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OPTOELEKTRONIK BERASASKAN GaN PA-MBE ATAS SUBSTRAT 
SILIKON 

 

ABSTRAK 

Dalam penyelidikan ini, epitaksi alur molekul berbantukan plasma nitrogen  

frekuensi radio (RF) digunakan untuk menumbuhkan bahan galium nitrid (GaN) di 

atas substrat Si(111) dengan penggunaan aluminium nitrid (AlN) yang ditumbuhkan 

pada suhu tinggi sebagai lapisan penimbal. Sepanjang proses pertumbuhan, 

pengedopan dilakukan dengan menggunakan Si dan Mg dengan ketulenen tinggi 

sebagai pendopan jenis-n dan jenis-p masing-masing.  Sejumlah tujuh teknik telah 

digunakan untuk mengkaji ciri-ciri filem berasaskan GaN (jenis-n yang didop secara 

tidak sengaja, GaN jenis-n dan jenis-p yang didop, Al0.09Ga0.91N jenis-n yang didop 

secara tidak sengaja, struktur hetero In0.47Ga0.53N/GaN jenis-n, lapisan penutup 

AlN/GaN).  Teknik-teknik tersebut adalah pembelauan sinar-X (XRD), analisis 

serakan tenaga sinar-X (EDX), mikroskop imbasan elektron (SEM), mikroskopi daya 

atomik (AFM), pengukuran Hall, fotoluminesen (PL), dan spektroskopi Raman. 

Filem-filem tersebut telah dikaji dari segi ciri-ciri struktur, optik, dan elektrik. 

Sejak GaN berliang adalah bahan baru, ciri-cirinya tidak kerap ditemui dalam 

tinjauan bacaan. Pelbagai jenis alat pencirian telah digunakan untuk mengkaji sifat-

sifat morfologi, struktur dan optik bahan GaN berliang yang dijanakan melalui 

kaedah punaran tanpa elektrod dengan berbantukan Pt. Pelbagai sentuhan logam 

pada bahan GaN telah diperhati dalam projek ini untuk tujuan fabrikasi peranti. Ni 

didapati mempunyai ciri elektrik dan kestabilan termal yang terbaik pada suhu tinggi 

bagi sentuhan logam pada GaN jenis-n. Sentuhan ohmik dwi-lapisan Ni/Ag atas GaN 

jenis-p telah dikaji. Kerintangan sentuhan spesifik (SCRs) bagi skema dwi-lapisan ini 

didapati peka pada perubahan suhu dan masa penyepuhlindapan. Selain itu, kajian 
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sentuhan Schottky berasaskan empat jenis skema pelogaman yang berlainan, iaitu, 

Ti, Ag, Ti/Ag, Ag/Ti juga dilakukan pada GaN jenis-p, dan didapati rawatan haba 

boleh memperbaiki ciri-ciri elektrik bagi sentuhan Schottky secara amnya. Sebelum 

rawatan haba, ketinggian sawar (SBH) Schottky bagi Ti, Ag, Ti/Ag, dan Ag/Ti 

adalah 0.58, 0.71, 0.53, 0.62, masing-masing. Selepas rawatan sepuh lindap, 

ketinggian sawar Schottky bagi Ti, Ti/Ag, dan Ag/Ti adalah 0.67, 0.69, dan 0.66, 

masing-masing. 

Berikutan dengan penyelidikan secara intensif kualiti bahan dan sentuhan 

logam, pengesan foto logam-semikonduktor-logam (MSM) berasaskan lapisan GaN 

berliang seterusnya difabrikasikan dan dibandingkan dengan peranti lain yang 

berasaskan bahan tidak berliang supaya  potensi GaN berliang dapat ditinjau 

sepenuhnya. Kajian juga menunjukkan lapisan GaN berliang dapat meningkatkan 

ciri-ciri elektrik sentuhan Schottky Ni pada GaN di mana ketinggian sawar Schottky 

(SBH) dan kebocoran arus ini telah diperbaiki dengan berkesan. Pengesan foto 

berasaskan lapisan GaN berliang juga menunjukkan ciri-ciri yang 

memberangsangkan, di mana arus gelap yang rendah, dan nisbah arus foto kepada 

arus gelap yang tinggi dapat diperhatikan. Ciri-ciri fotodiod sawar Schottky 

ultraungu berasaskan GaN dengan lapisan penutup AlN (50nm) yang novel 

dibincangkan. Rawatan sepuh lindap telah menghasilkan ciri-ciri peranti yang lebih 

baik dengan peningkatan ketinggian sawar Schottky dan pengurangan arus gelap 

bagi fotodiod Schottky yang difabrikasikan. Bagi diod Schottky yang disepuh lindap 

pada suhu 500ºC, 600ºC, dan 700ºC, arus gelap adalah 3.25 x 10-4, 4.97 x 10-5, and 

5.05 x 10-5 A, masing-masing, di bawah pincang 10 V. Fotodiod simpangan hetero p-

GaN/n-Si telah difabrikasikan untuk pemerhatian kesan fotoelektrik.  
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PA-MBE GaN-BASED OPTOELECTRONICS ON SILICON SUBSTRATES 

 

ABSTRACT 

In this project, radio-frequency (RF) nitrogen plasma-assisted molecular 

beam epitaxy (PA-MBE) technique was used to grow GaN-based layers on Si(111) 

substrate using high temperature grown AlN as buffer layer.  During growth, doping 

was done using high purity Si and Mg as n- and p-type dopants, respectively.  A total 

of seven techniques were employed to study the properties of the GaN-based films 

(unintentionally doped n-type GaN, n- and p-doped GaN, unintentionally doped n-

type Al0.09Ga0.91N, n-type In0.47Ga0.53N/GaN heterostucture, AlN cap layer/GaN).  

These were X-ray diffraction (XRD), energy dispersive X-ray analysis (EDX), 

scanning electron microscopy (SEM), atomic force microscopy (AFM), Hall 

measurements, photoluminescence (PL) and Raman spectroscopy.  The films were 

evaluated in terms of structural, optical and electrical properties. 

Since porous GaN-based materials on silicon substrates are a new type of 

material, the properties are hardly found in the literature. Several different 

characterization tools have been used to investigate the morphological, structural, 

and optical properties of porous GaN produced by Pt assisted electroless etching 

methods. Different features metal contacts on GaN materials have been investigated 

in this project for the purpose of device fabrication. Nickel was found to have 

excellent electrical properties and thermal stability at elevated temperatures among 

the metal contacts on n-type GaN.  A Ni/Ag bi-layer ohmic contact on p-GaN has 

been explored. The specific contact resistivities (SCRs) of this bi-layer scheme were 

observed to be sensitive to the change of annealing temperatures and durations.  

Other than that, the study of Schottky contacts based on four different metallization 
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schemes, Ti, Ag, Ti/Ag, and Ag/Ti were performed on p-type GaN, and heat 

treatment was found able to improve the electrical properties of Schottky contacts 

generally.  Before heat treatment, the Schottky barrier heights (SBHs) of Ti, Ag, 

Ti/Ag, and Ag/Ti were determined to be 0.58, 0.71, 0.53 and 0.62 eV, respectively.  

After annealing, the SBHs of Ti, Ti/Ag, and Ag/Ti were found to be 0.67, 0.69 and 

0.66 eV, respectively.   

Following the intensive investigations of material quality and metal contacts,  

metal-semiconductor-metal (MSM) photodetectors based on porous GaN-based 

materials were subsequently fabricated and compared to other non-porous-based 

devices so that the potential of porous GaN-based materials could be fully explored.  

The study also showed that porous GaN layer was able to enhance the electrical 

properties of Ni Schottky contacts on GaN in which the SBH and leakage current 

were improved significantly.  Photodetector fabricated from porous GaN layer also 

showed promising properties in which low dark current and higher photocurrent to 

dark current ratio were observed. The characteristics of novel GaN-based ultraviolet 

(UV) Schottky barrier photodiodes with AlN cap layer (50 nm) were presented. 

Thermal annealing treatment has resulted in improved device characteristics by 

enhancement of Schottky barrier height, and suppression of dark current of the 

fabricated Schottky photodiodes. For Schottky diodes annealed at 500 ºC, 600 ºC, 

and 700 ºC, the dark currents were 3.25 x 10-4, 4.97 x 10-5, and 5.05 x 10-5 A, 

respectively, under 10 V applied bias. The p-GaN/n-Si heterojunction photodiode 

was fabricated to observe the photoelectric effects.  
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CHAPTER 1 
 

INTRODUCTION  
 

1.1   General properties of III-V nitrides 

    Due to their superior electrical and optical properties, the group III-nitride 

family, consisting of gallium nitride (GaN), aluminium nitride (AlN), indium nitride 

(InN), their alloys and heterostructures, primarily AlGaN/GaN and  InGaN/GaN, are 

the subject of intense research activity worldwide as they promise to usher in a new 

era in optoelectronics (Sawyer et al., 2008, Razeghi et al., 1996, Strite et al., 1992).   

Characteristics, such as high mobility, high breakdown voltage, high electron 

saturation velocity, high thermal conductivity, chemical inertness, mechanical 

stability, make the nitride family of semiconductors materials of choice for the 

fabrication of electronic devices capable of operating at high temperatures, high 

frequency and high power densities (DeCuir et al., 2008, Pearton et al., 1999, Sze, 

1990).  The nitrides can crystallize in either zinc-blend or the wurtzite form, with the 

wurtzite structure being the most commonly studied.   

GaN is a direct and wide band gap (3.4 eV) semiconductor and when alloyed 

with InN (0.7 eV) (Shih et al., 2008, Jamil et al., 2008, Biju et al., 2008, Wu et al., 

2002) and AlN (6.2 eV), a spectrum from infrared (IR) to ultraviolet (UV) can be 

covered (Strite et al., 1992).  A graph illustrating the band gap and lattice constant of 

some of the most important compound semiconductor materials is presented in Fig. 

1.1.  

Unlike silicon carbide (SiC), another widely studied large band gap 

semiconductor with demonstrated n- and p-type doping and excellent power device 

performance, one advantage of GaN as well as III-V nitrides is that they form direct 

band gap heterostructures, have better ohmic contacts and heterostructures, which 
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eventually made III-V nitrides or GaN a more promising candidate than SiC in terms 

of application devices in optoelectronics.  The transparency of high quality GaN at 

wavelengths longer than the band gap make it an ideal material for fabricating 

photodetectors capable of rejecting near infrared and visible regions of the solar 

spectrum while retaining near unity quantum efficiency in the UV.  Besides, in 

optoelectronics, GaN is primarily of interest for its potential as a blue and UV light 

emitter (Strite et al., 1992). 

 
 
Fig. 1.1: Bandgap energy versus effective lattice constant of nitride material. 
(Popovici and Morkoc, 2000) 
 

 
 

 GaN-based devices are now present on the market, but much work is left in 

order to expand the application pool and improve the performance and reliability.  

Major research issues include: choice of substrate, GaN bulk and thin film crystal 

growth, heteroepitaxy, buffer layers, doping, contacts, etching, and integration with 

other semiconductors. Growth of bulk GaN crystals (ingots at least few inches in 

diameter) is a challenge due to their high melting temperature, very high equilibrium 

nitrogen vapor pressure at moderate temperatures, and low solubility in acids, bases 

and most other inorganic elements and compounds. Since no large bulk GaN is 

available at this time, the future industrialization of these wide bandgap compound 
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materials depends on the development of high-quality heteroepitaxial growth 

techniques on various substrates.  Due to the need to understand, predict and 

optimize the growth process of the GaN films, work is needed to understand the 

heteroepitaxy growth of GaN.  

 

1.1.1   Crystal structure of group III-nitrides 

The table in Appendix A summarizes the fundamental properties of wurtzite 

III-nitride semiconductors at room temperature.  The group III atoms form 

compounds with N that have a composition of III-N.  These compounds have four 

covalent bonds with four tetrahedral bonds for each atom.  This is depicted 

schematically in Fig. 1.2.  Such bonds make a significant ionic contribution because 

of the large differences in electronegativity of the two constituents.  The GaN can 

crystallize in two crystalline phases: wurtzite which has hexagonal symmetry and is 

the thermodynamically equilibrium phase, and zinc-blende which is cubic.  The 

hexagonal wurtzite GaN with a direct band gap of 3.4 eV is the most-studied material 

among all group III nitrides.  The lattice parameters of the wurtzite hexagonal GaN 

are: a = 3.1892 ± 0.0009 Å, and c = 5.1850 ± 0.0005 Å (Maruska et al., 1969, 

Detchprohm et al., 1992).  

 
Fig. 1.2:  The (a) wurtzite structure, and (b) zinc blende structure of III-V nitrides. 
(Detchprohm et al., 1992) 
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1.1.2   Brief history of the group III-nitrides 

III-nitride semiconductors have been studied for more than a half century.  In 

1928, Tiede et al.  first reported AlN growth (Tiede et al., 1928).  Following that, 

Johnson et al. in 1932 reported the synthesis of GaN by passing ammonia over hot 

gallium (Johnson et al., 1932).  This method produced small needles and platelets.  

Their purpose was to study the crystal structure and lattice constant of GaN as part of 

a systematic study of many compounds.  

Two decades later, Grimmeiss et al. (Grimmeiss, et al. 1959) used same 

technique to produce small GaN crystals for the purpose of measuring 

photoluminescence spectra.  The synthesis of InN was reported by Juza in 1938 (Juza 

et al., 1938).  A breakthrough occurred in 1969, when Maruska (Maruska et al., 

1969) succeeded in growing the first single-crystal GaN on sapphire substrate by 

hydride vapor phase epitaxy (HVPE).  All the GaN made at that time was very 

conducting n-type even when not deliberately doped. They found that GaN possesses 

a direct transition band structure with bandgap energy of about 3.39 eV.   

In 1971, the first metal-insulator-semiconductor (MIS) light emitting diode 

(LED) was demonstrated but until 1989, only few publications and improvements of 

GaN have been published.  Since 1992 up to now, the research and development 

activities in the field of the group III nitrides rapidly increased.  From the double 

heterostructure (DH) LED and laser diode (LD) up to the high electron mobility 

transistor (HEMT), all devices could be realized with the nitrides.  Metal-organic 

chemical vapor deposition (MOCVD), also called metal-organic vapor phase epitaxy 

(MOVPE), is the favorite growth method for the epitaxial layers. Besides this, 

molecular beam epitaxy (MBE) is also used.  
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1.1.3   Doping of GaN 

Doping with atoms that have more or less valence electrons than gallium is 

employed to control the electrical properties of GaN films.  Nominally as grown 

GaN thin film has intrinsic n-type carriers and the doping level is normally higher 

than 1016 cm-3.   This n-type doping is generally caused by nitrogen vacancies (VN) in 

the crystalline structure, which are expected to be shallow donors in GaN films.  

Oxygen is commonly found as an impurity in GaN layers, and contributes to the n-

type carrier concentration (Seifert et al., 1983, Chung et al., 1992).   

The most common n-type dopant in GaN is silicon (Si).  Controllable silicon 

doping of GaN has been demonstrated over a wide range of concentrations (low 1017 

cm-3 to mid 1019 cm-3).  Several groups have shown linear increase of the electron 

concentration with the silicon/gallium ratio using Van der Pauw Hall measurement at 

300 K (Nakamura et al., 1992a, Rowland et al., 1995, Kadena et al., 1996).  As the 

electron concentration is increased, there is also the decrease in the electron mobility 

due to impurity scattering.  Although high electron concentrations can be achieved 

with silicon doping, cracking of GaN films grown on sapphire has been observed 

(Murakami et al., 1991).  High Si doping levels provide for a low resistance ohmic 

contact to the n-type GaN for LEDs.  Recently Burm et al. have shown that a shallow 

Si implant at a dose of 1 × 1018 cm-2 to produce a doping density of 4 × 1018 cm-2 

followed by an 1150 °C anneal for 30 sec results in very low contact resistance of 

0.097 Ωmm and a specific contact resistance of 3.6 × 10-8 Ωcm2 (Burm et al., 1997).   

p-type doping of GaN has proven to be significantly more challenging 

because the fact that the as grown GaN film is as intrinsically n-type semiconductor.  

For highly efficient optoelectronic devices such as p-n junction based LEDs and laser 

diodes, p-type doping level is a critical parameter.  For p-type doping, magnesium 
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(Mg) has proven to be the most successful dopant thus far.  Highly doped p-type 

GaN films with a doping level of 1018 - 1019 cm-3 have been recently achieved using 

elemental Mg (Moustakas et al., 1993a, Akasaki et al., 1994, Molnar et al, 1993, 

Nakamura et al., 1991).  Magnesium occupies cation sites and is a shallow acceptor 

in GaN.   

Other impurities have also been investigated for the purpose of finding an 

acceptor of GaN with smaller ionization energy, which could contribute to enhancing 

the p-type conductivity.  Another possibility is the group II element beryllium (Be). 

Be is a common p-type dopant in the more conventional III-V compound 

semiconductors, such as GaN. The Be acceptor level was theoretically predicted to 

be as low as 60 meV above the valence band (Bernardini et al., 1997). Up to now, 

Zn, C, Ca and Be have been tested, but Mg is still recognized as the best p-type 

dopant of GaN crystals. 

When metal organic chemical vapour deposition (MOCVD) is used as the 

growth method, a postgrowth annealing is necessary because it was found that 

hydrogen neutralizes the Mg acceptor.  The postgrowth annealing is carried out at 

temperatures of 700 °C and 900 °C (Akasaki et al., 1994) or by using a low energy 

electron beam (LEEBI) process (Amano et al., 1989).  During postgrowth treatment, 

the Mg-H bond is broken, thus forming an electrically active Mg center.  However, if 

there is any atomic hydrogen present, the Mg-H complexes will reform and the 

sample will remain highly resistive.  The as grown GaN film by molecular beam 

epitaxy (MBE) does not have the neutralization effect by hydrogen because the MBE 

does not use the hydrogen source.  The highest hole concentration achieved by 

MOCVD and MBE are 3.0 x 1019 cm-3 (Svensk et al., 2007) and 4.7 x 1018 cm-3 

(Burnham et al., 2008), respectively. 
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1.2   GaN-based optoelectronics on silicon substrates 

For the last 15 years silicon as a substrate has attracted much attention for the 

epitaxial growth of III-V compounds like GaAs and InP because of its low price and 

its availability in large diameters up to 12 inches now.  However, in spite of huge 

efforts, no real breakthrough has been obtained because of the high density of 

dislocations in these materials leading to a rapid degradation of all devices fabricated 

so far.   In contrast, GaN-based devices are known to operate very well without aging 

effects with dislocation densities as high as 1010 cm-2.  Thus, the integration of Si- 

and GaN-based devices on the same chip becomes feasible as well as a silicon based 

optoelectronics technology, with the potential for small, high resolution, full color 

displays. 

From the point of view of economics, Si offers a low price as compared to 

sapphire and SiC, high crystalline perfection, availability of large size substrates, all 

types of conductivity, and high thermal conductivity (1.5 W cm-1).  In most cases the 

Si(111) plane is chosen because of its trigonal symmetry favoring epitaxial growth of 

the GaN(0001) plane.  The large difference in the lattice parameters of  GaN (aGaN = 

0.31892 nm) and Si (aSi(111) = /0.38403 nm) yields a lattice parameter mismatch  of 

16.9 %  resulting in a high dislocation density of ~/1010 cm-2 which is comparable to 

GaN on sapphire.   

The most severe problem is the large thermal mismatch between GaN and Si.  

The in-plane thermal expansion coefficient of GaN is 5.59 x 10-6 K-1 (Maruska et al., 

1969) as compared to 3.77 x/10-6 K-1 of Si (Okada et al., 1984), which leads to a 

large tensile stress during cooling from the growth temperature to room temperature 

often resulting in cracked layers preventing device applications. The tensile stress 

causes a concave bending of the film/substrate system.  
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1.2.1  LEDs on silicon substrates 

The first GaN-based light emitting diode on Si substrate was reported by 

Guha et al. (Guha et al., 1998).  The double heterostructure was grown by MBE on 

n-type Si(111) with an intermediate 8 nm AlN buffer.  The structure consisted of n-

AlxGa1-xN/6 nm GaN (Si-doped or undoped) as an active layer/p-AlxGa1-xN/15 nm p-

GaN layers with 0.05 < x </0.09.  Ni/Au thin (14 nm) transparent metals served as p-

type contacts and electron injection was carried out from the backside through the Si 

substrate.   

The diodes start light emitting at 4.5 - 6.5 V with reverse leakage currents 

from 10 to 130 µA at -10 V.  At 12 V, the forward currents varied from 14 to 65 mA.  

These rather high values as compared to MOVPE grown devices on sapphire or SiC 

were attributed to a low p-type doping and non-optimal p contacts.  A device with a 

Si-doped thin GaN layer showed a near band edge electroluminescence at 360 nm 

with a full width at half maximum of 17 nm, and a broad long wavelength tail that 

extended out into the visible spectral range, while a heterostructure with an undoped 

GaN layer showed a broad emission band centered at 420 nm most probably due to 

deep radiative levels in the gap.   

The same authors reported on multicolored light emitters on silicon substrates 

using similar violet MBE grown GaN LEDs as described above with somewhat 

higher Al-content (x = 0.15).  In conjunction with organic dye based color converters 

orange at ~/600 nm and green-yellow at ~ 530 nm, electroluminescence on the same 

Si wafer is obtained.  The output power was not given but the ‘visible part of the 

electroluminescence was bright enough to be clearly observed by the eye under 

normal room illumination’.  It should be noted that the layers showed cracks. 
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Tran et al. reported the growth of InGaN/GaN multiple quantum well (MQW) 

blue LEDs on Si(111) grown by MOVPE (Tran et. al., 1999). The structure consisted 

of a 20 nm AlN buffer deposited at 750 ºC, 4 µm n-doped GaN, an undoped ten 

period MQW (2 nm In0.22Ga0.78N/9 nm GaN), a 40 nm p-doped Al0.1Ga0.9N layer and 

0.3 mm p-GaN cap layer.  The structure showed blue electroluminescence at 465 nm. 

Light emission started at 4 V, the reverse leakage current was 60 mA at -10 V.  An 

optical power output was not given.  This structure showed also cracks. 

Yang et al. fabricated an InGaN/GaN MQW LED by a combined 

MBE/MOVPE growth procedure in selective areas defined by openings in a SiO2 

mask (Yang, et. al., 2000).  The density of cracks was comparable to similar 

structures on flat SiC substrates. For the LED, a forward turn-on voltage of 3.2 V 

was measured.  The forward differential resistance was a factor of four higher than in 

comparable LEDs on sapphire substrate.  At room temperature the device emitted at 

465 nm. 

An MBE-grown ultraviolet electro-luminescence GaN/AlGaN single hetero-

junction LED on Si(111) was also reported by Sánchez-Garcia et al., (Sánchez-

Garcia et al., 2000).  Room temperature electroluminescence centered at 365 nm with 

a Full width at half maximum (FWHM) of 8 nm was obtained.   The turn-on voltage 

was 5 V, the structure suffered from a reverse leakage current of 200 µA at -5 V.  

The optical ultraviolet output power was estimated to be 1.5 mW at 35 mA. 

 

1.2.2 Lasers on silicon substrates 

The recent surge of interest and research activity in Si-based lasers highlights 

the potential benefits that full capability in photonics could bring to the Si world.  

Some of the recent advances in lasing are based on emission from rare earth (RE) 
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elements contained in GaN heteroepitaxially grown on Si.  This approach has led to 

the first demonstration of visible lasing on Si.  The eventual success of this approach 

will result in the availability of laser light sources built directly on Si substrates and 

operating at wavelengths throughout the visible and near-infrared (IR) range.  

The use of light for improving the performance and flexibility of Si 

microelectronics has been an elusive goal for many years. Long-haul 

telecommunications has clearly made the transition to optical technology, driven 

primarily by the wider bandwidth available in silica glass fibers. The next optical 

revolution is in computation capability. As computer processor speeds continue to 

increase, computing performance is increasingly limited by data rates between the 

main processor and its environment.  These include connections between processors, 

and peripheral devices, etc.  

Optical domain communication offers many important attributes, such as 

increased bandwidth, increased transmission path, reduced signal cross-talk, reduced 

sensitivity to electromagnetic interference, and reduced weight.  If achieved, the 

integration of electronics and photonics on a single Si substrate will result in the 

development of on-chip optoelectronics incorporated with electronic circuits and 

optical devices. This, in turn, would provide much greater functionality and 

performance compared with existing purely microelectronic circuits. The building 

blocks required for integrated Si-based optoelectronics include an appropriate light 

source, on-chip optical modulator, and photodetector. Of these, clearly the most 

challenging element is the need for a Si-based laser. 

The first successful demonstration of visible (at ~ 620 nm) lasing on Si was 

achieved by optical pumping of Eu-doped GaN epilayers, with unique AlGaN 

transition layers, grown on Si substrates by solid-source molecular beam epitaxy 
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(MBE).  The initial results are very encouraging with a measured stimulated 

emission threshold of only ~ 110 kWcm-2, optical gain of ~ 100 cm-1, and loss of ~ 

45 cm-1.  These results provide strong evidence that injection lasers based on AlGaN-

GaN:RE-AlGaN double heterojunction structures grown on Si substrates are feasible. 

Fig. 1.3 displays the materials used in the demonstrations to date of lasers on 

Si and the corresponding wavelength and emission color.  The wavelength scale also 

indicates emission obtained from various REs in GaN.  The insert to Fig. 1.3 is a 

photograph of stimulated emission from a GaN:Eu thin film on Si that is optically 

pumped.  The approach to achieving a versatile Si-based laser system using RE-

doped GaN films grown on Si substrates is founded upon the combination of few key 

factors: (i) robust, optically efficient, wide bandgap semiconductors:  LEDs and laser 

diodes (LDs) based on GaN, along with alloys of AlN and InN, have been developed 

to a very high degree of efficiency despite the absence of a native III-N substrate.  

Typically, sapphire, which has a significant lattice mismatch to GaN, is used as a 

substrate leading to a large defect dislocation density in the epilayers.  However, 

light emission in the III-N epilayers is very strong and intrinsic lasing (i.e. near-

bandgap) from GaN-on-Si structures has been reported (Bidnyk et al., 1998).  In 

addition, Yablonskii et al. have reported stimulated emission from GaN at near UV 

wavelengths (~ 368 nm) using optical pumping at 337 nm (Yablonskii et al., 2002). 

(ii) efficient RE-doped GaN devices:  the use of GaN (and AlGaN) as host materials 

for different RE ions has been developed and efficient electroluminescent devices 

(ELDs) with emission at many wavelengths from the visible to the IR have been 

demonstrated. ELDs have been grown on both sapphire and Si substrates.  More 

recently, stimulated emission has been obtained from Eu-doped GaN structures 

fabricated on Si substrates. 
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Fig. 1.3: Materials used in the demonstrations to date of lasers on Si and associated 
wavelength and emission color.  Wavelength scale also indicates emission obtained 
from various REs in GaN. (Steckl et al., 2007)   
 

 

1.2.3 Photodetectors on silicon substrates 

High conductivity of a silicon substrate draws attention of researches to 

construct ultraviolet (UV) photodetectors based on surface barrier GaN/Si structures.  

The AlxGa1-xN material system has been demonstrated to be well suited as a 

photodetector material for the 200 – 365 nm wavelength range.   This success has led 

to the commercialisation of nitride-based UV photodetectors.  Some of the potential 

uses of these UV photodetectors are endoatmospheric sensing of jet or rocket plumes, 

of solar UV rays, and for flame detection.  Requirements for these photodetectors 

include high visible rejection, high responsivity, and linearity and low time response. 

Silicon substrate presents the obvious advantages of a well known technology, 

low cost and potential hybrid integration.  However, Si(111) has been less 
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investigated than sapphire as a substrate to grow nitrides, due to the higher lattice and 

thermal expansion coefficient mismatches which produce a higher dislocation 

density and the potential generation of cracks.  In addition, the problem of the 

interdiffusion at the Si/epilayer interface makes the interpretation of electrical 

measurements more difficult.  There are only a few reports on GaN photodetectors 

on Si(111), including photoconductors and Schottky photodiodes (Chiou et al., 2008, 

Wang et a., 2006).  The performance of these devices was poor in comparison with 

photodetectors on sapphire.   

 

1.3 Research objectives 

GaN-based or the III-V nitrides materials are wide band gap semiconductor 

materials with potential applications in optoelectronic as well as in electronic devices 

operating at high power and high temperature conditions.  Although the research on 

GaN is actively being investigated around the world for its significance, but the 

research on these materials is new in Malaysia.   

In metalorganic chemical vapor deposition (MOCVD), chemical reaction 

takes place by intercepting different gases flow on a heated surface with high growth 

rate; this method has been widely applied in commercialization.  However, for 

research purposes, most III-nitrides are grown by molecular beam epitaxy (MBE) to 

control growth rate and thickness to a great accuracy.  MBE is a low temperature 

alternative to growth processes such as MOCVD.  MOCVD growth temperatures for 

GaN are typically in excess of 1000 ºC, while MBE temperatures are usually in the 

range of 700 - 800 ºC.  This allows for more flexibility in the choice of substrate 

materials and minimizes thermal effects such as diffusion.  Growth rates are typically 

about 0.3 to 1 µm/hr.  This allows thickness control on the atomic level.  All of these 
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factors combine to help MBE exhibit extremely fine control over semiconductor 

growth.  With this control, MBE has made a tremendous impact on the world of 

device fabrication.  Both optical and electronics devices have been aided greatly by 

use of the MBE technique.  MBE continues to be uniquely suited to the growth of 

many device structures.  

The main objective of this project is to use radio-frequency (RF) nitrogen 

plasma-assisted molecular beam epitaxy (PAMBE) technique to grow high quality 

GaN-based materials on Si(111) substrate for exploration of the potential of these 

materials for optoelectronics applications. The studies of metal contacts on GaN-

based materials are also important research areas which will give an insight in the 

GaN-based device technology.  In this work, a variety of metal contacts on n- and p-

type GaN-based materials have also been investigated to study the change of 

electrical, morphological properties and thermal stability of the contacts under 

different environments.   

Besides that, tremendous effort is channeled into the exploration of the 

fundamental properties of the porous GaN-based materials on silicon substrates; a 

new form of material which is not much reported in the literature, therefore, in this 

project, works have been devoted to the study of the structural, morphological, 

optical and electrical properties of this material. Following the intensive 

investigations of material quality and metal contacts, metal-semiconductor-metal 

(MSM) photodetector based on porous GaN-based material are also fabricated and 

compared to other non-porous-based devices so that the potential of porous GaN-

based material could be fully explored.   
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1.3.1   Originality of the research works  

High quality GaN-based layers were grown on Si(111) substrates by radio 

frequency (RF) nitrogen plasma-assisted molecular beam epitaxy (PAMBE).  The 

growth of III-nitrides on Si(111) was initiated with a previous coverage of Al to 

avoid the formation of amorphous SixNy.  The two-step growth of AlN films as 

buffer layer has been carried out.  The first step is a short high temperature 

deposition.  Typically, this AlN buffer layer deposition was started by Al cell 

temperature at 1161 °C (Al high flux of 3.50 x 10-7 Torr BEP).  Then Al cell 

temperature was then decreased to a lower temperature, typically 1120 °C (Al low 

flux of 1.20 x 10-7 Torr BEP).   In addition to AlN high crystal quality as buffer 

layers, a very flat surface was required in order to achieve a two-dimensional (2D) 

GaN-based growth.  

During growth, doping was done using high purity Si and Mg as n- and p-

type dopants, respectively.  From the literature, the highest p-type doping 

concentration was measured to be (3-7)x1019 cm-3 by MOCVD (Svensk et. al., 2007).  

In this work, a p-type carrier concentration of GaN as high as (4-5)x1020 cm-3 was 

obtained by PAMBE without post growth annealing treatment. The investigation of 

light emitting Schottky diodes based on p-GaN/Si(111) has also been carried out.   

For the porous GaN-based material on silicon, the use of porous GaN-based 

layer for improving the electrical characteristics of nickel (Ni) Schottky contacts;  

and the fabrication and investigation of various devices based on porous GaN-based 

layer in this project, which were MSM photodetector on silicon substrates, have not 

much been reported in the literature.  The characteristics of novel GaN-based 

ultraviolet (UV) Schottky barrier photodiodes (PDs) with AlN cap layer (50 nm) was 

presented.  Although AlN is a wide band gap semiconductor, its properties are like 
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those of an insulator with a high dielectric constant, good conductivity, and large 

breakdown electric field.   Therefore, AlN may be a good insulator for blocking the 

leakage current. 

  

1.4   Outline of the thesis 

The next chapter, Chapter 2, will cover an overview of the GaN technology, 

such as the III-V nitrides growth techniques, factors influencing the GaN crystalline 

quality, III-V nitrides based photodetectors, metal-GaN contact technology, and the 

development of porous GaN-based material. Chapter 3 is devoted to the salient 

features of a typical MBE system,  which includes an introduction to the MBE radio 

frequency (RF) plasma nitrogen source, vacuum chamber, effusion cells, and the 

sample manipulation, followed by a discussion of the growth rate and the GaN 

surface morphology phase diagram under different growth condition. In Chapter 3, 

the basic principles of characterization tools, process equipment, and porous GaN 

formation mechanisms are presented. Methods in studying material properties, metal 

contacts, porous GaN-based as well as the fabrication and characterization of various 

types of devices are also covered in Chapter 4.  

The results obtained from the research works are analyzed, discussed in 

Chapters 5, 6, 7, and 8.  Chapters 5 and 6 are devoted to the study of GaN material 

quality and the properties of the porous GaN.  Chapter 7 is devoted to the study of 

metal contacts on GaN, and Chapter 8 reports the performance of the devices 

fabricated based on porous and as-grown GaN-based material. The final Chapter 9 

concludes the thesis with a summary of the research work. Conclusion of the results 

obtained and a few suggestions for future research are included. 
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CHAPTER 2 
 

LITERATURE REVIEW 

 

2.1   III-V nitrides growth techniques 

Since no traditional method of bulk crystal growth is capable of making large 

size GaN single crystals, researchers have concentrated their efforts on obtaining 

good quality GaN thin films on various substrates.  A number of growth methods 

have been investigated for the crystal growth of III-V nitride thin films.  

Nevertheless, recent improvements have made molecular beam epitaxy and 

metalorganic chemical vapour deposition the key methods for the growth of GaN.  

 

2.1.1   Molecular beam epitaxy (MBE)  

Epitaxy has its word origin from Greek and means “ordered on top”.  

Molecular beam epitaxy can be dated back to the year 1958 when Gunther (Gunther 

et al., 1958) described a technique of growing compounds on heated substrate by 

evaporation from two sources. The major developments towards modern MBE 

equipment were made by Cho and Arthur in 1975 (Cho et al., 1975).  The growth 

chamber is the heart of an MBE system (Fig. 2.1).  It consists of Knudsen effusion 

cells, shutters, a continuous azimuthally rotation substrate holder, beam flux 

ionization gauges, liquid nitrogen shrouds and one in-situ characterization method, 

which is reflection high energy electron diffraction (RHEED).  

During the growth process, elemental sources are heated in Knudsen cells and 

evaporated at controlled rate onto a heated substrate under ultra-high vacuum (UHV) 

conditions ~ 10-10 – 10-11 Torr.  The UHV growth environment is crucial to the MBE 

process.  It provides an ultra clean growth ambient leading to epitaxial layers with 
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the highest purity. This is extremely important for growing high quality 

semiconductor materials which are used for high performance devices.  Under UHV 

condition, the long mean-free path of particles minimizes collisions or reactions 

between molecules in the beam, which results in a line-sight growth reaction at the 

surface.  

 
 

 

Fig. 2.1:  Schematic diagram of growth chamber in a typical MBE system. (Sghaier 
et al., 2004) 

 

 

GaN films growth by MBE are usually carried out at relatively low 

temperatures of 650 – 800 °C with typical growth rate of one to three monolayers per 

second, approximately 0.3 to 1 µm/h.  On the other hand, molecular nitrogen is stable 

which has a strong N-N bond and does not chemisorb on a GaN surface below 

950°C, due to the strong N-N bond of the nitrogen molecule.  Atomic nitrogen or 

nitrogen containing molecule with weaker bonds should, therefore, be provided.  

Several modifications to conventional MBE methods have been implemented for III-

N growth. Since nitrogen incorporation is difficult at low temperature when 

ammonia is used, plasma cells are widely used to provide the nitrogen species, which 

are often called plasma-assisted MBE.  The generated nitrogen species is chemically 
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so active that the growth temperature of nitrides is low. Among them, radio-

frequency (RF) or electron cyclotron resonance (ECR) plasma sources are commonly 

employed to activate the nitrogen species. 

Nitrogen gas (N2) is a simple, safe and clean N source, but its strong triple 

bond (225.1 kcal/mol) needs external activation for dissociation.  The ECR source 

uses a microwave power (2.45 GHz) which is efficiently coupled to a nitrogen gas 

flow using coaxial cylindrical cavity geometry and generate a microwave discharge.  

The plasma stream is diffuse and neutral, providing atomic, molecular ionic and N 

radicals to the growth surface.  The plasma source can cause degradation of the 

optical and electrical properties of GaN films due to the etching process that occurs 

at high energies.  Compact RF sources (13.56 MHz) for nitrogen stream specifically 

designed for MBE reactors have become commercially available, and RF plasma 

assisted MBE is widely used for the III-nitride material growth. Employment of 

MBE allows reducing intrinsic thermal stress of GaN, because the film growth is 

carried out at relatively lower substrate temperatures (~800°C) than during MOCVD 

(~1200°C).   

 

2.1.2   Metal-organic chemical vapour deposition (MOCVD) 

MOCVD is a thin film growth technique which involves the flow of gaseous 

precursors into a reaction chamber, which will contain a heated substrate.  MOCVD 

has appeared as the paramount nominee for commercial applications because of the 

accomplishment of bright blue LEDs and large scale-manufacturing potential of the 

MOCVD technique.  Generally, CVD is a process in which high-quality thin layers 

of intrinsic or doped layers of semiconductors can be grown.   The substrate is heated 



 20 
 

to high temperatures where chemical decomposition, called pyrolysis of a gas, 

generally takes place directly on the surface of the heated substrate. 

 For III-V nitrides growth, MOCVD reactors combine laminar flow at high 

operating pressures and feature separate inlets for the nitride precursors and the 

ammonia to reduce predeposition reactions.  Proper precursors should be used such 

as those possessing good reactivity, thorough pyrolisis, and transportability.  

Preferably, the precursors should be nonpyrophoric, water and oxygen insensitive, 

noncorrosive, and nontoxic.  Trimethylgallium (TMG) and triethylgallium (TEG) are 

very popular for Ga, though GaCl has been tried.  Trimethylindium (TMI) and 

trimethylaluminium (TMA) are the commonly employed sources of In and Al, 

respectively.  Ammonia (NH3) is considered the best source of nitrogen, as it is 

reasonably pure and stable.  Precursors are transported to the growth chamber using 

hydrogen carrier gas and are injected into the reaction chamber.  The gas manifold 

typically features fast switching of the group III elements and dopants, and permits 

the separate injection of ammonia.  Fig. 2.2 is a schematic representation of an 

atmospheric-pressure reactor, with the optional low-pressure capability. 

Normally c-plane (0001) oriented sapphire substrates are used, although other 

orientations of sapphire and alternative substrates are sometimes employed too.  In 

the MOCVD reactor, TMG, TMA, or TMI reacts with ammonia at the substrate 

which is heated to about 1000 °C where the common feature here is that the reactants 

must be allowed to interact with one another only on the surface of the substrate.  To 

obtain high quality single crystalline GaN films, temperatures in excess of 800 °C are 

required.  However, the best GaN films are grown at 1050 °C.  The dissociation of 

GaN results in voids in the grown layer which can happen at substrate temperatures 

exceeding 1100°C where a similar situation has also been observed for AlN film 
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growth.   N2H4 has been employed instead of NH3 as a way to overcome this problem 

because a significantly smaller amount of N2H4 was required to maintain the same 

growth rate.  On the other hand, a lower deposition temperature of III-V nitrides can 

be achieved by utilizing an activated form of nitrogen.  This new CVD technology is 

interesting as the deposition of amorphous and polycrystalline GaN films at 

deposition temperatures lower than 300 °C can be accomplished by plasma-enhanced 

CVD.  Other methods that use the same principle of nitrogen activation to grow III-V 

nitrides are like laser-assisted CVD, remote plasma-enhanced CVD, photo-assisted 

CVD, and electron cyclotron resonance (ECR) plasma-assisted CVD.     

 

 

Fig. 2.2:  Diagram of a horizontal MOCVD reactor. (Morkoc, 1999) 
 

 

2.2   Factors influencing GaN crystalline quality 

Bulk GaN crystals are not commercially available for industrial use. The only 

substrates which are close to bulk GaN substrates are thick epitaxial GaN layers e.g. 

on sapphire. The US-based company “Technologies and Devices International, Inc 

(TDI)” offers up to 25 µm thick GaN layers on sapphire grown by MOVPE and 

HVPE. The France-based company “LUMILOG” offers among others 400 µm thick 

free-standing 2” GaN substrates which were grown on sapphire. 
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Nevertheless, the development of thick GaN layers as substrate material is 

still at the beginning and therefore most of the researchers are limited to 

heteroepitaxy. One of the superior problems rests with the lack of well-suited 

substrates, since GaN single crystals of sufficiently large dimensions are not yet 

available, hence GaN film has to be grown heteroepitaxially on foreign substrates, 

this leads to the generation of high density of structural defects.  Nevertheless, the 

utilization of low temperature buffer layer joined with the advancement of epitaxial 

growth techniques consent great enhancement in the crystalline quality and 

subsequently the reduction of the high background electron density in GaN, these 

lead to an enormous improvement of carrier mobility and finally the performance of 

GaN-based devices. 

 

2.2.1   Substrates 

III-V films have been grown heteroepitaxially on a number of substrates that 

share more or less similar lattice constants and thermal expansion coefficient of III-

nitrides. There are no ideal substrates for heteroepitaxy of GaN. It is for that reason; 

the nitride growth on different substrates will be discussed in this section. 

Table 2.1 shows the lattice constant and thermal expansion coefficient for 

some prospective substrates as compared to nitrides. The density of threading 

dislocation defects in GaN films as high as 1010 cm-2  have been reported and they are 

undesirable for many applications especially laser diodes where the emission is due 

to a bound exciton. These defects originate from the substrate/GaN interface and 

propagate into the epilayer. The large difference of lattice constant and thermal 

expansion coefficient between the substrate and GaN is considered to be the major 

factor attributing to the high density of this defect. Sapphire exhibits a higher thermal 
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expansion coefficient relative to GaN, and for 6H-SiC, the thermal expansion 

coefficient is smaller than GaN.  GaN films grown on sapphire and 6H-SiC will 

experience compressive and tensional biaxial strain respectively (Monemar et al., 

1997).  However, with the formation of threading dislocations, the strain in the GaN 

epilayer will be released. 

 

Table 2.1: Lattice parameters and thermal expansion coefficient of substrates 
(Popovici and Morkoc, 2000) 
 

Crystal Symmetry Lattice constant (nm) 
(a; c) 

Thermal expansion coef. 
(a; c) (×10-6K-1) 

Al2O3 Hexagonal (0.4758; 1.299) (7.5; 8.5) 

ZnO Wurtzite (0.3250; 0.5213) (8.25; 4.75) 

6H-SiC Wurtzite (0.308; 1.512) (4.2; 4.68) 

InP Cubic 0.5869 4.5 

MgO Cubic 0.4216 10.5 

3C-SiC Cubic 0.436 - 

Si Cubic 0.54301 (3.59) 

GaAs Cubic 0.56533 6 

GaN Wurtzite (0.3189; 0.5185) (5.59; 3.17) 

GaN Cubic 0.452 - 

AlN Wurtzite (0.3112; 0.4982) (4.2; 5.3) 

InN Wurtzite (0.353; 0.569) - 
The linear expansion coefficient for cubic is not available. However, since only the second nearest 
neighbor distance and only in the c direction, differs between the wurtzitic and cubic phases, we can 
assume that the linear expansion coefficient for the cubic phase will be in the same bulk part as in the 
wurtzitic phase.  
 
 
 
 

Sapphire (Al2O3) having a different lattice constant and thermal expansion 

coefficient from GaN, it is still the most commonly used substrate for GaN growth 

because of its hexagonal symmetry, wide availability, and ease of handling and pre-

growth cleaning. Sapphire is stable at high temperature, which is typically required 
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for GaN film grown by MOCVD method. Besides that, sapphire is also electrically 

insulating, therefore, all electrical contacts have formed on the front side of the 

device, reducing the area available for devices and complicating the device 

fabrication (Liu and Edgar, 2002).  

6H-SiC shows a closer lattice constant and thermal expansion coefficient to 

GaN, but, this substrate is high-priced.  GaAs has been used as substrate regardless 

of its poor compatibility.  This is mostly due to its widely availability and familiarity 

of the researchers.  Other uncommon substrates such as ZnO, and MgO (Popovici 

and Morkoc 2000), also have been used as substrate, however, there are not much 

technical information available in the literature, therefore, the use of these substrates 

need to be further explored.  Lattice mismatch between GaN and the most commonly 

used substrates is summarized in Table 2.2. The type of strain caused by the 

mismatch is denoted by the positive and negative signs (negative sign: compressive 

strain; positive sign: tensile strain). 

 

Table 2.2:  Lattice mismatch between GaN and the substrates. 
 

Substrate Lattice mismatch (%) Reference 

Si(111) +17 (Tansley et al., 1997) 

Si(001) +17 (Tansley et al., 1997) 

3C-SiC -4 (Tansley et al., 1997) 

GaAs(100) +20 (Tansley et al., 1997) 

GaAs(111) +20 (Tansley et al., 1997) 

Al2O3(0001) +16 (Kung et al., 1994) 

6H-SiC(0001) -4 (Tansley et al., 1997) 
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