV) 
 
MgO, CaO, Al2O3, SiO2, TeO2 
 

 
> 6.0 

SrO, Y2O3, HfO2, ZrO2 
 

5 – 6 

BaO, La2O3, CeO2, Ga2O3 
 

4 – 5 

TiO2, Nb2O5, Ta2O5, ZnO, In2O3, SnO2 
 

3 – 4 

V2O5, Cr2O3, WO3, NiO, Fe2O3 
 

2 – 3 

Co3O4, PdO, CuO, Sb2O3  
1 – 2 

 

 
 

Figure 2.1: Band gap structure of (a) an insulator, (b) an n-type semiconductor and 
(c) a p-type semiconductor (Trimboli, 2005). 
 

At present, there are three technologies used for the fabrication of SGS based 

on metal oxides devices viz. pellet-type (Bulpitt and Tsang, 2000), thin film-type 

(Mabrook and Hawkins, 2001) and thick film-type (Choi et al., 2004). These types of 
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