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Abstract

Robotics is one of the most challenging applica-
tions of soft computing techniques. It is character-
ized by direct interaction with a real world, sensory
feedback and a complex control system. This pa-
per reviews the application of soft computing ap-
proaches, particularly neural networks, in the do-
main of visual servoing of robotic manipulators.
Various robotic tasks within the scope of visual
servoing are identified, and the issues involving the
application of soft computing approaches in solving
these problems are discussed. The paper provides
some practical suggestions in applying neural net-
works for these tasks.

1 Introduction

The field of robotics in general involves several
types of signal transformation. Firstly, there is the
forward and inverse kinematic mappings for posi-
tion control of the robot. Here, there is a need to
translate Cartesian coordinate of the workspace in
terms of joint or motor variables. This task can be
easily carried out with the use of a built-in position
controller which robot manufacturers provide. In
such cases, it is sufficient for the robot controller
to have access to an inverse kinematic mapping,
i.e., that provides joint coordinates as a function
of the position and orientation of the end effec-
tor. To realize a task that necessitates sensor feed-
back, an appropriate sensorimotor mapping relat-
ing sensor patterns to motor commands is needed.
All these aforementioned mappings are often highly
non-linear and it is difficult (though not impossible)

to derive them analytically. Furthermore, because
of environmental changes or robot wear and tear,
the mappings may vary in time and one would have
to adapt the control structure to these variations.
Classical control methods usually rely on a refer-
ence model, whose discrepancy with a real system
may lead to considerable errors.

It is highly desirable to have a method of learn-
ing these mappings automatically. Neural networks
are good candidates for approximating non-linear
transformation functions because they possess the
following desirable features. Firstly, neural net-
works have the capability to learn from experience.
They do not require explicit programming to ac-
quire the approximate model. Secondly, neural net-
works may approximate arbitrary non-linear map-
pings subject to the availability of unlimited num-
ber of processing units. Thirdly, because of their
massive parallel architecture, the data processing
is fast. In the last decade research into neural net-
works has advanced to an extent that they are no
longer viewed as mere black boxes [1], [2], [3].

Most successful applications in robotics utilize
neural networks to implement some kind of signal
transformation that may not be computed satisfac-
torily by other means; owing to the lack of knowl-
edge about the underlying process, or because the
conventional approach would turn out to be compli-
cated and computationally expensive. In the field
of robotics, neural networks have been applied in
the following problems: to solve the inverse kine-
matic problem of robots, to map the non-linear
relationships in robot dynamics as an inverse dy-
namics controller, in path or trajectory planning,
to map sensory information for robot control and
in task planning and intelligent control. The next
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section provides a brief overview of visual feedback
for robot manipulators.

2 Visual Servoing

The development of modern industrial robots dates
back to the 1950’s and 60’s when George Devol
and Joe Engleberger created the “Unimate” robots.
However, it was only in the 1970’s when the re-
search community increasingly began to accept the
robot as a machine able to interact with its external
environment with some degree of autonomy. This
sparked the interest to use visual sensors to direct
the motion of the robot. By strict definition, the
term ‘visual servoing’ refers to the use of vision at
its lowest level to provide closed loop position con-
trol of a robotic system. The approach uses a visual
sensor to measure the error between the current lo-
cation of the end effector and its goal location. The
use of closed loop control increases the overall ac-
curacy of the system by providing real-time feed-
back of error for the position control of the robots.
Corke [4] provides an early review of visual servo-
ing. More recent reviews of this research area may
be found in [5], [6] and [7].

There are numerous methods of classification for
visual servoing, i.e. in terms of control architec-
ture, image features, or hardware configuration. A
commonly adopted classification of visual servoing
architectures is given by Weiss et.al [8]. Accord-
ing to their classification, a distinction between
position-based and image-based control is made. In
position-based visual servoing, image features are
used in conjunction with a geometric model of the
target and a known camera model, to estimate the
pose of the target with respect to the camera. The
feedback signal to control the motion of the robot is
computed by reducing the positioning error in the
estimated pose space. In image-based visual servo-
ing, the location of features on the image plane is
directly used for computing the feedback signal in
the robot positioning system. In general, various
approaches using the latter method focus on com-
puting or estimating the image Jacobian - a func-
tion that relates the rate of change of a robot’s pose
to the rate of change of observed image features
[5], [9],[10].The primary advantage of the image-
based approach over position-based approaches is
that it is less sensitive to camera calibration errors

[11]. Image-based approaches also hold an advan-
tage over position-based control in terms of com-
putational load, making real-time control feasible.

Besides eye-hand coordination applications, vi-
suomotor mappings underlie other robotics tasks
such as visual robot positioning. The goal of visual
positioning is to move a camera so that the image
captured matches a given reference image. This
has many applications, such as inspection, grasp-
ing, and docking.

3 Neural Networks for Visual
Positioning

In visual control of robot manipulators, most ap-
plications of neural networks are aimed at approxi-
mating the non-linear image Jacobian. The neural
network approach is attractive because it does not
require any a priori knowledge of the controlled sys-
tem, and is able to adapt to configuration changes
in the robotic system during operation or by mere
re-training. More importantly, neural networks are
capable of the direct learning of the image Jaco-
bian, as well as the possibility of avoiding the costly
matching of image features in the current and ref-
erence images.

One of the earliest approaches to learning sen-
sorimotor control was proposed by Miller [12] in
which, a CMAC (Cerebellar Model Articulation
Controller) network model learns the mapping be-
tween the current and desired images to the joint
angle displacement of the manipulator. Since the
last decade, there has been a steady stream of re-
ported research adopting the learning approach to
visual servoing of robots. The most predominant
neural network architecture used for approximating
sensory-motor transformation is the Multi Layer
Perceptron model (MLP). This may be attributed
to its proven function approximation capability [13]
and fast recall due to inherent parallelism. Kubota
and Hashimoto [14] used a MLP to learn the non-
linear mapping between image deviations of four
projected points of a viewed object with respect to
a desired image, and the corresponding joint angles
of a robot with an eye-in-hand configuration. Wei
and Hirzinger [15] demonstrated a MLP neural net-
work that performs visual servoing of a manipulator
using the multi-sensor fusion of a laser range sensor



and an eye-in-hand camera. While most work relied
on off-line learning, on-line learning systems have
also been implemented. Van der Smagt et al.[16]
demonstrated visual servoing of a manipulator us-
ing a MLP capable of on-line learning using two
computer workstations running in parallel. Other
MLP based approaches include [17], [18], [19] and
[20].

Besides the MLP neural network, other archi-
tectures have also been investigated. Wunsch et
al.[21] asserted that network topology must be cho-
sen in accordance with the representation of the 3D
orientation of the object. Pose estimation is per-
formed using a modified Kohonen self-organizing
map, which learns by using synthetic views, gen-
erated by 3D CAD like models. Blackburn and
Nguyen [22] conducted a comparative study on
four different neural network architectures for vi-
sion directed reaching tasks. They concluded that
the optimal algorithm to be used depended upon
the availability of memory, the necessity of on-line
adaptation and training speed. Other types of net-
work models that have been used for visual ser-
voing include Linear Local Mappings network [23]
and hybrid neural networks [24].

Multi-sensor fusion and integration have been in-
vestigated in order to enable the visually-guided
robot to perform complex tasks such as grasping,
insertion, micro assembly and tele-operation more
effectively than using a single sensor such as the
camera. Among the advantages of using multi-
ple sensors is that they provide an extended spa-
tial, temporal or spectral coverage of the associated
phenomenon. In addition, multiple sensors create
overlap in observations, and thus redundancy. The
key issue in sensor fusion is the accurate conver-
sion of the physical measurements of a sensor to an
internal model to which the actual fusion method
would be implemented. For this, soft computing
approaches based on fuzzy systems [25] and neural
networks have proven to be successful [26], [15].

4 An Example Application

We briefly describe our implementation [27], [28],
[29] of a neural network based visual positioning
system. A 5DOF robot manipulator is used with
the camera mounted on the end effector or placed
on a tripod observing the target object. Our em-
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Figure 1: Recursive Positioning Result - 5DOF

phasis is on formulating efficient global image de-
scriptors for a class of objects which exhibits little,
if any, distinctive features on its surface to extract
local information. We utilized a structured lighting
approach to project a square array of grid lines from
a modular laser unit which is fixed onto the end ef-
fector. Our system uses a standard MLP neural
network and the conjugate gradient training algo-
rithm for learning. Training is performed off-line
in a supervised manner before a recursive position-
ing method is utilized during its task execution.
The task to be performed by the robot is to move
to a pre-defined reference pose from any arbitrar-
ily chosen pose within its workspace by virtue of
the visual information gathered by the sensor. The
neural network learns the mapping between vari-
ous global image descriptors of the scene and the
relative Cartesian position of the end effector from
its reference pose. In our experiments, we have
achieved positioning accuracy up to 0.1mm for the
Cartesian axes and up to 0.5 degrees for rotational
axes. Figure 1 illustrates the recursive positioning
errors during a typical positioning trial.

5 Implementation Issues

Based on our experience, there are several factors
that need to be considered before implementing a
neural network to learn visuo-sensorimotor map-
ping for robot. These factors include:

• Using a suitable image representation



• Formulating suitable input-output pairs

• Using a reasonable number of training samples

• Finding out optimal neural network structure

Ideally, the observed image should be described
by a fixed-length image feature vector for any views
of the object. This is especially critical in the use of
neural networks to realize the sensory-motor map-
ping as missing features may not be tolerated dur-
ing training and execution of the system. In this
regard, global image features such as geometric mo-
ments and Fourier descriptors have been successful
[20], [17], [28] since these descriptors always provide
a fixed set of image features for any image.

The image features often used in visual servoing
may be correlated with each other, such that a mo-
tion along one axis of the robot may cause various
image feature values to change in a complex man-
ner. It is desirable to have a set of features that
independently describes separate axes of the robot,
but in practice, this is generally not realisable.

Many robots may be controlled using Cartesian
movement commands or direct joint commands.
Consequently, a conversion of the extracted image
information into one of these forms of feedback is
necessary. The complexity of this transformation
has given rise to many approaches to vision-based
control. For example, Miller [12] used an eye-in-
hand configuration to track an object on a con-
veyor. In order to command the robot such that
it achieves a predetermined reference pose with re-
spect to the object, the neural network learned the
mapping between the current and the reference im-
age and the robot joint angle displacements used
to move the end effector. Since the same relative
hand to object position in different robot configu-
rations would require different joint angle displace-
ments to achieve the reference position, the robot’s
current joint angle configuration should be involved
in the input space of the mapping. This increases
the computational complexity of the mapping and
violates the principle with which a correct mapping
may be learned. Kubota and Hashimoto [14]made a
simplification to Miller’s method by considering the
relative positioning with respect to a static object
without having to involve the current hand con-
figuration in the input space of the neural network.
The disadvantage is that the learned relationship is
pose-dependent i.e. it only applies for positioning

with respect to the target object in a particular lo-
cation. A method to solve this problem is to allow
the neural network to learn the Cartesian motion
of the end effector instead of the joint angles, pro-
vided the kinematic of the robot is known a priori.
This makes the system suitable for both stationary
and moving targets without increasing the dimen-
sionality of the input space [15].

Another common concern in using neural net-
works for visual positioning would be the issue of
having a reasonable training time. In order to de-
sign a system that is practical, a reasonable train-
ing time must be ensured. Real robots move slower
than simulated ones, mainly to ensure fast damping
and jitter-free, focussed images. Unacceptably long
training time is not practical especially for dynamic
environments. Therefore, a finite set of training
samples is usually used in real-world applications.
However, a finite set of training samples may be
insufficient for the neural network to approximate
the mapping to a desired accuracy, therefore, there
exists a trade-off between sample size and training
duration. To circumvent this issue, it is suggested
that an initial supervised learning phase is imple-
mented to allow the neural network to quickly learn
an approximate mapping and during the execution,
an on-line learning module enables the neural net-
work to improve its generalization as and when
it encounters new data. This may minimize the
training time needed, while allowing the system to
be adaptive. Nevertheless, this approach calls for
an implementation of a hybrid neural network ar-
chitecture that supports both off-line and on-line
learning.

Although the MLP has been the de-facto neural
architecture used in visual servoing, a noted limi-
tation of the architecture is that, it is not known
what size of network works best for a given task.
This problem is unlikely to be resolved since each
task demands different capabilities from the net-
work. The optimal structure of the neural net-
work may be determined using trial and error or
rules of thumb [30]. Advanced methods for opti-
mal network structure determination include the
bayesian framework for model selection [31], weight
decay [32] and weight elimination [33]. To over-
come over-fitting, training the network using the
Early-Stopping Criterion is recommended. The
MLP should be replaced by a more dynamic neu-
ral network architecture which is capable of on-line



learning and incremental learning. This ensures a
dynamic model of the sensory-motor mapping is
learned and the system is capable of adapting to
changes in the environment. Hybrid neural net-
works which consist of both supervised and unsu-
pervised learning such as the Growing Neural Gas
or Fuzzy-ARTMAP neural networks are possible
choices.

6 Conclusion

This paper has provided a brief review of the learn-
ing approach to visual servoing. The use of neural
networks in visual servoing requires no elaborate
calibration or analytical modeling of the sensor-
robot system prior to using the system to perform
its designated task. Some implementation issues
and practical suggestions to overcome them have
also been discussed. In conclusion, the neural net-
work approach is relatively easier to implement and
is more robust than its model-based counterparts.
A good set of image features, coupled with a flexi-
ble, but effective neural architecture may hold the
key to a successful implementation

References

[1] J. Benitez, J. Castro, and I. Requena, “Are
artificial neural networks black boxes?,” IEEE
Transactions on Neural Networks, vol. 8, no. 5,
pp. 1156–1164, 1997.

[2] L. Bilbro and D. Van den Bout, “Learn-
ing theory and experiments with competitive
networks,” in Advances in Neural Informa-
tion Processing Systems, pp. 846–852, Morgan
Kaufmann Publishers Inc, 1991.

[3] G. Towell and J. Shavlik, “The extraction of
refined rules from knowledge based neural net-
works,” Machine Learning, vol. 31, pp. 71–101,
1993.

[4] P. Corke, “Visual control of robot ma-
nipulators - a review,” in Visual Servoing
(K. Hashimoto, ed.), pp. 1–31, Singapore:
World Scientific, 1993.

[5] S. Hutchinson, G. Hager, and P. Corke, “A
tutorial on visual servo control,” IEEE Trans-

actions on Robotics and Automation, vol. 12,
no. 5, pp. 651–670, 1996.

[6] B. Espiau and R. Horaud, “Visual servoing
with calibrated cameras - a review,” Tech.
Rep. 26247, VIGOR, Esprit-IV reactive LTR
project, 1998.

[7] D. Kragic and H. Christensen, “Survey on vi-
sual servoing for manipulation,” Tech. Rep.
ISRN KTH/NA/P-02/01-SE, Center for Au-
tonomous Systems, Numerical Analysis and
Computer Science, Univ.of Stockholm, 2001.

[8] L. Weiss, A. Sanderson, and C. Neuman, “Dy-
namic sensor based control of robots with vi-
sual feedback,” IEEE Journal of Robotics and
Automation, vol. RA-3, no. 5, pp. 404–417,
1987.

[9] R. Horaud, F. Dornaika, and B. Espiau, “Vi-
sually guided object grasping,” IEEE Trans-
actions of Robotics and Automation, vol. 14,
no. 4, pp. 525–532, 1998.

[10] E. Cervera, F. Berry, and P. Martinet, “Image-
based stereo visual servoing : 2d vs. 3d fea-
tures,” in Proceedings of the 15th Triennial
World Congress of the IFAC, 2002.

[11] P. Corke, Visual Control of Robots : High Per-
formance Visual Servoing. New York: John
Wiley, 1996.

[12] T. Miller, “Sensor-based control of robotic ma-
nipulators using a general learning algorithm,”
IEEE Journal of Robotics and Automation,
vol. RA-3, no. 2, pp. 157–165, 1987.

[13] G. Cybenko, “Approximation by superposi-
tion of a sigmoidal function,” Mathematics of
Control, Signals and Systems, vol. 2, pp. 303–
314, 1989.

[14] T. Kubota and H. Hashimoto, “Visual control
of robotic manipulator based on neural net-
works,” in Neural Networks for Robotic Con-
trol - Theory and Applications, pp. 218–244,
Ellis Horwood, 1996.

[15] G. Wei and G. Hirzinger, “Multisensory vi-
sual servoing by a neural network,” IEEE
Transactions on Systems, Man and Cybernet-
ics, vol. 29, no. 2, pp. 1–6, 1999.



[16] P. van der Smagt, F. Groën, and B. Kröse,
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