
 
 

NOVEL PROTOCOL OF ENGINEERING 
GEOPHYSICS IN URBAN ENVIRONMENTS 

 
 

 
 
 
 
 
 
 

 
 

ROSLI BIN SAAD 
 

 
 
 
 
 
 
 
 
 
 
 
 

UNIVERSITI SAINS MALAYSIA 
 

2009 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository@USM

https://core.ac.uk/display/11938989?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 
 
 
 
 
 

NOVEL PROTOCOL OF ENGINEERING GEOPHYSICS IN URBAN 
ENVIRONMENTS 

 
 
 
 
 
 
 
 

by 
 
 
 
 
 
 

ROSLI BIN SAAD 
 
 
 
 
 
 
 
 
 

Thesis submitted in fulfilment of the 
requirements for the degree 

of Doctor of Philosophy 
 
 
 
 
 
 
 

SEPTEMBER 2009 
 
 
 
 
 
 



 ii

 
 
 

ACKNOWLEDGEMENTS 
 
 
 

I would like to acknowledge Universiti Sains Malaysia for giving me the 

opportunity to further my study part time. Appreciation and thanks to my supervisor, 

Associate Professor Dr. Mohd Nawawi bin Mohd Nordin for his continuous support and 

guidance. I would like to extend my thanks to Associate Professor Dr. Zuhar Zahir Tuan 

Harith from Universiti Teknologi Pertonas for his advice and guidance in helping me to 

complete this thesis. I would also like to thank the geophysics technical staff who 

assisted me in my project – Mr Low Weng Leng, Mr Yaakob bin Othman, Mr Zainul 

Abidin bin Ismail, Mr Shaiful Mahathir bin Ismail and Mr Shahil bin Ahmad Khosaini. 

Thanks also to the geophysics postgraduate students for working hard and for bearing 

with me – Ms Nordiana bt Mohd. Muztaza and Ms Zuriati bt Jusoh. My appreciation to; 

1. Jabatan Parit dan Saliran (JPS), Kuala Lumpur for allowing the use of the 

SMART tunnel data for the thesis. 

2. Selangor Minerals and Geoscience Department Malaysia for providing the 

borehole data of STAR Light Transit System 1 – Phase II. 

3. Master Testing Services Sdn. Bhd. for allowing the use of the STAR Light 

Transit System 1 – Phase II data. 

4. Quantum Yield Sdn. Bhd. for their report on the SMART tunnel project. 

 

Last, but never the least, special thanks to my wonderful wife, Hartini for her  

love, understanding, assistance, forbearance and support throughout the study period 

and also to my dear children Aishah, Nehlah, Najmiah, Farid Najmi, Athirah and 

Ahmad Zaim for making my life so meaningful. 



 iii

TABLE OF CONTENTS 

Page 
 
ACKNOWLEDGEMENTS ii 

TABLE OF CONTENTS iii 

LIST OF TABLES viii 

LIST OF FIGURES ix 

LIST OF PHOTOS xiv 

LIST OF SYMBOLS xv 

LIST OF ABBREVIATION xvi 

ABSTRAK xvii 

ABSTRACT xix 

  

CHAPTER 1 : INTRODUCTION  1 

   

1.0 Engineering problems 1 

1.1 Research objectives 4 

1.2 Problem statements 4 

1.3 Layout of thesis 5 

   

   

CHAPTER 2 : LITERATURE REVIEW 6 

   

2.0 Introduction 6 

2.1 Previous work 7 

2.2 Conclusion  21 

   

   

CHAPTER 3 : RESEARCH METHODOLOGY 22 

   

3.0 Introduction 22 

3.1 The research 22 

3.2 Summary 26 



 iv

CHAPTER 4 : BASIC THEORY OF RESISTIVITY AND GPR 

  METHODS 

28 

   

4.0 Introduction 28 

4.1 Resistivity 28 

 4.1.1 Current flow from two closely spaced electrodes 30 

 4.1.2 Measuring earth resistivity 31 

 4.1.3 Depth of penetration  32 

 4.1.4 Current flow in layered medium 33 

 4.1.5 Current density 35 

 4.1.6 Current flow and electrode spacing 35 

 4.1.7 Traditional resistivity survey 40 

4.2 Ground Penetrating Radar (GPR) 45 

 4.2.1 Wave propagation 49 

 4.2.2 Velocity 52 

 4.2.3 Attenuation  54 

 4.2.4 Dispersion 54 

 4.2.5 Electrical properties of rocks, soils and fluids 54 

 4.2.6 Magnetic properties of rocks, soils and fluids 57 

 4.2.7 Environmental influences 58 

 4.2.8 Geological heterogeneity, anisotropy and scale 58 

 4.2.9 Radar equation 59 

 4.2.10 Scattering (Reflection, Refraction and Diffraction) 59 

 4.2.11 Antenna polarization 60 

4.3 Summary 61 

   

   

CHAPTER 5 : THEORETICAL MODEL AND FIELD TEST 62 

   

5.0 Introduction 62 

5.1 Study model  62 

5.2 Theoretical model using RES2DMOD software 63 

 5.2.1 Discussion of theoretical model using RES2DMOD 
software 

67 



 v

5.3 Laboratory model 68 

 5.3.1 Discussion of laboratory model 73 

5.4 Field model (miniature) with original medium 73 

 5.4.1 Discussion of field model (miniature) with original 
medium 

79 

5.5 Test site 80 

 5.5.1 Discussion of test site 84 

5.6 Conclusion 84 

   

   

CHAPTER 6 : DATA ACQUISITION OF STUDY AREA 86 

   

6.0 Introduction 86 

6.1 Study area 86 

6.2 Regional geology 88 

6.3 2-D Electrical Imaging (Resistivity) 91 

6.4 Data acquisition 93 

 6.4.1 Pre-tunnel survey 98 

 6.4.2 Post-tunnel survey 99 

6.5 Data processing 100 

6.6 Conclusion 101 

   

   

CHAPTER 7 :  RESULTS AND DISCUSSION 102 

   

7.0 Results 102 

7.1 Borehole records 105 

7.2 2-D Resistivity (Pre-tunnel) 105 

7.3 2-D Resistivity (Post-tunnel) 110 

7.4 GPR (Pre-tunnel) 116 

7.5 Discussion 119 

 7.5.1 Pre-tunnel 119 

 7.5.2 Post-tunnel 120 

7.6 Conclusion  123 



 vi

CHAPTER 8 : CONCLUSION AND RECOMMENDATIONS 125 

   

8.0 Conclusion 125 

8.1 Recommendations 126 

   

   

REFERENCES 128 

   

   

APPENDIXES  

APPENDIX A:      Flow chart of the new protocol development.  136 

APPENDIX B:     List of instruments used for 2-D Electrical Imaging 

                              (Resistivity) and GPR methods 

137 

APPENDIX C:     Borehole records and point load test of Jalan Chan 

                              Sow Lin, Kuala Lumpur area done by Master 

                              Testing Services Sdn. Bhd. 

139 

APPENDIX D:     Refer to CD (Attached). Raw data for pre-tunnel 

                              Resistivity Survey 

149 

APPENDIX E:     Pseudosection of 2-D Resistivity Imaging (chainage 

                              6708 to 7108) using RSWenner LS protocol. 

150 

APPENDIX F:     Pseudosection of 2-D Resistivity Imaging (chainage 

                              6820.5 to chainage 7020.5) using RSPole-dipole 

                              protocol    

154 

APPENDIX G:     Pseudosection of 2-D Resistivity Imaging (chainage 

                              7035 to 7323, using RSWenner LS and RSPole- 

                              dipole). 

158 

APPENDIX H:     Refer to CD (Attached). Raw data for post-tunnel 

                              Resistivity Survey. 

162 

APPENDIX I:       Pseudosection of 2-D Resistivity Imaging (chainage 

                              6720 to 7080) using RSWenner LS protocol. 

163 

APPENDIX J:      Pseudosection of 2-D Resistivity Imaging (chainage 

                              6960 to 7160) using RSWenner LS protocol. 

167 



 vii

APPENDIX K:     Pseudosection of 2-D Resistivity Imaging (chainage 

                              7040 to 7240) using RSWenner 32SX protocol 

171 

APPENDIX L:      Pseudosection of 2-D Resistivity Imaging (chainage 

                               6910 to 7110) using RSPole-dipole protocol. 

175 

APPENDIX M:     Combined pseudosection of 2-D Resistivity 

                               Imaging (chainage 6720 to 7160) using RSWenner 

                               LS protocol. 

179 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 viii

LIST OF TABLES 
 

Page 
 

Table 3.1 The difference between original and modified protocol of 
Wenner, Wenner-Schlumberger and Pole-dipole array. 

25 

   
Table 4.1 Current path and their encompassed  31 
   
Table 4.2 Resistivity of some common rocks and minerals (Telford 

et al, 1990; Jakosky, 1950). 
44 

   
Table 4.3 Resistivity of some common rocks and soil materials in 

survey area (Quantum Yield Sdn. Bhd., 2005). 
44 

   
Table 4.4 Approximate relative dielectric,εr and resulting velocity 

value varies greatly with the water  content in the medium. 
Larger velocity value applies to unsaturated media 
(RAMAC/GPR operating manual). 

49 

   
Table 7.1 General guide resistivity values of the survey area 

(Quantum Yield, 2005). 
119 

   
Table 7.2 Summary of pre-tunnel and post-tunnel anomalies 

between CH 6720-7240.  
121 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 ix

LIST OF FIGURES 
 

Page 
 

Figure 4.1 Measuring earth resistivity. 30 
   
Figure 4.2 Current flows from electrodes into the earth. 30 
   
Figure 4.3 Electrodes arrangement and distance. 31 
   
Figure 4.4 Potential along the surface and potential difference. 32 
   
Figure 4.5 Current flow through the earth with closer electrode 

spacing. 
33 

   
Figure 4.6 Current flow through the earth with larger electrode 

spacing. 
33 

   
Figure 4.7 Current flows through a model of high resistivity 

overlays low resistivity layer (Burger, 1992). 
34 

   
Figure 4.8 Current flows through a model of low resistivity 

overlays high resistivity layer (Burger, 1992). 
34 

   
Figure 4.9 Current flow through different resistivity medium with 

different electrode spacing (Burger, 1992). 
36 

   
Figure 4.10 Apparent resistivity with electrode spacing in high 

resistivity layer (Burger, 1992). 
37 
 

   
Figure 4.11 Current flow through lower to higher resistivity medium 

with different electrode spacing. 
39 

   
Figure 4.12 Apparent resistivity with electrode spacing in low 

resistivity layer. 
40 

   
Figure 4.13 Three different models used in the interpretation of 

resistivity measurements (Loke, 1997). 
41 

   
Figure 4.14 1-D model used in the interpretation of resistivity 

sounding data for Wenner array (Loke, 1997, 1999, 
2000). 

41 

   
Figure 4.15 Common arrays used in resistivity surveys and their 

geometric factor (Loke, 1997). 
43 

   
Figure 4.16 The observed and calculated apparent resistivity 

pseudosection for the landfill.dat data set together with a 
model obtained by the inversion program 
(www.geoelectrical.com). 

45 



 x

   
Figure 4.17 Signal which is transmitted and received by antenna 47 
   
Figure 4.18 Signal in time domain and displayed on a computer 

screen 
47 

   
Figure 4.19 Schematic diagram of an electron beam totally reflected 

from a single potential energy/effective mass interface 
with a lateral displacement, Sr. The incident, reflected 
are schematically represented by their respective beam 
axis. The dotted line is the path expected from the 
geometrical result in electron optics (Xi et al., 2006). 

52 
 

   
Figure 5.1 Two blocks in homogenous medium created using 

RES2DMOD software. The x-axis represents distance 
(m) and y-axis represents depth (m). 

63 

   
Figure 5.2 Pseudosection of two block model using Wenner 

protocol. The x-axis represents distance (m) and y-axis 
represents depth (m). 

64 

   
Figure 5.3 Pseudosection of two block model using Wenner-

Schlumberger protocol. The x-axis represents distance 
(m) and y-axis represents depth (m). 

64 

   
Figure 5.4 Pseudosection of two block model using Pole-dipole 

protocol. The x-axis represents distance (m) and y-axis 
represents depth (m). 

65 

   
Figure 5.5 Inversion pseudosection model of two blocks using 

Wenner protocol produced by RES2DINV software. 
The x-axis represents distance (m) and y-axis represents 
depth (m). 

66 

   
Figure 5.6 Inversion pseudosection model of two blocks using 

Wenner-Schlumberger protocol produced by 
RES2DINV software. The x-axis represents distance 
(m) and y-axis represents depth (m). 

66 

   
Figure 5.7 Inversion pseudosection model of two blocks using 

Pole-dipole protocol produced by RES2DINV software. 
The x-axis represents distance (m) and y-axis represents 
depth (m). 

 67  

   
Figure 5.8 Pseudosection of homogenous ground for the laboratory 

model using RSWenner protocol. The x-axis represents 
distance (m) and y-axis represents depth (m). 

69 

   



 xi

Figure 5.9 Pseudosection of homogenous ground for the laboratory 
model using RSWenner-Schlumburger protocol. The x-
axis represents distance (m) and y-axis represents depth 
(m). 

69 

   
Figure 5.10 Pseudosection of homogenous ground for the laboratory 

model using RSPole-dipole protocol. The x-axis 
represents distance (m) and y-axis represents depth (m). 

70 

   
Figure 5.11 Pseudosection of homogenous ground with two 

rectangular holes model using RSWenner protocol. The 
x-axis represents distance (m) and y-axis represents 
depth (m). 

71 

   
Figure 5.12 Pseudosection of homogenous ground with two 

rectangular holes model using RSWenner-Schlumburger 
protocol. The x-axis represents distance (m) and y-axis 
represents depth (m). 

72 

   
Figure 5.13 Pseudosection of homogenous ground with two 

rectangular holes model using RSPole-dipole protocol. 
The x-axis represents distance (m) and y-axis represents 
depth (m). 

72 

   
Figure 5.14 Pseudosection of original ground (miniature model) 

using RSWenner protocol. The x-axis represents 
distance (m) and y-axis represents depth (m). 

75 

   
Figure 5.15 Pseudosection of original ground (miniature model) 

using RSWenner-Schlumberger protocol. The x-axis 
represents distance (m) and y-axis represents depth (m). 

75 

   
Figure 5.16 Pseudosection of original ground (miniature model) 

using RSPole-dipole protocol. The x-axis represents 
distance (m) and y-axis represents depth (m). 

76 

   
Figure 5.17 Pseudosection of original ground with two rectangular 

holes using RSWenner protocol (miniature model). The 
x-axis represents distance (m) and y-axis represents 
depth (m). 

78 

   
Figure 5.18 Pseudosection of original ground with two rectangular 

holes using RSWenner-Schlumberger protocol 
(miniature model). The x-axis represents distance (m) 
and y-axis represents depth (m). 

78 

   
Figure 5.19 Pseudosection of original ground with two rectangular 

holes using RSPole-dipole protocol (miniature model). 
The x-axis represents distance (m) and y-axis represents 
depth (m). 

79 



 xii

   
Figure 5.20 Pseudosection of the test sites where the x-axis 

represents distance (m) and y-axis represents depth (m). 
A; RSPole-dipole protocol at Padang Konvo, B; 
RSWenner32SX protocol at Padang Konvo, C; RSPole-
dipole protocol at Desasiswa Bakti and D; 
RSWenner32SX protocol at Desasiswa Bakti. 

83 

   
Figure 6.1 The alignment of Stormwater Management and Road 

Tunnel (SMART), Kuala Lumpur. 
(http://www.smarttunnel.com.my/ construction 
/pic_alignment.htm). 

87 

   
Figure 6.2 Geology of Kuala Lumpur (Gobbett, 1964). 90 
   
Figure 6.3 Originally flat limestone plateau dissected deeply by 

dissolution (Ch’ng, 1984). 
91 

   
Figure 6.4 The arrangement of electrodes for a 2-D electrical 

imaging survey and the sequence of measurements used 
to build up a pseudosection (Loke, 1997). 

93 
 

   
Figure 6.5 Pre-tunnel resistivity and GPR survey location plan 

shows 2-D resistivity lines and GPR (CH 6708 to CH 
7108). 

95 
  

   
Figure 6.6 Pre-tunnel resistivity survey location plan shows 2-D 

resistivity lines (CH 7035 to 7323). 
96 

   
Figure 6.7 Post-tunnel resistivity survey location plan shows 2-D 

resistivity lines (CH 6708 to 7260). 
97 

   
Figure 7.1 Boreholes location at the survey area done for STAR 

Light Transit System 1 – Phase II project, Kuala 
Lumpur. 

103 

   
Figure 7.2 Borehole records of CSL BH-G/01, Jalan Chan Sow 

Lin, Kuala Lumpur done by Master Testing Services 
Sdn. Bhd. 

104 

   
Figure 7.3 The inverse model pseudosection of 2-D resistivity 

using RSWenner LS protocol (chainage 6708 to 7108). 
The main resistivity values are 0 - 20 ohm-m, 20 - 100 
ohm-m and greater than 100 ohm-m (Appendix E). 

107 

   



 xiii

Figure 7.4 The inverse model pseudosection of 2-D resistivity 
imaging using RSPole-dipole protocol (chainage 6820.5 
to 7020.5) and RSWenner LS protocol (chainage 6708 
to 7108) are laid together. The main resistivity values 
are 0 - 20 ohm-m, 20 - 100 ohm-m and greater than 100 
ohm-m (Appendix E and F). 

108 

   
Figure 7.5 The inverse model pseudosection of 2-D resistivity 

imaging for chainage 7035 to 7323 using RSWenner LS 
and RSPole-dipole protocols. The main resistivity 
values are 0 - 20 ohm-m, 20 - 100 ohm-m and greater 
than 100 ohm-m (Appendix G). 

109 

   
Figure 7.6 The inverse model pseudosection of 2-D resistivity 

imaging for section CSL 1+2+3 (R, C and L) between 
chainage 6720 to 7080 (Appendix I). 

111 

   
Figure 7.7 The inverse model pseudosection of 2-D resistivity 

imaging for section CSL 4 (R, C and L) between 
chainage 6960 to 7160 (Appendix J). 

112 

   
Figure 7.8 The inverse model pseudosection of 2-D resistivity 

imaging for section CSL 5 (R, C and L) between 
chainage 7040 to 7240 (Appendix K). 

113 

   
Figure 7.9 The inverse model pseudosection of 2-D resistivity 

imaging using RSPole-dipole protocol (chainage 6910 to 
7110) and RSWenner LS protocol (chainage 6720 to 
7160) are laid together. The main resistivity values are 0 
- 20 ohm-m, 20 - 100 ohm-m and greater than 100 ohm-
m (Appendix J and K). 

115 

Figure 7.10 Three GPR records of Chan Sow Lin area (chainage 
6708 to 7108). Record A is left line, B is center line and 
C is right line. 

117 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 xiv

LIST OF PHOTOS 
 

Page 
 

Photo 5.1 Wooden box for laboratory test. 68 

Photo 5.2 Wooden box for laboratory test with two rectangular 

holes. 

71 

Photo 5.3 Miniature model with original medium. 74 

Photo 5.4 Data acquisition of original medium for miniature model. 74 

Photo 5.5 Miniature model with two rectangular holes in original 

medium. 

77 

Photo 5.6 Data acquisition of miniature model with two rectangular 

holes in original medium 

77 

Photo 5.7 Padang Konvo where the first test site is 80 

Photo 5.8 Desasiswa Bakti where the second test site is 81 

Photo 5.9 Survey line at Padang Konvo. 82 

Photo 5.10 Survey line at Desasiswa Bakti. 82 

Photo 6.1 The survey area along Jalan Chan Sow Lin, Kuala 
Lumpur (Google Earth). 

88 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 xv

LIST OF SYMBOLS 
 

 
 

V Voltage  

R  Configuration resistance  

I   Current  
ρ  Resistivity  
k  Geometric factor  
G  Configuration factor  
ε  Dielectric permittivity  
εr  Relative dielectric permittivity  
μ  Magnetic permeability  
V1    Potential energy of layer 1  
V2 Potential energy of layer 2  
m*

1 Electron no. 1 effective masses  
m*

2 Electron no. 2 effective masses  
γ  Propagation constant  
k  Wave number  
v  Velocity  
α  Attenuation constant  
μ  Magnetic permeability  
σ  Electrical conductivity  
ω  Angular frequency = 2πf  
εR  Relative permittivity  
β  Phase constant  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 xvi

LIST OF ABBREVIATIONS 
 
 

 
2-D Two dimensional 
3-D Three dimensional 
C Centre 
CH Chainage 
CMP Common-Midpoint 
CSAMT Controlled-Source Audiomagnetotellurics 
CSL Chan Sow Lin 
CSMT Controlled-Source Magnetotelluric 
DSC Differing Site Condition 
EM Electromagnetic 
ERT Electrical Resistivity Tomography 
etc Et cetera  
IP Induced Polarization 
L Left 
PDP Pole-dipole 
PIS Pre-Investigation Survey 
POD Propane-Oxygen Detonator 
RSVP Refraction Seismograph Velocity Profiling 
R Right 
RF Radio Frequency 
S Short 
SWD Seismic-While-Drilling 
TBM Tunnel Boring Machine 
TEM Transient Electromagnetic 
TSWD Tunnel-Seismic-While-Drilling 
VHF Very High Frequency 
VLF Very Low Frequency 
W Wenner 
XRD X-Ray Diffraction 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 xvii

PROTOKOL NOVEL GEOFIZIK KEJURUTERAAN DI PERSEKITARAN 
BANDAR 

 
ABSTRAK 

 
 

Kajian ini dilakukan di kawasan bandar dengan menumpukan kepada pengesanan dan 

pemetaan retakan, lowong, pengisian rongga, runtuhan rongga, “pinnacles” dan 

jerungkau yang selalu terjadi di kawasan batu kapur. Dalam kajian ini, kaedah geofizik 

pengimejan keberintangan 2-D digunakan. Kajian melibatkan rekabentuk kaedah 

pengambilan data yang baru (protokol) dengan menggunakan susunatur Wenner, 

Wenner-Schlumberger dan Pole-dipole bagi mendapatkan imej yang lebih baik, 

kedalaman yang lebih dalam dan kurang hingar. Protokol baru ini (RSWenner, 

RSWenner-Schlumberger and RSPole-dipole) diuji kemampuannya memeta ciri-ciri 

subpermukaan. Tiga model direka bagi mengkaji kesesuaian protokol baru; model 

menggunakan perisian RES2DMOD secara teori, model makmal dan model lapangan 

(bersaiz kecil) dalam medium asal. Kajian menunjukkan protokol RSPole-dipole 

dengan jarak elektrod yang sesuai merupakan yang terbaik untuk mengesan dan 

memetakan retakan, lowong dan muka batuan. Kawasan kajian adalah projek 

“Stormwater Management and Road Tunnel” (SMART) iaitu sepanjang Jalan Chan 

Sow Lin (penjajaran terowong), Kuala Lumpur. Kajian dibahagikan kepada dua 

bahagian iaitu pra-terowong dan post-terowong. Bagi kajian pra-terowong, maklumat 

lengkap subpermukaan sangat penting bagi menghindar pelbagai masalah dan 

kemalangan. Disebabkan kawasan kajian merupakan kawasan yang sibuk dengan 

kenderaan, kekurangan ruang dan masa yang terhad, tidak semua pencerapan data 

menggunakan protokol RSPole-dipole dapat digunakan. Sebahagian kajian digantikan 

dengan protokol RSWenner 32SX (L dan S). Semua data akan dikaitkan antara satu 

sama lain termasuk data lubang gerek. Kajian pra-terowong menunjukkan terdapat 



 xviii

banyak kawasan lemah (retakan, lowong, pengisian rongga, runtuhan rongga) di 

sepanjang jajaran terowong SMART dengan kedalaman muka batuan adalah 1.25 – 10 

meter. Kajian post-terowong bertujuan melihat kesan “grouting” dan “Tunnel Boring 

Machine” (TBM). Radar Penusukan Bumi (GPR) digunakan bagi memetakan utiliti dan 

ciri-ciri subpermukaan yang sangat cetek. Kajian GPR menunjukkan terdapat banyak 

utiliti pada subpermukaan. 
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NOVEL PROTOCOL OF ENGINEERING GEOPHYSICS IN URBAN 
ENVIRONMENTS 

 
ABSTRACT 

 
 

This research was carried out in an urban area and it was focused on detecting and 

mapping fractures, voids, filled cavities, collapsed cavities, pinnacles, cliff subsurface 

and overhangs that often occur in limestone areas. Prior to the field survey, the 

geophysical method, 2-D resistivity imaging was used and the research was to develop 

new resistivity acquisition techniques (protocols) that can provide better image; deeper 

penetration and less noise. The arrays used are Wenner, Wenner-Schlumberger and 

Pole-dipole. The new protocols (RSWenner, RSWenner-Schlumberger and RSPole-

dipole) were tested for their ability to map the underground features. Three models were 

designed to study the suitability of the new protocols; a theoretical model using 

RES2DMOD software, a laboratory model and a field model (miniature) with original 

medium. The study shows that the RSPole-dipole protocol with proper electrode 

spacing is the best protocol used to detect and map cavities, fractures and rock head. 

The study area was at the Stormwater Management and Road Tunnel (SMART) project 

along Jalan Chan Sow Lin (Tunnel alignment), Kuala Lumpur. The study was divided 

into two parts, which was pre-tunnel and post-tunnel survey. In the pre-tunnel study, 

detail information of the subsurface was needed to avoid problems which can 

compromise safety. Due to constraint of the study area being traffic congested, limited 

spacing and time, not all data acquisition was done using RSPole-dipole protocol. Some 

of the survey lines were replaced by RSWenner 32SX (L and S) protocol. All the data 

were correlated with each other and with borehole data provided by the developer. The 

pre-tunnel survey results show the presence of many weak zones (fractures, voids, filled 

cavities and collapsed cavities) along the tunnel alignment and the depth of the rock 



 xx

head was 1.25 – 10 meter. The post-tunnel survey was conducted in order to see and 

map the effect of grouting and tunnelling using the Tunnel Boring Machine (TBM). To 

assist the mapping of utilities and very shallow subsurface features the Ground 

Penetrating Radar (GPR) was used. The GPR result shows the presence of many 

utilities in the subsurface. 
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CHAPTER 1  

INTRODUCTION 

 

 

1.0 Engineering problems  

In urban area, development is continuous. There are many development 

projects such as building of new offices, houses, shopping complexes, bridges, 

and roads. Development also involves repairing, upgrading and installing new 

utilities.  

Development of urban area such as in the city centre will result in traffic 

congestion. To reduce this congestion, tunnels and flyovers are built. Such 

developments require proper and detailed planning, involving multi field 

specialists such as geophysicists, geologists, engineers and town planners. 

Collaboration among the relevant authorities is needed in order to get a better 

solution and coordination for the problems relating to development. 

Traditionally, civil engineers depend on borehole data and soil tests for 

foundation design of building, road etc. However, the cost of each borehole is 

expensive. The boring work produces a vertically single point data. In order to 

map the whole area, combination and interpolation of various boring data need to 

be applied. To get a good and meaningful image of the subsurface, the number of 

boreholes needs to be increased, thus involved time and cost. Moreover, in urban 

area this will lead to traffic congestion and will cause inconvenience to people. 

The engineers also need information on utilities below the survey area in order to 

avoid boring and excavating problems. Hence, information of the subsurface 

before boring or excavation of the survey sites is indispensible to the engineers. 
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Methods which are nondestructive for initial survey are most welcome. Hence, 

geophysical methods which are nondestructive can be applied in the initial stage 

(screening). Most of the geophysical methods are based on survey line. The 

survey line can include drilling of one or two boreholes (instead of 3-4 boreholes). 

The geophysical data will be correlated with borehole data to produce an image of 

the subsurface. In addition, geophysical study can also be used to detect or to map 

underground utility by using electromagnetic waves. 

Geophysical studies which provide nondestructive methods have recently 

been employed to reduce cost and numerous problems (Komatina and 

Timotijevic, 1999). Before starting any development, geophysical surveys are 

carried out to obtain as much initial information as possible about the condition of 

the ground and possible problems of the subsurface. The geophysical data can 

subsequently be used by geologists and engineers. These surveys have been used 

to provide information on many environmental and engineering applications such 

as groundwater table, slip planes, soil stratifications, etc.  

Five common geophysical methods that can be applied to achieve the 

objective in mapping subsurface structures are gravity, magnetic, seismic, 

resistivity and Ground Penetrating Radar (GPR) which can save time and cost. 

Some of these geophysical methods pose fewer survey problems especially in 

urban area. Choosing a suitable geophysical method for the survey is very 

important. It depends on the objective, cost allocation and accessibility of site.  

Each geophysical method has its strengths and weaknesses depending on 

the target and area of the survey. Geophysical methods such as gravity, magnetic, 

seismic, resistivity and ground penetrating radar (GPR) each have its limitations. 

For instance, the gravity method requires a sufficient density contrast between the 
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target and host (surrounding medium). The magnetic method uses targets that 

contain magnetic materials. Both of these methods are not suitable to be used in 

urban area because of noise interferences produced by buildings and traffics. The 

seismic method is widely used in engineering surveys. This method identifies 

geological structures by measuring the physical properties (density) of materials in 

which sound waves travel. An energy source transmits an acoustic energy pulse 

into the ground sending sound waves downward. Depending upon the geological 

formations encountered, part of the energy is transmitted to deeper layers, while 

the remainder is reflected and refracted back to the surface. Sensitive receivers 

called geophones (land-based) or hydrophones (submerged in water) will receive 

and record the signals. The information is transmitted, amplified, filtered, 

digitized and recorded on magnetic tape for interpretation. However, since the 

receiver is very sensitive to noise, the seismic method is not an appropriate 

geophysical method to apply in urban area. 

Resistivity and GPR methods have added advantages and also pose lesser 

problems for surveys in urban area compared to other geophysical methods. Time, 

penetration depth, space and traffic factors are the main issues that are always 

involved when the resistivity method is used in urban areas. To use the GPR 

method, getting a suitable time (when there is less traffic) is the only problem. 

This problem can affect the data quality. Hence, the resistivity and GPR methods 

are chosen since they are probably the most suitable geophysical methods that can 

be employed in an urban area. A study has to be made on resistivity acquisition 

techniques by introducing a new protocol in order to improve the data quality such 

as increasing depth of penetration and reducing noise. Precautions and planning 

must be done beforehand such as the site and the traffic flow survey. Traffic 
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controllers are also needed at a busy area to control the traffic. In this thesis, both 

resistivity and GPR methods are employed to map the subsurface structures for 

the tunnel project. 

 

1.1 Research objectives 

The aim of this study is: 

i. To develop new resistivity acquisition techniques (protocols) that can 

provide better image, deeper penetration and less noise. 

ii. To determine a suitable geophysical method that can be used in an urban 

environment and any others.   

iii. To test the effectiveness of the techniques in detecting and mapping 

underground features in urban area. 

 

1.2 Problem statements 

 The main originality of this research work lies in the developing the 2-D 

resistivity data acquisition techniques (protocols) based on the arrays (Wenner, 

Wenner-Schlumberger and Pole-dipole) provided. The present acquisition 

techniques (protocols) have a few disadvantages such as penetration depth which 

was related to electrode spacing, resolution and high level of noise.  

 It is hoped that the new protocol will provide a better and higher resolution 

image with deeper penetration and low noise level. Moreover, the space limitation 

problem will be solved. 
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1.3 Layout of thesis 

Generally, the content of this dissertation is organized as follows. 

In Chapter 2, early studies using geophysical methods (seismic, resistivity, 

IP, GPR and TEM) applied to engineering and archaeological problems are 

discussed. However, only study on tunnelling using geophysical methods is 

highlighted. 

 Chapter 3 is devoted to the research methodology of 2-D resistivity 

method. The research involves developing new acquisition techniques by using 

three arrays (Wenner 32SX, Wenner-Schlumberger and Pole-dipole) to produced 

new protocols (RSWenner 32SX, RSWenner-Schlumberger and RSPole-dipole).  

In Chapter 4, the general theory and principle of the geophysical methods 

(2-D resistivity and GPR) used in the survey are discussed. 

In Chapter 5, the three models (Theoretical, Laboratory and Field model -

miniature) were tested with new protocols (RSWenner 32SX, RSWenner-

Schlumberger and RSPole-dipole). The field test was carried out with RSPole-

dipole and RSWenner32SX protocols to see the suitability of the protocols 

selected.  

In Chapter 6, the data acquisition at the study area (SMART TUNNEL, 

Kuala Lumpur) using RSPole-dipole and RSWenner 32SX protocols was 

discussed. GPR survey was used to detect utilities and shallow subsurface. The 

survey was divided into two parts, pre-tunnel and post-tunnel. 

Chapter 7 discussed the results of the 2-D resistivity and GPR survey for 

pre-tunnel and post-tunnel along Jalan Chan Sow Lin, Kuala Lumpur. 

Finally, in Chapter 8, conclusions on the 2-D resistivity study were 

discussed including recommendations for future research.  
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CHAPTER 2 

LITERATURE REVIEW 

 

 

2.0 Introduction 

Geophysical surveys are often used to provide accurate subsurface 

information while minimizing surface disturbance. This information is presented 

in ways that make sense to engineers and geologist, and provide feasible, cost-

effective solutions to the project. Selection of the appropriate geophysical 

methods is based on project objectives and the site conditions. Seismic refraction 

survey is to provide compressional wave velocities to estimate rippability, depth 

of hard strata and bedrock. The surface wave survey is to provide subsurface shear 

wave velocity profiles for design and image weak zones in the subsurface. The 2-

D/3-D resistivity imaging method is for karst and voids, the Self Potential (SP) 

and resistivity surveys are to map seepage paths (dams or reservoirs) while the 

resistivity and induced potential (IP) surveys are to delineate municipal waste 

landfills. The GPR surveys are to map steel reinforcing bars (rebar) in concrete, 

estimate asphalt and concrete thickness, and evaluate condition of concrete. The 

Electromagnetic induction (EM) and Ground Penetrating Radar (GPR) methods 

are to locate buried waste, pipes, and underground storage tanks, as well as for 

characterization of karsts.  
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2.1 Previous work 

Before setting up the Tunnel Boring Machine (TBM), the subsurface 

information of the tunneling area and route ahead of tunnel alignment is very 

important to the engineers. Cavities or fault must be attended to as they will affect 

the TBM and cause a lot of problems and can compromise safety. Subsurface 

information will guide the engineers to problematic areas so that they can 

overcome problems by grouting cavities or divert the TBM if a dyke exists. 

Brooke and Brown (1975) have outlined the applications of geophysical 

techniques to reduce engineering problems. Seismic refraction, gravimetry, and 

electrical prospecting are the survey methods that should be employed for locating 

concealed cavities. Several other geophysical methods such as seismic reflection 

or electromagnetic exploration may be suitable in very special cases where the 

geological configuration is an anomalous situation.  

Petronio et al. (2007) utilized the tunnel-seismic-while-drilling (TSWD) 

method. The noise produced during mechanical excavation is used to obtain 

interpretable seismic data. This passive method uses accelerometers mounted on 

the advancing tunnel-boring machine (reference signals) together with seismic 

sensors located along and outside the tunnel. Data recorded by fixed sensors are 

cross correlated with the reference signal and sorted by offset. Similar to reverse 

vertical seismic profiling, cross correlated TSWD data are processed to extract the 

reflected wavefield. During the mechanical excavation of a 950-m tunnel through 

upper Triassic dolomite, a survey was performed to predict geologic interfaces. 

Faults intersecting the tunnel were observed on seismic TSWD data and later were 

confirmed by geostructural inspection. P-wave and S-wave interval velocities 
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obtained by TSWD data along the bored tunnel were used to compute dynamic 

rock moduli to support tunnel completion.  

Lorenzo and Flavio (2002) utilized the tunnel boring machine (TBM) 

extensively to mechanically excavate tunnels. To optimize the mechanical drilling 

and work safety, an estimate of the geology to be drilled is necessary. Using the 

elastic waves produced by the TBM cutting wheel, the seismic-while-drilling 

(SWD) information for predicting the geology ahead of the drilling front is 

obtained. This method uses accelerometers mounted on the TBM together with 

geophones located along and outside the tunnel, similar to the technique 

successfully used to drill oil and geothermal wells. Study of noise and the 

resolution of the signal produced by the large-diameter cutting head shows that 

non stationary noise separation can be achieved by locating sensors at the front 

and rear ends of the tunnel. The (higher) resolution in front of the TBM is limited 

by pilot delays, while the (lower) lateral resolution is limited by the radial 

dimension of the TBM. Analysis of seismic data acquired in a field test shows that 

P-wave and S-wave arrivals have a wide frequency band and high amplitude in 

seismic traces measured 700 m away from the drilling front. In comparison with 

SWD applications in wells, tunnel SWD technology has the advantage of allowing 

direct access to the tunnel front, which makes it easy to connect the TBM 

reference sensors for while-drilling monitoring. This method can be successfully 

applied without interfering with drilling activity to monitor tunnel excavation 

continuously, reduce risks, and optimize drilling. 

Saxena (1996) had documented a case history that used geophysics to 

evaluate a project involving a DSC (Differing Site Condition) clause. 

Development of various water management areas in connection with construction 
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of a 4-lane roadway in northeast Naples, Florida required blasting, excavation, and 

removal of shallow rock between the depths of 1.2 to 3.0 m (4.0 to 10.0 ft). The 

work commissioned was to conduct a three-stage investigation that consisted of:  

i. Pre-Investigation Survey (PIS). 

ii. Refraction Seismograph Velocity Profiling (RSVP) in a test section. 

iii. Test borings/coring. Results of ultrasonic testing performed on rock cores 

indicated variability in seismic p-wave velocities determined by the field 

refraction seismograph versus laboratory ultrasonic testing.  

Singh (1984) presented field results of shallow seismic reflections 

obtained with a propane-oxygen detonator (POD). The survey site was in a tin-

mining area of the Kinta Valley in Malaysia. The shallow and irregular limestone 

bedrock is overlain by alluvial 'tailing' and virgin sediments. The survey was 

intended to delineate the topography of the bedrock, which is of vital importance 

in tin ore exploration and exploitation. Reflections at around 200 Hz were 

obtained from the shallow bedrock at about 25 m as well as from very shallow 

lithological interfaces. The interpretation of seismograms is supported by drill-

hole lithological sections and synthetic seismograms. The data illustrate the 

successful use of shallow reflections for mapping irregular bedrock. Reflection 

seismics can provide better horizontal and vertical details than the refraction 

method. 

Popenoe (1984) shows that the high-resolution seismic-reflection profiles 

mapped the shelf off northern Florida is underlain by solution deformed limestone 

of Oligocene, Eocene, Paleocene and late Cretaceous age. Dissolution and 

collapse features are widely scattered. They are expressed in three general forms; 
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i. Sinkholes that presently breach the sea floor, such as Red Snapper Sink 

and the Crescent Beach submarine spring. 

ii. Sinkholes that have breached the seafloor in the past but are now filled 

with shelf sands. 

iii. Dissolution collapse structures that originate deep within the section and 

have caused buckling and folding of overlying Eocene, Oligocene, and to a 

lesser extent, Neogene strata. 

Although deformation caused by solution and collapse can be shown to be 

a continuous process, the major episode of karstification occurred in the late 

Oligocene and early Miocene when the shelf was exposed to subaerial conditions. 

Cratchley et al. (1976) measurementing of the sound velocity (Vp) in the 

low-pressure tunnel of the Foyers hydroelectric scheme show that the values can 

be used as an index of rock quality in the granodiorite of the Foyers granite 

complex. Seismic refraction measurements at the surface have located a faulted 

and shattered zone of granodiorite approximately 50 m wide beneath superficial 

cover of silty sand and boulders. Resistivity measurements have given a similar 

indication. Both sets of measurements at the surface enabled two borehole sites to 

be pinpointed for detailed investigation of the fault zone by core logging, sonic 

logging and borehole to borehole sonic logging. This case history is an example of 

the effective use of geophysics at two levels which was to locate a zone of 

difficult tunneling ground from the surface and to survey the zone in detail with 

geophysical probes in two boreholes. 

Ganerod et al. (2006) shows that results from site investigations, 2-D 

resistivity, refraction seismic and Very Low Frequency (VLF) on a section of 
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tunnel near Trondheim. The 2-D resistivity data are most valuable for interpreting 

geological structures in the sub-surface. VLF can only identifies zones and does 

not indicate thickness, width or dip direction. In addition, this method is sensitive 

to technical installations. Refraction seismic is valuable for mapping depth to 

bedrock location and width of fracture zones but cannot indicate the depth or dip 

direction of such zones. With 2-D resistivity, the position of a zone is well 

identified. This method may also provide information on the depth and width of 

the zone as well as the dip direction. In most cases 2-D resistivity clearly 

identifies zones in the bedrock that can be observed as fault and/or fracture zones 

in the tunnel. The results described in this paper show a good correlation between 

the resistivity profiles, mapped structures on the surface and mapped zones in the 

tunnel. 

Hyoung et al. (2006) described, in tunnel construction, information 

regarding rock mass quality and the distribution of weak zones is crucial for 

economical tunnel design as well as to ensure safety. Usually, the rock mass grade 

is estimated by observing recovered cores obtained by drilling or by physical 

parameters calculated in a laboratory using core samples. However, the high 

drilling cost limits the number of boreholes; furthermore, rough terrains can 

reduce the access of drilling machines to the survey sites. In such situations, 

surface geophysical methods such as electrical resistivity or controlled-source 

magnetotelluric (CSMT) can provide a rough estimate of the rock mass condition 

over the planned tunnel route. These methods can also map weak zones (faults, 

fractures, coal bearing zones, and cavities), which are characterized by a lower 

resistivity than the surrounding fresh rock mass.  
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Stanfors et al. (1985) discussed extensive geological and geophysical 

investigations for the Swedish Bolmen tunnel were performed in conjunction with 

the planning and design work, principally to locate zones of weakness in the rock 

that could significantly affect the line of the tunnel. The article discusses electrical 

methods for assessing the risk of water ingress, because of the very large effect 

water has on the electrical conductivity of rock. It is not only the quantity of water 

and amount of salt dissolved in the water that determine the electrical conductivity 

of the bedrock, but also the nature of the fissures and quantity of clay and 

weathering products in them. The resistivity measurement is made by measuring 

the voltage (V) (potential) between two inner electrodes (MN), and the current (I) 

for an electric current sent through the ground between two external electrodes 

(AB). The electrodes are placed at a depth of 200-300 mm along a line on the 

ground surface located symmetrically about the measuring point. Also discussed 

are correlations with electromagnetic measurements. 

Nelson et al. (1982) presented three case studies investigating induced-

polarization (IP) responses of a zeolite-bearing conglomerate and of two 

carbonaceous siltstones. The IP response of these noneconomic geologic materials 

can either mask or mimic the response from sulfide mineralization which is sought 

by electrical field surveys. The nonsulfide rock types which produce unusually 

high responses on IP field surveys were sampled by core drilling for chemical, 

mineralogical, and electrical laboratory study. The electrical response of core 

samples was measured in a four-electrode sample holder over the 0.03–1000 Hz 

range. Geologic description of the core, petrographic examination of thin sections, 

mineral identification by x-ray diffraction (XRD) and chemical analysis of 

samples supplemented the electrical measurements. A surface phase response of 
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20 mrad was obtained from field surveys over the Gila conglomerate at an Arizona 

location. Core samples of the Gila were examined in thin section and clast surfaces 

were found to be coated with a thin layer of zeolites. These zeolites project into 

pore spaces in the conglomerate and thus are in intimate contact with formation 

waters. A series of laboratory experiments suggests that zeolites cause most of the 

observed IP response. Phase responses as high as 100 mrad were measured with 

field surveys over siltstone and limestone sequences in western Nevada. Samples 

recovered from the Luning and Gabbs-Sunrise formations include siltstones 

containing small amounts of amorphous carbon. These siltstones are very 

conductive electrically and the high-phase response is attributed to polarization of 

the carbon-pore water interface. Low porosity in these carbonaceous siltstones 

enhances the phase response. 

Zhou et al. (2002) studied sinkholes which are often a major hazard to 

development in areas underlain by carbonate rocks. Road and highway 

subsidence, building-foundation collapse, and dam leakage are a few of the 

problems associated with sinkholes. Structural instability associated with 

sinkholes can occur as a sudden collapse of the ground surface or as a less 

catastrophic, but recurring drainage problem. 

The development of computer-controlled multi-electrode resistivity survey 

systems and the development of resistivity modeling software (Loke and Barker, 

1995) have made electrical resistivity surveys more cost-effective and less labor-

intensive than they were formerly. These surveys are commonly referred to as 

electrical resistivity tomography (ERT) or electrical imaging. The advancement of 

these techniques allows resistivity data to be collected and processed within a few 
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hours and as a result ERT is becoming a more valuable tool in subsurface 

investigations (Zhou et al, 1999). A frequently occurring problem with ERT is the 

need to determine which of the many existing electrode configurations will 

respond best to the material changes in karst features. Each array has distinctive 

advantages and disadvantages in terms of depth of investigation, sensitivity to 

horizontal or vertical variations and signal strength. Setting aside the effects of 

‘‘noise’’ (i.e., the effects of nearsurface local variations in resistivity which in 

themselves may place a limit on the detectability and resolution of karst features), 

application of an inappropriate array type often happen. Selection of an 

appropriate electrode array in resistivity surveying requires knowledge of the 

properties of the targets, the sensitivities of each array to a certain geologic feature 

and the budget of the project. The investigations presented in this paper show that 

the mixed array may be the most technically sound configuration but it 

significantly increases the amount of time and the cost to collect data. Among the 

three standard arrays (Wenner, Schlumberger and Dipole-dipole), the Dipole-

dipole array provides the most precise delineation of potential sinkhole collapse 

areas and is the most sensitive to vertical boundaries. However, Dipole-dipole 

measurements are more likely to be affected by nearsurface variation noise. Under 

such circumstances, the Schlumberger array is a less effective alternative. These 

investigations indicated that the Wenner array could not provide a recognizable 

signature for a potential collapse area and should be avoided for sinkhole 

delineation.  

Sergio and Giovanni (2006) studied the Hierapolis (Temple of Apollo), the 

principal deity of the city. While the foundations of this temple go back to late 

Hellenistic times, the present remains of the upper structure are from the 3rd 



 15

century AD. Next to it is an underground chamber (called the Plutonion) from 

which poisonous gases emerge. This paper presents the results of a geophysical 

survey carried out to explore firstly the buried cavities or structures beneath the 

Temple of Apollo, knowledge of which is important to understand whether the 

Plutonion could be entered from the inside of the temple. Secondly to contribute 

to the ongoing evaluation of ground-penetrating radar (GPR) and electrical 

resistivity tomography (ERT) as tools for research into subsurface archaeological 

features (voids, walls, etc.). 

Two-dimensional ERT imaging was used to detect the presence of an 

active normal fault passing under the Temple of Apollo, as shown by geological, 

geomorphological and archaeoseismological observations. The resistivity profiles 

reveal the presence of conductive material (clay) covering the archaeological 

structures. The presence of active normal faults is indicated by the displacement 

of the bedrock and the conductive material on top of it. Man-made structures 

located under the Temple of Apollo were detected using three-dimensional GPR 

imaging. The results of the two survey methods applied were compared, assessing 

the relative merits and demerits of each technique. Their combined use was 

discussed in terms of providing enhanced views that are more informative than a 

single method. 

The S-inversion method is to predict and forecast water-filled faults or 

fracture zones ahead of the front wall of a tunnel during tunnel excavation (Xue et 

al, 2007). S-inversion is an interpretation method of transient electromagnetic 

(TEM) data using the second derivative of the conductivity parameter based on 

the moving thin sheet approach. It is suggested for the technology of second 
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derivative of vertical apparent conductivity, which was traditionally used in 

surface TEM data interpretation, the theoretical analyses and the method of 

numerical calculation. A real tunnel forecasting was studied for TEM surveys and 

results showed that the proposed method is effective and successful for exploring 

and predicting unfavorable geology during tunnel construction. 

The electrotelluric geophysical method is an advanced exploration 

technique that utilizes a passive portable instrument (Villasenor and Davies, 

1987). It is based on the analysis of the electric field present at the surface 

interface from which accurate information is obtained regarding lithologies and 

ore resources down to 40,000 feet beneath a surface point. Its applications range 

from early prospecting reconnaissance to subsurface studies in mining operations. 

Electrotelluric surveys conducted in coal fields of Central Utah illustrate the 

applicability and strategy used by the electrotelluric method in coal mine longwall 

development. These studies provided information regarding minor fault 

displacements and coal seams at depths of 1,500 to 1,700 feet below the surface. 

A successful case history was applying the high-frequency passive source 

electromagnetic (EM) method and controlled-source audiomagnetotellurics 

(CSAMT) to investigate the Qiyueshan (Q) Tunnel route (Lanfang et al, 2006). 

The high-frequency EM system (EH-4, with frequency range from 12.8 Hz to 90 

KHz) and the CSAMT system (V6-A Multipurpose Receiver with frequency range 

from 0.125 Hz to 8,192 Hz) were used for the data acquisition. The orthogonal 

components of the electromagnetic field were measured in the high frequency EM 

method, while scalar measurements of the electrical and magnetic field 

components were used in the CSAMT method. The relevant electrical properties 
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of the earth were extracted from the electromagnetic profiles. High frequency EM 

has high resolution in the shallow earth but a smaller depth of exploration while 

the CSAMT method has a powerful signal but a lower resolution in the shallow 

earth. The integration of the two methods might be effective for the survey of the 

deep tunnel route. Q Tunnel, located in central south China has a length of 10 km 

and a depth of up to 900 m. Half of the tunnel goes through karst terrain where the 

geologic structures are very complex due to cavities, underground rivers and 

faults. The EM mapping results distinguished the electrical resistivity of different 

rock formations. Five low-resistivity areas and four high-resistivity areas were 

found and nine faults were verified by the EM method. These findings were very 

useful for the later engineering design.  

A detailed gravity survey has been conducted over the Stour buried tunnel-

valley between Sturmer and Long Melford in Essex (Barker and Harker, 1984). 

The resulting Bouguer anomaly map indicated that the density of the boulder clay 

filling the valley is higher than that of the underlying chalk. The interpretation of 

the Bouguer anomaly clearly indicated the subsurface position of the Stour buried 

tunnel-valley and calculations of the depth to the base of the valley fill have been 

attempted. Detailed resistivity sounding surveys at proposed borehole sites 

confirmed the gravity interpretation and provided more detailed information on 

drift lithology and thickness.  

Integrated geophysical methods, including high-precision gravity survey, 

magnetism survey, high-density electricity survey, radioactivity radon gas survey, 

seismic method survey, ground temperature measuring, Hg measuring and nuclear 

resonance magnetism method have been applied to explore the underground 

palace of Emperor Qin Shi Huang Mausoleum. It is identified that the distribution 



 18

area of the underground palace, the thinner tamped wall in the tamped burial 

mound, real sites of coffin chambers as well as grave pathway in the west 

direction through careful digging and integrated analysis and comparison should 

be most important discoveries in latest exploration for Emperor Qin Shi Huang 

Mausoleum (Liu et al, 2004). 

Laboratory measurements of Radio Frequency (RF) complex permittivity 

had been made on a variety of "rocks" encountered in mining, tunnelling, and 

engineering works (John, 1975). An RF impedance bridge and a parallel-plate 

capacitance test cell were employed at frequencies of 1, 5, 25 and 100 MHz. The 

results predicted that low-loss propagation will be possible in certain granites, 

limestone, coals and dry concretes. Existing Very High Frequency (VHF) mining 

radar equipment should be capable of exploring into such rocks to distances of up 

to hundreds of feet. Useful but shorter probing distances are predicted for other 

coals, gypsums, oil shales, dry sandstones, high-grade tar sands and schists. Radar 

probing distances of less than 10 ft are predicted for most shales, clays and fine-

grained soils. Uncombined moisture content is evidently the governing factor. 

Efforts were made throughout the experiments to preserve or simulate the original 

moisture content of the "rocks" in place. 

Blasting near the access road to a new airport for the Town of St. Anthony, 

Newfoundland exposed a large open cavity (Maher et al, 1998). Although a site 

investigation had been previously carried out for the proposed airport 

development, its scope had been limited to investigation of overburden soils. 

Since the new airport was already partially completed, it became critical to locate 

any additional cavities before further construction took place. An integrated site 

investigation utilizing geological mapping, ground penetrating radar and gravity 
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surveys in conjunction with core drilling was immediately undertaken. The airport 

is located on dolomitic limestone and evidence of karstic features is abundant. The 

geophysical surveys revealed that the rock was dissected by numerous open 

and/or clay infilled bedding planes. In the area of one of the proposed terminal 

buildings, the intersection of a thrust fault with a major NW-SE fracture zone was 

identified and was found to control the formation of small solution cavities. These 

particular ground conditions necessitated modifications to standard building 

foundation designs to ensure the integrity of the completed terminal building. 

Rock-mass fracturing is a key parameter in rock-fall hazard assessment. 

However, traditional geologic observations can provide information only about 

discontinuities at the surface (Jeannin et al, 2006). In this case study, detailed 

ground-penetrating-radar (GPR) measurements (with antennas of 50 MHz, 100 

MHz, 200 MHz, and 400 MHz) were conducted on a test site, using different 

acquisition configurations deployed on vertical cliff faces. Conventional 2D 

profile data, common-midpoint (CMP) survey data and transmission data were 

acquired to evaluate the potential use of radar waves to characterize the geometry 

and properties of the major discontinuities (fractures) within a Mesozoic limestone 

massif. Results showed that the continuity and geometry (orientation and dip) of 

the major observed fractures, which are crucial parameters for assessing rock 

stability, can be obtained by combining vertical and horizontal profiles measured 

along the cliff. Using 100-MHz antennae and reached a maximum penetration of 

20 m, which limits the technique to rock volumes of a few tens of thousands of 

cubic meters. Significant differences in reflectivity along the detected fractures 

were observed, which suggests that the fractures characteristics vary in the rock 

mass. A radar velocity image was obtained using transmission data although the 
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results were consistent with radar profiles on the cliff, they showed that the 

technique has little utility, beyond that of more traditional GPR methods, for 

delineating fractures in a rock mass.  

Seismic reflection and refraction with different wave source were used to 

map the lithology interface and to detect the existence of some other features such 

as weak zone, fault, dyke, cavities etc. The results have to be compared with 

borehole log. This method needs a suitable and special wave source such as 

Tunnel Boring Machine. The resistivity method is used to identify the rock mass 

quality and weak zones in conjunction with the planning and design work. 

Monitoring the ground change will help engineers maintain the scope areas. 

Resistivity method was supported with some other geophysical or engineering 

method such as borehole, rock mass grade (estimated by observing recovered 

cores obtained by drilling) or by physical parameters calculated in a laboratory 

using core samples. GPR is one of the most reliable methods used to provide 

information about utilities and discontinuities at the subsurface. The information 

provided by this method is highly accurate but the limitations are resolution, depth 

of penetration (<10m) and noise.  

Other geophysical methods (transient electromagnetic, IP, gravity and EM) 

were used in order to map and detect the lithology and weak zone. This method 

needs a very strong support data from engineering section (borehole etc.). From 

the previous work, electrical method (resistivity method) and GPR are the most 

suitable geophysical methods in void and cavity study. These methods are much 

more accurate, less noisy and requires less time and cost. 
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2.2 Conclusion 

From previous works, the 2-D resistivity method is most suitable for 

interpreting geological structures in subsurface while seismic method is valuable 

for mapping depth of bedrock and fracture zones but cannot indicate the depth or 

dip direction of the zone but 2-D resistivity method can. The 2-D resistivity 

method used previously was the acquisition techniques with the standard of data 

level (n) and total number of data. Hence, the 2-D resistivity method was chosen 

in this research. This method has less noise effect, time and cost effective 

compared to some other geophysical methods. Noise from vehicles will affect the 

seismic data. As for the magnetic and gravity method, buildings, utilities and 

traffic would affect the reading. With a suitable array the 2-D resistivity method 

seems to be the most suitable method in urban areas for the detection of fractures, 

voids, filled cavities, collapsed cavities, pinnacles, cliff subsurface and overhangs 

that frequently occur in limestone area.  
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CHAPTER 3 

RESEARCH METHODOLOGY 

 

 

3.0 Introduction 

 The electrical resistivity method is one of the oldest geophysical methods, 

originally designed in the 1920s for mineralogic prospecting by the Schlumberger 

Company in France. Since then, the method has been improved for the 

engineering, environmental and archeology studies. There are a lot of arrays that 

can be used depending on the objective and site conditions. The most famous 

arrays are Wenner 32SX, Schlumberger and Dipole-dipole.  

 In this chapter, the different arrays are compared. This is to identify the 

suitability of the array towards the objective, site condition and time constraint 

since the study area is in an urban area where time and site condition are very 

limited.  

 

3.1 The research 

For development projects, information about the subsurface, to the depth 

of about 100 meter is needed. In addition to borehole information, geophysical 

and geological information would also help in guiding engineers and contractors 

in their decisions and planning. A large number of geotechnical problems arose 

during the construction of previous engineering projects located in the Kuala 

Lumpur Limestone Formation (Yeap et al. 1993; Bergado et al. 1987; Mitchell, 

1985; Tan, 1986; Tan and Komoo, 1990). This project shows that it is important 

to have accurate geological subsurface information of a project site. There are a 
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few studies on Karsts area which shows problems involved in such areas (Burger, 

1992; Cavinato et al., 2006; Gue and Singh, 2000; Gue and Tan, 2001; Martin and 

Dietrich, 2005; Suleyman, 2003; Sedat and Nuri, 2003; 

http://www.jacobssf.com/articles/Genting%20Tunnel%20Design.pdf). 

Limestone and cavities are closely related. The change of topography is 

drastic even at a very short distance. These phenomena will lead to fractures, 

sinkholes and other phenomena that can threaten human life (Giovanni, 2006). 

The karsts areas are very difficult for geophysics exploration (2-D and 3-D 

resistivity method) but with the existence of water, the resistivity method can be 

used efficiently (Sumanovac and Weisser, 2001). It is difficult to build a tunnel 

along the limestone areas. The tunnel boring machine (TBM) will pass through 

karst areas and encounter karstic system and groundwater which will cause 

problems during excavation (Suleyman, 2003). Many geophysical studies have to 

be conducted in karstic areas to avoid problems (Deceuster et al. 2006; Mac 

Donald et al. 2001; Jorge et al., 2005) and create methods of problem solving 

(Turkmen, 2003; Turkmen and Ozguzel, 2003). 

Ground Penetrating Radar (GPR) is also used to study the response of the 

topsoil towards the GPR signal, its characteristic and data quality (Grandjean and 

Gourry, 1996). In this study, problems encountered while doing the survey and the 

solutions to overcome such problems will be discussed. 

Geophysical methods are suitable tools for investigating this karsts region. 

The choice of geophysical method used depends on the target. Magnetic method 

can only be used to detect a magnetic target while gravity method, on the other 

hand, can only be used if there is a significant contrast in the density of the target 

relative to its surroundings. The seismic method uses sound wave, density and 
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modulus elasticity. Seismic method requires source, receiver, acquisition design, 

noise, large area and a lot of capital. Among all geophysical methods available, 

the 2-D/ 3-D resistivity and GPR are the most suitable methods to be used in most 

situations. The resistivity method can be used to measure the conductivity of the 

ground to a certain limit with certain depth while the GPR method uses 

electromagnetic wave to see the reflection, refraction and diffraction of the 

shallow targeted object or subsurface. 

This research uses two geophysical methods which are GPR and 2-D 

resistivity imaging. The GPR survey was to determine and map the utilities and 

shallow subsurface structures while the 2-D resistivity imaging was to detect and 

map the rock head, cavities and fractures. Since the target depth was less then 26 

meter and with space constraint, a new acquisition technique using Wenner32SX, 

Wenner-Schlumberger and Pole-dipole arrays was proposed (RSWenner32SX, 

RSWenner-Schlumberger and RSPole-dipole). 

The acquisition technique for the three arrays was developed and modified 

where the number of n level was increased to get maximum penetration depth, 

maximum data points and reduced noise (Appendix A). Table 3.1 shows the 

difference between the original and modified protocols of the Wenner, Wenner-

Schlumberger and Pole-dipole array. Furthermore this study is to compare which 

protocol of the 2-D resistivity imaging method with the RSPole-dipole protocol 

can be used to fulfill the research objective compared to other protocols such as 

RSWenner32SX and RSWenner-Schlumberger in term of depth of investigation, 

sensitivity to horizontal and vertical variations and suitability towards the 

objective. 
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