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Abstract  

This paper presents a vision based tracking system for 

routine underwater pipeline or cable inspection for 

autonomous underwater vehicles (AUV’s). The objective of 

this research paper is to investigate the issues of pipeline 

detection, including pose and orientation measurements in 

underwater environments. The proposed visual tracking 

system used an active contour method to track underwater 

object in image sequences. The B-spline based active 

contour is used to define the underwater pipeline boundaries 

in image sequence, followed by series of image processing 

techniques are applied for feature extraction. The active 

contour deformed based on extracted features. The dynamic 

curve fitting method is used to measure the pose and 

orientation of underwater pipeline. To propagate the active 

contour over image sequence Kalman filtering is used. The 

Kalman filter updates the state of underwater object. 

Moreover, it also provides guidance and control to the 

vehicle when cable or pipeline is fully or partially covered by 

the sand or marine flora. In order to show the effectiveness 

of the proposed system, the system is tested on real 

underwater images. From the experimental results, it is 

observed that the maximum error is less then 10 pixels which 

show the robustness of tracking algorithm. 
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1. Introduction 

Traditionally, inspections and maintenances of underwater 

objects are carried out by using a remotely operated vehicle 

(ROV) controlled from the mother ship by a trained operator 

[1]. The effective use of ROV’s requires relatively large 

mother vessel that increase the cost of operations. The 

tethered cable limits both the operation range and vehicle 

movements. Moreover, it also required lot of efforts from the 

operator to concentrate when long mission are carried out. 

Autonomous underwater vehicles or AUV’s do not have 

such limitations and offer cost effective alternative to the 

ROV’s. They have no tether cables between the mother 

vessel and vehicle and carry their power supply onboard. 

AUV’s have a wider range of application in both commercial 

and non commercial industries. Of particular interest in this 

paper is the implementation of an AUV vision system for 

routine underwater pipeline inspection and maintenance 

applications. The usage of underwater pipeline or cables are 

increased many fold and routine inspection and maintenance 

are very essential for proper functioning and to protect them 

from marine traffic [2]. 

Recently, several approaches to underwater pipeline 

tracking have purposed utilizing different characteristics 

such as underwater pipeline or cable models [3] (3D or 2D) 

and computational methods [4] (template matching, Hough 

transform, neural network, standard or extended Kalman 

filter). Conservatively, these approaches are classified into 

two distinct groups [1]: feature based approach and model 

based approach. The feature based approach performs 

tracking by combining the low level features such as 

boundaries or edges of underwater pipelines or cable [5]. 

However this technique may fail in case of occlusion due to 

growth of underwater plants or due to mad or sand on 

pipeline or cable. On the other hand the model based 

approach based on prior knowledge or object model such as 

straight line or structure of the underwater pipeline or cable 

[3, 6]. It requires few parameters to present underwater 

object and robust against noise and missing date or partial 

occlusion. This paper purpose a model based approach to 

detect and track underwater pipeline in complex marine 

environments. The objective of this research paper is to 

design and implement a vision guidance system for 

autonomous underwater vehicle that can track and inspect 

the underwater installation. A B-spline based active contour 

model is used to define the underwater pipeline or cable on 

image sequences and then series of image processing 

techniques are used to extract feature of underwater object. 

After that, shape space transformation is used for contour 

deformation. The recursive curve fitting is used next to 

obtain the image measurement. To propagate the contour 

over an image sequence a dynamic model is used to predict 
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(a)  (b)   (c) 

Figure 1- Result of converting color image into gray image by extracting only the (a) Red, (b) Green and (c) Blue channel. 

 

the pose and orientation measurement. The Kalman filter is 

then used to find the optimal estimation by fusing the both 

image measurement and the predict state of underwater 

object. 

The rest of paper is organized as follows: section 2 will 

presents the various image processing techniques that used 

for object detection in marine environments. Section 3 will 

discusses the method for underwater pipeline modeling and 

visual measurement method. Section 4 will explain the 

tracking algorithm on static images and section 5 will 

present the dynamic modeling technique and Kalman 

filtering method for underwater pipeline tracking. Section 6 

will discuss the results obtained by testing the purposed 

system on real underwater images and finally section 7 will 

end the paper with conclusion and future works. 

2. Image Processing 

At first the images acquired by the AUV onboard video 

camera are converted into the gray scale. There are several 

methods to convert an RGB images into the grayscale [1], 

however these are not suitable for autonomous application. 

To convert RGB image into the grayscale different RGB 

channels are analyzed separately to enhance the image and 

extract boundary information of object in underwater 

environment as shown in figure 1. After doing series of 

experiments on real underwater images it is observed that the 

red channel shown very good results compare to green and 

blue channels. On the basis of these analyses only red 

channel is used for further processing. 

The next phase of image processing is the detection of 

pipeline boundary. Before detection of object boundary, 

edge detection is performed to convert gray scale image into 

the binary image. To avoid the computational burden, Sobel 

edge detection is used.  

Once image is converted into the binary, parameterized 

Hough transform is used to detect pipeline contour. The 

parametric equation of Hough transform is given below: 

θθρ sincos yx +=      (1) 

At first all edge points are transformed into the Hough space 

using the equation 1. In order to avoid the computational 

burden and excessive memory usage of Hough transform, 

1000 edge pixels are processed at a time. After transforming 

all the pixels in Hough space, peak detection is performed 

and the locations that contain the peaks are recorded. To 

avoid the quantization problem in Hough transform all the 

immediate neighborhood of the maximum found suppressed 

to zero. Once sets of candidate peaks are identified in the 

accumulator, start and end points of line segmentation 

associated with those peaks are identified next. If two line 

segments associated with the each other but separated by less 

then predefined gap threshold, are merge into a single line. 

Furthermore the lines that have both Hough parameters 

within the predefined threshold also merge in order to avoid 

multiple lines on same location. The start and the end points 

of line segments represent the outline of the underwater 

pipeline.  

Due to noise and various underwater conditions, object 

boundaries are detected in segments. To draw a full 

boundary of the pipeline over an image a slight different 

 
(a)  (b)   (c) 

Figure 2 - Results of a) Edge image, b) Line segments detection using Hough Transform and c) Final image using 

Bresenham line Algorithm 
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Figure 3 - a) B-Spline Contour That Represents Left and 

Right Boundaries of Underwater Pipeline, Posted on 

Underwater Pipeline Image. B)  Measurement Line on 

B-Spline Curve for Feature Extraction. C) Dots Show the 

Extracted Features using the one-Dimensional Feature 

Detector. 

 

approach is adopted. The first and last points of the line 

segment have been used to calculate the full boundary of the 

object using line equation. Once the slope of the line is 

computed from the line equation a Bresenham line algorithm, 

which is one of the oldest algorithms in computer graphics is 

used to construct a noise free boundary of the object. 

Bresenham line algorithm have few advantages, first it is 

relatively faster and simple to implement and it is robust if 

part of the pipeline is not visible or occluded. Figure 2 shows 

the result of Hough transform and Bresenham line algorithm 

on underwater image. 

3. Pipeline Model and Feature Extraction 

Once the underwater pipeline is detected using the variety of 

image processing technique, the next phase is the design of 

deformable template that represents the underwater pipeline 

boundaries. The deformable templates use a prior shape 

model that can be seen as a regularization term in the fitting 

process. In order to model the underwater pipeline B-spline 

function is used. B-spline is a piecewise polynomial function 

that provides local approximation of contour using a small 

number of parameters refer to as control points. In this 

project a second order non-uniform B-spline function with 

six control points is used. The interval of the B-spline 

function is [0 2] on 2 spans (span 0 and span1). The first 

three control points use to define the left boundary while, the 

last three control points are use to define the right boundary 

of the pipeline. The boundary contour c(s) = (x(s), y(s)) is 

then represented using a B-spline function is given below: 

5

0
( ) ( ) 0 2i xi

x s s s
=

= ≤ ≤∑ B Q         (2) 

[ ]Tqqqqqq
xxxxxx
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))(,),(()( 50 sBsBs K=B  

and similarly for y(s). The contour c(s) of the pipeline 

boundary is also represented by a vector Q with the B-spline 

basis U(s), so that: 

( )( ) ( ), ( ) ( )c s x s y s U s= = Q    (3) 

where 

2( ) ( )U s I s= ⊗B and ( )x y=Q Q Q      (4) 

The I2 denotes the 2x2 matrix, ⊗  is the Kronecker product 

and Q is the x-y coordinate of the B-spline curve.    

After modeling the underwater pipeline using the B-spline 

function, the next step is the visual measurement. Given an 

image containing the target, the visual measurement process 

consists of casting normals (also called measurement line) at 

pre-specified points around the initial or estimated contour. 

To extract the feature curve in the image, one dimensional 

feature detector is applied along each measurement line. The 

feature detector is simply a scanner that scans for intensity 

variation on the binary image obtained after Hough 

transform and Bresenham line algorithm. The measurement 

lines are unit normal vectors and the slopes of the normals 

are computed by differentiating the B-spline function given 

in equation 2. Finally figure 3 illustrates the all these 

concepts.  
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4. Underwater Pipeline Algorithm 

The B-spline model used in this project has six control points. 

These six control points give 12 degree of freedom. It allows 

the arbitrary deformation of the contour, which does not 

happen for any real object and it is desirable to restrict the 

displacement of this control points to a lower dimensional 

space. This can be done by using the concept of shape space 

[7]. The shape space is a linear mapping of a shape vector X 

to a spline vector Q, as shown in Equation 5. 

0QXQ +=W              (5) 

where Q0 represents a reference shape, X is a shape space 

vector (or state vector) and W is a shape matrix. The B-spline 

template now is represented by a reference B-spline Q0 and a 

shape space vector. The Nx x NQ shape matrix W enforce that 

the deviations from the reference spline are restricted to 

geometrically meaningful deformations. As an example, the 

affine transformation can be represented in shape space via 

the following transformations: 

0QXQ +=W       (6) 












=

0010

0001

00

00

xy

yx

W
QQ

QQ
       (7) 

and 

]11[
1221221121 AAAAdd −−=X    (8) 

The first two column of the shape matrix W represents the 

two dimensional (2D) translation and the remaining four 

columns comprise one rotation and three deformations 

(horizontal, vertical and diagonal). The dimension of the 

shape space Nx is usually small compared to the size of the 

spline vector NQ.  

After defining the shape space, the next part of tracking 

algorithm is to use curve fitting technique to measure the 

current position and orientation of the underwater pipeline or 

cable. In this work the framework introduced by the Blake 

and Isard is used [7]. 

If cf(s) expressed the image feature curve obtained using the 

one dimensional feature detector and c0(s) is a pattern curve 

then, the whole tracking is the estimate c(s), a B-spline curve 

that is a deformation of c0(s) and that approximate cf(s). This 

approximation can be express as a minimization problem: 
2

0
X
min fW QQX −+         (9) 

which is the square of the residual norm. Generally, 

measurements made from images are noisy due to dynamic 

nature of underwater environments and several other reasons 

and it is necessary to increase the tolerance for image noise. 

To overcome the effect of noise a mean contour shape and 

Tikhonov regularization are used to bias the fitted curve 

toward the mean shape cm to the degree determined by 

regularization constant as shown in Equation 10. 







 −+−Ω=

222
)()()()(minarg scscscscr fm   (10) 

The expression can be represents conveniently in shape 

space as: 

222

X
min fm QQXX −+−Ω with 0QXQ +=W   (11) 

to avoid the influence of the position and orientation of the 

mean contour and from the features of other objects in the 

background in the regularization term, weight matrix S is 

introduced as shown in Equation 12. 

2

X
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T
S QQXXXX −+

mm
--   (12) 

where HS Ω= and H is the spare of B-spline function. 

Since actual image processing is discrete, by using the 

definition given in [7] the curve fitting problem is expressed 

in a discrete form as follows: 

( )
2
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where vi and h(si)
T
 are given in Equation 14 and Equation 15, 

respectively. Introducing the concept of information matrix 

Si and information weight sum Zi from the stochastic process, 

the algorithm for finding the best-fitting curve is 

summarized as follows: 

 

• Select N regularly equal-spaced sample points s=si, 

i=1,…,N, with inter-sample space h, along the entire 

curve c(s) so that, in the case of an open curve s1=0, 

si+1=si+h and sN=L. 

• For each i, find the position of cf(s) by applying 1D 

feature detector along the normal line passing though 

c(s) at s=si. 

• Initialize 0,0 00 == SZ  

 Iterate, for i=1,…,N 

( ) )(.)()( iiifi sscscv n−=    (14) 

WsUss i
T

i
T

i )()()( nh =    (15) 

T
ii

i

ii ssSS )()(
1
21 hh

σ
+= −   (16) 

ii

i

ii vs )(
1
21 hZZ

σ
+= −    (17) 

 where n(si) is the normal unit vector of curve )(sc at 

s=si, and Bi N=2σ .  

• The aggregated observation vector is Z=ZN with the 

associated statistical information S=SN. 

• The best-fitting curve is given in shape-space by: 

ZXX
1)(ˆ −++= SS       (18) 

The term Si (information matrix) is a measurement of the 

weight of each intermediate estimate X, Zi (information 

weight sum) accumulates the influence of the mean shape 

cm,.  

5. Dynamic Tracking 

Any tracking system required a model of how the system is 

expected to evolve or behave over time. In this work, second 

order auto-regressive process or ARP is used. An 
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Figure 4 - Comparison of Actual and the Measured 

Position of the UnderwaterPpipeline 

 

autoregressive process is a time series modeling strategy 

which takes into account the historical data to predict the 

current state value. The simplest autoregressive model is the 

linear model where the AUV is assumed to have a constant 

velocity model with respect to the object. It is best described 

by the following second order autoregressive model: 

kttt BAA wXXXXXX 01122 )()( +−+−=− −−       (19)  

where w is a random Gaussian noise with zero mean and unit 

standard deviation, A and B are matrices representing the 

deterministic and stochastic components respectively, X  is 

the steady state mean and Xt is the position of object at time t. 

These parameters are needed to be tuned appropriately for 

expected motion in order to obtain best tracking results. If 

β and f are expressed the damping rate and the frequency of 
oscillation of the harmonic motion respectively then 

according to the theory of control system they must set to 

zero for constant velocity model, so that the coefficients of 

the dynamic model are defined as: 
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where A1 and A2 are standard for all second order constant 

velocity model. The problem is the estimation of B0 and it 

required a tuning from the experiment because it defines the 

standard deviation of the noise. Equation 19 can be 

simplified by defining: 









= −

t

t
t

X

X 1χ ,       (20) 

and then Equation 19 can be rewritten as: 

ktt BA w+−=− − )( 1 χχχχ      (21) 

where 
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The second order state tχ  has a mean and covariance is 

given below: 

][ˆ
tt χεχ =   and  ][ ttP χν=

t
 

A Kalman filter is design to merge the information from the 

predicted state and the best fitting curve obtain from 

Equation 18. A complete one step cycle of tracking is given 

below: 

1. Predict shape space vector tχ using the dynamic model: 

)ˆ(~
1 χχχχ −=− −tt A    (22) 

TT
tt BBAPAP += −1

~~ tt
    (23) 

2. Apply Equation 14 to Equation 18 to estimated best fitted 

state of object.  

3. For each measurement the state estimation is update as 

follows: 

1~~ −






 += IPSP T

tt
T

tt HHHK
tt

    (24) 

tttt ZK+= χχ ~ˆ        (25) 

( ) tttt PSIP
~tt

HK−=          (26) 

and  

( )I0=H             (27) 

6. Results and Discussion 

This section presents the results that obtained by testing the 

purposed underwater pipeline or cable tracking system for 

AUV on real image sequences. In general, the accuracy and 

the performance of the tracking algorithm improve as the 

number of feature point in the curve fitting stage increase. 

However, as the number of feature points increases the 

computational load become heavier. There is an obvious 

trade-off between accuracy of the tracking algorithm and the 

computational time. To achieve the balance between 

performance and efficiency, 20 feature points (10 on each 

side) were used. Figure 4 shows the graph of measured and 

the actual position of the underwater pipeline on real 

underwater image sequences. It is observed that the 

maximum error is less then 10 pixels which show the 

robustness of tracking algorithm.  

To solve the initial value problem of the Kalman filer it has 

been assumed that, when tracking was started pipeline was 

near the center of the image. 

7. Conclusion 

In this paper a robust vision based system for underwater 

pipeline tracking has been presented. The developed system 

successfully detects the pipeline and track in real image 

sequences. The algorithm has been implemented in Matlab 

environment and all tests have been conducted on a 1.70GHz 

Pentium IV machine executing windows XP. 

The B-spline contour deforms successfully, based on the 

feature detected and the orientation and position of the 

pipeline has been computed. To conform the validity of the 

purposed system many experiments conducted on real and 

synthetic underwater pipeline images. The maximum error 

that has been achieved is less then 10 pixels.  
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A lot more work need to be done to refine this approach. 

Further studies on improving the algorithm structure and 

calculation steps to achieve better computation time need to 

be investigated. In order to improve tracking and to make the 

algorithm more robust new method for feature extraction 

and image enhancement will be explored. 
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